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ABSTRACT

An abdominal aortic aneurysm (AAA) is an excessive localized swelling of the abdominal aortic wall. AAAs

are often lethal when they rupture and constitute a significant health risk in the developed countries. CFD

simulations can help predict formation, progression, and rupture of AAAs by the use of hemodynamic pa-

rameters such as the Oscillatory Shear Index (OSI) that indicates the oscillatory behavior of the wall shear

stress vector at the aneurysm wall. Ideally, it is envisioned that the risk of rupture of a particular aneurysm

can be estimated by patient-specific parameters that are collected from a patient with minimal effort and to

classify the aneurysm into different categories that do or do not pose a considerable risk of rupture.

The main objective of this thesis then aims to focus on the underlying flow mechanisms in aneurysm flow

and tries to take the first steps towards an abstract aneurysm model by means of a proof of principle regard-

ing the prediction of formation, progression, and rupture locations within an aneurysm, based on simple

patient-specific input parameters.

To this end, CFD simulations of pulsatile blood flow in an abstract abdominal aortic aneurysm (4A) model

are performed for the independent ranges of mean Reynolds number 300 ≥ Rem ≥ 1200, Womersley number

15.1 ≥ α ≥ 27.7, aneurysm length ratio 2.6 ≥ Le ≥ 5.3, and aneurysm diameter ratio 1.81 ≥ Di ≥ 2.55. The ef-

fect of the variation of the input parameters on the oscillatory shear index (OSI) is regarded and quantified by

the 4A surface-averaged OSI. General trends show that the average OSI decreases 15 percent over the mean

Reynolds number range of 300 ≤ Re ≤ 1200, increases 16 percent over the Womersley number range of 15.1

≤ Wo, α ≤ 27.7, increases 11 percent over the aneurysm length ratio range of 2.6 ≤ Le ≤ 5.3, and decreases

5 percent over the aneurysm diameter ratio range of 1.81 ≤ Di ≤ 2.55, indicating that the mean Reynolds

number and the Womersley number have the largest influence on the average OSI for the 4A. The fluctuating

wall shear stress vector at the stagnation points of the vortices present in the aneurysm is pointed out as the

origin of the high OSI valued axisymmetric rings found on the surface of the 4A. Additionally, there exists an

inverse relation between the surface-averaged OSI and the turbulent to periodic kinetic energy ratio, demon-

strating the importance of the periodic components. Pulsatile blood flow simulation is also performed on a

patient-specific aneurysm geometry and compared with the 4A case with Le = 4.6. The dissimilar flow and

OSI results imply that the input parameters alone do not permit to make statements about the OSI values in

the patient-specific aneurysm based on the 4A.
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1
INTRODUCTION

1.1. CARDIOVASCULAR SYSTEM

The cardiovascular system in the human body consists of the heart, arteries, veins, capillaries, and lymphatic

vessels. The most basic functions of the cardiovascular system are to deliver oxygen and nutrients, to remove

waste, and to regulate temperature [1]. The cardiovascular system can be split up into three subsystems: the

systemic circulation, the pulmonary circulation, and the coronary circulation. The coronary circulation sup-

plies blood to the heart itself. In the systemic circulation, blood flows to all tissues except for the lungs. The

left ventricle of the heart contracts and pumps blood filled with oxygen to a higher pressure and ejects it into

the aorta. The aorta is split up into smaller and smaller branches, systemic arteries and finally capillaries,

in order to deliver blood to different organs. After dropping off oxygen and gaining waste from the organs,

the deoxygenated blood returns through the veins and eventually through the vena cava, into the right heart.

Here, arriving at the pulmonary circulation, the blood is pumped into the pulmonary arteries through to the

lungs, in order to exchange carbon dioxide with new oxygen. This oxygen-rich blood is then returned to the

left heart, where the cycle starts over. The systemic and pulmonary circulation constitute one cardiac cycle,

or one heartbeat.

In a healthy human being this cardiac cycles repeats itself about 75 times per minute or more than 100.000

times per day. The arterial system through which the blood is pumped, is a complex system. The elasticity

and stiffness of the arteries can be continuously adjusted by the cells that are present on the inside of the

arteries. This system of living cells responds to different needs of cardiac outputs governed by an increase in

demand of nutrients and oxygen during exercise or other activities. On the other hand, the arteries can also

generate more permanent differences in the shape and size of the artery wall, a process known as remodeling.

However, sometimes the arterial system fails to function properly, whether due to disease or other complex

biological factors, and a part of the artery wall can expand permanently and form a so-called aneurysm [2].

1



2 1. INTRODUCTION

1.2. ABDOMINAL AORTIC ANEURYSM (AAA)

An aneurysm is an excessive and abnormal localized swelling, also termed ballooning or bulging, of a blood

vessel wall. This condition can occur in many blood vessels, but the brain and the aorta are two common lo-

cations where aneurysms occur. An aneurysm in the aorta usually resides in the infrarenal abdominal aorta,

located inferior to the renal arteries and superior to the illiac bifurcation. These kinds of aneurysms are called

abdominal aortic aneurysms, and are denoted by the shorthand notation AAA or triple-a. A normal, undilated

abdominal aorta and an aneurysmal aorta are depicted in figure 1.1a. The diameter of a normal abdominal

aorta is different according to a specific age, sex, and body weight and can range from 15 mm to 24 mm. Nat-

urally the diameter of an aneurysm can also vary with these categories, which makes it difficult to maintain

a strict quantitative definition. In practice, when the diameter of an AAA is larger than 30 mm, it is labeled

an aneurysm. Another proposed measurement is to make the aneurysm diameter dimensionless by taking

the ratio with respect to the normal aortic diameter. If the aneurysm diameter is then 1.5 times the aortic

diameter, it is called an aneurysm. Both definitions are used extensively, but for clinical purposes usually

a threshold diameter regardless of the normal aortic diameter is used. An AAA is often characterized by its

fusiform shape; the dilation of the artery wall extends along the whole circumference, creating an axisymmet-

ric bulge. This as opposed to the saccular form mostly found for intracranial aneurysm located in the cerebral

arterial system in the brain. An additional and important characteristic of aneurysms, is that in most cases an

aneurysm is asymptomatic; the patient which develops an aneurysm is in general not aware of the disease.

Rarely vague symptoms as abdominal or back pain occur. The true danger of an aneurysm then also lies in

(a) Position and comparison of a normal abdominal aorta and
aneurysmal aorta. Reproduced from [3].

(b) Detailed view of an artery wall where
the endothelial cells make up the innermost
part that is directly in touch with the blood
flow. Reproduced from [4]

Figure 1.1: Comparison of a normal and aneurysmal aorta (a) and a detailed view of the artery wall (b)
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rupture. If an aneurysm grows too large and the tension on the artery wall is no longer maintainable, the

aneurysm can split open causing a hemorrhage. The rupturing can be accompanied by the following symp-

toms: a sudden upcoming pain in the mid-abdomen, shock, and a pulsating abdominal mass. A ruptured

aneurysm is lethal in most cases. The mortality rate is between 65% and 85% percent and half of the deaths

set in before the patients reach the operating room. Abdominal aortic aneurysms cause 1.3% of all deaths

among men aged 65-85 years in developed countries and is the thirteenth leading cause of death in the USA

[2]. Also in the Netherlands there was a significant increase in hospital based incidence for abdominal aortic

aneurysm in the period from 1972 to 1992, which could be attributed to the improvement in detection rate by

ultrasound. However, the rise in number of ruptured aneurysms among other factors, suggest that also a real

increase in aneurysm occurrence exists [5]. Aneurysms are therefore a significant problem in the health care

of the more developed countries. When an aneurysm is found to have an increased risk of rupture, regardless

of the way this is determined, the aneurysm needs to be treated. Treatment of aneurysms was usually done by

open surgery, but more recently these treatments are being replaced by more minimal invasive endovascular

procedures, such as coils, stent grafts and flow diverters.

