Improved public transport by data driven research

dr. ir. N. van Oort
Assistant professor public transport
Developments in industry

- Focus on cost efficiency
- Customer focus
- Enhanced quality

Main challenges:
Increasing cost efficiency
Increasing customer experience
Motivating new strategic investments

- Data enable achieving objectives
Data sources

- GSM data; tracking travellers
- Vehicle data (AVL); tracking vehicles
- Passenger data (APC); tracking passengers

Combining data sources (APC and AVL)
- Service reliability from a passenger perspective

Many early trips

Holding regime
The potential benefits

Optimizing network and timetable design:

The Netherlands:
Potential cost savings: > €50 million

- **Utrecht:** € 400,000 less yearly operational costs
- **The Hague:** 5-15% increased ridership
- **Amsterdam:** ~10% increased cost coverage
- **Tram Maastricht:** > €4 Million /year social benefits
- **Tram Utrecht:** €200 Million social benefits
The challenge

- New methodologies
- Proven in practice
Applied examples

- Monitoring and predicting passenger numbers: Whatif
- Benefits of enhanced service reliability

- Optimizing planning and real time control
Van Oort, N. and R. van Nes (2009), Control of public transport operations to improve reliability: theory and practice, Transportation research record, No. 2112, pp. 70-76.

- Optimizing synchronization multimodal transfers
Lee, A. N. van Oort, R. van Nes (2014), Service reliability in a network context: impacts of synchronizing schedules in long headway services, Transportation research record

- Improved scheduling
Passenger data

Connecting to transport model:
• Evaluating history
• Predicting the future
• Elasticity approach (quick and low cost)

• Whatif scenario’s
 • Stops: removing or adding
 • Faster and higher frequencies
 • Route changes

• Quick insights into
 • Expected cost coverage
 • Expected occupancy
Challenge the future
Challenge the future

fictitious data
Challenge the future
fictitious data
13
Challenge the future
fictitious data
fictitious data
Challenge the future
Challenge the future

fictitious data
Challenge the future

fictitious data
Challenge the future

Origin Destination Matrix
Whatif scenarios

Adjusting
- Speed
- Fares
- Time of operations
- Number of stops
- Routes
- Frequency

Illustrating impacts on (indicators):
- Cost coverage
- Occupancy
- Ridership
- On time performance
- Revenues
Whatif: changing the schedule
Whatif results: Flows increased frequencies
Decision making
Passengers in decision support systems?

Cost benefit analysis

Transport models

Calculated 0%
Expert judgment 13%
Qualitatively 27%
Not 60%
Case: Uithoflijn Utrecht

Transformation crowded bus line into tram line
Cost Benefit analysis required

CBA > 1,0

YES

+ NO

+

[Image of tram]

[Image of bus]

Challenge the future 28
Three step approach

- **Vehicle performance**
 - Schedule adherence

- **Passenger impacts**
 - Additional travel time and variance

- **Travel time impacts**
 - Additional travel time and variance in travel time units

Transport model
Result

- Service reliability effects are about 60% of all benefits!
- Ministry supported project.
Summary

- Data: increased quality of public transport
- Data: enhanced decision making
- Valuable data available

- Evaluating and controlling -> predicting and optimizing
- Data-> Information -> Knowledge -> Improvements

- Two applied examples
 - Passenger data and whatif analysis
 - Cost benefit analysis
Questions / Contact

Niels van Oort

N.vanOort@TUDelft.nl

Research papers: https://nielsvanoort.weblog.tudelft.nl/