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Abstract— The growing variety of data from condition moni-
toring of high-speed railways offer unprecedented opportunities
to improve railway infrastructure maintenance. For condition
monitoring of railway catenaries, this paper proposes a data-
driven approach that uses a Bayesian network (BN) to integrate
the inspection data from catenaries into a key performance
indicator (KPI). The BN topology is structured based on the
physical relationships among data types, including train speed,
dynamic stagger and height of the contact wire, pantograph head
acceleration, and pantograph-catenary contact force. The tailored
performance indicators are individually defined and extracted
from the five types of data as the BN input. As the output of
the BN, the KPI is defined as the overall condition level of the
catenary considering all defects that can be reflected by the data
types. Finally, using historical inspection data and maintenance
records from a section of the Beijing-Guangzhou high-speed
line in China, the BN parameters are estimated to establish
a probabilistic relationship between the input and output. An
approach that applies the estimated BN to catenary condition
monitoring is proposed. Testing of the BN-based approach using
new inspection data shows that the output KPI can adequately
represent the catenary condition, leading to a nearly 66.2%
reduction in the false alarm rate of defect detection compared
with current practice. It is also tested that when the input data
quality is not ideal, the approach can still work acceptably on
noisy data with a signal-to-noise ratio greater than 3 dB or with
one type of data missing.

Index Terms— High-speed railway, catenary, condition mon-
itoring, Bayesian network, inspection data, key performance
indicator.

I. INTRODUCTION

CONDITION monitoring of the railway infrastructure
currently plays an important role in railway asset man-

agement. It and enables condition-based maintenance that can
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improve the reliability, availability, and safety of the railway
infrastructure. In recent years, emerging techniques have been
developed for monitoring the conditions of the tracks [1]–[3],
catenaries (overhead lines) [4]–[6], bridges [7], tunnels [8],
etc. These techniques vary with the different demands of the
railway networks, which are expanding worldwide [9].

The catenary is a predominant structure used in power
transmission of electrified railways. It is normally constructed
along the track with a contact wire suspended above so that
trains can collect electric current from the catenary using a
pantograph. Figure 1 shows the basic elements of a catenary
and a pantograph mounted on the train roof. While a train
is running on the track, the pantograph slides through and
presses against the contact wire of the catenary, and thus
electric current can flow from the contact wire to the train
locomotive through the pantograph. To ensure that the trains
have a continuous and stable power supply, it is important to
maintain a good current collection quality resulting from the
dynamic interaction between the catenary and pantograph [10].
Well-maintained catenaries not only enhance the safety and
reliability of train operations but also lead to a reduction in life
cycle costs. To this end, technical standards and specifications
[11], [12] have been developed in which catenary condition
monitoring is an indispensable measure. In China, defective
catenaries require an average of more than 2 hours to repair,
and up to 64% of these repairs lead to a loss of power
for an average duration of 1.3 hours, which interrupts train
services.

As a distributed structure spanning kilometers of distances,
condition monitoring of the catenary is commonly performed
by specialized inspection trains that run through the catenary
such that the entire catenary structure can be covered. Tra-
ditionally, condition monitoring is periodically performed to
inspect the geometrical parameters of the contact wire, includ-
ing height, stagger and thickness [13], [14]. This approach
is widely applied for conventional lines with an inspection
interval between six months and one year. However, the
geometrical parameters cannot reflect the dynamic response
of the catenary in operation. Thus, dynamic parameters such
as the contact force between the pantograph and catenary [4],
[10], [15], the acceleration of the pantograph head (collector)
[13], the displacement of the contact point [16], and the
dynamic height and stagger of the contact wire [17], are
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Fig. 1. Elements of a railway catenary and a pantograph.

becoming preferable in practice [18], [19], especially for high-
speed lines. Other components of catenary systems, such as
the insulator, isoelectric line, etc., are also monitored [20]–[22]
because they are important to ensure the full functionality of
the catenary.

Depending on the measurements applied for condition
assessment, the condition of the catenary is commonly quan-
tified by a performance indicator (PI) extracted from mea-
surement data. For geometrical parameters, PIs consist mostly
of comparisons with a threshold that is predefined accord-
ing to nominal values or expert experience. The PIs based
on dynamic parameters can be highly diverse because the
dynamic responses of the catenary and pantograph, in terms
of amplitude and frequency of vibrations, are contained in
the measurement data. Therefore, the statistical distribution,
kurtosis, power spectrum density and time-frequency represen-
tation of the pantograph-catenary contact force (PCCF) were
selected as PIs to detect contact wire irregularities attributed
to a wide range of catenary defects [10], [23]–[25]. As a
substitute for PCCF, the pantograph head acceleration (PHA)
is more cost-efficient to measure. Similarly, PIs such as the
root mean square [13] and wavelet entropy [26] of the PHA
were also chosen to detect contact wire irregularities. Based on
the physical meanings of PIs, the condition of the catenary can
be quantified for further assessment and maintenance decision-
making.