1.3. HEMODYNAMICS

Next to general systemic risk factors like male gender, cigarette smoking, age, hypertension, and family his-

tory, there are also more biologically complex pathophysiological causes of the disease. The forming of

aneurysms has been and still is pointed out as a consequence of atherosclerosis [2]; the thickening of the

artery wall due to an invasion and accumulation of white blood cells. However, the current idea is that

atherosclerosis is not the primary factor that causes weakening of the artery wall. Another view on the form-

ing of aneurysms focuses on the endothelial cells that are present in the innermost layer of the artery wall, as

can be seen in figure 1.1b. These cells are in direct contact with the blood flow and can sense and respond to

different forces acting on them by the blood flow.

The idea that next to biological factors, also the biomechanical properties of the blood flow are of impor-

tance, has led to growing interest in the field of hemodynamics as a cause of the generation, formation and

rupture of aneurysms. Hemodynamics is the study of flowing blood and of all the solid structures through

which it flows. Hemodynamic forces act on the blood vessel wall via three mechanisms: relative wall strain,

the pressure and the wall shear stress. The relative wall strain is the stretch of the vessel wall due to tensile

stress in the wall itself. The pressure of interest is the pressure acting perpendicularly to the vessel wall. The

wall shear stress is the tangential stress acting at the wall due to the flowing of blood [6]. At the inner wall

of the arteries, directly touching the blood flow, are the endothelial cells. As mentioned before, these cells
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have the ability to sense the wall shear shear stress through the force it exerts on the cell. It is, for example,

difficult for the cells to detect the flow rates in the artery, since knowledge of the velocities at locations far

away would be necessary as well as the ability to integrate these velocities to arrive at a value for the flow rate.

In this regard it is a more plausible explanation that the endothelial cells can detect the wall shear stresses

acting on it [7], which only relies on the measurements at the cells own location. The relation between the

wall shear stress acting on the vessel wall and the formation, progression and rupture of aneurysm is not yet

fully understood, but it is generally accepted that these processes in combination with biological and phys-

ical interactions play a significant role [8]. The wall shear stress is a time-dependent vector quantity which

is difficult to visualize. In order to still indicate the effect of the wall shear stress on formation, progression

and rupture of aneurysms, different metrics have been devised. These metrics are called hemodynamic pa-

rameters and try to capture the effect on a particular location at the artery wall in a single number. Since the

underlying mechanisms are not explicitly known, researchers have developed many of these hemodynamic

parameters to help indicate problematic aneurysm areas. Among these are, for example, mean wall shear

stress, maximum wall shear stress, oscillatory shear index (OSI), aneurysm formation index (AFI) and the

gradient oscillatory number (GON). The OSI will be especially common in this text and will be thoroughly

discussed, together with the wall shear stress, in section 3.4.1.

1.4. CFD AS A CLINICAL TOOL

The wall shear stresses, and with it all dependent hemodynamic parameters, are very difficult to measure

accurately in a living human being. In pulsatile flow, which occurs naturally due to the cardiac cycle, the

time-varying velocity and velocity gradient needs to be measured at a location close to the wall [7]. Due to

practical reasons this is difficult to do in vivo. A way to overcome this obstacle, is to steer away from in vivo

experiments altogether and simulate the blood flow through a computer model of the aneurysm.

Computational fluid dynamics (CFD) is a special branch of fluid mechanics that tries to solve fluid flow prob-

lems by discretizing the fluid domain in question and solving the system numerically. Especially in the last

decade, with ever-increasing speeds and memories of computers, the idea to apply CFD to large and complex

physical models is becoming more attractive. Despite that the mechanisms responsible for aneurysm evolu-

tion and rupture are unknown, it is still worthwhile and rewarding to investigate the purely fluid mechanical

aspects of the blood flow with the help of CFD. CFD is in general used in clinical applications for two different

goals or objectives. One purpose is to comprehend the broad range of different devices and interventions

used in the treatment of aneurysms and how the blood flow reacts to these. This understanding should lead

to the improvement of the device designs and to well-reasoned choices between a variety of possible suitable
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treatment options. The second objective of CFD applied for clinical purposes is to identify the hemodynamic

parameters and use these to indicate regions that are likely to form or progress the remodeling of the artery

wall with an aneurysm as result [8]. If an aneurysm already exists, the hemodynamic parameters can be con-

sulted to point out likely locations of rupture. In short: to identify hemodynamic parameters that predict

formation, progression or rupture of aneurysmal artery walls. The research in this thesis is namely focused

on this last application of CFD for clinical use and tries to gain a more fundamental understanding of what

the underlying flow characteristics are that result in specific values of the hemodynamic parameters during

pulsatile blood flow in aneurysms. The next chapter, a project overview, provides a motivation and objective

for the the work done during this thesis as well as an approach to reach this objective.





2
PROJECT OVERVIEW

To provide a bird’s-eye view of the total project that ensures the reader is not lost in the details of the work,

a project overview is given here. It contains the motivation for this project, the objectives, and most impor-

tantly an approach subdivided in steps which guides the reader through this written thesis, but also through

the actual steps taken during the research project. The steps described in the approach already provide a

summary of some of the choices made during the project and are explained in more detail in the following

chapters.

The thesis itself is built up as follows: the previous chapter, chapter 1: Introduction contains a general in-

troduction about the abdominal aortic aneurysm and the application of CFD for clinical purposes. The fol-

lowing chapter, chapter 3: Theoretical background provides a more detailed look into the fundamental fluid

mechanics of pulsatile flows as well as a description of some of the variables are used to characterize pulsatile

flows. Chapter 4, Numerical setup contains all the technical details about the geometry and mesh creation,

boundary conditions, and solver settings. The validation of choices made and directions taken are given in

chapter 5, Validation and focuses mainly on spatial and temporal convergence of the simulations. The results

are presented in chapter 6: Results & discussion. Conclusions regarding these acquired results are given in the

last chapter, chapter 7: Conclusions & recommendations and is finalized with a couple of recommendations

and considerations for future research.

2.1. MOTIVATION

CFD has already been used for quite some time to point out mechanical risk factors linked to evolution and

rupture of aneurysms. Since the interaction between the different defining mechanisms such as biological

and hemodynamic influences is not yet fully understood, a more top-down approach to understanding the

disease is employed. To this end a large amount of hemodynamic parameters have been introduced that

potentially and hopefully indicate regions of formation, progression and rupture within aneurysms [8]. An

7
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example of hemodynamic parameters include: high WSS, low WSS, oscillatory shear index (OSI), aneurysm

formation index (AFI) and the gradient oscillatory number (GON). A critical point is already to be found in

the first two parameters: the high and low wall shear stress. There is not yet an agreement if either the high

or low WSS is a decent indicator, but both have been shown to correlate with areas of artery wall remodel-

ing. The general critique from the clinical community is that the multitude of hemodynamic parameters are

confusing and confounding [9], [10] and that the conflicting results from different hemodynamic parameters

should be resolved before accepting CFD as a trustworthy formation and rupture indication tool. One might

say that there is a need for an unambiguous hemodynamic parameter or indicator for aneurysm formation,

progression and rupture. Moreover, from a fluid mechanical point of view it is interesting to investigate on

a more fundamental level and observe what the underlying flow characteristics are that cause these high or

low values of hemodynamic parameters.

Presently, dangerous aneurysms are generally only indicated by their diameter; if the diameter is larger than a

specific threshold, the aneurysm will be treated with open surgery or minimal invasive techniques. However,

studies suggest that the diameter criteria alone is not the sole indicator for aneurysm rupture [11]. Also other,

possibly unknown variables play a role in the rupture of an aneurysm. A way to overcome this issue is to treat

every patient by means of employing a patient-specific CFD simulation that predicts the locations that have

a high probability of rupture. Such a patient-specific aneurysm model is then usually provided by means of

CAT-scan. One can imagine that these CFD simulations on patient-specific aneurysms are in general expen-

sive and time-consuming. Ideally, it is envisioned that the risk of rupture of a particular aneurysm can be

estimated by patient-specific parameters that are collected from a patient with minimal effort and perhaps

even without the use of expensive scanning techniques. Based on the patient-specific parameters (like ge-

ometrical or flow characteristics) and previously generated simulations in an abstract aneurysm model, the

treated aneurysm can be classified into different categories that do or do not pose a considerable risk of rup-

ture. This concept, called geometric risk [12], thus tries to summarize the relevant flow characteristics in a

couple, simple parameters. The question is then if the highly complex pulsatile blood flow and its interaction

with the blood vessel wall in the aneurysm can be captured by a simple abstract model.

