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Abstract

Direction-Of-Arrival (DOA) estimation of acoustic signals is of great in-
terest in various applications including battlefield acoustic and noise lo-
calization. Acoustic sensors are employed in an array configuration to
estimate DOAs based on the time differences of arrival DOAs. However,
the acoustic sensors in the network have all their own Data AcQuisition
(DAQ) unit with independent clocks than, it might not be possible to per-
fectly synchronize the network which affects the performance of the time
differences of arrival reliably.

In this thesis we consider the issue of clock synchronization errors in a
network where Acoustic Vector Sensors (AVSs) are used. AVSs are shown
to be advantageous in terms of direction finding compared to conventional
Acoustic Pressure Sensors (APSs) due to their directional particle velocity
measurement capability. Initiallity the measurement model for AVSs is
presented. After that the behavior of the clocks is incorporated in the
measurement model of the full array setup. Subsequently, the effects of
the clocks on the MVDR DOA estimation method is discussed.

The model with clock errors is used in the development of three new
DOA-estimation methods. The first two techniques are eigenstructure
methods that are capable of finding the DOAs regardless of the accuracy
of the synchronization. However, to find the DOAs with high accuracy in
a real-time application these methods are not due to their high compu-
tational cost. Alternatively, the third proposed algorithm takes the DOA
estimate from previous methods with low accuracy as its input. The algo-
rithm estimates the DOA in an iterative fashion with high accuracy based
on these estimates with low accuracy.

Finally, measurements are conducted in a controlled environment in
order to show that these methods are usable in practical situations.
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Abstract

Direction-Of-Arrival (DOA) estimation of acoustic signals is of great interest in various
applications including battlefield acoustic and noise localization. Acoustic sensors are
employed in an array configuration to estimate DOAs based on the time differences of
arrival DOAs. However, the acoustic sensors in the network have all their own Data
AcQuisition (DAQ) unit with independent clocks than, it might not be possible to
perfectly synchronize the network which affects the performance of the time differences
of arrival reliably.

In this thesis we consider the issue of clock synchronization errors in a network where
Acoustic Vector Sensors (AVSs) are used. AVSs are shown to be advantageous in terms
of direction finding compared to conventional Acoustic Pressure Sensors (APSs) due to
their directional particle velocity measurement capability. Initiallity the measurement
model for AVSs is presented. After that the behavior of the clocks is incorporated in
the measurement model of the full array setup. Subsequently, the effects of the clocks
on the MVDR DOA estimation method is discussed.

The model with clock errors is used in the development of three new DOA-estimation
methods. The first two techniques are eigenstructure methods that are capable of
finding the DOAs regardless of the accuracy of the synchronization. However, to find
the DOAs with high accuracy in a real-time application these methods are not due to
their high computational cost. Alternatively, the third proposed algorithm takes the
DOA estimate from previous methods with low accuracy as its input. The algorithm
estimates the DOA in an iterative fashion with high accuracy based on these estimates
with low accuracy.

Finally, measurements are conducted in a controlled environment in order to show
that these methods are usable in practical situations.
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Introduction 1
In array signal processing multiple sensors are placed in an array in order to obtain
space-time information of the measured quantity. This information can be used in
order to estimate or detect certain parameters in this space-time domain. Examples
of these parameters are Direction Of Arrival (DOA) estimation and estimation of the
source spectrum. Array signal processing has applications in fields such as acoustics,
radar, wireless communication and many others.

In this work the focus is on DOA estimation of acoustic sources. Traditionally
Acoustic Pressure Sensors (APSs) are used to characterize the acoustic field. These
APSs measure the variation of pressure induced by the acoustic signals. If the sensors
are employed in an array configuration we can find the Time Differences Of Arrival
(TDOA) of the signals. The TDOA across all sensors in the array form an interference
pattern from which directional information of the acoustic sources can be extracted.

An acoustic field is characterized by two quantities, next to the acoustic pressure
there is particle velocity. Particle velocity is a vector-quantity which denotes the flow
of particles induced by pressure differences over the field. An APS solely measures
the pressure whereas an acoustic vector sensor (AVS) or µ-flown measures both
the pressure and particle velocity [1]. It is clear that the particle velocity carries
extra information about the DOA due to the directional properties of this quantity.
Microflown Technologies is a manufacturer of AVSs [2].

The effects of this extra information in the DOA estimation trough the TDOA
are discussed by Krishnaprasad in [3]. For DOA estimation with APSs the array
configuration is limited due to the frequency of the signals. AVSs add an extra
factor which is independent of frequency. This enables the possibility to use multiple
frequencies of signals with a single array.

AVS-array processing for DOA estimation has recently received increased attention
in various fields. Such as underwater acoustics [4], service robotics [5] and noise
vibration and holography analysis [6, 7].

It is of great importance that all the sensors in the array are perfectly synchronized
in order to accurately estimate the TDOAs. In most array signal processing problems
the frequencies of the measured signals have a relative small wave length such that the
sensors can be placed relatively close to each other. In this way the different sensors
can be connected to the same DAQ-unit with only one clock. Therefore it is easy
to synchronize the sensors. However, in the field of acoustics the wavelengths may
become big and the sensors have to be placed further apart. Consequently it becomes
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difficult to connect all sensors to the same DAQ unit. As a result, other methods of
synchronization have to be used. Such synchronization can, for example, be performed
by means of GPS or through line-of-sight communication.

An application of unsynchronized DOA estimation is found in battlefield acoustics
[8, 9]. If the sensors are deployed within a battlefield it might occur that the
electromagnetic spectrum is (partially) blocked. Therefore space-time synchronization
through GPS will not always be possible. Due to the blocked spectrum it is reasonable
to assume that line-of-sight communication is impossible. Hence it is unachievable to
accurately synchronize the different clocks of the sensors

This work focuses on the effects of the above described clock errors. Questions
answered in this thesis include but are not limited to:

• How can we model an AVS-array that is subjected to clock errors?

• How can we perform DOA estimation on an AVS-array that is subjected to clock
errors?

In the following a brief outline of this thesis is given:

Chapter 2 AVS Array - This chapter starts with assumptions on the sensors and the
environment these are operating in. Then based on these assumptions a measurement
model is build for the sensors. Last some conventional DOA-methods are given so that
these can be used as a reference in later chapters. These methods include the Min-
imum Variance Directional Response (MVDR) beamformer and the MUltiple SIgnal
Classification (MUSIC) method.

Chapter 3 Clock Effects on DOA Estimation - This chapter starts with a general
discussion about clocks and how these can be modeled. Then these clocks are added
to the measurement model. Finally the effects of the clock errors on the MVDR are
discussed in the case where one signal is impinging the array.

Chapter 4 Robust DOA Estimation - This chapter focuses on finding an algorithm
that includes the clock effects from previous chapter in the DOA estimation. Firstly, an
algorithm for an APS array that is independent of clock effects is discussed. Secondly,
based on the above algorithm two novel methods are proposed which are independent
of clock effects. As these methods are computational expensive a third algorithm is
proposed which is not completely independent of clock errors but can be combined with
the previous techniques in order to reduce their cost.

Chapter 5 Experimental Results - In this chapter experiments are conducted in a
controlled environment, these experiments give a proof of concept of the techniques
developed in previous section.
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Acoustic Vector Sensor Arrays 2
In this chapter firstly the data model of the AVS Array that is being used throughout
this thesis is discussed. The data model is based on the model introduced in [10] and is
studied extensively by [3]. This model will be discussed in Section 2.1. Afterwards we
will discuss some classical approaches to find the direction of arrival in sensor arrays
which are extended to AVS arrays.

2.1 Data Model

In order to build the data model, we will need to make some assumptions on the sensors
as well as on its environment [3]:

Co-located sensor components An AVS measures multiple quantities (i.e. pressure and
particle velocity). The assumption is that these quanti-
ties are measured at the same location in space. There-
fore we are able to represent an AVS as a single point.
In reality the maximum distance between these measure-
ment points is less then one centimeter. In a setup cov-
ering more then 10 meter this centimeter is neglectable.

Free-space environment The acoustic environment is assumed to be a homoge-
neous isotropic medium. In reality this will not always
be the case and the model has to be adjusted to cover also
non free space environments when this situation occurs.

Narrow-band signals The source signals are assumed to be narrow-banded such
that the signal time delays between sensors is smaller
than the inverse bandwith and they can be represented
as phase shifts. The measured signals of interest will not
be narrow banded but by bandpass filtering the measure-
ment, this broad-band signal can be split up into multiple
narrow-band signals.

Far field We assume to be in the far field of the sound source and
therefor we will measure a plane wave. This assumption
holds whenever the distance between the source and the
array is much larger (at least ten times) than the size of
the array aperture.

The following assumptions are not necessary in order to build the data model but
will be used later throughout the thesis. For convenience these assumptions will be
stated here.
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Source distribution The acoustic sources will be assumed to be zero-mean
complex Gaussian distributed. Furthermore all sources
are assumed to be uncorrelated to each other.

Noise distribution The noise is assumed to have a zero-mean circular com-
plex Gaussian distribution and is uncorrelated to the
acoustic sources.

Based on the first set of assumption the data model will be derived for an acoustic
vector sensor.

Under the far field assumption it can be shown [10] that the relation between the
acoustic particle velocity v(r, t) and acoustic pressure p(r, t) can be expressed in terms
of position r =

[
rx ry

]
and time t as:

v(r, t) = − u

ρc
p(r, t), (2.1)

where ρ denotes the density of the medium and c the speed of sound in the medium
and u is an unitvector pointing from r in the direction of the far field source. This
equation shows that the pressure and all particle velocity channels will be in phase
with each other when working under the far field assumption.

In Figure 2.1 a schematic overview of an AVS array is given. Multiples AVSs are
placed freely in 2D-space. For convenience it is useful to place one sensor at the origin
of the coordinate system. It is clear from the far field assumption that u will be the
same for all sensors:

u =
[
ux uy

]T
=
[
cos θ sin θ

]T
. (2.2)

u

ux
x

y

Source

AVS

uy

u

ux

uy

u

ux

AVS

uy

u

ux

AVS

uy

θ

Figure 2.1: A schematic overview of an arbitrary AVS array

If we stack all the sensor outputs at time instant t in a vector y(t) we can write [3]:

y(t) = a(θ)s(t) + η(t) ∈ C3M , (2.3)
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where
a(θ) = ap(θ)⊗ h(θ) ∈ C3M , (2.4)

is the steering vector,

ap(θ) =
[
ejkr

T
1 u ejkr

T
2 u . . . ejkr

T
Mu
]T ∈ CM (2.5)

the corresponding pressure array steering vector, j the complex number, ⊗ denotes the
Kronecker product, k the wavenumber, ri =

[
ri,x ri,y

]
the location vector of sensor i,

h(θ) =
[
1 uT

]T ∈ R4 the weighting vector for the different channels, s(t) the source
signal and η(t) the measurement noise.

This model can easily be extended to a multiple source model. Let θi denote the

angles of arrival of source i and θ =
[
θ1 θ2 . . . θK

]T
be the vector containing these

angles where K denotes the amount of sources. Now we could write:

y(t) = A(θ)s(t) + η(t), (2.6)

where A(θ) =
[
a(θ1) a(θ2) . . . a(θK)

]
is the mixing matrix and s(t) =[

s1(t) s2(t) . . . sK(t)
]T

is the vector containing the source signals where si(t) cor-
responds to the source signal of source i at time instant t.

Expanding the model in time by defining the signal matrix S =[
s(1) s(2) . . . s(N)

]
where N equals the amount of samples and defining N =[

η(1) η(2) . . . η(N)
]

we can write

Y = A(θ)S +N , (2.7)

where Y =
[
y(1) y(2) . . . y(N)

]
contains all received sensor measurements.

2.2 Direction of Arrival Estimation

In Direction of Arrival (DOA) estimation we try to retrieve the angles of arrival θ from
the measurement data Y . For simplicity we will discuss in this section only the case
where one signal is present and will therefore only focus on finding the angle of arrival θ.

Three well known approaches for finding the DOA are the classical beamformer,
the Minimum Variance Distortionless Response (MVDR) and MUltiple SIgnal Clasifi-
cation (MUSIC). all three will be shortly explained in this section for later usage if one
would like to have more information on these one could look into [11]. The classical
beamformer and the MVDR create a so-called beamformer vector w(θ) which tries to
estimate the signal vector s1 =

[
s(1) s(2) . . . s(N)

]
as follows

ŝ1 = wT (θ)Y , (2.8)

where ŝ1 denotes the estimate of s1. These beamformer vectors have a dependency on
(θ), so one could perform a grid search over these θ’s and take the θ that maximizes
the source power as the estimate of the direction of arrival i.e.

θ̂ = arg max
θ′

ŝiŝ
H
i , (2.9)
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where θ̂ is the estimate of θ.
The classical beamformer is defined by solving (2.8) in a least square sense which

leads to:
wH(θ) = a†(θ) (2.10)

where [·]† denotes the Moore-Penrose pseudo-inverse. Substituting this in (2.9) leads
to:

θ̂ = arg max
θ′

aH(θ′)Y Y Ha(θ′)

aH(θ′)a(θ′)aH(θ′)a(θ′)
= arg max

θ′
aH(θ′)R̂a(θ′), (2.11)

where R̂ = N−1Y Y H is the sample covariance matrix and we used the fact that
aH(θ′)a(θ′) = 2M is constant over θ. This completes the DOA estimation using the
classical beamformer.

The MVDR beamformer minimizes the output power while retaining the output
power in the θ direction to be equal to one i.e.:

min
w

wH(θ)R̂w(θ) s.t. wH(θ)a = 1 (2.12)

Solving this using Lagrange multipliers leads to:

w(θ) =
R̂−1a(θ)

aH(θ)R̂−1a(θ)
, (2.13)

and the estimate for the DOA is found as:

θ̂ = arg max
θ′

1

aH(θ′)R̂−1a(θ′)
(2.14)

Which complements MVDR based DOA estimation.

The MUSIC method uses a subspace based approach on the correlation matrix R
to find the DOA. We can find R as follows

R = E
[
yyH

]
= σ2

sa(θ)aH(θ) + σ2
ηI. (2.15)

Note that R̂ is an estimate of R. Now, define the eigenvalue decomposition of R

R =
3M∑
m=1

βR,muR,muHR,m. (2.16)

where {βR,m}3Mm=1 are the eigenvalues of R in descending order with corresponding

eigenvectors {uR,m}3Mm=1. From (2.15) it is easy to see that signal subspace ofR coincides
with the subspace of the rank-1 approximation of R. The orthogonal component of
this rank-1 approximation will therefore span the noise space of R. Note that this noise
subspace (UR,N) can be written as:

UR,N =
[
uR,2 uR,3 . . . uR,3M

]
(2.17)
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Now, we can find the DOAs by a grid search:

θ̂ = arg max
θ′

1

||a(θ)UR,N ||2
(2.18)

As the steering vector a(θ) is orthogonal to the noise space the cost function above
maximizes for θ′ = θ and the DOA is found.

Although the above described methods might give good results with the data model
described in section 2.1, these estimators may give poor results in practice. The made
mistakes are mainly due to that the steering vector a(θ) is not exactly known in practice.
Placement flaws and clock errors might affect this vector.

The next chapter will focus on clock errors; How can we model them and what influ-
ence do they have on the described technique? The MVDR is investigated specifically.
Afterwards, Chapter 4 will focus on robust DOA estimation which tries to minimize
the miscalculation due to clocks. Inaccuracies due to placement will not be considered
in this work. Due to the relative low speed of sound (c ≈ 340 m/s), these can be
considered to be neglectable.
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Clock Effects on Direction of
Arrival Estimation 3
In the previous chapter we discussed about DOA estimation techniques when the steer-
ing vector is exactly known. In this work we will consider arrays where synchronization
between sensors is not always possible. In these cases it is common that the time
stamping of the data relies on the clocks equipped in the sensors. If these clock are
not accurate steering vector mismatches arise. In this chapter, firstly, a model for the
different clocks is developed and integrated it in the previously defined model. Sec-
ondly, the effects of clock errors on classical DOA estimation with one source will be
discussed.