In recent years, condition monitoring techniques deployed
in practice are gradually making greater use of data-driven
approaches [27]. For catenary condition monitoring, the types
of geometrical and dynamic parameters measured and the
increasing frequency of inspections [26] generates a large
volume of multivariate data sets. However, approaches that can
make full use of these data sets are lacking. In previous studies,
PIs were mostly extracted from a single type of parameter. For
defect detection of high-speed lines in China, the false alarm

rate can reach up to 30.5% based on only one type of catenary
data measured from a single inspection run, according to
maintenance records. Learning from techniques developed for
other applications, such as bearing fault diagnosis [28]–[30]
and rail condition monitoring [31]–[33], improvements in
condition monitoring of the high-speed railway catenary can
be realized by the following:

1) Extraction of multiple PIs from one type of parameter;
2) Measurement of multiple parameters to extract and fuse

the respective PIs.

This paper proposes an approach that combines both measures.
As specified in the technical standard for condition moni-

toring of high-speed railways in China [12], the PCCF, the
PHA, and the dynamic height and stagger of the contact
wire are simultaneously inspected by specialized measurement
trains. Individually, these parameters can reflect the condition
of the catenary under dynamic interaction with a pantograph,
although from different perspectives, and they are also physi-
cally related to each other as the results of pantograph-catenary
interaction. Because of the inherent physical relationships,
the measurement data of the parameters contain probabilistic
correlations in terms of dynamic responses. This feature can
be used in enhanced condition monitoring in which the output
rarely suffers from disadvantages due to a single type of data,
such as measurement errors or missing data.

It is observed in the literature that multiple types of data
are simultaneously measured and applied for monitoring the
condition of a single system or device. For example, the
diagnosis of power systems [34], airplane engines [35] and
heat pumps [36] relies on multiple data types as the input.
A similarity among these applications and catenary condition
monitoring is fusion of multiple data types for assessment
of the overall condition of a system. The data can be fused
because of the probabilistic correlations between different
data types indicating the healthiness of the same system. The
Bayesian network (BN) [37], which mathematically represents
a set of variables and their probabilistic relationships, can pre-
cisely address the data fusion problem described. Multiple PIs,
each extracted from the different types of data measured for a
catenary, can be fused using a BN to perform comprehensive
condition assessment.

This study is an extension of a previous work [38]. In sum-
mary, the contributions and extensions of this study include
the following:

1) A new BN is structured specifically for condition mon-
itoring of the catenary.

2) Tailored PIs are proposed for different types of catenary
inspection data and used as the input of the BN.

3) A data-driven approach using the BN is proposed to
supply a comprehensive assessment of the catenary
condition based on inspection data.

The remainder of this paper is organized as follows.
Section II introduces the basic theory of BN. Section III
proposes a BN for catenary condition assessment. Based on the
proposed BN, an approach for catenary condition monitoring
is presented in Section IV using inspection data from a
high-speed railway line. Section V demonstrates the results
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and performances of the approach. Conclusions are drawn in
Section VI.

II. BAYESIAN NETWORKS

BNs, also known as belief networks, are a type of proba-
bilistic graphical model based on directed acyclic graphs [39].
This approach combines graph theory and probability theory,
which makes it intuitively interpretable and mathematically
rigorous. A BN constitutes of a set of random variables
with conditional dependencies between the variables. In the
directed acyclic graph of a BN, a node represents a random
variable, and a directed arc pointing from node A (the parent
node) to node B (the child node) indicates that the value of
variable B depends on the value of variable A. Informally, the
directed arc between a parent node and its child node forms a
cause-effect relationship between the corresponding variables.
This representation can be summarized as the local Markov
property of BN, which states that each variable is independent
of its nondescendents given its parent variables, where the
descendants are the set of variables that can be reached on
a direct path from the variable [40]. Although the directions
of the arcs encode the cause-effect relationships among all
variables, inference in a BN can be performed both forward
along the arc directions and backward in the reverse directions.
In practice, this feature enables estimation of the effect of an
event when the status of causes is observed or identification of
the causes when the effects are observed. This paper belongs
to the former category.

A BN is defined by a pair (G,�), where G is a
directed acyclic graph on a set of n nodes (variables)
X = {X1, X2, . . . , Xn} with independence assumptions among
the variables according to the local Markov property,
and � is a set of n conditional probability distributions
� = {p(x1|�1), . . . , p(xn|�n)} corresponding to each realiza-
tion xi of variable Xi conditioned on �i , which is the set
of parents of Xi in G. The joint probability distribution of
variables X defined by the BN can be described as

p(X) =
n�

i=1

p(xi |�i ). (1)

When certain of the variables in the BN are observable,
they supply evidence for the probabilistic inference of BN to
obtain the posterior probability distributions of unobservable
variables. This aspect is fundamental for BNs to address
the uncertainties associated with diagnosis or prognosis [41],
evaluation or assessment [42], forecast or prediction [43], etc.

