OVER DE MECHANICA
VAN HET ROLLEN

Dr. Ir. J. J. KALKER
OVER DE MECHANICA
VAN HET ROLLEN

VOORDRACHT

GEHOUDEN BIJ DE AANVAARDING VAN HET AMBT VAN GEWOON LECTOR IN DE WISKUNDE IN DE AFDELING DER ALGEMENE WETENSCHAPPEN AAN DE TECHNISCHE HOGESCHOOL TE DELFT OP VRIJDAG 2 OKTOBER 1970 DES NAMID-DAGS OM 16.00 UUR

DOOR

Dr. Ir. J. J. KALKER

UITGEVERIJ WALTMAN – HIPPOLYTUSBUURT 4 – DELFT
Mijnheer Curatoren,
Mijnheer de Rector Magnificus,
Mijnheer Leden van de Senaat,
Dames en Heren Lectors, Docenten en Medewerkers van de
Technische Hogeschool,
Dames en Heren Studenten,
en voorts Gij allen die deze plechtigheid met Uw aanwezig-
heid opluistert,

Zeer gewaardeerde Toehoorders,

In deze openbare voordracht wil ik U in historisch verband een
overzicht geven van de ontwikkeling van het wiel. Dit blijkt uit te
monden in de wenselijkheid van een nauwkeurige analyse van de
verschijnselen die bij het rollen optreden; met enige resultaten van
dit onderzoek, dat sterk wiskundig is getint, wil ik U vervolgens
laten kennis maken.

Denken wij aan rollen, dan verschijnt voor ons geestesoog een wiel
dat voortsnelt over een baan. Van rollen in deze zin is in de levende
natuur geen sprake. Onze gewrichten en die van alle dieren kan
men opvatten als glijdigers. De beweging van de elementen die
in het gewricht samenkomen en over elkaar bewegen is, bij de een
meer dan bij de ander, aan grenzen gebonden. Het wiel beweegt
zich daarentegen met volle vrijheid over de baan. Dat de natuur
voor de voortbeweging van dieren het rollen niet tot ontwikkeling
heeft laten komen, wordt enerzijds verklaard door de afwezigheid
in de natuur van voldoende effen banen. Anderzijds is een wiel met
as niet mogelijk met gewrichten van beperkte bewegingsvrijheid.
Dus zou het dier met het hele lichaam moeten rollen, wat moeilijk-
heden geeft met de aandrijving. Het enige dier dat bij mijn weten
het rollen voor de voortbeweging kan gebruiken is het Wentelteefje
van de graficus Escher, die het volgende schrijft:

„Het heeft een langgerekt, uit verhoornde geledingen gevormd
lichaam en drie paren poten In gestrekte positie kan het
dier zich traag en bedachtzaam, door middel van zijn zes
poten, voortbewegen over een willekeurig substraat Zo-
dra het echter een lange weg moet afleggen en daartoe een
betrekkelijk vlakke baan tot zijn beschikking heeft, drukt het
zijn kop op de grond en rolt zich bliksemsnel op, waarbij het zich afduwt met zijn poten voor zoveel deze dan nog de grond raken.”

Ook in de dode natuur treedt het rollen nauwelijks op, door de reeds gesigmaalde afwezigheid van effen banen en de moeilijkheid van de aandrijving. Deze belemmeringen zijn afwezig bij steile berghellingen en bij windige sneeuwvlakten. Doch bij de steenlawine kan men nauwelijks spreken van rollen, en het balteje sneeuw dat door de wind over de sneeuwvlakte wordt voortgejaagd ondersteunt evenmin het technische belang van het rollen: namelijk dat grote lasten door geringe krachtsinspanning kunnen worden verplaatst.

De ontdekking van het rollen door de mens vertegenwoordigt dus een prestatie van de eerste orde. De eerste afbeelding van een wiel dat draait om een aan een wagen gemonteerde as dateert van omstreeks 3500 v. Chr. Het is een schets op een sumerisch kleiafgetij, en vertoont een slede op vier massieve wielen. De wielen van deze vroegere voertuigen bestonden uit drie planken naast elkaar die door een tweetal dwarshouten werden bijengehouden.