2.2. OBJECTIVES

In order to keep the scope of the project within well-defined boundaries and to have a sense of general direc-

tion during the project, a specific objective is formulated. The main objective aims to focus on the underlying

flow mechanisms in aneurysm flow and tries to take the first steps towards an abstract aneurysm model by

means of a proof of principle regarding the prediction of formation, progression, and rupture locations within
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an aneurysm, based on simple patient-specific input parameters. To not be lost in the vast multitude of dif-

ferent hemodynamic parameters, only one hemodynamic parameter is studied, the oscillatory shear index

(OSI), for reasons explained in section 3.4.2. The main research objective of this project is then formulated as

follows:

To investigate the effect of changing input parameters on the oscillatory shear index (OSI) in pulsatile

blood flow through abdominal aortic aneurysms

In completing this objective, research questions that act as guidelines in the investigation are among oth-

ers:

• What are the flow characteristics of pulsatile flow in aneurysm?

• What are the relevant input parameters?

• How do different input parameters effect the OSI?

• What are the main contributing flow mechanisms for high or low OSI values?

• When does chaotic behavior occur?

• What input parameter causes the most prominent change in hemodynamic output?

• Can some input parameters be neglected?

• What combinations of input variables are interesting to investigate?

2.3. APPROACH

In order to reach the main objective stated in the previous section and possible answers to the accompany-

ing research questions, a general approach is formulated. Firstly, the relevant input parameters in pulsatile

aneurysm flow are determined with the help of a dimensional analysis. Physical suitable ranges of these input

parameters are chosen. The idea is to construct an 3D abstract abdominal aortic aneurysm model (from now

on shorthanded with 4A) in which the input parameters are varied to investigate the effect on the oscillatory

shear index (OSI). Since some of the input parameters are geometric properties, like the aneurysm length and

diameter, also different 4A geometries and meshes need to be constructed. After construction of the geome-

tries and the meshes, pulsatile blood flow is simulated with the CFD package ANSYS Fluent. Additionally,

also a patient-specific geometry is investigated. The result of the simulation of pulsatile blood flow through

the patient-specific can then be used to compare results with the abstract model. Hopefully, this will resolve
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Figure 2.1: Visualization of the variation of 4A input parameters.

in some kind of verification for the underlying flow mechanisms found in the abstract geometries to indicate

areas of artery wall remodeling.

A more detailed description of all general steps taken in the approach is as follows:

1. Dimensional analysis

A dimensional analysis on pulsatile flow in a geometrically simplified, abstract aneurysm model is con-

ducted to determine the relevant non-dimensional input parameters. An elaborate description of this

dimensional analysis is grouped under the chapter Theoretical background and can be found in sec-

tion 3.2. Relevant non-dimensional input parameters include the mean Reynolds number (linked to

the peak Reynolds number), the Womersley number, the aneurysm length ratio and the aneurysm di-

ameter ratio.

2. Determine range

Suitable, physical realistic ranges for all relevant input parameters are chosen. The parameters can be

varied to study the effects on the OSI. The mean Reynolds number is varied in the range of 300 ≥ Rem

≥ 1200, the Womersley number in the range of 15.1 ≥α≥ 27.7, the length ratio in the range of 2.6 ≥ Le

≥ 5.3, and the diameter ratio from 1.81 ≥ Di ≥ 2.55. A standard case is selected which fixes the input

parameters to a mean Reynolds number of Rem = 600, a Womersley number of α= 16.9, an aneurysm

length ratio of Le = 2.6, and an aneurysm diameter ratio of Di = 2.18.

Table 2.1: Range of relevant input parameters

Description Symbol Range Number of simulations

Mean Reynolds number Rem 300 - 1200 10
Womersley number Wo, α 15.1 - 27.7 8
Length ratio Le 2.6 - 5.3 5
Diameter ratio Di 1.81 - 2.55 5
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3. Geometries and meshing

The standard case geometry of the 4A is constructed which can be used for both the ranges of mean

Reynolds and Womersley numbers. Four extra geometries are constructed with different aneurysm

lengths as well as four geometries with different aneurysm diameters. Both use the standard case ge-

ometry as starting point. All the 4A geometries are meshed with the help of an O-grid, consisting of hex-

ahedral elements and inflation layers at the wall. The patient-specific geometry is clipped, smoothed

and fitted with flow extensions. Here the mesh is built with tetrahedral elements and a hexahedral infla-

tion layers. Detailed information about the construction of both the 4A and patient-specific geometries

and meshed is described in section 4.1 and 4.2.

4. CFD simulation

Pulsatile, Newtonian blood flow is simulated in the 4A for all the ranges of input parameters. Only one

input parameter at a time is varied, while the others stay fixed in the standard case configuration. 10

simulations with different mean Reynolds number, 8 with different Womersley numbers, 5 with differ-

ent length ratios, and also 5 with different diameter ratios are conducted, as can be seen in the overview

in table 2.1. Blood flow in the patient-specific aneurysm is also simulated for a mean Reynolds number

and Womersley number taken from the standard case.

5. Investigate results

Firstly, the results for the standard case 4A simulations are presented by a description of the velocity

magnitude, vorticity, turbulent kinetic energy, and periodic streamlines etc.

Next to this general flow description of the standard case, the OSI dependence on variation of relevant

input parameters is regarded. The OSI for all ranges of mean Reynolds number, Womersley number,

aneurysm length ratio, and aneurysm diameter ratio are depicted in 3D surface plots. To say something

about the average trend when varying the input parameter, the aneurysm surface-averaged OSI is plot-

ted against the variation of input parameters.

The patient-specific results are compared with a comparable 4A case according to input parameters.

The 4A case with the most similarities is found to be the one with the following input parameters: mean

Reynolds number of Rem = 600, a Womersley number of α= 16.9, an aneurysm length ratio of Le = 4.6,

and an aneurysm diameter ratio of Di = 2.18, which only differs from the standard case in aneurysm

length ratio.

6. Conclusions

Conclusions are drawn from the results obtained and future recommendations and considerations are
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discussed.



3
THEORETICAL BACKGROUND

3.1. PULSATILE FLOW

To gain a more fundamental understanding of pulsatile flows, the flow driven by an oscillating pressure gradi-

ent in a straight rigid cylindrical tube is examined first. The Navier-Stokes equations are the governing equa-

tions of fluid flow and are the result of applying Newton’s second law to fluid motion. These equations are

essentially momentum balance equations that ensure that total momentum is conserved in the concerning

control volume. Due to the geometry of the straight cylindrical tube, it is obvious to express the Navier-Stokes

equations in cylindrical coordinates:

∂ur

∂t
+ (u ·∇)ur −

u2
ϕ

r
=− 1

ρ

∂p

∂r
+ν

(
∇2ur − ur

r 2 − 2

r 2

∂uϕ
∂ϕ

)
(3.1)

∂uϕ
∂t

+ (u ·∇)uϕ+
ur uϕ

r
=− 1

ρr

∂p

∂ϕ
+ν

(
∇2uϕ+ 2

r 2

∂ur

∂ϕ
− uϕ

r 2

)
(3.2)

∂uz

∂t
+ (u ·∇)uz =− 1

ρ

∂p

∂z
+ν∇2uz (3.3)

where r , ϕ and z denote the radial, azimuthal and downstream directions, respectively. ur , uϕ and uz are

in turn the velocities in those directions, respectively. u is the total velocity vector, ρ the density of the fluid,

p the instantaneous pressure and ν the kinematic viscosity. Here is already assumed that the fluid has a

constant density ρ, a constant kinematic viscosity ν and no body forces acting on it. Next to momentum,

also mass has to be conserved in a control volume; mass can neither be created nor destroyed in a physical

realistic flow. A mathematical translation of this statement is called the continuity equation and is given here,

again in cylindrical coordinates and for a constant and non-zero density ρ:

1

r

∂

∂r
(r ur )+ 1

r

∂uϕ
∂ϕ

+ ∂uz

∂z
= 0 (3.4)