3.1 Clocks

Let A and ν denote the nominal amplitude and frequency of a clock oscillator. Then
the clock can be modeled as [12]:

a(t) = (A+ δA (t)) sin (2πνC (t)) , (3.1)

where t deotes true time, δA(t) the amplitude error as a function of time, C(t) the
frequency normalized phase with unit of times and could be written as C(t) = t+δC(t).
Ideally C(t) = t but in practice time varying errors δC(t) exists. Usually δA(t) can
be eliminated using hard limiting using differential comparison techniques. This leaves
the phase error δC(t) as the only error.

The error δC(t) can be understood by expanding it as a polynomial by Taylor
expansion of time and plugging it in C(t). This leads to [13]:

C(t) = t+ δC(t) (3.2)

= φ+
(

1 + φ̇
)
t+ 0.5φ̈t2 + ...+ η(t) (3.3)

= φ+ ωt+ 0.5φ̈t2 + ...+ η(t), (3.4)

where φ is the phase offset at t = 0 and is real valued, ω = 1 + φ̇ is the clock skew
or the clock frequency at t = 0, η(t) contains stochastic noise as well as other noises
like effects from humidity and temperature. An ideal clock has no phase error and
therefore can be modeled as C = t and thus [φ, φ̇, φ̈] = [0, 0, 0].

In this work we will model the clock as an affine system and assume that the
coefficients of this system are time-invariant over a later defined period of time:

C(t) ≈ ωt+ φ. (3.5)

In order to check the validity of this approximation we want to estimate the dif-
ference between the last expression and the real clock (3.2). There are various ways
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to evaluate the errors on this affine system, such as Allan variance, Overlapping Al-
lan, Hadamard and Theol [14]. We will focus on Allan variance and overlapping Allan
variance of which the latter will be denoted as AVAR. Allan variance is an easy to under-
stand characterization, this will help us to explain AVAR, which is the IEEE standard.
In order to illustrate these variances we will derive the instantaneous frequency ν̃(t) by
differentiating the phase in (3.1) and dividing it by 2π:

ν̃(t) =
1

2π

d

dt
πνC(t) = ν + ν

(
d

dt
δC(t)

)
. (3.6)

Now we can define the normalized fractional frequency as the relative error on the
nominal frequency ν:

ζ(t) ,
ν̃(t)− ν

ν
=

d

dt
δC(t). (3.7)

Averaging this fractional frequency over a time period τ :

ζ(t, τ) =
1

τ

∫ t+τ

t

ζ(t)dt. (3.8)

Finally the Allan variance is defined as the expected value of one half of the time-
averaged squares of the differences between adjacent fractional frequency deviations
ζ(t, τ) [13]:

σ2
ζAllan

(τ) = 0.5E
[
(ζ(t+ τ, τ)− ζ(t, τ))2

]
, (3.9)

where E[·] denotes the expectation operator and σ2
ζAllan

(τ) the Allan variance for time
duration τ . Note that in discrete form this could be estimated as [14]:

σ2
ζAllan

(τ) =
1

2(N − 1)

N−1∑
k=1

(ζk+1,τ − ζk,τ )2, (3.10)

where N denotes the amount of samples and ζk,τ the averaged fractional frequency

corresponding to the kth sample over time duration τ . Now, let {C(Tk)}Nk=1 denote a
discrete set of time measurements on the clock at true time instants Tk with a nominal
spacing of τ = Tk+1 − Tk, we can write the average fractional frequency of the kth

measurement by substituting (3.7) in (3.8):

ζk,τ =
δC(Tk + τ)− δC(Tk)

τ
. (3.11)

Substituting this in (3.10) leads to:

σ2
ζAllan

(τ) =
1

2τ 2(N − 2)

N−2∑
k=1

(δC(Tk + 2τ)− 2δC(Tk + τ) + δC(Tk))
2. (3.12)
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If we substitute (3.4) in this equation we get:

σ2
ζAllan

(τ) =
1

2τ 2(N − 2)

N−2∑
k=1

(
φ+ φ̇(Tk + 2τ) + 0.5φ̈(Tk + 2τ)2 + ...+ ηk+2

− 2
(
φ+ φ̇(Tk + τ) + 0.5φ̈(Tk + τ)2 + ...+ ηk+1

)
+ φ+ φ̇(Tk) + 0.5φ̈(Tk)

2 + ...+ ηk

)2

=
1

2(N − 2)

N−2∑
k=1

(φ̈τ + · · ·+ η̈k)
2, (3.13)

where η̈ = τ−1(η̇k+1 − η̇k) and η̇k = τ−1(ηk+1 − ηk). Note that the frequency drift

(φ̈), the averaged random noise and the higher order terms are in the equation for
the Allan variance while the phase and frequency offset are eliminated. Therefore the
Allan variance is a measure of noise contributed by higher order terms of the clock
during an integration time τ . Thus our affine model proposed in (3.5) is valid
for a coherence time τ given that the Allan variance for the used clock with
integration time τ is sufficiently low. What sufficiently low exactly means will be
discussed after the explanation of AVAR in this section.

Recall that the Allan Variance subtracts two adjacent fractional frequency averages
(ζk+1,τ0 − ζk,τ0) with averaging time τ0. In contrast, AVAR averages over a time nτ0,
where n is the averaging factor. Later we find that the expected value of both the
Alan Variance and AVAR to be equalt. However, [14] shows that the latter has a lower
variance. AVAR is formally defined as [14]:

σ2
ζ (τ = nτ0) =

1

2n2(N − 2n)

N−2n∑
l=1

(
l+n−1∑
k=l

(ζk+n,τ − ζk,τ )

)2

. (3.14)

The inner sum in this equation is in fact an averaging operation and it can therefore
easily be rewritten to:

σ2
ζ (τ) =

1

2(N − n)

N−2n∑
k=1

(
ζk+n,τ − ζk,τ

)2
. (3.15)

Substituting (3.11) in this equation yields:

σ2
ζ (τ) =

1

2τ 2(N − 2n)

N−2n∑
k=1

(δC(Tk + 2τ)− 2δC(Tk + τ) + δC(Tk))
2 . (3.16)

Substituting (3.4) and a comparable derivation as for the normal Allan variance leads
to:

σ2
ζ (τ) =

1

2(N − 2n)

N−2n∑
k=1

(
φ̈τ + ...+ η̈k

)2
. (3.17)
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If we compare the last expression with (3.13) we observe that the Allan variance and
AVAR are very similar..

The affine clock model given in (3.5) is valid as long as the AVAR (σζ(τ)) is negligible
small for a certain coherence time τ = τc. A rough stability requirement by [15] states
that the coherence time is the time for which the RMS phase error of the clock remains
less than 1 radian:

2πνoσζ(τc)τc ≤ 1, (3.18)

where νo is the observed frequency. So if we want to have a coherence time of 100
seconds while using a clock with frequency ν0 equal to the sampling rate of 16kHz, we
need an Allan standard deviation of:

σζ(τ = 100) ≤ 10−8. (3.19)

Typical Allan variances for a temperature compensated quartz oscillator with a
coherence time between 1 and 100 seconds are according to [16] between 10−8 and
10−9. These oscillator thus have the desired Allan variance. Unfortunately, the clocks
currently applied in the AVSs are not temperature compensated which makes it hard
to find reliable Allan variances. Although the Allan variance of our clocks might
not meet the requirement measurements are conducted in order to show their affine
behaviour. These measurements are shown in Appendix A. This appendix shows that
the affine model is valid for at least a small period of time.

3.2 Incorporating Clocks into the Model

The affine system describing the clocks from previous section can incorporated in the
data model. Note that the clock mismatches will only change the phase of the measured
signal. In fact, the steering vector for the pressure channel can be rewritten as follows:

apε(θ, t) =


ejkc(t−t1(t))

ejkc(t−t2(t))

...
ejkc(t−tM (t))

� ap, (3.20)

where ti(t) = ωit + φi denotes the time according to sensor i at time t and · denotes
the Hadamard product. Note that we could write the offsets φi in a diagonal matrix Φ
where the entries are given by {Φ}ii = ejkcφi . Similarly write the slopes in a diagonal
matrix Ω(t) with entries {Ω(t)}ii = ejkc(1−ωi)t. The steering vector can be written as:

apε(θ, t) = ΦΩ(t)ap(θ). (3.21)

where ap(θ) is given by (2.5). For performing DOA estimation only a few samples in
time are taken. If we start to perform the DOA estimation at time T1 and end at T2,
then the start and end time of the DOA estimation of sensor i could be written as

12



ti(T1) and ti(T2) respectively.

Usually, in battlefield acoustics the source signals are present for a short period of
time. Therefore it is not possible to use a lot of sample points. Due that only a short
period of time is taken for the DOA estimation and ti(t) is shown to change relatively
slow. We conclude that ti(T1) ≈ ti(T2). So we could approximate the clock error for
the DOA estimation algorithm as static. For that reason the clock effects are assumed
to be constant throughout the algorithm. However the clocks will be simulated as an
affine system in order to show that the given approximation does not have a big effect
on the estimation. The choice is made to use the average clock error within T1 and T2:

Γ = Φ (Ω (T1) Ω (T2))1/2 ,

apε(θ) ≈ Γap, (3.22)

where Γ is a diagonal matrix containing the clock errors. Note that an index of Γ could
be written as:

{Γ}ii = ejkcγi = ejkc(
1
2
(1−ωi)(T1+T2)+φi). (3.23)

Note that the approximation in (3.22) will generate time-dependent phase mismatches
between our model and reality. In Appendix B, simulations are shown that support
the given similarity.

3.3 Effects of Clock Errors on DOA Estimation

In this section, we focus on effects of the clocks on the DOA estimation. This will give
a general insight into the problem and shows that correcting for clock errors is essential.

The previously established model will be analyzed for clock errors that follow a
Gaussian distribution with given standard deviation. Furthermore, we assume a 2D
acoustical space with one source and multiple APSs. These APSs are placed in a Uni-
formly spaced Linear Array (ULA). Firstly, the MVDR response for a non-errorneous
signal is derived. Secondly the MVDR response for an APS with clock errors is derived
and analyzed. Lastly, the discussion is extended to the case of an AVS array.

3.3.1 Acoustic Pressure Sensor Array

The model introduced in Chapter 2 is a general model for AVS arrays, in this section
however, we will use an APS array. The derived model can be reduced to an APS array
by neglecting the h(θ)-vectors. Firstly, this model is discussed without clock errors.
Secondly, a closed form solution will be derived when (small) clock errors are present.
Note that if we reduce (2.7) to one source and multiple APSs we will get:

Yp = ap(θ)sT1 +N ∈ CN×M . (3.24)
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Furthermore, we could express ap for a ULA, where the most left sensor is placed at
the origin of the coordinate system, as:

ap(θ) =
[
ejk(r

T
1 u) ejk(r

T
2 u) . . . ejk(r

T
Mu)
]T

=
[
1 ejkd cos θ e2jkd cos θ . . . e(M−1)jkd cos θ

]T
,

(3.25)
where d is the distance between two adjacent sensors. The correlation matrix from
(3.24) can be expressed as:

Rp , lim
N→∞

1

N
YpY

H
p

= σ2
sap(θ)aHp (θ) + σ2

ηIM , (3.26)

where we used aHp (θ)ap(θ) = M , defined σ2
s as the signal power and σ2

η as the noise
power. Furthermore, we assumed the signal and the noise to be uncorrelated. We can
find the inverse with the Sherman-Morrison matrix inversion lemma:

R−1p = σ−2η IM −
σ−4η σ2

sap(θ)aHp (θ)

1 + σ−2η σ2
sa

H
p (θ)ap(θ)

=

(
σ2
η + σ2

sM
)
IM − σ2

sap(θ)aHp (θ)

σ2
η

(
σ2
η + σ2

sM
) . (3.27)

Substituting this in the equation of the MVDR (2.14) leads to:

PMVDR =
1

apH(θ′)R−1p ap(θ′)
(3.28)

=
σ2
ηM(σ2

s + σ2
η)

aHp (θ′)
((
σ2
η + σ2

sM
)
IM − σ2

sap(θ)aHp (θ)
)
ap(θ′)

(3.29)

=
σ2
ηM(σ2

s + σ2
η)

M
(
σ2
η + σ2

sM
)
− σ2

sa
H
p (θ′)ap(θ)aHp (θ)ap(θ′)

. (3.30)

Recall that θ denotes the real DOA, while θ′ is the variable over which the grid search
is performed. Note the following lemma:

Lemma 3.1.

aHp (θ′)ap(θ)aHp (θ)ap(θ′) = M + 2
M−1∑
i=1

(M − i) cos [iq(θ, θ′)] , (3.31)

where we defined q(θ, θ′) = kd (cos(θ)− cos(θ′)).

Proof. See Appendix C. �

Now, we find the MVDR output to be:

PMVDR =
σ2
ηM(σ2

sM + σ2
η)

M
(
σ2
η + σ2

sM
)
− σ2

s

(
M + 2

∑M−1
i=1 (M − i) cos [iq(θ, θ′)]

) . (3.32)

This spectrum is valid when a single source with DOA θ impinges a perfectly synchro-
nized array. In the following we will derive the MVDR output in a similar fashion for
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a single source impinging an array containing clock errors. By using the model given
in (3.22). We can write the received data as:

Yp = Γaps
H +N . (3.33)

Recall that Γ is a diagonal matrix containing the clock errors. Computing the new
autocorrelation in a similar fashion as before leads to:

Rp = σ2
sΓap(θ)aHp (θ)ΓH + σ2

ηIM . (3.34)

Using the Sherman-Morrison matrix inversion lemma again, while noting that ΓHΓ =
IM , we find the inverse of the correlation matrix to be:

R−1p = σ−2η −
σ−4η σ2

sΓap(θ)aHp (θ)ΓH

1 + σ−2η σ2
sa

H
p (θ)ΓHΓap(θ)

=

(
σ2
η + σ2

sM
)
IM − σ2

sΓap(θ)aHp (θ)ΓH

σ2
η

(
σ2
η + σ2

sM
) .

(3.35)
Substituting this in the MVDR equation (2.14):

PMVDR =
1

aHp (θ′)R−1Y ap(θ′)

=
σ2
ηM(σ2

s + σ2
η)

M
(
σ2
η + σ2

sM
)
− σ2

s

∣∣aHp (θ′)Γap(θ)
∣∣2 . (3.36)

The last term in the denumerator of previous expression can be rewritten as:

σ2
s

∣∣aHp (θ′)Γap(θ)
∣∣2 = σ2

s

∣∣∣∣∣
M−1∑
i=0

ejiq(θ,θ
′)+jkcγi+1

∣∣∣∣∣
2

≤M2, (3.37)

Substituting (3.37) in (3.36) leads to:

PMVDR =
σ2
ηM(σ2

s + σ2
η)

M
(
σ2
η + σ2

sM
)
− σ2

s

∣∣∣∑M−1
i=0 ejiq(θ,θ′)+jkcγi+1

∣∣∣2 . (3.38)

It is easy to observe that the only difference between (3.32) and (3.38) is the bias term
in the exponential in the latter equation. It is clear that the θ′ that maximizes the
MVDR is the one that maximizes the absolute sum of exponentials in (3.38). The θ′

that maximizes the absolute sum can be approximated, for small γs, by the θ′ that
minimizes the difference between the different arguments of the complex exponentials
i.e. the θ′ for which the arguments are closest to a consensus C in an absolute sense:

θ̂ = arg max
θ′

PMVDR ≈ arg min
θ′,C

M−1∑
i=0

|iq(θ, θ′) + kcγi+1 − C| = arg min
θ′,C
||f(θ′, C)||22,

(3.39)

where θ̂ is the estimated DOA, moreover we defined f(θ′, C) ∈ RM , whose entries are
given by

f i(θ
′, C) = (i− 1)q(θ, θ′) + kcγi − C. (3.40)
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Note that the approximation given in (3.39) is only valid when the clock errors are
relatively small, some simulations supporting this claim are given in Appendix D. If we
derive the derivative of the cost function in (3.39) with respect to C we find:

∇C

(
fT (θ′, C)f(θ′, C)

)
= −M(M − 1)

2
q(θ, θ′) +MC − kc

M∑
i=1

γi. (3.41)

Equating this to zero and solving for C leads to

C =
M − 1

2
q(θ, θ′) +

kc

M

M∑
i=1

γi. (3.42)

Substituting this in (3.40) removes the dependency on C:

f i(θ
′) =

(
i− M + 1

2

)
q(θ, θ′) + kcγi −

kc

M

M∑
j=1;

γj. (3.43)

Now, computing the derivative of the cost function in (3.39) with respect to θ′, equating
to zero and recalling q(θ, θ′) = kd(cos θ − cos θ′) will result in:

∇θ′
(
fT (θ′)f(θ′)

)
=2kd sin θ′

M∑
i=1

[(
i− M + 1

2

)((
i− M + 1

2

)
q(θ, θ′) + kcγi −

kc

M

M∑
j=1

γj

)]
= 0.