Uit de dierlijkheid van deze wielen heeft men wel afgeleid dat het wiel niet is ontstaan in een land waar dikke bomen groeien. Van zulke bomen had men immers kopscheijen kunnen zagen die na enige bewerking dienst zouden kunnen doen als wiel. Tevens zou het wiel ontstaan zijn temidden van een volk dat beschikte over metalen zagen. Uit het drietal overwegingen: eerste afbeelding sumerisch; weinig dikke bomen; gebruik van metalen zagen leidt men af dat het wiel waarschijnlijk in Mesopotamië is uitgevonden. Het wiel met spaken dateert van omstreeks 2000 v. Chr. Er is te weinig archeologisch bewijsmateriaal om de stelling te steunen dat het spakenwiel is ontstaan uit het massieve wiel door het boren van gaten. Het is derhalve veiliger te onderstellen dat het spakenwiel een aparte uitvinding is.

De wielen van de Oudheid verkregen hun meest volmaakte vorm in handen van de Kelten van West-Europa. Hun wielen hadden een esshouten velg uit één stuk, veertien spaken, de assen liepen op hardhouten naaldlagers en er was een ijzeren band om het wiel gekrompen: wij herkennen het wiel van de door paarden getrokken wagen.

Twee verdere ontwikkelingen van het wiel zijn te noemen: het spoorwiel en het van een luchtband voorziene wiel. Het spoorwiel

en de daarbij behorende baan hebben een lange geschiedenis; omstreeks 1550 liepen de erkskarren in de Duitse mijnen reeds op houten rails. Deze karren werden eerst gestuurd door een pin die in de groef van een plank liep, maar het is mogelijk dat zij reeds vóór het einde van de zestiende eeuw op wielen met flanken liepen: prototypen van het spoorwiel.

Het eerste patent van de luchtband dateert van 1845, maar de uitvinding vond geen ingang, doordat bij door paarden getrokken koetsen de schokken van de weg zeer goed konden worden opgevangen door de verende ophanging van de bak aan het chassie. Het was de fiets die de door Dunlop in 1888 verbeterde versie van de luchtband een grote en blijvende populariteit bezorgde, aangezien de fiets de schokken van de weg direct doorgeeft aan de berijder.

Hier hebben wij terloops een zeer belangrijk aspect van de constructie van voertuigen genoemd, namelijk het rijcomfort. Door het gebruik van veren, schokbrekers en de overige middelen die de constructeur ten dienste staan kan men, als men beschikt over een goed uitgevoerde baan, voertuigen ontwerpen met een behoorlijk rijcomfort zelfs bij vrij hoge snelheden. Wil men echter verder komen, dan is men gedwongen zijn toevlucht te nemen tot theoretische overwegingen omtrent ingewikkelde wiskundige modellen. Een deelprobleem hiervan is dat men de verschijnselen die bij het rollen optreden moet onderzoeken. Hierbij moet onderscheid worden gemaakt tussen wielen op luchtbanden en spoorwielen. Aan deze Technische Hogeschool hebben voornamelijk twee staafdelen zich met deze materie beziggehouden. A. R. Savkoor van het Laboratorium voor Voertuigtechniek werkt aan het probleem van het wiel met de rubber luchtband, en ik zelf heb het rollen van effectieve massieve wielen onderzocht.

Dit laatste onderzoek heeft een betekenis die verder reikt dan het rollende wiel. Ook in kogel- en rollagers treedt rollen op en voor het ontwerpen van een goed werkend, sluitvast kogellager is het noodzakelijk dat men de beweging van de kogels kan voorspellen. Hetzelfde geldt voor wrijvingstransmissies die soms gebruik maken van rollende elementen, terwijl de tanden van tandwielen een zeer gecompliceerde rolbeweging uitvoeren. Bij deze toepassingen wordt veelal van smering gebruik gemaakt. Op smeringseffecten zal ik echter in deze voordracht niet ingaan.

Het is de gewoonte onder wiskundigen om hun onderwerp van discussie vooraf zo scherp mogelijk te definiëren. Ik wil nu het onder-
Het vectoriële verschil is belangrijk; het heeft een speciale naam: de translatie-kruip. Voert men het verschil van twee vectoren in als aparte grootte, dan ligt het voor de hand, ook hun som in te voeren. Een zeker veelvuldig daarvan heet de rolsnelheid. Rotatie-kruip, translatiekruip en rolsnelheid bepalen de relatieve beweging van de lichamen volledig.