For most practical problems, the BN must be learned from
prior information and relevant data, including specification
of both the graph structure and parameters of BN, to fully
represent the joint probability distribution. Depending on the
problem to be solved, the BN can be learned or estimated in
the case in which the graph structure is unknown or certain
variables are not fully observable. In this paper, the graph
structure is first established based on the physical relationships
among the variables involved in catenary condition monitor-
ing. The parameters of the BN with the specific structure
are estimated from historical measurement data. Because the

Fig. 2. Graph structure of the BN for catenary condition monitoring.

overall condition of the catenary is considered to be a partially
observable variable in the proposed BN, the BN parameters
in such a case can be estimated by the expectation maxi-
mization algorithm [44] or the Markov chain Monte Carlo
algorithm [45].

III. A BN FOR CATENARY CONDITION MONITORING

A. Graph Structure

The directed acyclic graph G consists of n = 6 variables
X = {X1, . . . , X6} representing the speed of inspection train,
the PIs extracted from the contact wire dynamic stagger (CDS)
and dynamic height (CDH), PHA, PCCF, and the status of
catenary condition (SCC), respectively. Figure 2 depicts the
structure of graph G, where the conditional dependencies
among the six variables are indicated by the directed arcs. The
physical relationships underlying the structure are described as
follows:

1) Variable X1 represents the train speed at the moment
when the data are measured. As a parent node, it is directed
to the four variables representing the PI extracted from CDS,
CDH, PHA and PCCF, respectively. This direction is based
on the fact that the faster the train speed, the more intense the
vibration excited between the pantograph and catenary, which
leads to higher amplitude of oscillations in the four types of
dynamic responses. Thus, the PIs from the four types of data
are dependent on the level of train speed when the data are
measured. At the same time, the speed of inspection train itself
is irrelevant to the SCC, and thus no arc is connecting the two
variables.

2) Variables X2, X3, X4, and X5 represent PIs extracted
from CDS, CDH, PHA and PCCF, respectively. Because they
are all indicators for the SCC X6, they affect the value of the
SCC with four directed arcs pointing to the SCC in the graph
structure shown in Figure 2.

3) Variable X2 represents the PI extracted from the CDS,
which is the only parameter measured in the lateral direction
parallel to the ground. This variable reflects whether the
stagger of the contact wire is within an acceptable range
for pantograph contact. The CDS is not physically related to
the data of CDH, PHA and PCCF, because the latter three
parameters are defined and measured in the direction vertical
to the ground.

4) Variables X3, X4, and X5 represent the PIs extracted from
CDH, PHA and PCCF, which are all dynamic responses in
the vertical direction. Assuming that at a time instant t during
the pantograph-catenary interaction, the CDH hc(t) is uplifted
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by the pantograph head with an acceleration ap(t). If the
contact between the pantograph and catenary is continuously
maintained by the PCCF fc(t) > 0, the CDH hc(t) becomes
numerically equivalent to the vertical displacement of the
contact point, and the PHA ap(t) becomes equivalent to the
vertical acceleration of the contact point. Thus, the relationship
between the CDH hc(t) and the PHA ap(t) can be written as

ap(t) =
d2

dt2 hc(t). (2)

This relationship can be transformed from the time domain to
the frequency domain by the Fourier transform as

�ap(�) = F
�
ap(t)

�
= (2� i�)2 �hc(�) = �4�2�2 �hc(�) (3)

where F
�
ap(t)

�
denotes the Fourier transform of ap(t),

�hc(�) = F (hc(t)), and � denotes frequency. This formulation
reflects that

��ap(�)
�� �

����2 �hc(�)
��� . (4)

Therefore, when the vibration response induced by a defect or
fault of the catenary with a certain frequency can be captured
by the CDH, it can also be observed from the PHA with a
higher level of spectral energy. This representation forms a
correlation between the PIs of CDH and PHA that can be
mapped into the directed acyclic graph of BN as a directed
arc between the two variables, as shown in Figure 2. In the
measurements, the PCCF fc(t) is considered to be the sum of
three component forces [46], [47], i.e. the pressure measured
by force sensors fsensor(t), the inertia force finertia(t) and the
correction of aerodynamic force faero(t),

fc(t) = fsensor(t) + finertia(t) + faero(t). (5)

The inertia force finertia(t) is calculated depending on where
the force sensors are installed on the pantograph. If the sensors
are installed under the pantograph head, i.e., the majority of
the cases, the inertia force is given by

finertia(t) = m p • ap(t) (6)

where m p is the mass of the pantograph head. It can be
observed that the measurement data of PCCF depend on the
PHA data. The PCCF fc(t) inherits a portion of the dynamic
responses contained in the PHA ap(t). Thus, a directed arc
pointing from variable X4 to variable X5 is established in
the BN, as shown in Figure 2, indicating a cause-effect
relationship between the data of PHA and PCCF.