(3.44)

Note that:
M∑
i=1

[(
i− M + 1

2

) M∑
j=1

γj

]
= 0. (3.45)

Substituting above expression into (3.44), while discarding the sin θ′ factor results in:

M (M2 − 1)

12
q(θ, θ′) + kc

M∑
i=1

(
i− M + 1

2

)
γi = 0. (3.46)

Note that θ′ = 0◦ and θ′ = 180◦ are solutions of (3.44) which we discarded in (3.46)
both of these solutions will result in a maximum in the cost function and therefore the
final result is not influenced by discarding them. Solving the latter for cos θ′ will lead
to:

cos θ̂′ = cos θ +
12c

dM(M2 − 1)

M∑
i=1

(
i− M + 1

2

)
γi = cos θ + bcos(γ), (3.47)

where we defined

bcos(γ) =
12c

dM(M2 − 1)

M∑
i=1

(
i− M + 1

2

)
γi (3.48)

to denote the bias on the cosine of the estimated DOA caused by the clock errors

γ =
[
γ1 γ2 . . . γM

]T
. The result in (3.47) has a few interesting properties:
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• The bias solely depends on c/d i.e. the inverse distance between the sensors with
respect to the speed of sound. Thus the further we place sensors from each other
the smaller our error will be. However, due that d is a design variable which should
be chosen based on the frequency, it follows that the bias is indirectly dependent
on the frequency. Also note that the approximation in (3.39) is not valid for high
frequencies.

• The bias works in the cosine space of the estimate cos(θ̂), thus the resulting

absolute error |θ̂ − θ| will be bigger around θ = 0◦ or θ = 180◦ and small around
θ = 90◦.

• The bias induced by a sensor depends not only on the clock but also the location
of the sensor. For example the sensor in the center of an odd numbered ULA
does not introduce any error on the estimate regardless of the clock. On the other
hand sensors placed on the ends of the ULA will introduce the biggest errors.

• Although the bias decreases when the amount of sensors increases asymptoticly
with a rate of 1/M , this is mainly due to the bigger size of the array. If we decrease
the sensor distance d while increasing the total amount of sensors M , such that
the total array size dM stays constant. We will observe an asymptoticly decay of
M/(M + 1) thus the gain for adding more sensors while not increasing the total
size of the array is neglectable for big M . However, increasing the total size of
the array (with or without adding new sensors) does decrease the bias. In fact
the bias decreases with 1/(dM).

• The bias of the estimate does not depend on the signal or noise power in the single
source scenario.

The nature of the bias can be explained with the schematic overview in Figure 3.1.
In this figure three APSs are deployed in a ULA, the two most left sensors have perfect
clock while the most right sensor is lagging behind. A farfield source is emitting a
plane wave towards the sensors. The two most left sensors will ”see” the waves correct
while the right sensor will have a delay. The complete array will see the wave as the
dotted line in the figure. It is imaginable that the eventual estimate of θ will be biased
anti-clockwise.

In Figure 3.2 various Mean Square Errors (MSE: 1/K
∑K

k=1(θ
′
k − θ)2, with K the

number of realizations) are plotted against the real DOA (recall that we took N →∞
snapshots). The amount of sensors used are varying (M = 2, 3, 5, 7) and the clock
errors are created using a Gaussian process with different standard deviations (σγ =
1, 10, 100, 1000µs), K = 1000 instants are computed and the MSE is given in the plots
in Figure 3.2. It is observable that the DOA estimation for σγ = 1 and 10µs are
acceptable (neglecting the endfire) regardless of the amount of sensors. Furthermore.
the maximum error for σγ = 100µs stays low for the seven sensor setup (MSE < 1◦

within the 40◦ < θ < 140◦ interval. Note that our approximation in (3.39) is not valid
at the endfire of the array. Therefore the values outside said interval might not be
valid. Increasing σγ to 1ms results into bad performance for all setups but it is clear
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Figure 3.1: Schematic overview on the effects of clock errors
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Figure 3.2: A few examples of DOA estimation errors caused by static clock errors for an
ULA, with sensor distance d = 0.5m.

that the amount of sensors (i.e. the aperture of the array) has a big influence on the
DOA estimation.

Figure 3.3 shows the MSE due to static clock errors with σγ = 100µs, instead of
keeping the same sensor distance, while adding sensors. The total size of the array-
aperture is kept constant at 5 meter (i.e. dM = 5m). Observe that adding a third
sensor to a two sensor array will improve the DOA estimation significantly, while for
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Figure 3.3: A few examples of DOA estimation errors caused by clock errors for an ULA with
a different amount of sensors with the same total array length (dM = 5m.

each extra sensor added after that the improvement gets less.
It should be noted that for the case with one source, the DOA approximation and

their errors due to clock-synchronization faults are equal for the classical beamformer,
MVDR and MUSIC. As discussed in Section 2.2, when multiple sources are impinging
the array their performance may vary. It is argued that the classical beamformer is
more robust against small clock errors when more signals are present. This is due to
that this method directly uses a projection on the steeringvector a(θ), while the other
two methods take the inverse of a projection over the steeringvector, which amplifies
the errors in this vector.

3.3.2 Acoustic Vector Sensor Array

Up to this point, we analyzed the behaviour of the MVDR beamformer when a single
signal is impinging an APS-array that is exposed to clock errors. In the remainder of
this chapter, the behaviour of the MVDR while using an AVS-array is discussed. We
can add static clock errors in the 1-source AVS model by replacing the steering vector
a(θ) by:

a(θ,Γ) = (Γap(θ))⊗ h(θ). (3.49)

Note that the MVDR power received by an AVS ULA can be derived in almost exactly
the same fashion as for the APS ULA. Doing so leads to:

PMVDR =
σ2
ηM(2σ2

s + σ2
η)

M
(
σ2
η + 2σ2

sM
)
− σ2

s

∣∣∣hT (θ′)h(θ)
∑M−1

i=0 ejiq(θ,θ′)+jkcγi+1

∣∣∣2 . (3.50)
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Figure 3.4: MSE for APS and AVS with M = 4, σγ = 100µs, ∆θ′ = 0.01◦, d = 1, 5m and
K = 100.

Computing the estimated θ′ is in this case not as straightforward as for the APSs
and will therefore not be evaluated in this work. It is clear that the AVS has a gain
in comparison with the APS, this gain is due to the hT (θ′)h(θ) factor, also denoted as
Velocity Gain Modulation (VGM) in [3]. Note that we can find the θ′ for which the
MVDR maximizes as follow:

θ̂′ = arg max
θ′

PMVDR = arg max
θ′

∣∣∣∣∣hT (θ′)h(θ)
M−1∑
i=0

ejiq(θ,θ
′)+jkcγi+1

∣∣∣∣∣
2

. (3.51)

We can visualize this by providing a grid search over θ′. Figure 3.4 shows MSE
errors for a setting with σγ = 1000µs and M = 4 for an APS array and multiple AVS
arrays with changing wavelengths. Note that a wavelength of λ

2d
= 1 corresponds with

Nyquist spatial sampling rate, longer wavelengths with an oversampled sampling rate
and shorter wavelengths with undersampled sampling rates.

The figure shows that if the sensors spatially sample at nyquist rate or higher our
MSE disappears at the endfire which means that the MVDR is an asymptotic unbiased
estimator for θ ∈ [0◦, 180◦]. This can be explained by placing the source in Figure 3.1
in the endfire like in Figure 3.5, where the normal lines are the real waves and the
dotted the waves as seen by the array. Although the dotted waves are not completely
the same as the real waves it is obvious that the DOA estimation is not influenced.

Furthermore, we observe in Figure 3.4 that if the wavelength decreases that even-
tually a MSE at the endfire appears.
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Figure 3.5: MSE for APS and AVS with M = 4, σγ = 100µs, ∆θ′ = 0.01◦, d = 1, 5m, speed
of sound c = 340m/s and K = 100
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Robust Direction of Arrival
Estimation 4
In this chapter we will derive methods for robust DOA estimation in the case the AVS
sensor data is subject to synchronization issues. In the first section, robust beamforming
approaches are discussed. After that, it is made clear why these approaches are not
appropriate for this problem. In Section 4.2 and Section 4.3 two clock independent
eigenstructure methods are introduced. In Section 4.4 an iterative approach to solve
the synchronization problem is proposed.

4.1 Robust beamforming approaches

It is well known that beamformers are designed to reconstruct a signal send over a
wireless channel. These beamformers can easily be changed into a DOA estimation
algorithm. By performing a search over different angles, changing the modeled array
aperture. Taking the angle with the maximum output, results in an estimate of the
direction from which the most power is approaching the array. With this in mind,
it is clear that a robust beamformer is not necessary to be robust in terms of DOA
estimation.

There are several beamformers developed for the case where the steering vector
is not exactly known (e.g. if the measurements are affected by clock errors). One
of these robust beamformers is in literature known as Vorobyov’s beamformer, first
introduced in [17] and developed by Vorobyov, Gershman and Luo. This technique is
shortly explained in this section. From this example, it becomes obvious why it is not
appropriate to use robust beamforming approaches to perform robust DOA estimation.

Vorobyov et al. assumes that the total error on the steering vector aε(θ)−a(θ) (e.g.
phase and gain errors) can be bounded by a constant ε > 0:

||(aε(θ)− a(θ)|| ≤ ε. (4.1)

Which directly implies that the actual steering vector aε(θ) lies within the following
set:

aε(θ) ∈ A(θ, ε) = {c|c = a(θ) + e, ||e|| ≤ ε} . (4.2)

Now, the new beamformer is defined similar to the MVDR beamformer. Recall the
definition of the MVDR beamformer (2.12):

w(θ) = min
w′(θ)

w′H(θ)R̂w′(θ) s.t. w′H(θ)a = 1. (4.3)

Where the MVDR keeps the power within the θ-direction equal to one, the new, robust
beamformer keeps the power for all vectors that lie within A(θ, ε) to have an absolute
value of at least one:

w(θ) =arg min
w′(θ)

w′H(θ)R̂w′(θ) s.t. |w′H(θ)c| ≥ 1 ∀c ∈ A(θ, ε). (4.4)
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Figure 4.1: Spatial spectra for the MVDR and Vorobyov beamformer.

Although this problems seems to be non-convex due to its constraint, it is proven by
[17] that (4.4) can be written as a convex second order cone program and therefore
can be solved relatively efficient.

In Figure 4.1 spatial spectra of the MVDR and of Vorobyov’s method are shown.
There is one signal present which has a DOA of 90◦ and no clock errors are present. As
can be seen in the figure Vorobyovs method has an offset and widens the mainlobe of the
MVDR. Due to this widening of the mainlobe the reconstruction of the signal becomes
less sensitive to minor errors on the steering vector. Furthermore, when we look at the
definition of Vorobyovs method (4.4) that the the power of Vorobyovs method at θ is
a summation of the MVDR at θ and the region around it bounded by ε. Thus, when
the MVDR method gives a symmetric response as in this example the estimate for the
DOA will be the same for MVDR and Vorobyovs method. When the MVDR is not
symmetric there is no guarantee that the DOA estimate obtained through Vorobyovs
method will move in the correct direction.

4.2 Clock Independent Eigenstructure Method

In [18], Liu et al. propose a DOA estimation for an APS-array which is independent of
phase errors. This method is based on the Hadamard product between the measurement
vector and its complex conjugate. It uses the resulting vector as the new measurement
vector on which a MUSIC-like algorithm is performed. The new measurement vector
can be written as:

ỹp(t) = yp(t)� y∗p(t) ∈ RM , (4.5)

where � denotes the Hadamard product.

In this section, firstly, the method developed by Liu et al. is reproduced briefly.
Secondly, this method will be expand for usage with AVSs, so that it becomes clear
what the differences and advantageous are between the two methods.
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4.2.1 Acoustic Pressure Sensor Array

The method developed by Liu defines a covariance matrix based on the new measure-
ment vector ỹp(t):

R̃p = E
[
ỹp(t)ỹHp (t)

]
. (4.6)

Now, we will investigate the new covariance matrix in the case of two sources.

Theorem 4.1. When there are two sources impinging the array we could expand R̃p

as follows:
R̃p = CpRs̃pC

T
p +

(
2
(
σ2
s1 + σ2

s2

)
σ2
η + σ4

η

)
I, (4.7)

where

Cp =
[
1 <

{
ap(θ1)� a∗p(θ2)

}
=
{
ap(θ1)� a∗p(θ2)

}
1
]
, (4.8)

1 =
[
1 1 . . . 1

]T
, (4.9)

Rs̃p = E
[
s̃ps̃

H
p 0

0 2σ2
η (σ2

s1 + σ2
s2) + σ4

η

]
, (4.10)

s̃p =
[
s1s
∗
1 + s2s

∗
2 2<{s1s∗2} −2={s1s∗2}

]T
. (4.11)

Proof. See [18]. �

If we compare this with the equation for the covariance of the normal measurement
vector, we observe certain similarities. The matrix Rs̃p could be seen as the signal
correlation matrix (Rs) and Cp as the matrix containing the steering vectors. With
this in mind it is easy to develop a MUSIC-like algorithm. Define the eigenvalue
decomposition of R̃p as follows:

R̃p =
M∑
m=1

βR̃p,m
uR̃p,m

uH
R̃p,m

(4.12)

where
{
βR̃p,m

}M
m=1

are the eigenvalues of R̃p with corresponding eigenvectors{
uR̃p,m

}M
m=1

. By analyzing Cp, we find that the signal subspace is spanned by three

vectors, such that:

span
{

uR̃p,1
,uR̃p,2

,uR̃p,3

}
= span

{
1,<

{
ap(θ1)� a∗p(θ2)

}
,=
{
ap(θ1)� a∗p(θ2)

}}
.

(4.13)
Now, a two dimensional spatial spectrum is defined based on the signal subspace above:

Pp(θ, θ′) =
(
||ŨH

R̃p
<
{
ap(θ)� a∗p(θ′)

}
||22 + ||ŨH

R̃p
=
{
ap(θ)� a∗p(θ′)

}
||22
)−1

, (4.14)

where ŨR̃p

[
uR̃p,4

uR̃p,5
. . . uR̃p,5

]
. The DOAs can be estimated by searching for

the peaks in the spectrum defined by Pp(θ, θ′):{
θ̂1, θ̂2

}
= arg max

θ,θ′
Pp(θ, θ′), (4.15)
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Figure 4.2: The used array configuration.

where θ̂i are the estimates for the DOAs.

From [18] it follows that the DOA estimates acquired by this method are unam-
biguous if the following statements hold:

• The array consists out of at least four sensors and are placed such that four sensors
are located on the four vertices of a square with sides of no more than λ

4
.

• The DOAs are located within [0◦, 180◦].

Liu et al. propose an array-configuration that satisfies above conditions. We will use
the same configuration so that it is easy to compare the different algorithms. The
array-configuration is given in Figure 4.2.
The above is simulated such that the two dimensional spectrum Pp(θ, θ′) is obtained.

For this simulation the discussed array is used. Furthermore two signals with DOAs of
θ1 = 30◦ and θ2 = 130◦ are impinging the setup, the signals have equal source power
with a SNR of 12dB and a frequency of 1 kHz. The sensors use a sampling frequency
of 16 kHz and 500 sample points are used. Moreover the clocks of the seven sensors are
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Figure 4.3: Results using the method proposed by Liu et al. in [18] the peaks are located at
(-50,-150), (-150,-50), (30,130) and (130,30)

simulated with the following properties:

ω =


106 +



34.3
357.8
276.9
−135.0
303.5
72.5
−6.3




[µs/s], φ =



107.5
366.8
−451.8
172.4
63.8
−261.5

86.7


[µs].

From which the time-vector t = ωt + φ is extracted. Here t is the true time and t
contains the times according to the sensors.