De term rolsnelheid vereist enige toelichting. Hiertoe moeten wij kort ingaan op het krachtenspel in het raakpunt (zie fig. 2); een uitgebreider behandeling volgt later. De componenten van de contactkracht evenwijdig aan de normaal noemen wij de normaalkracht;

![Fig. 1 Rolsnelheid en kruip](image)

in het verkeer wordt gesproken van de wiedruk. De projectie van de contactkrachvector op het raakvlak heet wrijvingskracht. Deze heeft gewoonlijk een aanzienlijke waarde zodra de translatiekruip van nul verschilt en heeft de richting van deze: ik kom hier later op terug. De dissipatie wordt gegeven door het produkt van translatiekruip en wrijvingskracht. Zij is dus nul wanneer de translatiekruip verdwijnt, dat wil zeggen, wanneer de snelheden van het raakpunt over de twee lichamen gelijk zijn in grootte en richting. In dat geval staan de deeltjes van de lichamen in het raakpunt ten opzichte van elkaar stil, en kunnen de lichamen slechts ten opzichte van elkaar wachten om een as in het raakvlak door het raakpunt: de lichamen voeren een zuivere rollbeweging uit, met een voortbewegingsnbelheid die bij omwentelingslichamen gelijk is aan de snelheid van het raakpunt over de lichamen. De definitie van de rolsnelheid is nu zo gekozen dat zij samenvalt met de voortbewegingsnbelheid van een wiel over een vaste ondergrond onder deze omstandigheden.

In het geval van niet verdwijnende translatiekruip is de interpretatie van de rolsnelheid moeilijker. Echter, in de gevallen waarmede ik U zal bezighouden is de translatiekruip zo klein ten opzichte van de rolsnelheid dat de zojuist gegeven interpretatie in grote lijnen
haar geldigheid behoudt. Dit verklaart tevens het gebruik van het woord *kruip*, dat een langzame beweging suggereert. Wij zullen ons nu iets uitgebreider bezighouden met het krachtesten in het raakpunt. De normaalkracht en de vrijwisselkracht zijn reeds genoemd. Volgens de wet van Coulomb van droge vrijwissel mag de vrijwisselkracht een zeker veelvoud van de normaalkracht niet overschrijden als de translatiekruip verdwijnt; zij is gelijk aan dit veelvoud, wanneer de translatiekruip van nul verschilt en heeft in dat geval de richting van de translatiekruip. Het doet op dit ogenblik weinig ter zake of de grootte van de vrijwisselkracht afhankelijk is van de grootte van de translatiekruip als deze van nul verschilt — waar het om gaat is dat gliden alleen maar kan inzetten als de vrijwisselkracht een zekere grens bereikt en dat noch rotatiekruip, noch rolsnelheid enige invloed hebben op de vrijwisselkracht. Het beeld dat ik U zojuist heb gegeven is te grof voor de nauwkeurige analyse van het rollen die door de ontwerper wordt verlangd. Iedere ontwerper verlangt uitspraken over de sterkte van zijn constructie. Nu werkt volgens ons beeld in een enkel punt een eindige kracht op de lichamen. Deze kan niet worden gedragen door het materiaal waarvan zij zijn gemaakt, een feit waarvan men gebruik maakt wanneer men een spijker in hout drijft dan wel een diamant kliert. Met deze omstandigheden houdt men rekening door de licha- men elastische eigenschappen toe te kennen waardoor zij lokaal onder invloed van de contactkracht worden afgeplaat en het enkele raakpunt overgaat in een contactgebied, dat ik ook wel contactvlak zal noemen.

De uitgebreidheid van het contactvlak leidt tot de noodzaak een aantal nieuwe begrippen in te voeren. De *slip* wordt gedefinieerd als het verschil van de snelheden van twee aan twee contacterende deeltjes; het is een lokale grootheid. Eveneens lokaal is de *contactspanning*: dit is de kracht gereken per oppervlakte-eenheid die twee aan twee contacterende deeltjes op elkaar uitoefenen. De contactspanning wordt, geheel analoog aan de contactkracht die haar resultante is, gesplitst in een *normaaldruk* en *een vrijwisselspanning*. Naast deze lokale grootheden treedt ook een nieuwe globale grootheid op: het *vrijwisingmoment* dat wordt gedefinieerd als het moment om een zekere normaal van het contactvlak tengevolge van de vrijwisselspanningen. Voor sterkteberekeningen is in eerste instantie de kennis van een representatieve spanningsverdeling noodzakelijk. Algemeen wordt aangenomen, dat de vrijwisselwet van Coulomb die reeds heb ge-
theorie van Hertz uitstekend gebruiken, en we kunnen dus stellen dat in ons geval contactvlak en normaalduik bekend zijn, waarmee het representatieve belastinggeval nodig voor de sterkteberekening gevonden is.