13
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It is not yet proven that there exists a general solution to the full system of the Navier-Stokes and continuity

equations combined, but for some specific problems with the right assumptions a solution is readily avail-

able. For the straight, rigid cylinder discussed here, this is also the case. Since the cylinder is a rigid and

non-deformable tube, it is assumed that the wave speed of the pulse is infinite. All the velocity components

are much smaller than this wave speed, which allows for the neglecting of the convective inertial terms con-

sisting of the second terms on the left-hand side of (3.1), (3.2) and (3.3). If it is also assumed that the flow

is axisymmetric (uϕ = 0 and ∂/∂ϕ = 0) and that the cylinder wall is rigid (ur = 0), then the continuity equa-

tion and the Navier-Stokes equations can be simplified substantially. The ϕ-momentum equation vanishes

completely and all that remains of the cylindrical Navier-Stokes equations is the following:

∂uz

∂z
= 0 (3.5)

∂p

∂r
= 0 (3.6)

∂uz

∂t
=− 1

ρ

∂p

∂z
+ν∇2uz (3.7)

The Laplacian term in (3.7) can further be simplified due to the assumption ∂/∂ϕ = 0 and due to continu-

ity equation which now states ∂uz /∂z = 0. Considering that the streamwise velocity uz is the only relevant

velocity, the subscript is neglected from now on. All of this leads to the simplification:

∂u

∂t
=− 1

ρ

∂p

∂z
+ν

[
∂2u

∂r 2 + 1

r

∂u

∂r

]
(3.8)

It follows from (3.5) and (3.6) that u = u(r, t ) and p = p(z, t ), respectively. ∂p/∂z is then only dependent on

t . Womersley proposed to express the pressure gradient as a Fourier series, since the pressure gradient in

pulsatile flows like in the human circulatory system is oscillatory or periodic [13]:

∂p

∂z
=−Ae iωt (3.9)

A is the amplitude of the pressure gradient and ω the fundamental or angular frequency, which also can be

written as 2π f , where f is the normal frequency. If the analogy with the human circulatory system is already

made, the frequency f would denote the heart rate at which the heart pumps blood through the arteries.

Note that the pressure gradient can also be expressed as a sum of different harmonics in order to generate

even more complex periodic signals. For this derivation only the representation with a single harmonic is

used. Substituting the expression for the pressure gradient (3.9) in (3.8) gives:

∂u

∂t
= A

ρ
e iωt +ν

[
∂2u

∂r 2 + 1

r

∂u

∂r

]
(3.10)
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If the fundamental frequency ω is set to zero, (3.10) reduces to the equation describing Poiseuille flow with

its characterizing parabolic velocity profile and linear shear stress distribution. If ω is not zero, it is possible

to split the solution in a spatial, U (r ), and a temporal part, e iωt , as follows:

u(r, t ) =U (r )e iωt (3.11)

Substituting the expression (3.11) in (3.10), working out the derivatives and dropping out the common factor

e iωt leads to:

Uiω= A

ρ
+ν

[
d 2U

dr 2 + 1

r

dU

dr

]
(3.12)

This is a linear second-order ordinary differential equation, also called a Bessel differential equation. Its

solution, given here without further derivation, is:

U (r ) =− i A

ωρ

1−
J0

(
r
R R

√
ω
ν i 3/2

)
J0

(
R

√
ω
ν i 3/2

)
 (3.13)

where R is the radius of the cylinder, i is the imaginary unit and J0 is a Bessel function of the first kind. In

order to get to the full spatial and temporal solution, the time-dependent exponential is hooked onto the

spatial part. If the dimensionless number R
√

ω
ν , that arises in the argument of the Bessel function is written

as α, the total solution reads:

u(r, t ) =− i A

ωρ

[
1− J0

( r
Rαi 3/2

)
J0

(
αi 3/2

) ]
e iωt (3.14)

An analytical solution for pulsatile flow in a straight rigid tube is thus available. The parameter α is called

the Womersley number and is of great relevance for pulsatile flow. This number as well as other important

parameters regarding pulsatile flow and the solution for the velocity field is discussed in the section 3.3.

3.1.1. TRANSITIONAL FLOW

Blood flow in the human circulatory system is in general laminar flow when regarding the mean flow aver-

aged over a cardiac cycle. However, since the blood flow is driven by a pulsatile pressure gradient, the flow

can reach much higher velocity magnitudes and flow rates at peak systole. Peak Reynolds numbers in this

project can then reach values from Re ≈ 1600 up to as high as Re ≈ 6300 and anywhere in between. According

to these peak Reynolds numbers, the blood flow in an aneurysm can reach transitional or even turbulent flow.

Additionally, if the peak Reynolds number is only slightly above or below the general threshold to turbulence

(around Re = 2000 - 2300), the pulsatile flow can help trigger or delay the transition to turbulence [14],[15].

Two mechanisms can have an influence on this threshold: temporal acceleration or deceleration and spatial

acceleration or deceleration. Temporal acceleration is related with the accelerating phase of the cardiac cycle
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and has been shown to help stabilize the flow. Temporal deceleration on the other hand can destabilize the

flow and lower the threshold to turbulence characteristics. Geometric acceleration or deceleration is linked

to the geometry of the flow model. In this project the aneurysm consists of a divergent part and a conver-

gent part. Flow that traverses the divergent part is in general subject to an increase in pressure since the flow

will slow down. The opposite is true for the convergent part; the flow will accelerate due to the decrease of

diameter in the streamwise direction leading to an increase in pressure. Apart from the relevant triggering

mechanism responsible, Poelma et al. showed that this transitional or turbulent-like flow can lead to signifi-

cantly different wall shear stress distributions in consecutive cardiac cycles [16]. With the different wall shear

stress distributions also the oscillatory shear index is significantly different. It is therefore necessary to simu-

late a large enough number of cardiac cycles to let these remaining fluctuations converge.

To separate contributions made by different components of the flow, the flow field can be decomposed. Much

like the Reynolds decomposition into a mean and fluctuating component, it is also possible to introduce a

triple decomposition for pulsatile flows. The decomposition in this case consists of a mean, periodic and

fluctuating component:

u(x, t ) = ū(x)︸︷︷︸
steady

+ ũ(x,Φ)︸ ︷︷ ︸
periodic

+ u′(x, t )︸ ︷︷ ︸
fluctuating

(3.15)

The mean velocity component is taken as the average over all time steps and is therefore only a function of

the position. The periodic component is averaged by taking the mean of all the same time steps within the

different cycles and is thus a function of position and the time within the cycle, or the phase Φ. The periodic

component is a measure for what is the same at each phase for every cardiac cycle disregarding the static

mean component. The last, fluctuating term represents the aperiodic or turbulent fluctuations in the flow.

The fluctuating component shows the deviation from the mean and periodic component or what is different

each cycle. In other words: this triple decomposition allows for a quantification of cycle-to-cycle variations.

The triple-decomposition can also be applied to other quantities of interest, like vorticity or kinetic energy as

is explained in section 3.4.3 and section 3.4.4.

3.2. DIMENSIONAL ANALYSIS

Dimensional analysis is a broadly applicable technique for developing scaling laws, interpreting experimental

data, and simplifying problems. In this project dimensional analysis is used to identify the parameters that are

important for pulsatile flow in aneurysms. One of the methods to conduct dimensional analysis is called the

Buckingham-Π theorem; it states that if q1, q2, . . . , qn are n variables that are of interest to a specific situation

or problem:

f (q1, q2, . . . , qn) = 0, (3.16)
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then n variables can be combined to form (n−r ) independent dimensionless orΠ-groups, with r the number

of independent dimensions:

φ(Π1,Π2, . . . ,Πn−r ) = 0 orΠ1 =ϕ(Π2,Π3, . . . ,Πn−r ) (3.17)

This means that the problem can (in some cases) be significantly simplified due to a reduction of relevant

parameters from n to n − r . This Buckingham-Π theorem will here be applied to the specific case of pulsatile

flow through an aneurysm. First, a list with all variables that are assumed to be of importance to the flow

solution is composed. This list should contain only one unknown variable, the solution variable. All chosen

Table 3.1: Selection of assumed relevant variables for usage in the Buckingham-Π theorem applied to pulsatile flow in an abstract
aneurysm model.