Through the relationships formed between the six variables,
the graph structure of the BN supplies a physics-based model
that integrates all available sources of PIs to comprehensively
evaluate the SCC. The next step is quantifying the SCC,
namely, obtaining a comprehensive key performance indicator
(KPI) of the catenary by specifying the probabilistic relation-
ships between the variables based on historical observations.

B. Variable Extraction

The observations of the six variables are extracted from his-
torical measurement data, and the method of extraction varies
for each variable. As a prerequisite, the different types of

Fig. 3. Comparison between the static and the dynamic spatial position of
contact wire.

measurement data should be synchronized to ensure matching
sampling frequency and spatial location. A synchronized data
set ensures that the data of different catenary parameters reflect
the same dynamic responses excited at the same moment.
This condition is fairly important for obtaining accurate prob-
abilistic relationships between variables. In practice, it is
uncommon to have perfectly synchronized data because the
data are measured by separate sensors, especially when the
inspection train runs at a high speed. Therefore, it is necessary
to mitigate synchronization errors that might cause inaccurate
outputs generated from the data. This synchronization can be
performed by calibrating the position of all data based on
a unified reference position in the data set. In addition, the
data can also be reconstructed by downsampling to a lower
frequency to offset minor errors in position. In this manner,
synchronization errors between different data types can be
mitigated, especially those leading to shifting of features in
spatial position.

The following describes the PI extraction of every variable
in a manner that best reflects and quantifies the catenary
condition.

1) Speed X1: As the only variable with unconditional
probability in the proposed BN, the train speed X1 is of
great importance. Without knowing the level of train speed,
evaluation of the catenary condition based only on the four
types of dynamic responses is meaningless and invalid. To
establish a corresponding relationship between the level of
speed and the intensity of the dynamic responses using
the available data, a step size sstep is chosen to partition
the data into different levels of speed. This step size is
selected to ensure that sufficient data are measured under
each level of speed for estimation of the parameters of
BN. In this way, the data for extracting variables X2, X3,
X4 and X5 are automatically partitioned by the levels of
speed.

2) CDS X2 and CDH X3: Compared with the static position
of the contact wire, the dynamic position of the contact point
during operation (hereafter referred as the dynamic position
of the contact wire) vibrates in both the vertical and lateral
directions, resulting in the CDS and CDH, as schematically
shown in Figure 3. For evaluation of the catenary condition,
the CDS and CDH behave in a similar manner and are
normally equal to or greater than the static values because a
positive contact force always uplifts and also laterally deflects
the contact wire. Thus, an excessive peak or trough in the
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Fig. 4. Illustration of the percentile-based clustering.

CDS and CDH indicates a strong impact on the contact
wire, loss of contact, or abnormal contact wire position-
ing, which reflects an unfavorable condition that requires
attention.

To extract PIs for variables CDS X2 and CDH X3 that
can supply evidence for variable X6, the frequency contents
contained in the CDH and CDS are not extracted because
according to (4), an anomaly is more significantly perceived
in the frequency domain of acceleration rather than that of dis-
placement. Additionally, in the proposed BN, the frequency-
domain PI is considered for variable X4. Therefore, the PIs
for variables X2 and X3, both extracted from a measure of
displacement, are time-domain indicators determined by the
deviations of CDS and CDH from their healthy states. The
definitions of healthy states for CDS and CDH are dependent
on the levels of speed segmented by the step size sstep. Based
on large amounts of historical data partitioned into every speed
level, the PIs of CDS X2 and CDH X3 can be extracted at each
speed level, thus building the dependencies of X2 and X3 on
the speed level X1.

To determine whether the value of CDS or CDH is healthy
or not, the judgement is highly dependent on the monitored
catenary because the structural parameters (including the sus-
pension type, nominal position of contact wire, contact wire
tension, etc.) are diverse by design for different railway lines.
Thus, the healthy range of variation for CDS and CDH should
be defined with respect to the change in speed for a specific
catenary. This definition can be constructed in a data-driven
manner based on sufficient historical data from the same
catenary. It is also implied that the majority of the observations
should represent a healthy condition of the catenary for the
data to be sufficient. The percentile of available observations
can be used to perform statistics-based clustering in which the
probability of a value falling into a certain condition level is
quantitatively considered.