From Figure 4.3 it is clear that we are able to estimate the DOAs if we assume that
these are within the interval [0◦, 180◦]. However, it is not possible to retrieve the DOAs
within the full interval [−180◦, 180◦] due to the ambiguities at −50◦ and −150◦. The
ambiguities follow from the following equality:

ap(θ)� a∗p(θ′) = ap(θ′ − 180◦)� a∗p(θ − 180◦) (4.16)

Note that this equality is a direct result from the fact that the new steering vectors
take the differences between two DOAs (i.e. cos(θ)− cos(θ′) and sin(θ− θ′)) instead of
the direct cosines and sines. The difference of two DOAs have the following properties:

cos θ − cos θ′ = cos(θ′ − 180◦)− cos(θ − 180◦) (4.17)

sin θ − sin θ′ = sin(θ′ − 180◦)− sin(θ − 180◦) (4.18)
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So one of the disadvantages of this method is the ambiguity in the interval [−180◦, 180◦].
Below the biggest disadvantages of this method are indicated:

1. The ambiguity within the interval [−180◦, 180◦] described above.

2. As we have seen, the array configuration is fairly limited and it is depended on
the frequency of the signals.

3. The 1-vector is always in the steering and vector the line θ = θ′ within Pp(θ, θ′)
will always be in the signal-subspace. This makes it impossible to find the DOA
when only one signal is present. Which of course makes sense when APSs are used
while the time references of the different sensors are unknown, there is simply not
enough information available to find the DOA of one single source.

4. The new correlation matrix is defined as a fourth-order statistic (therefore the
name correlation matrix might be incorrect), this may cause issues when the
signals and the noise are not completely Gaussian distributed.

5. This method uses a two dimensional grid search, therefore the technique becomes
computational expensive when compared with other algorithms.

6. The relative high amount of sensors that are needed. Where the common MU-
SIC method needs 1 more sensor than sources this methods needs for K sources
K (K − 1) + 1 sensors [18] to estimate the DOAs.

Although these disadvantages might seem to make this method unsatisfying there is
still one big advantage of this method. This one is namely completely independent of
the errors in the phases of the signals and will thus work regardless of the accuracy of
synchronization.

In the remaining parts of this chapter, we will try to find solutions for the disadvan-
tages of Liu’s method. In the next section, we will see that when we use an AVS-array
and make a relative simple change to the algorithm we are able to tackle the first three
disadvantages. Then in Section 4.3 a method proposed by Cao et al. in [19], which
deals with the fourth disadvantage, is merged with our method. While the method
developed by Cao et al. does not deal with the first three disadvantages, our proposed
method deals with the first four disadvantages. Liu et al. propose in [18] a method to
partly solve the fifth issue themselves, in Section 4.4 we simply alter this technique in
order to use it in our proposed algorithm. This partly solves the fourth issue. How to
solve the fifth and sixth issue of the method is not treated in this work, and therefore
stays an open question.

4.2.2 Acoustic Vector Sensor Array

In this subsection, Liu’s method described above will be changed in order to be suitable
for an AVS array. Simply copying the mentioned method to an AVS-array (i.e. ỹ(t) =
y(t) � y∗(t)) is not sufficient. As the multiplication will square the entries of the, by
AVSs obtained, h(θ)-vector. One of the main advantages of an AVS-array over an
APS-array is that the h(θ)-vector added by the AVS-system has an unique solution
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within the interval [−180◦, 180◦]. By squaring the entries of h(θ) we will be left with
an ambiguity in this factor, namely:

h�2(θ) = h�2(θ − 180), (4.19)

where [·]�i denotes the entrywise ith power of [·]. By recalling the ambiguity for Liu’s
method we find that the two ambiguities to be equal. It is clear that this behavior is
unwanted. In this section we will redefine the method proposed by Liu et al. for an
AVS-array that keeps this uniqueness. As the clock errors are assumed to be the same
for all channels on a sensor (i.e. the phase error of the pressure channel is equal to
that of the velocity channels of that same sensor). It is easy to see that multiplying a
velocity channel with the complex conjugate of its corresponding pressure channel we
end up with a result that is independent of clock errors. Doing so leads to:

ỹ(t) = y(t)�
(
y∗p(t)⊗ 13

)
∈ R3M . (4.20)

Firstly, ỹ(t) is investigated in the case of two sources and a correlation matrix (R̃)
based on this vector will be defined. Secondly, the obtained correlation matrix will
be extended to the more general case with an arbitrary number of sources. By
investigating this correlation matrix a DOA estimation method is proposed. It is likely
to be not robust when certain assumptions that are made might not be completely true.
This is discussed in the end of this section which leads to an intuitive interpretation
of the method that will be proposed in the next section.

Finding the new autocorrelation matrix

Note that the actual steering vector aε(θ) could be written as:

aε(θ) = Πa(θ), (4.21)

where Π = Γ⊗ I3. Now we can write (4.20) in the case of two sources as follows:

ỹ(t) = (Πa(θ1)s1(t) + Πa(θ2)s2(t) + η)�
[(

Γ∗ap(θ1)
∗s1(t)

∗ + Γ∗a∗p(θ2)s2(t)
∗ + η∗p

)
⊗ 13

]
,

(4.22)

where the entries of ηp denote the noise on the pressure channels. By defining the
following identities, we can write the current and following equations in a more compact
form:

ai = a(θi), (4.23)

ap,i = ap(θi), (4.24)

hi = h(θi), (4.25)

ξi = 1M ⊗ hi. (4.26)

Now, by denoting that

Πaisi �
(
Γ∗a∗p,is

∗
i ⊗ 13

)
= ξisis

∗
i . (4.27)
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We can expand (4.22) while dropping the explicit time dependency (t):

ỹ =ξ1s1s
∗
1

+ ξ2s2s
∗
2

+ s1s
∗
2

(
ap,1 � a∗p,2

)
⊗ h1

+ s∗1s2
(
a∗p,1 � ap,2

)
⊗ h2

+ (Γap,1 ⊗ h1)�
(
η∗p ⊗ 13

)
s1

+ (Γap,2 ⊗ h2)�
(
η∗p ⊗ 13

)
s2

+ η �
(
Γ∗a∗p,1 ⊗ 13

)
s∗1

+ η �
(
Γ∗a∗p,2 ⊗ 13

)
s∗2

+ η �
(
η∗p ⊗ 13

)
(4.28)

where we made use of the following property of the Hadamard and Kronecker product:
(a⊗ b)� (c⊗ d) = (a� b)⊗ (b� d). Now we can divide the terms of this equation in
different groups: The first four terms only contain the signal without any noise, the 5th

and 6th term are a mixture of the AVS-array response and noise. The 7th and 8th term
are mixtures of the APS-array response and noise and the last term contains noise only.

Now by focusing on the first four signal term we can define:

αi,j =
(
ap,i � a∗p,j

)
⊗ hi, (4.29)

C =
[
ξ1 ξ2 α1,2 α2,1

]
∈ C3M×4, (4.30)

s̃ =
[
s1s
∗
1 s2s

∗
2 s1s

∗
2 s∗1s2

]T ∈ C4. (4.31)

Which enables us to write the first four terms as C s̃. Now we define:

νv,1 =
(
Γap,1 � η∗p

)
⊗ h1, (4.32)

νv,2 =
(
Γap,2 � η∗p

)
⊗ h2, (4.33)

νv = νv,1s1 + νv,2s2. (4.34)

It is clear that νv contains the mixture of the combined channels and the noise. Doing
the same for the mixture of pressure channel and noise:

νp,1 = η �
(
Γ∗a∗p,1 ⊗ 13

)
, (4.35)

νp,2 = η �
(
Γ∗a∗p,2 ⊗ 13

)
, (4.36)

νp = νp,1s
∗
1 + νp,2s

∗
2. (4.37)

The term that contains noise only can be written as:

νn = η �
(
η∗p ⊗ 13

)
. (4.38)

Now, (4.28) can be simplified as:

ỹ = C s̃ + νp + νv + νn. (4.39)
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Like the correlation matrix R̃p defined by Liu, we similarly define a correlation matrix

R̃ for the adjusted measurement data ỹ:

R̃ =E
[
ỹỹH

]
∈ R3M×3M (4.40)

Theorem 4.2. When there are two sources impinging the array we could expand R̃ as
follows:

R̃ =CRs̃C
H + σ2

η

(
σ2
s,1ξ1 + σ2

s,2ξ2
)

pT + σ2
ηp
(
σ2
s,1ξ1 + σ2

s,2ξ2
)T

+ σ2
η

(
σ2
s,1 (H1 + I) + σ2

s,2 (H2 + I)
)

+ σ4
η

(
I + ppT

)
(4.41)

where:

Rs̃ = E
[
s̃s̃H
]

=


2σ4

s,1 σ2
s,1σ

2
s,2 0 0

σ2
s,1σ

2
s,2 2σ4

s,2 0 0
0 0 σ2

s,1σ
2
s,2 0

0 0 0 σ2
s,1σ

2
s,2

 , (4.42)

p = 1M ⊗ e1 ∈ R3M , (4.43)

Hi = I ⊗ hih
T
i , (4.44)

σ2
s,i the power of the ith source and ei is the ith column of the identity matrix of appro-

priate size.

Proof. See Appendix E �

By substituting (4.42) into the first term of (4.41) we obtain:

CRs̃C
H =2σ4

s,1ξ1ξ1 + 2σ4
s,2ξ2ξ2 + σ2

s,1σ
2
s2

(
ξ1ξ

H
2 + ξ2ξ

H
1 +α1,2α

H
1,2 +α2,1α

H
2,1

)
.

(4.45)

Note that we can write this in a more general form by denoting K sources:

CRs̃C
H = 2

K∑
i=1

σ4
s,iξiξ

H
i +

K∑
i=1

K∑
j=1
j 6=i

σ2
s,iσ

2
sjξiξ

H
j +

K∑
i=1

K∑
j=1
j 6=i

σ2
s,iσ

2
s,jαi,jα

H
i,j. (4.46)

From this point it is easy to see that we can expand (4.41) for multiple sources as
follows :

R̃ =2
K∑
i=1

σ4
s,iξiξ

H
i +

K∑
i=1

K∑
j=1
j 6=i

σ2
s,iσ

2
s,jξiξ

H
j +

K∑
i=1

K∑
j=1
j 6=i

σ2
s,iσ

2
s,,jαi,jα

H
i,j

+ σ2
η

K∑
i=1

σ2
s,i

(
ξip

T + pξTi
)

+ σ2
η

K∑
i=1

σ2
s,iHi + σ4

ηppT + σ2
η

(
σ2
η +

K∑
i=1

σ2
s,i

)
I3M

(4.47)

=
K∑
i=1

K∑
j=1
j 6=i

σ2
s,iσ

2
s,jαi,jα

H
i,j +

K∑
i=1

σ4
s,iξiξ

H
i +Re +RH + σ2

η

K∑
i=1

σ2
s,iI3M , (4.48)
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where we defined

Re =
K∑
i=1

K∑
j=1

σ2
s,iσ

2
s,jξiξ

T
j + σ2

η

K∑
i=1

σ2
s,i

(
ξip

T + pξTi
)

+ σ4
ηppT (4.49)

and

RH = σ2
η

(
K∑
i=1

σ2
s,iHi + σ2

ηI3M

)
. (4.50)

Defining a DOA estimator

Now R̃ is analyzed, we are going to define a DOA estimator based on this matrix. We
have seen that for an APS-arrays R̃p is sufficient to find the DOAs. In the APS case
Re could be written as Re −→

APS
αRe11T for a specific αRe and RH as RH −→

APS
αRH

I for

a specific αRH
. This leads to an easy to find eigenstructure of the matrix Rd. However

due to the AVS setup cross terms between the different channels appear in these two
matrices which makes it hard to find an eigenstructure. In the following we focus on
estimating Re and RH so that these can be eliminated.

Lemma 4.1.

Re = E [ỹ]E
[
ỹH
]
. (4.51)

Proof. By evaluating E [ỹ] we find:

E [ỹ] =
K∑
i=1

ξiσ
2
s,i + σ2

ηp. (4.52)

So:

E [ỹ]E
[
ỹH
]

=

(
K∑
i=1

ξiσ
2
s,i + σ2

ηp

)(
K∑
i=1

ξTi σ
2
s,i + σ2

ηp
T

)
(4.53)

=
K∑
i=1

K∑
j=1

σ2
s,iσ

2
s,jξiξ

T
j + σ2

η

K∑
i=1

σ2
s,i

(
ξip

T + pξTi
)

+ σ4
ηppT (4.54)

=Re. (4.55)

Which completes the proof. �

Lemma 4.2.

RH =σ2
ηblkdiag {RH1 ,RH2 , . . . ,RHM} , (4.56)

RHi =E
[
yiy

H
i

]
(4.57)

where yi is the output vector of sensor i.
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Proof. Define ai(θl) as the pressure transfer function from the lth source to the ith
sensor, γi the clock error of the ith sensor and ni ∈ C3 the noise vector on the ith
sensor. Now, we can expand (4.57) to:

RHi =E

[(
ej2πfγi

K∑
l=1

ai(θl)slhl + ni

)(
e−j2πfγi

K∑
l=1

a∗i (θl)s
∗
lh

T
l + nHi

)]
(4.58)

=
K∑
l=1

σ2
s,lhlh

T
l + σ2

ηI3. (4.59)

where we made use of the assumption that the signals are uncorrelated to each other and
uncorrelated to the noise. By substituting (4.59) into σ2

ηblkdiag {RH1 ,RH2 , . . . ,RHM}
we find:

σ2
ηblkdiag {RH1 ,RH2 , . . . ,RHM} =σ2

ηIM ⊗

(
K∑
l=1

σ2
s,lhlh

T
l + σ2

ηI3

)
(4.60)

=σ2
η

(
K∑
l=1

σ2
s,lHl + σ2

ηI3M

)
(4.61)

=RH. (4.62)

Which completes the proof. �

In order to get an estimate for the noise power, recall the eigendecomposition of our
original covariance matrix (2.16):

R =
3M∑
m=1

βR,muR,muHR,m. (4.63)

Now, an estimate for the noise power is given by [20]:

σ̂2
η =

1

3M −K

3M∑
m=K+1

βR,m. (4.64)

As σ̂2
η is the maximum likelihood estimate of σ2

η [20] we have that σ̂2
η ' σ2

η. Note
that we could estimate Re from the data using N data points as follows:

R̂e =
1

N2

(
N∑
n=1

ỹ(n)

)(
N∑
n=1

ỹ(n)

)H

, (4.65)

where R̂e is the estimate for Re. Similar we could estimate RH by R̂H as:

R̂H = σ̂2
ηblkdiag

{
1

N

N∑
n=1

y1(n)yH1 (n),
1

N

N∑
n=1

y2(n)yH2 (n), . . . ,
1

N

N∑
n=1

yM(n)yHM(n)

}
.

(4.66)
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Now define:

Rx =R̃− R̂e − R̂H (4.67)

'
K∑
i=1

K∑
j=1
j 6=i

σ2
siσ

2
sjαi,jα

H
i,j +

K∑
i=1

σ4
siξiξ

H
i + σ2

η

K∑
i=1

σ2
s,iI3M . (4.68)

It is our goal to find the subspace spanned by the first term in (4.68). We could use
a subspace based filtering method by for example defining a generalized eigenvalue

decomposition on the matrix tuple
{
R̃, R̃e + R̃H

}
. However due to that the term

σ2
η

∑K
i=1 σ

2
s,iI3M . would appear in the signal subspace. Of course it is possible to find an

estimate for this term. However, For now, we will simply use the subtraction defined
in (4.67). Although this subtraction makes our system less robust against certain
assumptions (e.g. the uncorrelated sources assumption) this will give us a good insight
in the behavior of Rx. In the next section we will propose a method that directly
estimates Rx − σ2

η

∑K
i=1 σ

2
s,iI3M .

Now, define the eigenvalue decomposition of Rx as follows:

Rx =
3M∑
m=1

βRx,muRx,muHRx,m, (4.69)

where {βRx,m}
3M
m=1 are the eigenvalues of Rx in descending order corresponding to the

eigenvectors {uRx,m}
3M
m=1.