Name Symbol Units Description

Mean velocity um m s−1 Time-average velocity over one period
Peak velocity up m s−1 Maximum velocity of period
Aneurysm diameter D m Maximum diameter within aneurysm
Aneurysm length L m Length of aneurysm
Frequency f s−1 Frequency of inlet pulse, heart rate
Pressure drop ∆p kg m−1 s−2 Pressure drop over total flow domain
Inlet diameter d m Diameter of inlet (and outlet) sections
Density ρ kg m−3 Constant density of blood
Dynamic viscosity µ kg m−1 s−1 Dynamic viscosity of blood

variables are listed in table 3.1 and can be expressed in terms of three basic dimensions; mass M, length L

and time T. A geometric representation of the aneurysm geometry and how the different variables come in to

play can be found in figure 2.1. From this list of variables it is possible to create a dimensional matrix where

the powers of the dimensions of the variables are listed. Table 3.2 shows this dimensional matrix. The first

Table 3.2: Dimensional matrix through Buckingham-Π

Dimension um up D L f ∆p d ρ µ

M 0 0 0 0 0 1 0 1 1
L 1 1 1 1 0 -1 1 -3 -1
T -1 -1 0 0 -1 -2 0 0 -1

variable, the mean velocity um , has the unit meter per second. In other words, the dimension M to the power

zero, dimension L to the power 1 and dimension T to the power minus one. In this way the whole dimensional

matrix is build up. The rank of this dimensional matrix is defined as the size of the largest square submatrix

that has a non-zero determinant. The submatrix composed of the last three columns has a determinant of 1.

The rank of the total matrix is therefore 3. This leads to a total of n − r or 9−3 = 6 dimensionless groups. To

compose the relevant dimensionless groups one can use exponent algebra; three variables are chosen to act

as repeating parameters, which in this case are the inlet diameter d , the density ρ and the kinematic viscosity.
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Note that another choice will lead to different dimensionless groups, but they will each span the solution

space. These repeating variables are combined with each of the other variables to create every dimensionless

group by identifying the unknown powers. For example, the first group is created by multiplying with the first

variable:

[Π1] = [umd aρbµc ] = (LT−1)(L)a(ML−3)b(ML−1T−1)c ⇒ ρumd

µ
(3.18)

This process can be continued in the same matter for the rest of the dimensionless groups and/or variables:

[Π2] = [up d aρbµc ] = (LT−1)(L)a(ML−3)b(ML−1T−1)c ⇒ ρup d

µ
(3.19)

[Π3] = [Dd aρbµc ] = (L)(L)a(ML−3)b(ML−1T−1)c ⇒ D

d
(3.20)

[Π4] = [Ld aρbµc ] = (L)(L)a(ML−3)b(ML−1T−1)c ⇒ L

d
(3.21)

[Π5] = [ f d aρbµc ] = (T−1)(L)a(ML−3)b(ML−1T−1)c ⇒ d 2 f ρ

µ
= d

√
f

ν
(3.22)

[Π6] = [∆pd aρbµc ] = (ML−1T−2)(L)a(ML−3)b(ML−1T−1)c ⇒ ∆pd 2ρ

µ2 = ∆p

ρu2
m

·Π2
1 (3.23)

This last dimensionless group can be rewritten by multiplying it by the first dimensionless group squared,

resulting in a new dimensionless group where the pressure drop is scaled with the more well-known dynamic

pressure. Taking a closer look at the fifth dimensionless group, reveals a resemblance with the Womersley

number as stated earlier in the description of pulsatile flow. Indeed, apart from using the diameter d instead

of the radius R and using the frequency f instead of the angular frequency ω, the two numbers are the same;

they both denote the ratio of unsteady inertial forces to the viscous forces. For convenience the more well-

known Womersley number will be used from now on. Combining all of the above leads to an expression

for the dimensionless group of the unknown variable ∆p as an unknown function of the newly gathered

dimensionless groups:

∆p

ρu2
m

=ϕ
(
ρumd

µ
,
ρup d

µ
,

D

d
,

L

d
,R

√
ω

ν

)
(3.24)

The known dimensionless groups can now be identified as the mean Reynolds number, the peak Reynolds

number, the aneurysm diameter ratio, the aneurysm length ratio, and the Womersley number respectively.

These five dimensionless groups are now pointed out as the relevant parameters in pulsatile flow through

aneurysms and will be short-handed by Rem , Rep , Di, Le, and Wo or α respectively.
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3.3. INPUT PARAMETERS AND THEIR RANGES

The relevant input parameters according to the dimensional analysis still need a plausible and physical real-

istic range that can be used in the CFD simulations. Since the shape of the pulsatile inlet waveform is always

kept the same, the mean Reynolds number and the peak Reynolds number are dependent; changing the mean

Reynolds will also change the peak Reynolds number. Therefore the peak Reynolds number is incorporated

within the mean Reynolds number.

3.3.1. MEAN REYNOLDS NUMBER

The separate terms in the Navier-Stokes equations can be attributed to different physical flow mechanism

like inertia, pressure, or diffusion etc. When non-dimensionalizing the Navier-Stokes equations, the differ-

ent terms are preceded by factors that have no dimension. These non-dimensional numbers indicate the

importance of the corresponding term with respect to the other terms. The Reynolds number is such a non-

dimensional number:

Re = ρud

µ
(3.25)

with ρ the density of the fluid, u a characteristic velocity magnitude, d a characteristic length scale, and µ

the dynamic viscosity. The Reynolds number represents the ratio between the inertial forces and the viscous

forces. In general and also for the case of cylindrical pipe flow, the Reynolds number indicates in what regime

the flow is situated. A Reynolds number below Re = 2000-2300 indicates laminar flow, whereas a Reynolds

number above Re = 2000-2300 indicates turbulent flow. In between there exists a transitional regime where

the flow can neither be labeled as purely laminar or turbulent.

During the simulations performed in this thesis, pulsatile flow conditions are used. The inlet velocity pro-

file and also the flow itself is thus changing in time. Since the Reynolds number is dependent on flow velocity,

one can imagine that a single Reynolds number does not capture all characteristics of the flow; for every mo-

ment in time a different Reynolds number can exist. To resolve this issue also a mean Reynolds number exists

which is based on the mean velocity magnitude averaged in time as well as a peak Reynolds number based

on only the highest velocity of the inlet velocity profile:

Rem = ρumd

µ
and Rep = ρup d

µ
(3.26)

where um is the mean velocity and up the peak velocity. In case of cardiac flow, the mean is taken over one

(or more) cardiac cycle(s). The peak Reynolds number is obtained by using the peak velocity or the largest

velocity value in the time-dependent inflow profile. A normal mean Reynolds number in the abdominal aorta
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at resting conditions is around Rem = 600, but during exercise, the cardiac output and hence also the mean

Reynolds number, can increase significantly [7]. In order to keep the number of simulations at a reasonable

level, a total of 10 mean Reynolds numbers are taken around the standard case of Rem = 600. Table 3.3 shows

Table 3.3: A selection of mean and peak Reynolds numbers with their corresponding mean and peak velocities. The standard simulation
case is printed in boldface.

Rem [-] um [m/s] Rep [-] up [m/s]

300 0.045 1574 0.237
400 0.060 2099 0.316
500 0.075 2624 0.395
600 0.090 3148 0.474
700 0.105 3672 0.553
800 0.121 4198 0.632
900 0.136 4723 0.711

1000 0.151 5274 0.791
1100 0.166 5772 0.870
1200 0.181 6297 0.949

the range of simulated mean Reynolds numbers and their corresponding mean velocities. Additionally, the

peak Reynolds number and also its corresponding peak velocity is shown. Note that the Reynolds are all

calculated with the standard case inlet diameter of d = 22 mm as is treated in section 3.3.3. The mean and

peak Reynolds numbers are different when using a different pulsatile inflow condition, but only one inlet

profile is used for all simulations. The values given here correspond with the velocity inlet profile as clarified

in section 4.3.1. The density and dynamic viscosity is treated as constant and values of ρ = 1056 kg/m3 and

µ= 0.0035 Pa · s are used, as discussed in section 3.5.