Concretely, assuming that a set of CDS or CDH data
C = {c1, c2, . . . , cN } is partitioned to a certain speed level,
the N observations can be clustered into J (2 � J � N) sets
S = {S1, S2, . . . , SJ } corresponding to J levels of condition
of CDS or CDH, which are viewed as the time-domain PIs
extracted from CDS or CDH at the specific speed level. As
an example shown in Figure 4, the observations in C can be
clustered based on the percentile intervals defined by the per-
centile boundary of healthy observations h1, which is defined
as the data located in the middle of the full percentile, and the
percentile boundaries of unhealthy observations {h2, . . . , h J },
which are data located at both ends of the full percentile. This

Fig. 5. Schematic of contact wire stiffness varying cyclically with the
catenary structure. The left vertical axis shows the height of catenary structure
including the messenger wire, contact wire and droppers, and the right vertical
axis shows the stiffness.

representation can be mathematically written as

Sj =

�
�����	

�����


P(h1) \ P(100 � h1), j = 1

P(h j ) \ P(100 � h1) \
j�1�

m=1
Sm , 2 � j < J

P(100) \
J�1�

m=1
Sm , j = J

(7)

where ‘\’ denotes the set difference operator, and P(h j )
denotes the h j th percentile of the data in set C . To include
all data in C , h J should be equal to 100. The selection of
h1(h1 > 50) determines the tolerance of the system against
unhealthy conditions reflected by CDS or CDH, and the
sensitivity to report such unhealthy conditions through the
system. The number of levels J depends on the demand to
subdivide the levels of unhealthy conditions; nevertheless, it
cannot be too large by displaying too many levels of unhealthy
conditions that produce redundant information. Normally, a
classic description of healthy or low, medium, high or extreme
risk levels in risk assessment can be sufficient, meaning that
J = 5. In this context, the values from h2 to h J should ascend
in a decelerating manner such that SJ contains the smallest
set of data for the most extreme condition. When the CDS or
CDH data partitioned to every speed level are clustered based
on the corresponding percentiles, the influences of speed on
CDS or CDH are automatically considered for evaluation of
the catenary condition.

3) PHA X4 and PCCF X5: As noted by previous studies
[24], [26], both PHA and PCCF contain frequency contents
that are useful for reflecting the catenary condition. In partic-
ular, the catenary structure wavelengths (CSWs) have a strong
correlation with the catenary structure, including anomalies
such as installation errors and structural defects. As shown
in Figure 5, the CSWs are frequency components of PHA
and PCCF attributed to the cyclic variation of the contact
wire stiffness along the catenary structure. Thus, the PHA
and PCCF can be decomposed into two signals, namely, the
CSWs and the non-CSW signal. The former is often used as an
indication for structure-related defects, and the latter mostly
reflects local defects such as hard points and uneven wear
on the contact wire. In this way, diagnoses based on PHA
and PCCF can be performed with less interference and thus
output more accurate results compared with the situation in
which the PHA and PCCF are not decomposed. Empirical
mode decomposition (EMD) [48] is commonly selected to
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perform an adaptive decomposition so that the PHA and PCCF
measured from different catenary systems can be consistently
decomposed into the CSWs and the non-CSW signal. The
general steps needed to obtain the two signals are described
as follows using the PCCF signal fc(t) as an example:

Step 1: Decompose the PCCF signal fc(t) into a number of
intrinsic mode functions (IMFs) fc,l(t) and a residual
r(t) using EMD or its improvements,

fc(t) =
�

fc,l (t) + r(t). (8)

Step 2: Identify the CSWs from all IMFs by checking
whether the dominant wavelength (or spatial fre-
quency) of an IMF falls into the range of struc-
ture wavelengths. Two generic wavelength intervals
[4m,10m] and [40m,70m] indicating the wavelengths
of interdropper distances and spans, respectively, can
be used in the identification, even if no prior infor-
mation on the catenary is available to narrow them
down.

Step 3: Based on the IMFs identified as CSWs fc,l (t), l �
C , compute the CSWs fc,C (t) and non-CSW signal
fc,N (t) by

fc,C (t) =
�

l�C

fc,l (t) (9)

and

fc,N (t) =
�

fc,l (t) � fc,C (t), (10)

respectively.

After obtaining the CSWs and the non-CSW signal of PHA
and PCCF, the energy density of both signals corresponding to
the instantaneous frequencies can be computed as the sources
of frequency-domain PIs. Using the CSWs of PCCF fc,C (t)
as an example, the analytic forms of its IMFs fc,l (t), l � C
can be obtained with the Hilbert transform:

z(t) = fc,l(t) + i • H[ fc,l(t)] = a(t)ei�(t) (11)

where H[ fc,l(t)] denotes the Hilbert transform of fc,l(t),

a(t) =


fc,l(t)2 + H[ fc,l(t)]2 (12)

and

�(t) = arctan

�
H [ fc,l(t)]

fc,l (t)

�
. (13)

The instantaneous frequency is defined as

�(t) =
d�(t)

dt
. (14)

Thus, the Hilbert spectrum of fc,C (t) can be obtained as the
real part R in the following form

H (�, t) = R

�
�

l�C

a(t) exp

�
i
�

�(t)dt

��

(15)

which is a time-frequency representation showing the energy
density distributed with the change in time and instantaneous
frequency. To examine the instantaneous energy level of the

CSWs fc,C (t) at a certain time instant, the accumulated energy
density can be computed as

A(t) =
�

l�C

a(t)2. (16)

This parameter indicates the intensity of vibration at a fre-
quency range identical to that of the CSWs or non-CSW signal.
It can thus be applied for fault diagnosis in general and also
supplies PIs for the catenary at the specific location.