Naast sterkte staat de slijtage van rollende elementen. Het onderzoek betreffende dit onderwerp is nog in het beginstadium dat men zoekt naar de mechanismen die slijtage veroorzaken.

Daarenboven is speciaal de voertuigontwerper geïnteresseerd in het verband tussen wrijvingskracht, wrijvingsmoment, translatiekruipe en rotatiekruipe. Ook voor hem is het beeld van het enkele contactpunt onvoldoende nauwkeurig. De kennis van het verband tussen krachts- en snelheidsgrootheden bij eindige contactvlakken is echter in een vergevorderd stadium.

Een groot aantal onderzoekers, van wie ik slechts de namen van Lutz en Wernitz noem, nemen aan dat de lokale slip niet wordt beïnvloed door de elastische vervorming die de rollende lichamen in de omgeving van het contactgebied ondergaan. De slip zonder de bijdrage van de elastische vervorming zullen wij in het vervolg Lutz-Wernitz slip noemen; zij is volledig bepaald door de rotatie- en de translatiekruipe. Zijn deze laatste dus gegeven, dan is de Lutz-Wernitz slipveld bekend en daarmee is via de drukspanning en de wet van droge wrijving waarvan de lokale geldigheid wordt aangenomen, de wrijvingsspanning in grootte en richting bekend.

Integratie van de wrijvingsspanning levert de resulterende wrijvingskracht en het wrijvingsmoment, waarmee het probleem is opgelost. Deze beschouwingswijze wordt vooral toegepast op wrijvingstransmissies met rollende elementen, en op rol- en kogellagers.

Zoals ik reeds heb opgemerkt komt men tot de Lutz-Wernitz theorie door aan te nemen dat het slippatroon in het contactvlak niet door de elastische vervorming wordt beïnvloed. In werkelijkheid is dat wel zo: een elastische rek in de richting van de snelheid van het onvervormde lichaam bewerkt een overeenkomstige rek in de snelheid van het vervormde lichaam, een effect dat reeds aan Euler bekend was en door hem tot uitdrukking gebracht in de bewegingsvergelijkingen van vloeistoffen. De rekken zijn klein, van de orde van 2%, en hun effect op de slip kan worden verwaarloosd wanneer de Lutz-Wernitz slip meer dan 1 à 2% van de roolnelheid is. Deze conditie moet worden vertaald in termen van translatie- en rotatiekruipe. In het weinig interessante geval dat de rotatiekruipe verdwijnt is dit eenvoudig, aangezien de Lutz-Wernitz slip gelijk is aan de translatiekruipe. Als de translatiekruipe verdwijnt, ligt het rotatiemiddelpunt van de Lutz-Wernitz slip in het middelpunt van het contactvlak, waardoor de slip in een zeker gebied van het contactvlak sterk wordt beïnvloed door de elastische verplaatsing. Tevens is de resultante van de wrijvingsspanning buiten dit gebied klein, waardoor de grenswaarde van de rotatiekruipe waarboven toepassing van de Lutz-Wernitz theorie gerechtvaardigd is, moeilijk a priori is aan te geven. De Lutz-Wernitz theorie blijkt dus een asymptomatische theorie te zijn, doch de criteria die haar toepassingsgebied bepalen moeten voortkomen uit overwegingen waarbij de elastische verplaatsingen kwantitatief in rekening worden gebracht.

De eerste versie van zulk een theorie werd door verscheidene onderzoekers onafhankelijk en ongeveer gelijktijdig ontdekt in de twintig jaren van deze eeuw. In dit verband noem ik de namen van Carter en Fromm. Zij beschouwden rollende stalen cirkelcilinders met evenwijdige assen. Aan de voorrand stroomt materiaal zonder oppervlaktespanning het contactvlak binnen, zie fig. 3. Is de Lutz-Wernitz slip klein genoeg ten opzichte van de roolnelheid, dan treedt er aan de oppervlakte een rek op die de slip doet verdwijnen.