3.3.2. WOMERSLEY

The Womersley number is a non-dimensional parameter used in the study of (bio)fluid mechanics for the

description of pulsatile or oscillatory flows. It denotes the ratio of unsteady inertial forces to viscous forces in

the flow:

α= R

√
ω

ν
= D

√
πρ

2µT
(3.27)

Figure 3.1 shows the velocity profiles for four different Womersley numbers, obtained from the analytical so-

lution of the cylindrical Navier-Stokes equations for pulsatile flow as discussed in section 3.1. The vertical

axis shows the phase within in the pressure gradient pulse, which ranges from 0 to 360 degrees, where 360

degrees constitutes one cardiac cycle. The 180 to 360 degrees is left out since it is simply the opposite of the 0

to 180 degrees part in the case of this simple sinusoidal pressure gradient. The pressure gradient that is used

is a simple sinusoid of amplitude 1; the signal contains only one harmonic and can be represented as cosωt .

At low Womersley numbers the frequency is slow enough for the flow to reach a parabolic velocity profile.

Viscous forces are still dominating in this regime. At high Womersley numbers the higher frequency leaves
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Figure 3.1: Analytic pulsatile velocity profiles at different Womersley numbers. The smaller Womersley numbers show the classic
parabolic profile shape in the center, whereas the larger profiles show signs of flattening. Reproduced from [17]

no time for the parabolic velocity profile to set in; the profile is flattened. Inertial forces are now influencing

the flow. In this sense the Womersley number can be seen as an excursion from Poiseuille flow [18]. Next

to this flattening of the profile, the flow also experiences a phase lag between the pressure gradient that is

applied and the flow rate. This phase lag grows larger with larger Womersley numbers. Another thing to note

is the flow reversal close to the wall; the fluid packets close to the wall generally have a low velocity due to

viscosity and the no-slip condition at the wall. This low velocity is translated in a low momentum and causes

it to reverse without difficulty when the pressure gradient also reverses [17].

Since the Womersley number is dependent on the frequency or the period of the cardiac cycle, its value is

determined by the heart rate when keeping the other variables constant. The inlet diameter, density and vis-

cosity of the blood are indeed kept constant during all simulations. Table 3.4 shows the 8 different simulated

Table 3.4: Womersley number range

α, Wo [-] Heart rate [bpm] T [s] Iterations [-]

15.1 60 1.0 6000
16.0 67 0.9 5400
16.9 75 0.8 4800
18.1 86 0.7 4200
19.6 100 0.6 3600
21.4 120 0.5 3000
23.9 150 0.4 2400
27.7 200 0.3 1800

Womersley number with the corresponding heart rates, periods, and number of iterations. Since the time-
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step in the CFD solver is set to a value for 0.005 s for all simulations, the number of total (outer) iterations

for an amount of 30 simulated cardiac cycles goes down for an increasing Womersley number. The range of

Womersley numbers is coupled to physical realistic heart rates, the smallest Womersley number corresponds

with a steady resting heart rate of 60 bpm, whereas the largest Womersley number corresponds with an in-

tensive exercising heart rate of 200 bpm. The increase in Womersley number and heart rate is not chosen

to be linear. Instead the period time is decreased with a tenth every time-step for easy export of data and

post-processing.

3.3.3. LENGTH AND DIAMETER RATIO

It is appropriate to establish a range of physically realistic aneurysm lengths and sizes to use for simulation

purposes. Schumacher et al. collected data on 242 consecutive AAA patients in a 3.5-year period [19]. Patients

were examined using sequential intravenous spiral computed tomographic angiography and intra-arterial

digital subtraction angiography. The data collected and analyzed included, among other: diameters of the

infrarenal aorta, bifurcation and length of the aneurysm. Based on these and other parameters a distinction

has been made between different types of aneurysms. The choice is made to model only AAAs that resemble

aneurysms categorized as "Type 1". Type 1 aneurysms have the feature that they not extend the enlargement

of the vessel beyond the bifurcation of the aorta, as can be seen in figure 3.2. These types of aneurysms allow

Figure 3.2: Different types of abdominal aortic aneurysms reproduced from [19]. The Type 1 aneurysm, highlighted in red, is the example
shape for the simulation models.

for easy modeling as a cylindrical tube with an sinusoidal enlargement. The 27 Type 1 aneurysms measured

by Schumacher et al. had a mean infrarenal aortic diameter of 22 mm and ranged from 18 to 24 mm. The

mean aneurysm diameter measured 48 mm with a range from 38 to 56 mm. The mean bifurcation diameter,

before the splitting of the aorta in the illiac arteries, was measured at 22 mm, also ranging from 18 to 24
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mm. The length of the aneurysm had a mean of 58 mm, ranging from 38 to 67 mm. The averages of these

Table 3.5: Measurements on "Type 1" AAAs

Region Mean value [mm] Range [mm]

Infrarenal diameter 22 18 to 24
Aneurysm diameter 48 38 to 56
Bifurcation diameter 22 18 to 24
Aneurysm length 58 38 to 67

characteristics that are summarized in table 3.5, form the basis for the standard geometry of the 4A. Five

different diameter sizes and five different length sizes are chosen to be modeled for simulations. A larger

number of simulations would more accurately describe the range, but is not conducted since every geometry

needs to be modeled and meshed individually which is a time-consuming task. The modeled aneurysm

diameter range is summarized in table 3.7 and the aneurysm length range is depicted in table 3.6. The range

of aneurysm diameter sizes is almost completely adopted from the range as measured by Schumacher et al..

The aneurysm lengths, however, are started from the mean aneurysm length as measured by Schumacher

et al. and extended to a much larger length range. The smaller aneurysm length regime is skipped. This is due

to the fact that, especially smaller aneurysm lengths, would result in very nonphysical shapes and sizes when

using a cosine function to model the aneurysm shape. Additionally, it is assumed that for a small increase in

aneurysm length, the flow in the aneurysm will not change very significantly.

Table 3.6: Five different aneurysm lengths and length ratios used in the construction of the simulation models of the 4A. The standard
case is printed in boldface.

Length range

Le [-] 2.6 3.3 4.0 4.6 5.3
Length L [mm] 58 72.5 87 101.5 116

Table 3.7: Five different aneurysm diameters and diameter ratios used in the construction of the simulation models of the 4A. The
standard case is printed in boldface.

Diameter range

Di [-] 1.81 2.00 2.18 2.36 2.55
Diameter D [mm] 40 44 48 52 56

3.4. OUTPUT PARAMETERS

After carrying out the CFD simulations on the different 4A models, a lot of output parameters are available

for a description of the flow. The most important ones, or the ones critical for an understanding of the flow

description, are given here guided by a short explanation. [20]
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3.4.1. WALL SHEAR STRESS ( WSS)

The stress at a point in a fluid can be completely determined by the nine components of the stress tensor τ.

The diagonal elements in this stress tensor define the normal stresses and the off-diagonal elements define

the tangential or shear stresses. In a static fluid all off-diagonal stress elements are zero since the fluid only

experiences normal stresses from the pressure. However, in a moving fluid the off-diagonal elements in gen-

eral become non-zero due to viscosity. The constitutive equation which links the stress and the deformation

in a fluid, is given by:

τi j =−pδi j +σi j (3.28)

where τi j is the stress tensor and is split up in a fluid-static pressure part, −pδi j , and a fluid dynamic part,

σi j called the deviatoric stress tensor. Equation 3.28 shows that the pressure contribution is valid only on the

diagonal elements due to the application of the Kronecker delta.

The wall shear stress is the shear stress very close and parallel to the wall. It is a measure of the tangen-

tial stress that the fluid is exerting at the wall (and vice versa) and therefore an important parameter in the

study of blood flow through arteries. The wall shear stress vector can be obtained by taking the tensor prod-

uct of the stress tensor and the wall surface normal vector which then yields a vector aligned with the wall

surface. For a simple 2D flow of a Newtonian fluid in the x-direction between two parallel plates, where the

flow is parallel to the plates, the wall shear stress can be simplified as follows:

τw =µ
(
∂u

∂y

)
y=0

(3.29)

where τw is the wall shear stress, µ the dynamic viscosity, and ∂u
∂y the velocity gradient or the shear rate.