The PIs input into the BN as values of variable PHA X4
and PCCF X5, similar to the time-domain PIs extracted from
CDS and CDH, should be indicators clustered into different
levels. For consistency with the PIs from CDS and CDH,
it is ideal that those from PHA and PCCF share the same
number of condition levels. Because the PIs result from the
same excitations, a certain coherence is preserved if they are
clustered in the same way, in the sense that an equivalent
PI among the four types of variables indicates the same
degree of ‘unhealthiness’ or defect. Moreover, this coherence
can be passed down to the final variable SCC X6 in the
form of evidence for probabilistic inference. However, both
PHA and PCCF are decomposed into two signals and thus
have two independent indicators AC(t) and AN (t) via (16)
from the CSWs and the non-CSW signal, respectively. Both
indicators represent the catenary condition in the frequency
range corresponding to their own physical meanings. This is
a unique feature of the indicators extracted from PHA and
PCCF, because no such frequency contents can be found in
CDS and CDH. Thus, a PI of variable X4 or X5 should
be constructed to preserve the information contained in both
indicators. A maximum criterion is proposed to combine the
two indicators. Concretely, for the PHA or PCCF, indicators
AC(t) and AN (t) can be partitioned by the same speed levels
defined by step sstep such that the influences of speed variation
are eliminated. Sets CC and CN are indicators partitioned
to a same speed level from AC(t) and AN (t), respectively.
Using percentile-based clustering according to (7), sets SC =
{SC,1, SC,2, . . . , SC,J } and SN = {SN,1, SN,2, . . . , SN,J } can
be obtained from CC and CN , respectively. Consequently, this
formulation gives a condition level to every value in AC(t)
and AN (t). Assuming at any time instant t �,

AC (t �) � SC,a and AN (t �) � SN,b . (17)

which equivalently assigns condition levels, namely, PIs a and
b to AC(t �) and AN (t �) as

LC (t �) = a and L N (t �) = b. (18)

The maximum criterion defines a combined PI as

L(t �) = max(LC (t �), L N (t �)). (19)

In this manner, an unhealthy condition can be always reported
regardless of its indicative frequency range. It is not only
consistent with PIs of CDS and CDH, but also offers necessary
evidence for the variable SCC X6.
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TABLE I

LIST OF SCC VALUES (KPIS) WITH RESPECT TO
VERIFYING PARAMETERS

4) SCC X6: This is the only variable with partial observ-
ability in the BN and is also an output as the quantification
of SCC for maintenance decision-making. In this context,
the available observations of variable X6 are defined as the
severity of defects that are detected in an inspection run
and, most importantly, verified later by human inspectors
on site. Due to the massive workload required to perform
manual verifications, in most cases, only a portion of historical
inspection results can be selectively verified and recorded as
observations, thus creating the partial observability.

Although the protocols established to verify catenary defects
differ from one railway line to another, the results normally
conclude whether a defect exists and its severity. The SCC X6
supplies such a conclusion based on the evidence given by the
other variables, whereas previously, only the observations from
one variable in a single run were considered. Thus, the value
of SCC is the overall condition level of the catenary, namely,
a KPI that considers all potential defects reflected by the
available observations of other variables. This can be achieved
by unifying the different severities of all known defect types.
Based on expert experience, the unified value can be manually
estimated according to the severity of defects defined in
protocols. In a protocol designed to quantify the severity level
of catenary defects, the severity levels are commonly defined
by a group of multidisciplinary experts who consider both the
mechanical and electrical performances of the catenary. To
propose a unified severity level considering all types of defects,
the potential negative effects or consequences of a defect at
different severity levels should first be quantitatively estimated
in terms of cost, loss of time, etc. Subsequently, the probability
of such effect actually occurring is also estimated using main-
tenance records and available knowledge. By multiplying the
effect with the corresponding probability, the risk of a defect
can be obtained as a unified value indicating the healthiness
of the catenary. In this manner, a unified condition level can
be defined rationally with controllable variations depending on
the accuracy of the effect and probability estimations.