By analyzing the expected eigenvalues of Rx we find that the noise floor will be
at σ2

η

∑K
i=1 σ

2
s,i. From (4.68) we find for K < 3M sources for which θi 6= θj; ∀i 6=

j ∈ [1, 2, . . . , K] that, depending on the array-aperture, the vectors in the first sum of
(4.68) will all be orthogonal to each other. Furthermore we have that the second sum
is orthogonal to the first sum and that the maximum rank of the resulting matrix of
the sum equals three. It is easy to see that

rank

{
K∑
i=1

σ4
siξiξ

H
i

}
= min {K, 3} . (4.70)

From which we conclude

rRx = K (K − 1) + min {K, 3} , (4.71)

where rRx denotes the rank of the signal subspace of Rx. With this information we can
use a MUSIC like method to recover the DOA’s. For this we define a spatial spectrum
as follows:

Px(θ, θ
′) =

(
||ŨH

Rx
α(θ, θ′)||22 + ||ŨH

Rx
α(θ′, θ)||22

)−1
, (4.72)
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~y(t) = y(t)⊙
(

yp(t)⊗ 1M

) ~R = 1
N

P
N

t=1
~y(t)~yH(t)

Compute new measurement vector Compute correlation matrix

MUSIC

Perfom MUSIC

y(t) ~y(t) ~R

θ̂

Rx = ~R− R̂e − R̂H

Compute Rx

Rx

Figure 4.4: Brief overview of the method described in this section.

where we defined ŨRx =
[
uRx,rRx+1

uRx,rRx+2
. . . uRx,r4M

]
. Now we can find the

DOA’s by searching for the peaks in this spectrum:

{
θ̂1, θ̂2

}
= arg max

θ,θ′
Px(θ, θ

′). (4.73)

A brief overview of this method is given in Figure 4.4.

Analyzing the estimator

In the following, the estimates of θi for a varying number of sources K will be analyzed.
The analization will be based on theory and simulations. Firstly the simple situation
where only one source is present (i.e. K = 1) is discussed. Secondly, the situation of
two sources. Lastly, their follows a generalization for the case where three or more
sources are present.

Note that if θ = θ′ than α(θ, θ′) = ξ(θ). So if there is only one source (K = 1)
with direction of arrival θ1 and we search over the intervals −180◦ < θ < 180◦ and
−180◦ < θ′ < 180◦ we will find a peak at θ = θ′ = θ1.

The above is simulated by the 7-sensor layout proposed by Liu et al. in [18] given
in Figure 4.2. Furthermore, a signal with DOA of θ1 = 30◦, and all other simulation
variables are the same as used as before. The resulting spectrum is given in Figure 4.5.
From this figure it is clear that the estimated DOA will be θ = θ′ = θ1 which is as
expected. Furthermore it is clear that if we have only one source that we could estimate
its DOA with the 1D-search over θ = θ′. Note that for θ = θ′ the results will be equal
to a simple combination between the sensors without using the time properties of the
received data.

By expanding to the situation for two sources (K = 2) with the first DOA as before
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Figure 4.5: Simulation of the described method with K = 1 source.

and the second at θ2 6= θ1 we expect to find 4 peaks, namely at:

[θ, θ′] =[θ1, θ1],

[θ, θ′] =[θ1, θ2],

[θ, θ′] =[θ2, θ1],

[θ, θ′] =[θ2, θ2].

Note that for the peaks that lie at the line θ = θ′ (i.e. [θi, θi]) we only make use of the
information in the vector channels, while the information of the relative time difference
of arrival is omitted. This is due to the fact that α(θ, θ) = ξ(θ). So it is possible to find
the DOAs by a 1D-grid search, however more accurate results may be obtained when
a 2D-grid search is used. As for α(θ, θ′) ∀θ 6= θ′ both the information in the vector
channels and the relative time difference of arrival is used.

This is simulated as before but with a second uncorrelated source with equal
source power and a DOA θ2 = 130◦. The results of this simulation are shown in
Figure 4.6. It is clear that the peaks are located at the places where we expect
them. The peaks at the points (30; 130) and (130; 30) are sharper than the other
two. This is due to that at the line θ = θ′ we only make use of the channel informa-
tion and not the information that is in the timing of the data. In the two sharper
points a combination is used between the channel and the (relative) timing information.

Expanding the case furthermore to three or more sources (K ≥ 3), we have that
the last term in (4.68) reaches its maximum rank. From which we conclude that the
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Figure 4.6: Simulation of the described method with K = 2 sources. The peaks are located
at (30;30), (30;130), (130;30) and (130;130).

line θ = θ′ fully lies in the signal space of Rx. So the values of p(θ, θ′) will be large if θ
is close to θ′. Moreover it is easy to see that all other maximums in P (θ, θ′) are at:

[θ, θ′] =[θi, θj] ∀i 6= j ∈ [1, 2, . . . , K].

This is simulated as before with a third source at θ3 = −30◦, the results are shown in
Figure 4.7. From this figure it is clear that we can not estimate the DOAs anymore by
searching at the line θ = θ′. However the DOAs can be estimated by finding the other
peaks.

When we compare this new method with the method described in the previous
section we find it to have similar results in the case of 2 or more sensors. However, our
method eliminates the first three disadvantages of the earlier technique.

1. As can be seen in the figures, the ambiguity with Lius method within the interval
[−180◦, 180◦] is gone within the new method.

2. The new method does not explicitly give any limitations on the array, although the
array configuration has effect on the performance on the algorithm the algorithm
will not break down when another aperture or frequency will be used. This will
be simulated in the next section.

3. The 1-vector in the steering vector in previous section has been replaced by the
ξi-vectors which enables us to find the DOA using this method when only one
signal is present.
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Figure 4.7: Simulation of the described method with K = 3 sources. The peaks are located
at (-30;30), (-30;130) (30,-30), (30;130) (130,-30) and (130;30).

There are also disadvantages of this method compared with previous:

1. The amount of channels necessary to make the algorithm work has gone up from
K (K − 1) + 1 to K (K − 1) + min {K, 3}+ 1. Although it could be argued that
an AVS contains three channels while an APS only contains one, that less sensors
are needed in total.

2. The subtraction performed by (4.67) may cause issues when the signals and noise
are not completely Gaussian distributed.

Another issue of the previous method that is unaltered by this method, is the depen-
dency on the fourth-order statistics. In the remainder of this subsection, we will give an
intuitive approach on how to solve this issue, while at the same time taking care of the
second disadvantage of this method. In the next section this new method is discussed
more in depth.

From fourth order statistics to second order statistics.

By analyzing our method we find that we can describe R̃ also as:

R̃ = E
[(

y � y∗p ⊗ 13

) (
y � y∗p ⊗ 13

)H]
(4.74)

and Re as:

Re = E
[
y �

(
y∗p ⊗ 13

)]
E
[
y �

(
y∗p ⊗ 13

)]H
. (4.75)
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From [21], we have that the product of four complex Gaussian variables {xi}4i=1 of
which at least one is zero mean has the following relation:

E [x1x2x3x4] = E [x1x2]E [x3x4] + E [x1x3]E [x2x4] + E [x1x4]E [x2x3] . (4.76)

Using the above equation we can expand (4.74) as follows:

R̃ = E
[
y �

(
y∗p ⊗ 13

)]
E
[
y �

(
y∗p ⊗ 13

)]H
+ E

[
yyH

]
� E

[(
y∗p ⊗ 13

) (
yp ⊗ 13

)T]
+E

[
y
(
yTp ⊗ 1T3

)]
� E

[(
y∗p ⊗ 13

)
yH
]
.

(4.77)

Now it is easy to that the first term is equal to Re and that under the assumption of
circular complex Gaussian sources and noise that the last term equals zero. So by the
subtraction of Re from R̃ we actually get:

R̃−Re =E
[
yyH

]
� E

[(
y∗p ⊗ 13

) (
yp ⊗ 13

)T]
(4.78)

=R�
(
R∗p ⊗ 131

T
3

)
, (4.79)

where we made us of (a⊗ b) (c⊗ d) = (ac) ⊗ (bd) and defined Rp = E
[
ypy

H
p

]
. So

by first taking the correlation matrices and then the Hadamard product between the
two matrices will lead to a similar result. A method developed by Cao et al. in [19] for
APS-arrays uses the product (Rp�R∗p) and will further be referred to as Caos method.
Based on Caos method a new method for AVS-arrays is developed in the next section.

4.3 Cao-Based Eigenstructure Method

In [19], Cao et al. propose an eigenstructure method which is also based on the
Hadamard product. Instead of applying the Hadamard product directly on the data
the product is performed on a manipulated form of the correlation matrix R as can
be seen later. In this section we will derive a method based on [19] applicable for an
AVS-array. First we will derive a new autocorrelation matrix aftwer which we will
anlyze the new estimator that follows from this.

Finding the new correlation matrix

Recall the data-model:

y(t) = ΠAs(t) + η(t), (4.80)

where y(t) ∈ C3M is the sensor output vector at time instant t, M the number of sensors,
Π = Γ⊗ I3, Γ ∈ CM×M the diagonal matrix containing the clock errors, A ∈ C3M×K

the mixing matrix from source to sensor, K the number of sources, s(t) ∈ CK the source
signal at time instant t and η(t) ∈ C3M contains the sensor noise. Computing the data
correlation matrix Ry based on this model while omitting the time dependency results
in:

Ry = E
[
yyH

]
= ΠARsA

HΠH +Rη, (4.81)
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where Rs = E
[
ssH
]

is the source correlation matrix and Rη = E
[
ηηH

]
the noise

correlation matrix. Observe that this correlation matrix is equal to the correlation
matrix R defined before, the y subscript is added to improve the readability later in
this section. Note that we can write the data vector based on (4.80) for the pressure
channels as follows:

yp = ΓAps + ηp, (4.82)

where yp ∈ CM is the pressure channel output, Ap ∈ CM×K the mixing matrix from
the sources to the pressure channels and ηp the pressure channel noise vector. Now,
define a pressure channel correlation matrix similar to the data correlation matrix:

Rp = E
[
ypy

H
p

]
= ΓApRsA

H
p ΓH +Rηp

, (4.83)

where Rηp
= E

[
ηpη

H
p

]
is the pressure channel noise correlation matrix. If we assume

the noise to be independently white circular Gaussian distributed we find:

Rη = E
[
ηηH

]
= σ2

ηI3M (4.84)

and
Rηp

= E
[
ηpη

H
p

]
= σ2

ηIM , (4.85)

where σ2
η is the noise power. Note that we have an estimate σ̂2

η for the noise power
given through the eigenvalue decomposition of Ry given by (4.64). Subtracting this
estimate for the noise correlation matrices from the data correlation matrices results in

R̃y = Ry − σ̂2
ηI3M ' ΠARsA

HΠH (4.86)

and
R̃p = Rp − σ̂2

ηIM ' ΓApRsA
H
p ΓH . (4.87)

At this point the clock errors are still in the correlation matrices. However by taking
the Hadamard product between either of these matrices and its complex conjugate will
remove these errors. In order to keep the final solutions unique and independent of
frequency we define this Hadamard product as follows:

R̃f = R̃y �
(
R̃∗p ⊗ 131

T
3

)
. (4.88)

Note that we can write one index of R̃p as follows:

[
R̃p

]
p,q

= ej2πf(γp−γq)
K∑
s=1

σ2
se
jkuTs (rp−rq), (4.89)

where us = u(θs). By splitting the matrix R̃y in blocks of 3× 3 we can write:

R̃y =


R̃y,11 R̃y,12 . . . R̃y,1M

R̃y,21 R̃y,22 . . . R̃y,2M
...

...
. . .

...

R̃y,M1 R̃y,M2 . . . R̃y,MM

 , (4.90)
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where every block can be written as:

R̃y,pq = ej2πf(φp−φq)
K∑
i=1

σ2
s,ihih

T
i e

jkuTi (rp−rq). (4.91)

By splitting the matrix R̃f in blocks of 3× 3 we can write:

R̃f =


R̃f,11 R̃f,12 . . . R̃f,1M

R̃f,21 R̃f,22 . . . R̃f,2M
...

...
. . .

...

R̃f,M1 R̃f,M2 . . . R̃f,MM

 . (4.92)

Note that we can find the blocks of R̃f as follows:

R̃f,pq =R̃y,pq

[
R̃∗p

]
p,q

(4.93)

=

(
K∑
i=1

σ2
s,ihih

T
i e

jkuTs (rp−rq)

)(
K∑
s=1

σ2
s,ie

jkuTi (rq−rp)

)
(4.94)

=
K∑
i=1

K∑
l=1

σ2
s,iσ

2
s,lhih

T
i e

jk(ui−ul)(rp−rq). (4.95)

Recall the definition of αi,l in (4.29):

αi,l =
(
ap(θi)� a∗p(θl)

)
⊗ hi. (4.96)

Splitting αi,l in vectors of length three leads to:

αi,l =
[
αT1 (i, l) αT2 (i, l) . . . αTM(i, l)

]T
. (4.97)

We have that:
αm(i, l) = hie

jkrm(ui−ul). (4.98)

Now, by substituting (4.98) into (4.95) we find:

R̃f,pq =
K∑
i=1

K∑
l=1

σ2
s,iσ

2
lαp(i, l)α

H
q (i, l). (4.99)

Which indicates that

R̃f =
K∑
i=1

K∑
l=1

σ2
s,iσ

2
lαi,lα

H
i,l. (4.100)

Note that for l = i we have that
αi,i = ξi. (4.101)

Now, substitute (4.101) into (4.100)

R̃f =
K∑
i=1

σ4
s,iξs,iξ

H
s,i +

K∑
i=1

K∑
l=1
l 6=i

σ2
s,iσ

2
s,lαi,lα

H
i,l (4.102)
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R̃ = 1
N

∑N
t=1 y(t)y

H(t)− σ2
ηI

R̃f = R̃�
(
R̃p ⊗ 131

T
3

)

Compute correlation matrices Compute adjusted correlation matrix

MUSIC

Perfom MUSIC

y(t) R̃, R̃p R̃f θ̂

R̃p = 1
N

∑N
t=1 yp(t)y

H
p (t)− σ2

ηI

Figure 4.8: Brief overview of the method described in this section.

from which we conclude that R̃f = Rx − σ2
η

∑K
i=1 σ

2
s,iI, and that the DOAs can be

found in the same fashion as discussed in the previous section. However this method
solely relies on the second order statistics of the data where the method described in
the previous section also relies on the fourth order statistics. This makes the latter less
reliable in practice where the signals might not be perfectly Gaussian. Furthermore the
subtraction performed in this section by (4.86) and (4.87) only makes an assumption
on the noise. While the subtraction performed in the previous section in (4.67) makes
use of the second order statistics of the data and will therefore reduce the performance
if the sources are not completely uncorrelated.

A brief overview of the method described in this section is given in Figure 4.8.

Analyzing the new DOA estimator

Recall from previous section that, when two sources are impinging the array we expect
peaks at:

[θ, θ′] =[θ1, θ1],

[θ, θ′] =[θ1, θ2],

[θ, θ′] =[θ2, θ1],

[θ, θ′] =[θ2, θ2].

Imagine two sources that are close to each other (so θ1 is close to θ2) impinging the
array, we expect the above given peaks to be close to each other. Which may, when
the sources are to close to each other, merge into one single big peak from which the
separate peaks might not be extracted anymore.

In previous section we have seen that if 3 sources impinge the array we would find
peaks at:

[θ, θ′] =[θ1, θ2],

[θ, θ′] =[θ1, θ3],

[θ, θ′] =[θ2, θ1],

[θ, θ′] =[θ2, θ3],

[θ, θ′] =[θ3, θ1],

[θ, θ′] =[θ3, θ2].
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Furthermore due to that the ξi-vectors span full signal space at the line θ = θ′ we will
observe high values at this line. When two sources are located close to each other these
peaks might merge with this line such that the peaks are not observable anymore.

In the method proposed by Cao APSs are used, as for an APS the h-vector does
not exist. The ξ vector reduces in this case:

ξi = 1M ⊗ hi −→
APS

1M . (4.103)

Note that this implies:
αi,i = ξi −→

APS
1M . (4.104)

Observe that this implies that for Caos method the line θ = θ′ will always have high
values regardless of the amount of sensor. However this also implies that the first term
in (4.102) can be written as:

K∑
i=1

σ4
s,iξs,iξ

H
s,i −→

APS
b1M1TM (4.105)

where we defined b as a scalar. In [19] Cao et al. present a non-convex optimization
problem that estimates b. This problem is solved by performing a grid search.