Through this simplified Newtonian flow example it can be seen that the viscosity of a fluid is a measure of

how the stress is related to the shearing of the flow.

3.4.2. OSCILLATORY SHEAR INDEX (OSI)

The main goal of the oscillatory shear index (OSI) is to provide a numerical parameter for the wall shear stress

that operates on the blood vessel wall during pulsatile flow and more specifically to generate an index that

describes the wall shear stress acting in directions other than the temporal mean shear stress direction [21].

The OSI is defined as follows:

OSI(x) = 1

2

(
1− |∫ T

0 τw (x, t )d t |∫ T
0 |τw (x, t )|d t

)
(3.30)

with τw the wall shear stress vector, x the position vector, t the time, and T the period of one cardiac cycle.

Note that in this project the integrals in the OSI are taken over more than one cardiac cycle. The OSI is a



3.4. OUTPUT PARAMETERS 25

position-dependent, but time-independent variable meaning that its characteristics are easy to capture in

one visualization plot making it the main reason for the use of the OSI in this project. The OSI resembles the

ratio between the magnitude of the time-averaged wall shear stress vector and the time-averaged magnitude

of that same wall shear stress vector. Note that a factor of 1/T is omitted from both terms in the fraction,

yielding the same result as time-averaging. The top term of the fraction is essentially a measure of how large

the wall shear stress in the average direction is. The bottom term of the fraction shows the average of all mag-

nitudes of the wall shear stress vector. If the fraction is equal to 1, leading to an OSI of zero, the wall shear

stress vector does not change during the course of the cardiac cycle. Lower values of this fraction, and there-

fore higher values of the OSI indicate that the wall shear stress vector is more frequently changing its direction.

For illustration lets assume the wall shear stress at a specific location at time t1 has a value of 1 in the positive

x-direction: a =+x̂. A moment later, at time t2 the wall shear stress vector at the same location has still value

1 in the positive x-direction: b =+x̂. The mean wall shear stress vector averaged over the two time instances

is then also c =+x̂ and taking the magnitude of this vector yields a value of 1 which corresponds with the top

part of the fraction in 3.30. The magnitudes of the vectors separately are both 1: |a| = |b| = 1 and then has a

time average magnitude of 1. The fraction in the OSI expression is then also 1 which leads to the lowest value

possible for the OSI, namely zero. In the same manner, if now the wall shear stress vector at time instance t2

is reversed b = −x̂, the mean wall shear stress vector is zero. This leads to a value of zero for the fraction in

the OSI which leads to the largest OSI possible: a value of 0.5.

The OSI will be the main output parameter that is regarded in order to investigate how the aneurysm flow

changes when changing the relevant input parameters. Whether high values of OSI actually correspond with

dangerous locations of aneurysm formation and rupture has yet to be proven.

3.4.3. VORTICITY

Vorticity can be defined as a vector field that is two times the angular velocity of a fluid element. When there

is a concentration of co-directional, or nearly co-directional vorticity, it is called a vortex [22]. The vorticity

can be calculated by taking the cross product of the nabla operator with the velocity field:

ω=∇×u (3.31)

By taking this curl of the velocity vector the direction of the vorticity is always perpendicular to the velocity

vector. A second concept related to fluid rotation is the circulation, the amount of fluid within a closed con-

tour [22]. Rotation and circulation zones often determine the character of the flow and are also to be expected
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in the pulsatile flow through aneurysms. Especially since an aneurysm usually involves a divergent section

which can create flow separation and with it corresponding recirculation zones. Using the triple decomposi-

tion as discussed earlier, it is possible to assign different flow parameters to a mean, periodic, and fluctuating

component. The same decomposition is also applied when using the vorticity to describe the flow.

3.4.4. TURBULENCE KINETIC ENERGY

Usually, when the classic Reynolds decomposition is performed, the velocity field is split up in a mean and a

fluctuating part. It is then possible to calculate the kinetic energy per unit mass contained in the fluctuating

part as to indicate the energy in the turbulent eddies. In a similar fashion, the kinetic energy can also be

subjected to the triple decomposition. The turbulent kinetic energy consists then of the energy contained

only in the eddies that are different each cycle. The turbulent kinetic energy or TKE can be computed as

follows:

TKE(x, t ) = 1

2

(
u′2(x, t )+ v ′2(x, t )+w ′2(x, t )

)
(3.32)

The TKE can thus be used as a measure of how turbulent the flow is. In the case of pulsatile blood flow through

aneurysms, the flow is usually laminar but can reach transitional or turbulent flow during peak systole. The

transition to turbulence and the accompanying eddies at the aneurysm wall could induce favorable or unfa-

vorable circumstances regarding the OSI.

The kinetic energies of the other components of the triple decomposition can be calculated just as easy by re-

placing the fluctuating velocities in (3.32) by the mean or periodic velocities. In this way some flow properties

can be attributed to the different components of the flow.

3.5. VISCOUS PROPERTIES OF BLOOD

The working fluid in the simulations is blood. Blood is a suspension, which means that it consists of more or

less solid particles suspended in a fluid. In the case of blood, the solid particles are called the formed elements

and are basically the red blood cells, white blood cells and platelets. These formed elements are suspended in

the plasma and take up about 40 to 45 percent of blood volume. Plasma itself is an aqueous solution contain-

ing 90 to 92 percent of water. The remaining 8 to 10 percent is made up mostly by proteins, but also by some

inorganic constituents. As is quite common for suspensions, also blood is a non-Newtonian fluid, which

means that the shear stress is non-linearly proportional to the velocity gradient or shear rate. This inherently

means that the viscosity, or the measure of the resistance of the blood to deformation by shear stress, is not

constant. The viscosity of blood is dependent on temperature, hematocrit, shear rate, and vessel diameter.

Since the viscosity of blood is of importance for the simulations, its dependency on these parameters will
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(a) Blood viscosity as function of shear rate plotted for different
hematocrit values. At values of shear rate higher than 50-100 s−1

all lines approach a constant value. Reproduced from [23].

(b) Blood viscosity as function of vessel di-
ameter. Reproduced from [24].

Figure 3.3: Properties of whole blood

shortly be discussed. Since the human is a warm-blooded animal species, their temperature is maintained

at a steady 37 degrees Celsius. The temperature dependence of blood is therefore not an issue regarding the

viscosity. Hematocrit is the volume percent of red blood cells in the blood and a normal value in human

males is about 42 to 45 percent [1] and can be slightly lower in females. Large fluctuations in hematocrit are

in general only a consequence of disease and it is credible to set a fixed value at 42 to 45 volume percent.

For low shear rates the viscosity is strongly dependent on shear rate variation, as can be seen in figure 3.3a,

which shows the viscosity dependence on shear rates for different hematocrit values. The non-Newtonian

behavior is then mainly attributed to the red blood cells clumping together and forming larger particles [7].

As the shear rates get higher, the curves level out indicating the asymptotic approach to a constant viscosity.

Shear rates in the artery of interest, the aorta, are around 300 s−1 and imply a constant viscosity there. It

should be noted that the shear rate is not constant along the radius in tube flow. The velocity gradients at

the wall are usually higher than at the centerline, meaning that the shear rates close at the wall will be higher,

and lower at the center. The non-Newtonian behavior is thus not fully negligible, but regarding the blood as

Newtonian is a good first approximation. A last, somewhat unexpected parameter that influences the blood

viscosity is the vessel diameter. Figure 3.3 shows that for small vessel diameters of about 1 mm and smaller

the viscosity decreases dramatically. This effect is called the Fåhræus-Lindqvist effect and is caused by the

positioning of the red blood cells in the center of the vessel, leaving a cell-free plasma layer at the vessel wall.

Since the viscosity of pure plasma is lower than that of whole blood the apparent viscosity in total is lower.