As a new paradigm, Table I proposes a summarized list of
the estimated catenary condition levels in the case of high-
speed lines in China. The condition levels correspond to a
certain type of catenary defect indicated by a verification
parameter measured on-site. A total number of 12 verification

parameters, each with several levels of severity determined by
predefined thresholds, are assigned to the unified values of
SCC X6 as a standardization effort. It can be observed from
Table I that depending on the type of verification parameter,
the numbers of the severity levels are different. This scenario
is defined by the protocol for inspection of high-speed railway
catenaries, in which parameters such as the contact wire height
are divided into four levels of value corresponding to four
severity levels, and other parameters such as the percentage
of arcing has two levels and the catenary voltage has one
level, meaning that it is out of a required range. The values of
SCC, namely, the KPIs range from 1 to 5 with 1 representing
a healthy state and higher values representing unhealthier
conditions. The range is consistent with the values defined
for variables from X2 to X5. This list is applied to obtain
the available observations of variable X6 that indicate the
verified condition level of the catenary in the maintenance
record. In addition, a number of observations with value 1
(healthy) are assigned to variable X6, when the corresponding
observations of variables from X2 to X5 are 1, showing no
indication that the catenary is unhealthy. Similarly, a number
of observations with value 5 (extreme risk) are also assigned
when the observations of the four variables are all equal
to 5. For a specific railway line, the list can be modified
by considering the differences in operation condition and
pantograph-catenary dynamic characteristics.

C. Parameter Estimation

The proposed BN has a known structure but incomplete
observability for variable SCC X6. In the case of full observ-
ability, the maximum likelihood estimation can directly find
a set of parameters that maximize the likelihood function of
the given set of probabilistic relationships defined by the BN
structure. When data are partially missing, an initial set of
BN parameters can be assumed to complete the missing data
through inference. A new expected likelihood function can
be computed based on the newly completed data set. This
procedure is known as expectation. The set of BN parameters
can be updated by maximizing the current expected likeli-
hood function, which is known as maximization. By iterating
between the expectation and the maximization, a final set of
parameters can be eventually estimated when the likelihood
function converges, which is the well-proven realization of
the expectation maximization (EM) algorithm for estimating
parameters of the BN with incomplete data [44]. The use of
the EM algorithm requires that the data are missing at random,
meaning that the value of X6 and the event that X6 is missing
are conditionally independent, given other observed variables,
which is true in this case because the existence of SCC is
independent of whether the SCC is verified on site or not.

In this application, the parameters estimated based on a set
of data by nature inherit the dynamic characteristics of the
specific catenary type and pantograph-catenary couple from
the line on which the data set is measured. Therefore, the
input data should be measured from the same railway line
when the same pantograph is mounted. This situation is often
realized by a specialized inspection train.
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Fig. 6. Brief flowchart of the BN-based approach. The dashed lines denote
alternative flows.

IV. A BN-BASED APPROACH

Based on an established BN, a data-driven approach for
catenary condition monitoring is proposed. Figure 6 depicts
the general architecture of the approach for a railway line
with inspection data available. The approach initiates with BN
parameter estimation. New inspection data can subsequently
be input for catenary condition assessment. The BN parameters
are updated after on-site verifications are performed.

When the BN parameters are estimated, the ratio of variation
(ROV) of a parent variable to its child can be computed. This
value quantifies the importance or contribution of a parent
variable that leads to the value of its child. For the proposed
BN, the ROV can be used to describe which of the four
variables representing the PIs of CDS, CDH, PHA and PCCF,
respectively, have more impact on the final KPI of SCC.
Concretely, the ROV of variable Xi with respect to the final
variable X6 is defined as:

R(Xi ) =
p(xi �= 1|x6 = j) � p(xi �= 1)

p(xi �= 1)
(20)

where p(xi �= 1) is the marginal probability of xi �= 1,
representing the probability that variable Xi is unhealthy.

A. Input

An estimated BN can be applied as a diagnostic tool for-
mulated based on the historical data for parameter estimation
and expert knowledge for defect verification and severity
quantification. Because the BN is estimated using inspection
data from a certain railway line, it can only function correctly
when the input is also extracted from new data measured in
the same line. New inspection data containing CDS, CDH,
PHA and PCCF together with the train speed can be used in
input extraction. The BN inputs are values of variables from
X1 to X5, namely, the speed level, PIs extracted from CDS,
CDH, PHA and PCCF. The PIs should be extracted in the same
manner as described in the previous section and summarized
as follows:

Step 1: Synchronize data with respect to sampling frequency
and spatial position.

Step 2: Decompose the PHA and PCCF data into CSWs and
non-CSW signal by (9) and (10).

Step 3: Partition the CDS, CDH, decomposed PHA and
PCCF data into different speed levels determined by
a step size sstep.

Step 4: Extract the PIs of CDS and CDH based on their data
percentiles using (7), and the PIs of PHA and PCCF
using (19).

It should be noted that the BN parameters can always be
updated by new inspection data and the corresponding verified
defects. This update can be performed regularly to make the
BN more knowledgeable and up to date for catenary condition
assessment. The feedback loop formed among the BN-based
condition assessment, the on-site defect verification and the
BN parameter updates can further improve the accuracy of
condition assessment and defect detection.