Note that for our method we could write the above as:

K∑
i=1

σ4
s,iξs,iξ

H
s,i =

K∑
i=1

σ4
s,i

(
1M1TM ⊗ hih

T
i

)
= 1M1TM ⊗B (4.106)

where we defined matrix B ∈ R3×3 which is hermitian. If we want to use a comparable
method as used in [19] we need to estimate the entries of B. Due that B is hermitian
we would need to estimate entries. From (4.3) it follows that:

[B]1,1 = [B]22,2 + [B]23,3 (4.107)

where [B]i,j denotes the (i, j) entry of B. From which we conclude that we need to
estimate five entries of the matrix to find the full matrix. As the proposed algorithm
to solve the discussed optimization problem involves a grid search, it follows that if we
want to suppress the high values at the line θ = θ′ we would need a five-dimensional
grid search. As a five-dimensional grid search is computational expensive, this is not
an appropriate method.

This results in the fact that in some circumstances the method proposed by Cao
for an APS-array behaves better than our method that makes use of an AVS-array.
An example of this behavior is given in the simulation below, for this simulation we
use the same setup as before (i.e. using Figure 4.2 as sensor layout and the same
SNR and frequencies as before). In this simulation two equal powered sources impinge
the sensors: one at θ1 = −5◦ and the other at θ2 = 5◦. The result when using the
technique described in this section is shown in Figure 4.9. From this figure it is
clear that we can not estimates the DOAs in this situation. In Figure 4.10 the result
of using the technique described in [19] when using an APS-array. In this plot we
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Figure 4.9: AVS result for closely separated sources using the technique described in the
section. The DOA θ1 = −5◦ and θ2 = 5◦ can not be determined from this plot.

Figure 4.10: APS result for closely separated sources using the technique described in [19].
The DOA θ1 = −5◦ and θ2 = 5◦ can be determined from this plot.
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Figure 4.11: The array-aperture with increased inter-sensor spacing.

can clearly see peaks at the points (−5◦, 5◦) and (5◦,−5◦) as expected. However
also peaks appear at (−175◦, 175◦) and (175◦,−175◦). This is due to that Caos
method has only unique solutions for the angles (θ) that lie within −90◦ ≤ θ < 90◦.
Furthermore Caos method has a limited choice on sensor placement, in order to
receive the above mentioned uniqueness of solutions. The array should have a sensor
at all 4 sides of a square where the side of the square is equal to λ/4. λ here is the
wavelength of the signal. Opposite to this the uniqueness of solution for the method
described in this section is valid for−180◦ ≤ θ < 180 regardless of the setup of the array.

A nice feature of this method is that the DOAs can be found independent of the
inter-sensor spacing of the array. This will be demonstrated below. By changing the
spacing in the current sensor layout which also proves that the DOA can be found
regardless of the frequency of the signals.

By increasing the distance between the sensors with a factor of 4.3 in Figure 4.2
we get the layout shown in Figure 4.11. This is simulated with the described array
aperture, DOAs at θ1 = 30◦ and θ2 = 130◦ and the other settings as before. The results
of this simulation are shown in Figure 4.12. By observing this figure, it is clear that
although some minor sidelobes appear it is still possible to estimate the DOAs from
this figure. In comparison, simulation with Coas method using APSs gives the result
shown in Figure 4.13 it is clear that from this plot it is impossible to estimate the DOAs.

Decreasing the distance between the sensors with a factor of 4.3 in Figure 4.2 leads
to the layout shown in Figure 4.14. Keeping the rest of the simulation as before. The
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Figure 4.12: The AVS response with the big array-aperture. The peaks are located at (30,30),
(30,130), (130,30) and (130,130).

Figure 4.13: The APS response with the big array-aperture. The peaks are located at more
or less random positions.
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Figure 4.14: The array-aperture with decreased inter-sensor spacing.

results of the AVS method described here are shown in Figure 4.15. Although the
peaks are less sharp than before, these still are clear and at the correct spots. So we
conclude that for a smaller array it is still possible to retrieve to the DOAs. Comparing
this with Caos method of which the results are shown in Figure 4.16. Observing this
figure we see that there is no clear peak and that the peaks are not at the correct
spots.

Note that changing inter-sensor spacing would have the same effect as changing
the frequency of the signals. As the found DOAs appear to be independent of the
spacing between the sensors, when two sources are present, we assume the result to
be independent of the frequency as well. This can also be observed by analyzing αi,j.
Recall the definition of αi,j:

αi,j =
(
ap,i � a∗p,j

)
⊗ hi (4.108)

The correct DOAs will be found, if all αi,js are orthogonal to each other. So for the
purpose of no ambiguity the array-aperture should be designed in such a way that for the
desired frequencies all αi,js are orthogonal to each other for all possible combinations
of DOAs. This is the case when there are less then K < 3 sources. For K ≥ 3 sources
there might appear ambiguities as the hi-vectors span there maximum space. When
these ambiguities appear and how to design the array to keep it unambiguous is an open
question for further research. However simulation results suggest that scaled variants
of the array-configuration in Figure (4.2) are unambiguous.

The method discussed in this section is independent of clock errors and is more

47



Figure 4.15: The AVS response with the small array-aperture. The peaks are located at
(30,30), (30,130), (130,30) and (130,130).

Figure 4.16: The APS response with the small array-aperture.
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robust against the assumptions than the method discussed in Section 4.2. Despite this
method seems to work well, a 2D-search is necessary in order to retrieve the DOAs. As
a 2D search is computable expensive this is not desired, in the next section we propose
an iterative method which uses a 1D-search multiple times. This method, however, is
not completely independent of clock errors but has a certain maximum error for which
it is able to correct. A way to overcome this problem, is by firstly, find an estimate
for the DOA using the method described in this section with a sparse grid. Then,
secondly, use the estimated DOAs as an input in the method of the next section while
using a more dense grid.

As a summary, the properties of the method discussed in this section are listed
below:

• There is no ambiguity within the interval [−180, 180◦].

• The method holds for every array configuration when K ≤ 2. It is not clear how
the method behaves for K ≥ 3, this is a question which is still open for research.

• When only one signal is present, the method solely relies on the information of
the velocity channels.

• The method relies on the second order statistics of the received data.

• The method uses a two dimensional search which makes the method computa-
tional expensive.

• For K sources, the method needs at least K (K − 1) + min {K, 3}+ 1 channels.

4.4 An Iterative Approach

Over the course of time many DOA estimation algorithms are developed that are robust
against phase errors (e.g. clock errors). However, most of these methods depend on
the phase errors and might fail if they become to big. The method we described in the
previous section is independent of phase errors. However it is computational expensive
when the DOAs need to be estimated with a high accuracy. Most of the robust DOA
estimation algorithms have an iterative approach and alter between estimating phase
errors and estimating the DOAs. So if we retrieve a low resolution DOA estimation
from the Cao-based method, we could used this as an input of the phase estimation of
the iterative method. This is schematically shown in Figure 4.17.

As mentioned before, there are many iterative methods developed over the years.
The method that should be used in practice depends on the situation, for example the
Reiterative Superresolution algorithm develped by Blunt et al. in [22] could be used.
This method behaves well when there are only a few sample points available. The
lp-MUSIC algorithm developed by Zeng et al. in [23] operates well within impulsive
noise environments. It should be noted that these algorithms are developed for APS
system although the extension towards AVS is usually quite straight forward.
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Figure 4.17: Schematic overview of the combined strategy.

In this section we will discuss the more general method developed by Weiss and
Friedlander in [24] which is well known as the Weiss and Friedlander (WF) algorithm.
The WF-algorithm relies on the same assumptions on the data as we did before and
is therefore a logical choice. We will first discuss the phase estimation after which the
DOA estimation is discussed. This section will be concluded with simulations of the
combined strategy.

It should be noted that not all methods for joined DOA and phase estimation are
iterative. If the sensors are placed in an ULA one could for example also used the blind
calibration method developed by Krishnaprasad et al. in [25].

4.4.1 Phase Estimation

Liu et al also proposes an algorithm for phase estimation in [18], this algorithm is
proven to be independent of phase errors. On further inspection it follows that Liu’s
estimator is equal to the that of the WF-algorithm. Although the expansion of this
method from APS to AVS is quite straightforward we will discuss this fully to proof
that the phase independence holds for an AVS-array as well.

Note that we could write R as:

R =ΠARsA
HΠH + σ2

ηI (4.109)

ΠHRΠ =ARsA
H + σ2

ηI (4.110)

Observe that ΠHRΠ is independent of phase errors. By writing the eigendecomposition
of R:

R =
3M∑
m=1

= βmumuHm (4.111)

we find the eigendecomposition of ΠHRΠ as:

ΠHRΠ =
3M∑
m=1

βmΠHumuHmΠ (4.112)

By defining the eigenvalues of ARsA
H as {ξm}3Mm=1. from (4.110) we have that the

eigenvalues of ΠHRΠ are equal to
{
ξm + σ2

η

}3M
m=1

. From which we conclude that the
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eigenvalues {βm}3Mm=1 are independent of phase errors. Define:

V0 =
[
uk+1 . . . u3M

]
, (4.113)

V1 =ΠHV0, (4.114)

Q1 =
K∑
k=1

diag {a(θk)
∗}V1V

H
1 diag {a(θk)} . (4.115)

Denote that V1 and Q1 are both independent of phases errors. Now, define z as:

z =
ΠQ−11 em

eTmQ
−1
1 em

(4.116)

If we define qm as the mth column of Q−11 and qmm the mth element of qm we find:

z =
Πqm
qmm

(4.117)

Taking the complex argument of this will give us our estimate of the phase errors:

β̂3 =arg {z} (4.118)

=β ⊗ 13 + arg

{
qm
qmm

}
(4.119)

where β̂3 = β̂ ⊗ 1̂3By the definition of Q1 in (4.115) it follows that Q1 is hermitian
and therefor Q−11 is hermitian and qmm is thus real. So our estimate reduces to:

β̂3 = β ⊗ 13 + arg {qm} (4.120)

As Q1 is independent of phase errors we have that qm is independent of phase errors
and we can conclude that the error of our estimate is independent of phase errors. Note
that we do not have direct access to Q1 nor Π but if we observe that ΠHem = em we
can write z as follows:

z =
ΠQ−11 ΠHem

eTmΠQ−11 ΠHem
=

Q−10 em

eTmQ
−1
0 em

(4.121)

where we used

Q0 =ΠQ1Π
H =

K∑
k=1

diag {a(θk)
∗}V0V

H
0 diag {a(θk)} (4.122)

which we can estimate if we have an estimate for the DOAs. Note that this algorithm
estimates β3 rather than β we can easily find this estimate β̂ by averaging over the

corresponding entries of β̂3. A summary of this algorithm is given in algorithm 1.
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Algorithm 1 Phase Errors

1: procedure Find Phase Errors
2: Perform eigenvalue decomposition V ΛV H = R
3: Find the nullspace of R, V0

4: Compute Q0 with (4.122)
5: Compute z with (4.121)
6: β3 = arg {z}
7: Find β by averaging over β3

4.4.2 DOA Estimation

From previous sections it is clear that we can use the MUSIC methodology where we
permute the steering vectors with the phase delays in order to find an estimate of the
DOA i.e. minimizing

J(θ) =
K∑
k=1

∣∣∣∣V H
0 Π̂a(θk)

∣∣∣∣2 (4.123)

where Π̂ is an estimate of Π. From which we can conclude that we can find an estimate
of the DOA by performing a search:

θ̂ = arg max
θ′

1

a(θ′)HΠ̂HV0V H
0 Π̂a(θ′)

. (4.124)

Now, by combining the procedure described in algorithm 1 and equation (4.124) we
can iteratively estimate the DOAs and the phase (e.g. clock) errors where we use some
starting condition. Based on the starting condition the iterative estimate may or may
not converge to the optimal solution or to a local minimum.

4.4.3 Simulation of the combined strategy

In this section we will simulate the combined strategy as given schematically in Figure
4.17. We will use the array with the increased sensor spacing where 3 sources are
impinging this array at θ1 = −50.2◦, θ2 = 31.1◦ and θ3 = 132.8◦. All other settings
are as before. For the first step, the Cao-based method, described in Section 4.3 where
we use a grid-search with 1◦ spacing between the grid points. After which we will use
the result of this method as an input of the iterative method described above where we
will use a grid with 0.1◦ spacing between the grid points. Coa-based algorithm leads
to a spectrum shown in Figure 4.18. It is easy to see that we can extract the DOAs

θ̂ =
[
−50◦ 31◦ 133◦

]T
from this spectrum.

The WF-algorithm is set with a grid of 0.1◦ spacing between the grid points and
the algorithm is set to stop if the DOAs of the previous iteration is equal to the DOA
of the current iteration. Running this with the DOAs obtained previously leads to
the spectrum given in Figure 4.19. Note that the algorithm stopped after 2 iterations
(i.e. the first iteration was already spot on) and we could extract the DOAs as θ̂ =
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Figure 4.18: The spectrum obtained through the method described in Section 4.3.

[
−50.2◦ 31◦ 132.8◦

]T
which is, although θ2 = 31.1◦ is 0.1◦ off, as desired.

In order to show that, in this case, the method proposed in Section 4.3 is necessary
to obtain a guess that could be used as an input of WF-algorithm we also give the
spectrum that is obtained when we take as initial guess that the clocks in the array
are perfectly synchronized. This spectrum is given in Figure 4.20. In this figure we
observe that the the algorithm takes 13 iterations to converge to a incorrect minimum
which proves that the WF-algorithm needs a more appropriate first guess in order to
converge to the desired result.
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Figure 4.19: The spectrum obtained through the WF-method while using the peaks of Figure
4.18 as an input.
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Figure 4.20: The spectrum obtained through the WF-method while using the assumption
that there are no clock errors present as an initial guess.
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Experimental Results 5
In this chapter, the experimental setup and the results that follow are discussed. In
order to observe the difference of performance between a synchronized and inaccurate
synchronized array, the experiments are conducted with both synchronized and unsyn-
chronized sensors. The performance of the Liu-based method developed in Section 4.2
and the Cao-based method from Section 4.3 are both discussed.

Firstly, the experimental setup is discussed. Secondly simulations are carried out
in order to have a reference result. Thirdly, the results of the experiment with the
synchronized sensors are given and reviewed. Lastly, the results of the unsynchronized
array are shown and discussed.

5.1 Experimental Setup

The experiments are conducted in the anechoic chamber of the Applied Physics faculty
at the TU Delft. An anechoic chamber is a room where the walls are designed to
absorb all sound waves impinging on them. These walls can be seen in Figure 5.1. The
walls are made of pillions that are placed and constructed in such a way that almost

Figure 5.1: The walls in the anechoic chamber.

55



all acoustic waves impinging them will be absorbed.

In this room multiple AVSs and speakers are placed such that the new developed
algorithm can be tested. The placement of the AVSs and speaker is shown schematically
in Figure 5.2. In the setup five sensors are arranged in a cross-like setting with inter
sensor distance d = 52.5 cm. Two speakers are placed at a distance of l = 360 cm from
the center of the array. The angle that speaker one makes with the array will defined
as θ1 = 0◦ which implies that the angle of speaker 2 is at θ2 = −45◦.

During the experiments the speakers are set to generate white Gaussian noise which
will be measured and stored by the AVSs. The speakers are able to produce acoustic
signals between 400 and 8000 Hz. Recall that the methods developed by Liu [18]
and Cao [19] are only said to be unambiguous if the there are sensors placed on the
vertices of a square with sides smaller than λ

4
. Although there are sensors placed on

the vertices of a square in this setup, the sides of the square are of length 52.5
√

2 cm.
So the frequencies for which the DOA estimation is unambiguous are given by:

f =
c

λ
≤ 115.5Hz. (5.1)

As the used speakers are not able to produce this frequency we need to choose another.
The signal frequency that is used during this chapter is f = 460Hz. This corresponds
with a Nyquist under sampling rate of about a factor two, and an under sampling rate
for the algorithms described by Liu and Cao of about a factor four. As this frequency
does not align with the restrictions of both Liu’s and Cao’s method these methods will
not be discussed in this chapter.

The measurements are carried out with two different types of sensors:

USP The Ultimate Sound Probe (USP) is a commercial acoustic vector sensor man-
ufactured by Microflown Technologies. These sensors are developed in order to
measure acoustic fields while the USPs are placed in an array setting. Because
of this, there is a well working synchronization algorithm present in the sensors
which enables us to test the algorithms on a synchronized array.