Deze rek roept een wrijvingsspanning op, die de grenswaarde gesteld door de wet van droge wrijving niet kan overschrijden. De benodigde elastische verplaatsing neemt toe naarmate het materiaal dieper in het contactvlak doordringt, en daarmee groeit de wrijvingsspanning. Deze bereikt op zekere plaats de grensspanning, waarna het systeem de voor hechten benodigde spanning niet meer kan opbrengen en slip optreedt. Wij kunnen zo twee gebieden in het contactvlak onderscheiden: een hechtgebied dat aan de voorrand grenst, waar de wrijvingsspanning de grensspanning niet overschrijdt en waar geen slip optreedt, en een glijdbgebied waar de wrijvingsspan-
ning de grenspanning evenaart en de lichamen over elkaar glijden. Over de positie van de voorrand van het hechtgebied is enige onzekerheid geweest tot Cain er in 1950 op wees dat bij de theorie van Carter in een glijdgebied vóór het hechtgebied arbeid uit de wijsing zou worden gewonnen, wat in strijd is met het dissipatieve karakter van de wijsing.

Overigens herinner ik er aan dat de theorie van Carter geldt voor twee stalen lichamen. Zijn de lichamen vervaardigd uit verschillende materialen, dan kan, zoals Bentall en Johnson in 1967 langs numerieke weg aantoonden, wel degelijk dissipatieve slip optreden vóór het hechtgebied. Deze slip is het gevolg van het verschil in elastisch veld in de twee cilinders ten gevolge van de normaaldruk, een verschil dat zo groot kan zijn dat het niet kan worden gecompenseerd door een wijsingsspanning beneden de grenspanning.

Wij zijn nu zo ver dat de voornaamste moeilijkheid van het rolprobleem kan worden geformuleerd. Zij ligt hierin dat onbekend is welke punten van het contactvlak behoren tot het hechtgebied en welke tot het glijdgebied. Het hechtgebied wordt gekarakteriseerd doordat de slip verdwijnt en de wijsingsspanning de grenspanning niet overschrijdt; in het glijdgebied is de groote van de wijsingsspanning gelijk aan de grenspanning terwijl verder – en dit is de tweede moeilijkheid – de richting van de wijsingsspanning bepaald is door de slip. In de theorie van Carter is de bepaling van de positie van het hechtgebied teruggebracht tot de berekening van een enkel punt: de achterrand van het hechtgebied, terwijl het richtingsprobleem reduceert tot de overweging van Cain en het feit dat alleen snelheden loodrecht op de assen van de cilinders worden beschouwd.

Door verschillende onderzoekers – ik noem U de namen van Vüst en Haines – is onafhankelijk van elkaar aan het eind van de vijftiger jaren en het begin van de zestiger jaren de gedachte uitgewerkt dat bij een slank contactvlak met de korte zijde in de rolrichting de spanningslipverdeling slechts weinig zal veranderen in de laterale richting, d.i. de richting in het raakvlak loodrecht op de rolrichting. Zo komen zij tot een lijncontacttheorie waarin de oplossing van Carter naast elkaar geplaatst worden, en het hechtgebied de vereniging is van de Carterse hechtgebieden. Deze oplossing voldoet het best wanneer de rotatiekrup verdwijnt. In dat geval vallen de richtingen van wijsingsspanning en slip in het glijdgebied samen als de translatiekrup samenvalt met of loodrecht staat op de rolrichting; anders maken zij een kleine hoek. Uit het werk van Heinrich en Desoyer blijkt echter dat de storende werking van deze hoek gering is. De invloed van de rotatiekrup is ook onderzocht; hier blijkt de hoek tussen slip en spanning groter te zijn en storend te werken, alhoewel zelfs bij een cirkelvormig contactvlak het door de lijncontacttheorie voorspelde hechtgebied uitstekend overeen blijkt te stemmen met het foto- elastische experiment.

Een volledige sliptheorie van Lutz en Wernitz is ook de lijncontacttheorie asymptotisch van aard, en haar toepassingsgebied volgt uit de resultaten van een exactere theorie.

Wij verlaten nu de theorieën van Carter en zijn epigen en komen tot een derde asymptotische theorie die in opzet afkomstig is van de Pater. Hij beschouwde het grensgeval dat de Lutz-Wernitz slip uiterst klein is ten opzichte van de rolsnelheid, d.i. het geval dat translatie- en rotatiekrup relatief uiterst klein zijn. In dat geval, zo argumenteerde hij, zal het hechtgebied vrijwel het gehele contactvlak beslaan, waardoor de invloed van het glijdgebied kan worden verwaarloosd. Voor het oplossen van dit probleem bleek het noodzakelijk te zijn de redenering van Cain aan het slipoef geval aan te passen. De Pater's theorie resulteert in een lineair verband tussen de wijsingskracht en het wijsingsmoment enerzijds en de rotatie- en translatiekrup anderzijds, reden waarom deze theorie kan worden betiteld als de lineaire theorie, terwijl het asymptotische karakter duidelijk naar voren treedt.