B. Output

Given the BN input, i.e., the values of variables from X1 to
X5, as evidence for BN inference, the posterior probability
of the final KPI x6 = j , i.e., p(x6 = j |{x2, x3, x4, x5}),
can be inferred. The expectation of the posterior probability
distribution of variable SCC X6 can be computed as the final
output:

E(X6) =
J�

j=1

p (x6 = j | {x2, x3, x4, x5}) • j. (21)

The output KPI indicates the expected condition level of
the catenary at the corresponding location where the data
are measured. Alternatively, the output KPI can be the most
probable value of variable X6

arg max
j

p (x6 = j | {x2, x3, x4, x5}) . (22)

This KPI of SCC is stricter and especially useful for recogniz-
ing unhealthy conditions compared with the expected value.
Depending on the preference of the decision makers, the
expected value can be used in general condition assessment,
and the most probable value is better for determining whether
a track visit is necessary by looking at SCC at suspicious
unhealthy locations.

V. RESULTS AND PERFORMANCE DISCUSSIONS

This section presents the results of BN estimation and
application of the estimated BN. The condition monitoring
performances of the BN-based approach for reducing false
alarms and addressing low-quality data are discussed. Here-
after, the potential defects of the catenary represent defects
that are identified based only on the inspection data without
on-site verifications. When on-site verifications are performed
for the potential defects, the hits and false alarms are defined as
the successfully verified defects and falsely identified defects,
respectively. Accordingly, the hit rate and false alarm rate
are the ratios of the numbers of hits and false alarms to the
total number of potential defects, respectively. In practice,
because on-site verifications were not performed for every
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Fig. 7. Number of observations distributed with inspection train speed.

potential defects found from historical data, this study con-
siders the defects that were actually verified when calculating
the number hits and false alarms detected by the proposed
approach.

A. BN Estimation

The BN parameters can be estimated through available
observations extracted from historical data. In this paper, the
data used as the source of observations are periodic inspection
data measured from a section of Beijing-Guangzhou high-
speed line in China during a period from December 2014 to
June 2018. All measurements of speed, PCCF, PHA, CDH and
CDS have a synchronous sampling interval of 0.25 m with the
position recorded and calibrated by differential GPS and radio-
frequency identification (RFID) using RFID tags attached on
the masts of the catenary along the railway line. Observa-
tions of variables are extracted per procedures presented in
the previous section. As a result of the periodic inspection,
approximately 1.546 × 106 observations are acquired from
an accumulated mileage of 1546.4 km of the catenary in the
same section of railway line with the speed of the inspection
train ranging from 100kmh�1 to 300kmh�1. Data measured
below 100kmh�1 are omitted because the data size is too small
to represent a set of balanced observations at lower speed
levels. These data can still be added for estimation of the
BN parameters if sufficiently collected. Figure 7 shows the
number distribution of observations with respect to the speed
above 200kmh�1, which contains 94.9% of all observations.
Because the inspection train is dedicated to run near 290kmh�1

in every inspection, 78.7% of observations are located at
speeds between 280kmh�1 and 300kmh�1. Other speeds are
mostly measured when the inspection train is accelerating or
decelerating.

In this study, the step size sstep =2kmh�1 is selected for
data partitioning, meaning that for every 2kmh�1 increase
from zero speed, the data measured within an increment are
considered under the same speed level. Once all data are
partitioned by speed levels X1, the values of variables from X2
to X5 are extracted. Figure 8 depicts the PI values j of CDS
X2 and CDH X3 clustered by (7) using the set of percentile
boundaries {h1, . . . , h5} = {95, 97.5, 99, 99.8, 100}, which
represent the condition level of healthy, low risk, medium risk,
high risk, and extreme risk, respectively. It can be generally
observed that the greater the speed, the larger the deviation
of CDS and CDH. An outburst of extreme-risk conditions
occurs at approximately 290kmh�1, because the observations
are concentrated at this speed level, which is close to the
highest speed designed for this railway line. The clustered
CDS in Figure 8(a) are evenly distributed around the median,
which is approximately zero, whereas the median of CDH and

Fig. 8. Clustered (a) CDS and (b) CDH with respect to speed levels.

Fig. 9. Clustered instantaneous energy of CSWs and non-CSW signal of
PHA (left) and PCCF (right).

the range of healthy CDH ( j = 1) gradually increase as the
speed increases in Figure 8(b). A sudden narrowing of the
CDH range can be noted near the highest speed level, which
is caused by the drastic drop in observation number starting
from 296kmh�1, as shown in Figure 7.

For variables X4 and X5, the CSWs and non-CSW signal are
first extracted to obtain the accumulated instantaneous energy
via (16). Using the same percentile boundaries for CDS and
CDH, Figure 9 depicts the clustered energy of the CSWs and
non-CSW signal of PHA on the left and those of PCCF on
the right. It can be observed that the distribution of unhealthy
indicators ( j > 1) differs between the CSWs and the non-
CSW signal, and between the PHA and PCCF. In all four
types of clustering results, the catenary condition worsens
at high speeds near 290kmh�1. On the left, the CSWS of
PHA reveals a particularly sensitive speed at approximately
245kmh�1, where the condition also worsens, whereas the
result of non-CSW signal shows no such particularity. This
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