AMMS The Acoustic Multi-Mission Sensor (AMMS) is a sensor developed for situa-
tional awareness manufactured by Microflown Avisa. this sensor is designed to
operate as a stand alone sensor. Currently, development is going on such that
the sensors in the future are able to operate in array settings. By means of thi
a non-accurate synchronization algorithm is implemented. The synchroniza-
tion between these sensors is not accurate enough to perform the beamforming
algorithms discussed in Section 2.2. This enables us to test the algorithm on
inaccurate synchronized data.

By testing the algorithms on two different sensors we are able to show that the algo-
rithms behave equally in a synchronized setting, as well as with unsynchronized data.

56



52.5 cm

52.5 cm

52.5 cm52.5 cm

360 cm

45◦

AVS

AVS

Speaker 1

Speaker 2

Figure 5.2: Schematic overview of the setup.

5.2 Simulation of the Experimental Setup

In this section simulations of the experimental setup are performed and evaluated.
Simulating the results will give us insight in what results we expect, as the experiments
are conducted in a under sampled setting it might happen that grating lobes appear.
It would be interesting to see if the side lobes in the simulations have the same location
as the side lobes in the measurement results.

For the simulations a SNR of 12dB and 16000 data point are used (i.e. one second
of data). In the simulation no clock errors are assumed.
The simulation results for the method based on the new measurement vector (i.e. the
Liu-based method) are shown in Figure 5.3. This plot shows that the four highest
peaks are located at the correct positions. However there is a small side lobe located
at [θ, θ′] = [−45◦, 45◦] and [θ, θ′] = [45◦,−45◦]. This side lobe is probably due to the
under sampling described above.
The simulation results of the Cao-based method are shown in Figure 5.4. This figure

is similar to that of the simulation above. It is worth mentioning that the side lobe in
this simulation is higher than in the previous. The side lobes in the previous simulation
are about 28 dB lower then the peak at [θ, θ′] = [−45, 0], while the side lobes in this
simulation are only 20 dB lower.

5.3 Experimental Results with Synchronized Data

For this experiment the already described USPs are used. However due to the measure-
ment setup the far-field assumptions from section 2.1 does not hold anymore. In this
section, firstly, a new datamodel is introduced which can be used for near-field signals.
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Figure 5.3: The simulation results for the method suggested in Section 4.2, the peaks in the
half space θ′ ≥ θ are located at [θ, θ′] = [−45,−45]; [0, 0] [−45, 0] and a side lobe appears at
[−45, 45].

Secondly the results of the experiment are shown and analyzed.

5.3.1 Near-Field Approximation

Due to that the sources are located in the near-field, the acoustic wave impinging
the array can not be modeled as a plane wave anymore. Instead, circular waves are
impinging the array. As a consequence θ is not equal for every sensor. It is clear from
Figure 5.5 that the angles θ̃1 and θ̃2 are not the same as the angles observed by the
other sensors. For simplicity we will use the center sensor as a reference. Due to near-
field effects both the ap and the h-vectors change. In order to find the new pressure
steering vector we first describe the new TDOA where we take the center of the array
as a reference. It is easy to derive that the new TDOA becomes:

li(θ) = l −
√
l2 + ||ri||22 − 2l (ri,y cos θ + ri,x sin θ), (5.2)

where li is the TDOA in meters. Define vector l(θ) as the vector containing all the

DOAs: l(θ) =
[
l1(θ) l2(θ) . . . lM(θ)

]T
. Now, the new pressure steering vector ãp

could be expressed as:

ãp(θ) = ejkl(θ). (5.3)

Due to that the angle at which a signal impinges a sensor is different for every sensor,
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Figure 5.4: The simulation results for the method suggested in Section 4.3, the peaks in the
half space θ′ ≥ θ are located at [θ, θ′] = [−45,−45]; [0, 0] [−45, 0] and a side lobe appears at
[−45, 45].
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Figure 5.5: Near-Field approximation.
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the h(θ) will differ for all sensors. Note that θ̄i(θ), the angle between a signal with
DOA θ and sensor i, could be expressed as:

θ̄i(θ) = atan2 (l sin θ − ri,x, l cos θ − ri,y) , (5.4)

where atan2(x, y) denotes the four-quadrant inverse tangent. The new h-vector for
sensor i could be written as:

h̃i(θ) =
[
1 cos

(
θ̄i (θ)

)
sin
(
θ̄i (θ)

)]T
, (5.5)

where h̃i(θ) is the near-field h-vector corresponding to sensor i. Define h̃(θ) the vector

containing all hi(θ)-vectors: h̃(θ) =
[
hT1 (θ) hT2 (θ) . . . hTM(θ)

]T
. The steering vector

can now be expressed as:

ã(θ) = (ãp(θ)⊗ 13)� h̃(θ). (5.6)

Thus the steering vector used by the new algorithms described in the previous chapter
(α(θ1, θ2)) could be expressed as:

α̃(θ1, θ2) = ã(θ1)� (ãp(θ2)⊗ 13) (5.7)

where α̃(θ1, θ2) is the near-field approximation of α(θ1, θ2).

5.3.2 Results

In this section we will discuss the results of the measurement with the synchronized
USPs. The setup is shown in Figure 5.6. The results of the Liu-based algorithm are
shown in Figure 5.7 and for the Cao-based method in Figure 5.8.

Observe that the diagonal lines (θ = θ′) do not have two separable peaks, such that
we can not estimate the DOAs by observing only this line. This is likely to be the result
of calibration issues. Furthermore, we see in both plots the highest peaks at (4◦,−42◦)
and (−42◦, 4◦), which is a few degrees from the expected angles. This can be due to
calibration or placement issues.

Moreover, we observe that the side lobes in the experiments are higher than the
side lobes we had in the simulation. In the simulation the DOAs where at (0◦,−45◦)
exactly, while in the experiment the DOAs are somewhere around these angles. As
the DOAs in the simulation are exactly on the grid, the correct peaks will be higher.
Due to that the pseudo spectra are relative, the peaks of the side lobes will be lower
in the simulation. Another reason could be that the assumption of co-located sensor
components is not valid in this measurement setup.

In Figure 5.9 the results are shown when the data from this measurement is applied
to the classical beamformer discussed in Section 2.2. In this figure we see that the
classical beamformer is capable of finding the two DOAs at this frequency. However,
there is a big side lobe around −140◦.
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Figure 5.6: The experimental setup with USPs.

Figure 5.7: The results of the experiment with synchronized sensors with the Liu-based
method. Peaks are located at (−42◦, 4◦) and (4◦,−42◦). Side lobes are located at (−45◦, 44◦)
and (44◦,−45◦).

5.4 Experimental Results with Badly Synchronized Data

In this section the results of the measurements with inaccurate synchronized sensors
are shown and reviewed. This setup is shown in Figure 5.10. However due to technical
issues the data of the most left sensor in Figure 5.2 is not available. Therefore the
results shown here are based on the four other sensors only.

The pseudo spectra of the Liu-based method and the Cao-based method are shown
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Figure 5.8: The results of the experiment with synchronized sensors with the Cao-based
method. Peaks are located at (−42◦, 4◦) and (4◦,−42◦). Side lobes are located at (−45◦, 44◦)
and (44◦,−45◦).
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Figure 5.9: The spectrum of the experiment with synchronized data when the classical beam-
former is used.
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Figure 5.10: The experimental setup with AMMSs.

in Figure 5.11 and Figure 5.12 respectively. The peaks of this setup are less sharp due
to that the most left sensor is missing. However, the obtained results are similar to the
results of the experiment in the previous section. Thus we conclude that the algorithms
derived in Section 4.2 and Section 4.3 both lead to reliable results in this experiment,
whether the sensors are well synchronized or not.

For completion the results of the classical beamformer on the unsynchronized data
is shown in Figure 5.13. From this figure it is clear that this approach is not suitable
for the given dataset.

In Figure 5.14a the results of the WF-method with the previously obtained DOAs
as initial guess (i.e. the combined method of Section 4.4) are shown. Figure 5.14b uses
the same method with as initial guess that there are no clock errors present. Although
both initial guesses eventually converge to the same DOAs, it is clear that the first
iteration of the latter is quite far from the final spectrum. If the clock errors become
bigger it might occur that the spectrum obtained in the first iteration of this method
gets worse. This can lead towards that the optimization will converge towards the
wrong DOAs.

63



Figure 5.11: The results of the experiment using inaccurate synchronized sensors with the
Liu-based method. Peaks are located at (−2◦,−41◦) and (−41◦,−2◦). Side lobes are located
at (−44◦, 45◦) and (44◦,−45◦).

Figure 5.12: The results of the experiment using inaccurate synchronized sensors with the
Liu-based method. Peaks are located at (−2◦,−41◦) and (−41◦,−2◦). Side lobes are located
at (−44◦, 45◦) and (44◦,−45◦).
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Figure 5.13: The spectrum of the experiment with inaccurate synchronized data when the
classical beamformer is used.
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(a) Results of the combined method. Peaks of the final iteration are located at -3.1◦ and -41.7◦
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(b) Results of the WF-method. Peaks of the final iteration are located at -3.1◦ and -41.7◦

Figure 5.14: Comparison of the combined method and the WF-algorithm.
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Conclusion and Future Work 6
6.1 Conclusion

Acoustic Vector Sensors (AVSs) can be applied in an array setup to find the Direction-
Of-Arrivals (DOAs) of multiple sources. These AVSs outperform the conventional
acoustic pressure sensors in terms of direction finding. Traditional DOA estimation
for AVS-array require perfect synchronization between the different sensors. Due to
environmental limitations this is not always possible and clock effects should be taken
into account when an accurate DOA needs to be found. From the introduction we have
two main questions in this thesis, these questions are repeated and briefly answered
below:

• How can we model an AVS-array that is subjected to clock errors?

In Chapter 3 we found that the clocks in the sensors can be modeled as an affine
transformation of time. This affine error can then be merged with the conventional
model for AVS-arrays by adding a time dependent phase error. By simulation it is then
found that if the crystal applied in the sensor has certain properties these phase errors
can be modeled as time independent.

• How can we perform DOA estimation on an AVS-array that is subjected to clock
errors?

In Chapter 4, two novel algorithms are developed, that are independent of clock errors
and are capable of finding the DOAs. However these algorithms require a two dimen-
sional search, such that these techniques become computational expensive. Therefore
a third algorithm, that is not completely clock independent, is proposed. This method
can be combined with the previous methods to reduce its computational cost.

In Chapter 5, measurements are conducted in a controlled environment. These
measurements are applied to the clock independent algorithms that where developed
in the previous chapter. The outcomes of the experiments show that the developed
methods are applicable to synchronized data and inaccurate synchronized data.

6.2 Future Work

Optimization of the two dimensional search - The two clock independent algo-
rithms proposed in this work suffer from high computational cost due to the two di-
mensional search applied in these methods. It would be interesting to see if it is possible
to optimize this search.
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Optimization of the array aperture - Although the proposed method is applicable
for all array apertures. Performance might differ between different apertures. An
interesting research topic would be to find the optimum aperture for a given set of
conditions.

Space-time equalization - In this thesis, it is assumed that phase errors in the data
are induced in the model due to clock errors. If the sensors are able to move, the
movement will also induce phase errors. In [26] Rajan and van der Veen exploit the
affine time model of the clocks to jointly estimate the ranging and synchronization
of the sensors. An interesting research topic would be to merge the joint DOA and
synchronization of this thesis with the method developed by Rajan and van der Veen
such that the DOA, synchronization and position of the sensors are jointly estimated.

Nested arrays - In [27], Pal and Vaidyanathan show that if two ore more uniform
linear arrays are nested ths can increase the amount of DOAs that can be found. This
geometry is extended for AVSs by means of multi-linear algebra by Han and Nehorai
in [28]. As one the disadvantages of this method is the low amount of DOAs that can
be estimated, it would be interesting to see if the model used in this thesis could be
fitted in that of Han and Nehorai. This is likely to increase the amount of DOAs that
can be estimated.
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Clock Characterization A
In this appendix, we show by means of measurement that the clock can can be modeled
as an affine system. In order to find the clocks, the sensor inputs all are connected
electrically to the same source. The source is set to generate white Gaussian noise such
that the expected cross correlation between sensor i and j (E [rij(n)]) is zero for every
sampling number n but has a peak at the Time Difference Of Arrival (TDOA) which
can be described as:

τij = τj − τi, (A.1)

where τi denotes the time delay between the source and sensor i and τij denotes the
TDOA between sensor i and j.

In order to compute the TDOAs τij, simply computing rij(n) and searching for the
index that corresponds to the maximum will leave us with TDOAs at sample accuracy
(1 sample = 1/fs = 62.5µs). However, for the clock characterization higher accuracy is
necessary. the higher resolution could be achieved by convolving rij(n) with the sinc-
function sinc(t) to find the autocorrelation as a function of full time t: rij(t). However,
as this is computational expensive we rather use Newton’s method (also known as
Newton-Raphson method) as described in [29] to find the solution of the following:

τ̂ij = arg max
τ ′ij

(
sinc(τ ′ij − n) ∗ rij(n)

)
, (A.2)

where τ̂ij is the estimate of the TDOA between sensor i and j and ∗ denotes
the convolution operator. This method does not require to compute the full time
convolution given before. Alternatively the cost function is evaluated iteratively in
order to find the maximum of rij(t). Note that it is depending on the data if this
cost function is concave. Fortunately, due to the nature of our measurement and
its expected crosscorrelation, we can safely assume that the cost function is quasi-
concave around its maximum. It follows that if we take the index corresponding to the
maximum of rij(n) as initial guess for τ ′ij we will always end up at the desired maximum.

From [29] we learn that the step size of Newton’s method is equal to:

∆τ ′ij =
∇τ ′ij

(
sinc(τ ′ij − n) ∗ rij(n)

)
∇2
τ ′ij

(
sinc(τ ′ij − n) ∗ rij(n)

) . (A.3)

In order to find the derivatives necessary to compute the step. Note the property of
the convolution that the derivative of a convolution is the derivative of one side of the
convolution convolved with the other side. This property leads to:

∇τ ′ij

(
sinc(τ ′ij − n) ∗ rij(n)

)
=
(
∇τ ′ij

sinc(τ ′ij − n)
)
∗ rij(n). (A.4)
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By denoting

∇τ ′ij
sinc(τ ′ij − n) =

cos
(
π(τ ′ij − n)

)
− sinc(τ ′ij − n)

τ ′ij − n
(A.5)

and

∇2
τ ′ij

sinc(τ ′ij − n) =

(
2− π(τ ′ij − n)2

)
sinc(τ ′ij − n)− 2 cos

(
π(τ ′ij − n)

)
(τ ′ij − n)2

. (A.6)

We can write the updating algorithm as:

τ
′(k+1)
ij = τ

′(k)
ij −∆τ ′ij. (A.7)

Now, by windowing the signal in time-domain by a rectangular window, taking the
crosscorrelation with respect to a reference sensor and all other sensors we find the
delays in the signal with respect to the clocks in the sensor. In order to delete
any lowband noises we will use a highpass filter on the unwindowed data. The full
algorithm is shown in Algorithm 2.

Algorithm 2 Time Delays

1: procedure Find Time delays
2: load data into s(i, t) with sensor number i and time t
3: s(i, t) = highpass(s(i, t))
4: for m windows do
5: s(i, n) = window(s(i, t))
6: for j = 2 until 6 do
7: xCross = crosscorrelation((s(1, n), s(j, n))
8: tmax(j, n) = Newton-Step(xCross)← equation A.7 till stopping requirement

end
end

The above mentioned method computes the TDOAs with one reference sensor (i.e.
τi,1). Note that it is straightforward to compute the TDOAs with respect to the average.
The above described measurement is carried out over a time of ten minutes using five
sensors. There is a time synchronization at the first sample point. The expectation
is that the above method leads to estimated delays at t = 0 of zero and to diverge
afterwards. The result of this experiment is give in Figure A.1. This figure shows linear
TDOAs as expected before. Such that we conclude that the affine model mentioned in
Chapter 3 is correct.
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Figure A.1: The estimated time difference of arrival.
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Simulations on the
approximation of (3.22) B
In this appendix we show that the affine clock errors can approximated by a model in
where the clock errors are constant. We show, by means of a Monte Carlo simulation,
the effects of the time dependency on the MUSIC DOA estimation. For simplicity,
the clock offset in the model will be neglected. So or time vector containing the times
according to sensor i at time t is given by:

ti = ωit (B.1)

where ωi = (1 + αi) and αi is the clock drift in s/s.
The simulations are executed with varying αis. To show that the clock drift do not

have a big influence on the DOA estimation, DOA estimation is performend using the
MUSIC method trying to recover a single source at θ = 0◦. The found DOA through
this method will be denoted as θ̂. As an measurement of performance of our estimate
the RMSE is chosen which is defined as:

RMSE =

(
N−1

N∑
n=1

(
θ̂(n)− θ

)2)1/2

, (B.2)

where N is the number of iterations and θ̂(n) the DOA estimate of the nth iteration.
The used αis are drawn from a zero-mean Gaussian distribution with standard deviation
σα.