Drie asymptotische theorieën zijn de revue gepasseerd: de doorlijdtheorie van Lutz en Wernitz, asymptotisch in de zin dat translatiekrup en rotatiekrup groot zijn; de lineaire theorie, asymptotisch omdat de translatie- en rotatiekrup klein zijn en tenslotte de lijncontacttheorie die zelfs in zijn ideale vorm (welke overigens niet voorhanden is) asymptotisch is in de zin dat de breedte van het contactvlak klein is ten opzichte van de lengte. Deze asymptotische theorieën sluiten niet op elkaar aan, en behoeven dus voor de bepaling van hun geldigheidsgebied een exacte theorie.

Een dergelijk theorie bestaat, zij is numeriek van aard, beantwoordt aan het doel van controle van de asymptotische theorieën en is tevens gebruikt voor het weergeven in tabel en grafiek van het verband tussen wijsingskracht en -moment en translatie- en rotatiekrup, doch voor direct gebruik als numerieke procedure is zij te traag. De asymptotische theorieën bestrijken niet het gehele gebied – ware dit wel zo dan zou een exacte theorie niet nodig zijn – en dus dient voor computergebruik het numerieke materiaal te wor-
den samengevat in empirische formules. Met deze moeizame arbeid is een, door gebrek aan mankracht helaas bescheiden, begin gemaakt.
Ik wil thans een enkel woord wijden aan de wijze waarop in de numerieke theorie een oplossing wordt gegeven voor de centrale moeilijkheid van het rolprobleem, die bestaat uit de onbekendheid van het hechtsgebed en de door de wrijvingswet geëiste overeenstemming tussen de richtingen van wrijvingsspanning en slip.
Eerst werd een poging ondernomen de onbekende rand van het hechtsgebed te parametriseren, waarbij een aantal constanten kon worden aangepast. Geen der onderzoekers die zich hiermede hebben beziggehouden is er in geslaagd het rolprobleem op deze wijze bevredigend op te lossen. Het leek derhalve aangewezen, te zoeken naar een formulering waarin de vrije rand, gevormd door de begrenzing van hechts- en glijdbeged niet voorkomt. Dit betekent dat een uitdrukking voor de wrijvingswet moet worden opgesteld die geen onderscheid maakt tussen hechten en glijden. Een dergelijke formulering werd gevonden in de vorm van een functie die dan en slechts dan null is als aan de wrijvingswet is voldaan, en positief als de wrijvingswet wordt geschonden. Sommatie van deze functie over alle punten van het contactgebied levert een functionaal dat null is indien en slechts indien overal aan de wrijvingswet is voldaan. Laat men het functionaal afhangen van een beperkt aantal vrijheidsgraden, dan levert minimalisering van het functionaal met betrekking tot deze parameters een in bepaalde zin beste baanadering op van de gezocht oplossing. In termen van de theorie der optimalisering blijkt het probleem teruggebracht te zijn tot de minimalisering van een convex, continue maar niet overal differentieerbaar functie op een convex realiseringsgebied. De reden waarom ik U hier kennis laat maken met de motor van de numerieke methode is, dat er een mogelijk waardevolle stelregel uit kan worden gedefinieerd voor andere vrije-randproblemen: namelijk dat men moet trekken tot een formulering van het probleem te geraken waarin geen verschil wordt gemaakt tussen de twee gebieden die de rand van elkaar scheidt. Ik noemde U reeds het probleem van de bepaling van het contactvlak en de normaaldruk, en memoreerde dat een onzer afstandsleers zich met dit probleem bezig hield. Wij hebben het gedefinieerd als een kwadratisch programmeerprobleem, waarin de primale variabelen de drukken zijn en de Lagrange multiplicatoren de afstanden tussen twee tegenover elkaar gelegen punten. Bij de behandeling van schokgolven in sa-