Note that the phase errors induced by the α are frequency dependent, higher fre-
quency will lead to a bigger error. The sensors that are used throughout this work have
a sampling frequency of 16kHz which means that the nyquist rate lies at 8kHz because
this will be the worst case scenario, we will use this frequency within the simulation.
Furthermore an ULA is used with sensor spacing λ

2
. 0.5 Seconds worth of samples are

used to perform the DOA estimation and the SNR is set at 10dB. For every σα N = 100
simulations are performed.

The results of the simulation are shown in Figure B.1. Observe that the RMSE
stays close to zero till about 10−5s/s after which the RMSE increases. This aligns with
a clock drift of 10 ppm. The sensors currently used have a clock that operates at 30
ppm but, based on these simulations, it is suggested to use different clocks with a drift
that is lower than 1 ppm.
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Figure B.1: Monte carlo simulation of the approximation
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Proof of Lemma 3.1 C
Goal of this appendix is to proof Lemma 3.1.

First rewriteap(θ′)Hap(θ)ap(θ)Hap(θ′):

ap(θ′)Hap(θ)ap(θ)Hap(θ′) =
∣∣ap(θ′)Hap(θ)

∣∣2 (C.1)

=

∣∣∣∣∣
M−1∑
i=0

ejiq(θ,θ
′)

∣∣∣∣∣
2

(C.2)

=

∣∣∣∣∣
M−1∑
i=0

ejiφ

∣∣∣∣∣
2

, (C.3)

where we defined φ = q(θ, θ′). Now, note that we could write the inner part of the
absolute value as:

M−1∑
i=0

ejiφ =
M−1∑
i=0

cos(iφ) + j
M−1∑
i=0

sin(iφ). (C.4)

Substituting this in (C.3):∣∣∣∣∣
M−1∑
i=0

ejiφ

∣∣∣∣∣
2

=

∣∣∣∣∣
M−1∑
i=0

cos(iφ) + j
M−1∑
i=0

sin(iφ)

∣∣∣∣∣
2

(C.5)

=

(
M−1∑
i=0

cos(iφ)

)2

+

(
M−1∑
i=0

sin(iφ)

)2

. (C.6)

Now consider the case where M = 3:∣∣∣∣∣
M−1∑
i=0

ejiφ

∣∣∣∣∣
2

= (1 + cos(φ) + cos(2φ))2 + (sin(φ) + sin(2φ))2 (C.7)

=1 + 2 cos(φ) + 2 cos(2φ) + cos2(φ) + cos2(2φ) + 2 cos(φ) cos(2φ) (C.8)

+ sin2(φ) + sin2(2φ) + 2 sin(φ) sin(2φ) (C.9)

=3 + 2 (cos(φ) + cos(2φ) + cos(φ) cos(2φ) + 2 sin(φ) sin(2φ)) , (C.10)

where we made use of the identity cos2(a) + sin2(a) = 1. Note that the double angle
formulas for the sine and cosine could be written as:

sin(2a) = 2 sin(a) cos(a), (C.11)

cos(2a) = 1− 2 sin2(a). (C.12)
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Substituting these into (C.10):∣∣∣∣∣
2∑
i=0

ejiφ

∣∣∣∣∣
2

=3 + 2
(
cos(φ) + cos(2φ) + cos(φ)

(
1− 2 sin2(φ)

)
+ sin(φ) (2 sin(φ) cos(φ))

)
(C.13)

=3 + 2 (2 cos(φ) + cos(2φ)) . (C.14)

Repeating the same steps from (C.7) till (C.14) for M = 4 while using the triple angle
formulas leads to:∣∣∣∣∣

3∑
i=0

ejiφ

∣∣∣∣∣
2

= 4 + 2 (3 cos(φ) + 2 cos(2φ) + cos(3φ)) . (C.15)

Expanding this even further leads to the result:∣∣∣∣∣
M−1∑
i=0

ejiφ

∣∣∣∣∣
2

= M + 2

(
M−1∑
i=1

(M − i) cos (iφ)

)
. (C.16)

Which completes the proof.
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Simulations on the
approximation of (3.39) D
In this appendix we will give some simulations supporting the approximation in (3.39)
i.e.

arg max
θ′

PMVDR ≈ arg min
θ′,C

M−1∑
i=0

|iq(θ, θ′) + kcβi+1 − C| , (D.1)

θ̂ ≈ θ̂′ (D.2)

where we defined:

θ̂ = arg max
θ′

PMVDR, (D.3)

θ̂′ = arg min
θ′,C

M−1∑
i=0

|iq(θ, θ′) + kcβi+1 − C| . (D.4)

In the following we will simulate this for varying β, the βs that will be used are drawn
from a Gaussian set with given standard deviation σβ. In order to analyze the perfor-
mance of the approximation we define the error as the MSE:

N−1
N∑
i=1

ε2i (D.5)

where we defined εi = θ̂i− θ̂′i the error of the ith iteration, θ̂′i and θ̂i as the θs belonging
to that iteration. N is the total amount of iterations.

The above has been simulated for varying σβ and frequency f with N = 1000
iterations. The actual DOA is in this simulation held at θ = 45◦ The results are shown
in Figure D.1. In this figure we see that when f = 100 Hz the approximation stays
valid until at least σβ = 100µs. For f = 500Hz an error starts appearing for σβ = 30µs
and for f = 1000Hz this error already start at σβ = 10µs. Note that these simulations
are for θ = 45◦, the error will increase if θ → 0◦ or θ → 180◦ and will decrease for
θ → 45◦.

Although the simulations show that θ̂ 6= θ̂′ we are still able to conclude that θ̂ ≈ θ̂′

when the clock errors are small and the frequency is sufficient low.
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Figure D.1: Monte carlo simulations of the approximation
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Proof of Theorem 4.2 E
The goal of this appendix is to proof the identity given in (4.41). Therefore we first

expand the definition of R̃:

R̃ =E
[
ỹỹH

]
(E.1)

=E
[
C s̃s̃HCH

]
+ E

[
C s̃νHn

]
+ E

[
νns̃

HCH
]

+ E
[
νpν

H
n

]
+ E

[
νnν

H
p

]
+ E

[
νvν

H
n

]
+ E

[
νnν

H
v

]
+ E

[
C s̃νHp

]
+ E

[
νps̃

HCH
]

+ E
[
νpν

H
p

]
+ E

[
νpν

H
v

]
+ E

[
νvν

H
p

]
+ E

[
C s̃νHv

]
+ E

[
νvs̃

HCH
]

+ E
[
νvν

H
v

]
+ E

[
νnν

H
n

]
. (E.2)

Note that we can write the first term of (E.2) as follows:

E
[
C s̃s̃HCH

]
= CRsdC

H (E.3)

where we defined Rs̃ = E
[
s̃s̃H
]

which will be expanded later in this appendix.

Lemma E.1.
E
[
C s̃νHp

]
= 03M×3M (E.4)

Proof. By observing the term E
[
C s̃νHp

]
we find that all terms in the expected value

have three signal factors and one noise factor. This enables us to use the fact that the
noise is uncorrelated with the signals and therefore we could split the expected value
for index i, j as E [s̄i,j]E [n̄i,j] where s̄i,j is a scalar containing the appropriate signal
information of that index and n̄i,j the weighted noise factor of the corresponding index.
Now, as n̄i,j contains only one random variable (i.e. noise), which is zero mean, it is
easy to see that E

[
C s̃νHp

]
= 03M×3M . �

From the proof of Lemma E.1 we observe in a similar way the following equalities:

E
[
C s̃νHp

]
= E

[
νps̃

HCH
]

= 03M×3M , (E.5)

E
[
C s̃νHv

]
= E

[
νvs̃

HCH
]

= 03M×3M , (E.6)

E
[
νnν

H
p

]
= E

[
νpν

H
n

]
= 03M×3M . (E.7)

Furthermore we have that the noise is white Gaussian distributed which implies:

E [νn] = σ2
η (1M ⊗ e1) = σ2

ηp ∈ R3M (E.8)

where we defined p = 1M ⊗ e1.

Lemma E.2.
E
[
C s̃νHn

]
= σ2

ηCE[s̃]pT (E.9)
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Proof. It is easy to see that C can be written out of the expected value due to that
it is deterministic. Observe that the s̃-vector only contains signal information and the
νHn -vector only contains noise. By the assumption that the noise is uncorrelated with
the signal we are able to write: E

[
C s̃νHn

]
= CE [s̃]E

[
νHn
]
. Substituting (E.8) leads

to the desired result. �

From Lemma E.2 we obtain the following identities:

E
[
C s̃νHn

]
= σ2

ηCE[s̃]pT , (E.10)

E
[
νns̃

HCH
]

= σ2
ηpE[s̃H ]CH . (E.11)

Lemma E.3.
E
[
νpν

H
v

]
= 0. (E.12)

Proof. Note that we could expand E
[
νpν

H
v

]
such that all terms are of the form

E
[
s∗i sjνp,iν

H
v,j

]
∀i, j ∈ {1, 2}. Expanding these terms further leads to

E
[
s∗i sjνp,iν

H
v,j

]
= E

[
s∗i sj

(
η �

(
Γ∗a∗p,i ⊗ 13

)) ((
Γap,j � η∗p

)
⊗ hj

)H]
(E.13)

= E [s∗i sj]E
[(
η �

(
Γ∗a∗p,i ⊗ 13

)) ((
Γap,j � η∗p

)
⊗ hj

)H]
, (E.14)

where we used the assumption that the signals are uncorrelated with the noise. If we
split the resulting matrix in blocks of 3× 3 then we could write block k, l as follows:{

E
[
s∗i sjνp,iν

H
v,j

]}
k,l

= E [s∗i sj]E
[
(ηk � dk)

(
f l �

(
η∗p,l ⊗ hj

))H]
, (E.15)

where ηk contains the elements η that agree with the indices of the kth block, ηp,l
the lth entry of ηp and the vectors dk and f l are chosen such that the equation holds.
From here it is easy to see that with the assumption that the noise is complex circular

distributed (i.e. E
[
<{η}<{η}T

]
= E

[
={η}={η}T

]
) that the equation above goes

to zero. �

From Lemma E.3 we obtain:

E
[
νpν

H
v

]
= E

[
νvν

H
p

]
= 0. (E.16)

Substituting (E.5)-(E.7), (E.10), (E.11) and (E.16) into (E.2) leads to:

R̃ = CRs̃C
T +σ2

ηCE[s̃]pT +σ2
ηpE[s̃H ]CH +E

[
νvν

T
v

]
+E

[
νpν

H
p

]
+E

[
νnν

H
n

]
. (E.17)

As the signals are uncorrelated to each other. It follows that the cross terms of
E
[
νvν

H
v

]
are equal to zero and we can expand this as:

E
[
νvν

H
v

]
= σ2

s,1E
[
νv,1ν

H
v,1

]
+ σ2

s,2E
[
νv,2ν

H
v,2

]
, (E.18)

where σ2
s,i denotes the power of the ith source. Now, evaluate:

E
[
νv,1ν

H
v,1

]
=
(
Γap,1a

H
p,1Γ

H � E
[
n∗pn

H
p

])
⊗ h1h

T
1 (E.19)

=
(
Γap,1a

H
p,1Γ

H � σ2
ηI
)
⊗ h1h

T
1 . (E.20)
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Now notice the equality diag
{
Γap,1a

H
p,1Γ

H
}

= 1. As we are taking the Hadamard
product between a matrix that has only ones on the diagonal matrix and a matrix that
is zero on the non-diagonal entries we completely lose the first matrix. So:

E
[
νv,1ν

H
v,1

]
=σ2

ηI ⊗ h1h
T
1 (E.21)

=σ2
ηH1, (E.22)

where Hi = I ⊗ hih
T
i is a blockdiagonal matrix. Similar:

E
[
νv,2ν

H
v,2

]
= σ2

ηH2. (E.23)

Now, substituting (E.22) and (E.23) into (E.18) gives:

E
[
νvν

H
v

]
= σ2

η

(
σ2
s,1H1 + σ2

s,2H2

)
. (E.24)

Similar to (E.18) we have:

E
[
νpν

H
p

]
= σ2

s,1E
[
νp,1ν

H
p,1

]
+ σ2

s2E
[
νp,2ν

H
p,2

]
. (E.25)

By evaluating E
[
νp,1ν

H
p,1

]
we find:

E
[
νp,1ν

H
p,1

]
=E

[
ηηH

]
�
(
Γ∗a∗p,1a

T
p,1Γ

T ⊗ 131
T
3

)
(E.26)

=σ2
ηI (E.27)

and similar
E
[
νp,2ν

H
p,2

]
= σ2

ηI. (E.28)

Substituting (E.27) and (E.28) into (E.25) leads to:

E
[
νpν

H
p

]
= σ2

η

(
σ2
s,1 + σ2

s,2

)
I. (E.29)

Note that we could write E
[
νnν

H
n

]
as

E
[
νnν

H
n

]
= E

[
ηηH �

(
η∗pη

T
p ⊗ 131

T
3

)]
. (E.30)

From [21], we have that the product of four complex Gaussian variables {xi}4i=1 of
which at least one is zero mean has the following relation:

E [x1x2x3x4] = E [x1x2]E [x3x4] + E [x1x3]E [x2x4] + E [x1x4]E [x2x3] . (E.31)

Note that this implies:

E
[
νnν

H
n

]
=E

[
ηηH

]
� E

[
η∗pη

T
p ⊗ 131

T
3

]
+ E

[
η �

(
η∗p ⊗ 13

)]
E
[
ηH �

(
ηTp ⊗ 1T3

)]
+ E

[
η
(
ηTp ⊗ 1T3

)]
� E

[(
η∗p ⊗ 13

)
ηH
]
. (E.32)

Note that it is easy to see that due to the assumption of complex circular noise the
third term in the equation above reduces to zero:

E
[
η
(
ηTp ⊗ 1T3

)]
� E

[(
η∗p ⊗ 13

)
ηH
]

= 0. (E.33)
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Now, by substituting (E.33) into (E.32):

E
[
νnν

H
n

]
=E

[
ηηH

]
E
[
η∗pη

T
p ⊗ 131

T
3

]
+ E

[
η �

(
η∗p ⊗ 13

)]
E
[
ηH �

(
ηTp ⊗ 1T3

)]
(E.34)

=σ4
ηI + σ4

ηppT . (E.35)

Substitution of (E.24), (E.29) and (E.35) into (E.17) gives

R̃ =CRs̃C
H + σ2

nCE[s̃]pT + σ2
npE[s̃H ]CH

+ σ2
n

(
σ2
s,1 (H1 + I) + σ2

s,2 (H2 + I)
)

+ σ4
η

(
I + ppT

)
(E.36)

Due to that the signals are independent of each other we find:

E[sd] =
[
σ2
s,1 σ2

s,2 0 0
]T
. (E.37)

Thus by substituting (E.37) into (E.36):

R̃ =CRs̃C
H + σ2

η

(
σ2
s,1ξ1 + σ2

s,2ξ2
)

pT + σ2
ηp
(
σ2
s,1ξ1 + σ2

s,2ξ2
)T

+ σ2
η

(
σ2
s,1 (H1 + I) + σ2

s,2 (H2 + I)
)

+ σ4
η

(
I + ppT

)
(E.38)

Note that we can find Rs̃ while using (E.31) as follows:

Rs̃ = E
[
s̃s̃H
]

=


2σ4

s,1 σ2
s1σ

2
s,2 0 0

σ2
s,1σ

2
s,2 2σ4

s,2 0 0
0 0 σ2

s,1σ
2
s,2 0

0 0 0 σ2
s,1σ

2
s,2

 . (E.39)
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