mendrakebare vloestooftromingen hebben een aantal onderzoekers (ik noem in dit verband de naam van Lax) dissipatieve termen aan hun vergelijkingen toegevoegd, die weinig invloed hebben ver van de schokgolven en de stromingsgrootheden continu maken in de buurt van de schokgolven. Ook lijkt het mogelijk, het probleem van de temperatuursverdeling in een systeem van smeltende vaste stof en stollende vloestoef te behandelen op analoge wijze, door niet de temperatuur, maar de inwendige energie of de enthalpie als toestandsgrootheid te bezigen.
Zoals wij hebben gezien is afgezien van de slijtageetheorie de theorie van het rollen van massieve lichamen met droge wrijving in een vergevorderd stadium van ontwikkeling, zo ver, dat een geconstateerde afwijking van theorie en experiment niet meer veroorzaakt kan zijn door onvolkomenheden in de uitwerking van de theorie, maar alleen in haar grondveronderstellingen en door experimentele onnauwkeurigheid. En discrepanties tussen theorie en experiment zijn er geen. Op experimentele onnauwkeurigheid zou kunnen wijzen dat de experimentele techniek het uiterste vergt van de nauwkeurigheid van de onderzoeker; voorts dat de beste experimentator op dit gebied, K. L. Johnson uit Cambridge, wiens naam reeds meermalen in dit betoog is genoemd, geen afwijking van betekenis vindt met de hier besproken theorie. Op ontoelaatbare verwaarlozingen in de grondveronderstellingen van de theorie wijst daarentegen de omstandigheid dat de experimentele resultaten op gladde krommen liggen en alle zijn gelegen aan dezelfde kant van de theoretische lijn. Nyak en Paul concludeerden hieruit dat er een vitale parameter ontbrak en zij gaven vervolgens een theorie van ruwe lichamen. Persoonlijk ben ik om redenen welker uiteenzetting mij te ver zouden voeren, geneigd de theorie van Nyak en Paul te verwerpen en lijkt het mij toe dat de oorzaak van de afwijkingen gezocht moet worden in de aanwezigheid op de lichamen van een uiterst dunne oppervlakteelaag met sterk afwijkende rheologische eigenschappen, een laag waaraan de aanwezigheid van microscopische ruwheiten onder meer deelt. Hierbij kan de wet van Coulomb als macroscopische wet worden gehandhaafd.

Zeer gewaardeerde Toehoorders,
Bij de openbare aanvaarding van mijn ambt betuig ik mijn erken
telijkheid jegens de Kroon voor mijn benoeming tot lector aan deze Technische Hogeschool.
Mijne Heren Curatoren,

Voor het vertrouwen dat U in mij heeft gesteld door mijn benoeming te willen aanbevelen sprak ik mijn grote erkentelijkheid uit.

Hooggeleerde De Pater, zeer geachte Promotor,

Het is nu al meer dan dertien jaar geleden dat U mij in de wachtkamer van het Staatspoorstation in Den Haag in voor mij onbegrijpelijke termen over het probleem sprak waaraan deze voordracht is gewijd. Zeven van die jaren heb ik onder Uw nauwgezette en kritische leiding vruchtbaar en niet belast door onderwijstaken aan dit probleem gewerkt. Hiervoor ben ik U en de hoogleraren Koiter en Besseling zeer erkentelijk. Doch bovenal ben ik U dankbaar voor het feit dat U mij geleerd hebt mijn gedachten helder en duidelijk te formuleren.

Hooggeleerde Timman,

Onze kennismaking dateert van 1954, toen U mij wist over te halen een gooi te doen naar het nog niet bestaande wiskundig ingenieurschap, en ik ben U er nog steeds dankbaar voor. Een gesprek met U is voor mij bijzonder stimulerend door Uw brede belangstelling en door Uw vermogen om snel door te dringen tot de kern van een probleem. Aan Uw leerstoel toegevoegd als lector stel ik mij veel voor van onze samenwerking.

Mijne Heren Hoogleraren, Lectoren en Medewerkers van de Afdeling der Algemene Wetenschappen,

Ik heb de afgelopen twee-en-half jaar met bijzonder veel plezier in Uw Afdeling gewerkt en ik heb veel profijt kunnen trekken van Uw grote vakkenkennis en behulpzaamheid. Ik hoop dat deze prettige verhouding zal voortduren.

Dames en Heren Studenten,

Als onderzoeklector worden mij minder onderwijstaken opgedragen dan andere lectoren. Naast een enkel college zal mijn taak wat U betreft gelegen zijn in onderzoekbegeleiding. Ik zal trachten deze taken naar beste kunnen te volbrengen.

Ik dank U voor Uw aandacht.

16