In the simulations performed, only aortic sized vessels have been used with diameter values of well above 10

mm. The Fåhræus-Lindqvist effect comes not in to play for these ranges.
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Summarizing the statements above leads to the conclusion that it is safe to approximate the blood viscosity

as constant and effectively treating blood as a Newtonian fluid for the upcoming simulations. The viscosity

and density of whole blood is taken from the computational interlaboratory study to determine the suitability

and methodology for simulating flow in an idealized medical device, issued by the U.S. Food and Drug Asso-

ciation (FDA) [25]. Here, a constant dynamic viscosity of 0.0035 Pa·s and a density of 1056 kg/m3 are used,

leading to a kinematic viscosity of 3.3·10−6 m2/s. These values are implemented in all simulations performed

during this thesis.



4
NUMERICAL SETUP

Flows and related phenomena can be described by partial differential equations, like the Navier-Stokes equa-

tions for pulsatile flow as seen in the previous section. In the case for a straight, rigid tube this could be

solved analytically. Solving pulsatile flow in an aneurysm analytically is no longer possible, but in order to

still say something sensible about these problems, an approximate solution can be calculated. To obtain

such an approximate solution numerically, it is possible to use a discretization method which approximates

the differential equations by a system of algebraic equations, which can then be solved on a computer [26].

ANSYS Fluent, the commercial CFD package used for all the simulations in this project, uses the finite volume

method as a discretization method. The finite volume method follows in general the following steps:

• A solid model of the flow domain is created and subsequently discretized into a finite set of control

volumes

• General conservation equations for mass, momentum, energy, species, or any other parameter of in-

terest are solved on this set of control volumes

• The partial differential equations are discretized into a system of algebraic equations

• All algebraic equations are then solved numerically to render the solution field

The finite volume method is possible to use on every grid, so it is suitable for complex geometries. A disad-

vantage of the finite volume method is that methods of order higher than second are more difficult to develop

in three dimensions.

The finite volume method is applied, through the use of ANSYS Fluent, for the simulation of pulsatile blood

flow in the 4A and patient-specific aneurysm. This chapter will first elaborate on the creation and modeling of

the 4A and patient-specific geometries, which is followed by an explanation of the meshing strategies for both

geometries. Next, the applied boundary conditions are discussed and lastly, solver settings and simulation

details are clarified.

29
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4.1. GEOMETRIES/FLOW DOMAIN

Before the domain can be discretized in control volumes, the flow domain itself needs to be constructed.

The 4A geometries are constructed with the help of CAD-software. Since the patient-specific geometry does

not have to be generated from scratch, no CAD-software is needed and only clean up of the patient-specific

geometry is performed. The 4A geometry and the patient-specific geometry will be treated separately.

4.1.1. 4A

From the dimensional analysis in section 3.2, it was clear that geometrical parameters of interest are the

aneurysm length ratio Le and the aneurysm diameter ratio Di. Both are defined with respect to the inlet di-

ameter. As a starting point a standard simulation geometry is created, based on the mean values found in ta-

ble 3.5. This means that the standard geometry will have a diameter of 48 mm which spans a length of 58 mm.

The inlet diameter takes a value of 22 mm, leading to Di = 2.18 and Le = 2.6 for the standard case. The shape

and curvature of the aneurysm is chosen to be modeled by a cosine function. The cosine function allows

for a natural curvature and a smooth transition from inlet to aneurysm, which is believed to be found also

in real-life aneurysms. The smooth transition additionally prevents non-physical and therefore unwanted

disturbances in the flow. The cosine points defining the aneurysm shape are generated in MATLAB and im-

ported in ANSYS DesignModeler, a parametric geometry software for the generation of CAD-geometries. The

cosine points are then converted to a 3D-curve and fitted with the correct inlet and outlet outlines. A two-

dimensional surface of the total flow domain is finally revolved around the streamwise axis, which results in

the 3D aneurysm flow domain as shown in figure 4.1a. The inlet and outlet of the aneurysm are extended in

order to let the flow develop to a true velocity distribution and to reduce back-flow artifacts, respectively. The

inlet and outlet both have a length of 111 mm, or about 5 times the inlet diameter, which is assumed to be

long enough for the flow to develop. A validation of the development of the inlet profile is given in section 5.1.

For the variation in mean Reynolds number and Womersley number, the geometry stays the same and the

simulations for those ranges are run only on the standard geometry. When changing the aneurysm length

ratio Le, straight cylindrical parts of different lengths are added exactly in the middle of the aneurysm. This

allows for a lengthening of the aneurysm without changing the steepness and angle of the cosine curvature.

An example of the addition of an elongated center piece is shown in figure 4.1b. For the different aneurysm

diameter ratios it is not possible to leave the steepness and angle of the aneurysm unchanged, so a new cosine

function for all different aneurysm diameter ratios is generated. The inlet diameter has the value of 22 mm for

all 4A geometries. In this way five different aneurysm length ratio models (including the standard case) and

five different aneurysm diameter ratio models (including the standard case) are created. Figure 4.1c depicts

a 4A geometry with a larger aneurysm diameter than the standard case. An overview of the different lengths



4.1. GEOMETRIES/FLOW DOMAIN 31

(a) Geometry of the standard case
that shows the aneurysm modeled
by a cosine function.

(b) Example of a longer aneurysm
geometry by adding a straight cen-
terpiece. The shape of the diver-
gent and convergent part of the
aneurysm remains unchanged with
respect to the standard case.

(c) Example of a 4A geometry with
larger diameter than the standard
case. The shape of the divergent and
convergent part of the aneurysm
now does change shape and angle.

Figure 4.1: Examples of different 4A geometries

and diameters are given in table 3.6 and table 3.7, respectively as already displayed in the previous chapter.

4.1.2. PATIENT-SPECIFIC

A patient-specific aneurysm model is investigated that was made available by Prof. Yiannis Ventikos from the

Dept. of Mechanical Engineering at the Faculty of Engineering Science of University College London. Since it

is obtained by medical imaging, it resembles a real-life aneurysm very closely. The patient-specific aneurysm

model is provided in the form of a stereolithographic file (STL), which is a description of only the surface

geometry of the three-dimensional representation of the aneurysm. The STL file is built up with triangula-

tion by unit normals and vertices. Before the delivered geometry can be used appropriately with the meshing

software, some clean up of the geometry is needed. The clean-up process is performed by use of The Vascular

Modeling Toolkit (VMTK 1.2). VMTK is an open-source python-based collection of libraries and tools for 3D

reconstruction, geometric analysis, mesh generation and surface data analysis for image-based modeling of

blood vessels [27].

Low quality images, due to limited imaging resolution, can result in bumpy and irregular surfaces. Artifi-

cial irregularities in the surface can lead to nonphysical flow features and deviated wall shear stress distribu-

tions. As can been seen in figure 4.2a, the original geometry is indeed surrounded by these irregularities. The

smoothing on the aneurysm model is performed through the embedded python script called vmtksurfaces-

moothing, which use Taubin’s algorithm preventing shrinkage of the the model [28]. The smoothing process

is practically conducted by increasing the smoothing factor until visually most of the irregularities disappear.

A quantitative indication of how large the trade-off between the preservation of the original aneurysm ge-

ometry and the smoothing is not available and remains a point of discussion. Apart from the smoothing it

is also preferable to reduce the volume of the flow domain as much as possible in order to reduce compu-
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tation time by reducing the number of elements. This is achieved by clipping unnecessary long geometry

attributes. In the case of the acquired aneurysm geometry a large part of the descending aorta is connected

to the aneurysm. Also the bifurcation and parts of the smaller illiac arteries are present and poorly captured

by the imaging technique. For these reasons large parts of these extending arteries are clipped (vmtksurface-

clipper) which can be seen in figure 4.2b. The clipped arteries are partly replaced (vmtkflowextensions) by

smooth, and shorter cylindrical tubes with a constant radius in order to allow for easy development of the

flow. The length of the inlet and outlet extensions are based on the mean profile radii of the open surfaces.

The end result of the geometry clean-up process is in figure 4.2c. The inlet radius of the added flow extension

is around 8 mm, which corresponds with an inlet diameter of 16 mm. The diameter of the illiac artery of the

right leg, the one that is closest to the reader seen from the pictures in figure 4.2, has a value of about 10.5

mm and the other illiac artery has a slightly smaller diameter of about 9.5 mm. Since the patient-specific

aneurysm is not as axisymmetric as the 4A that has been modeled, it is difficult to establish one value for

the aneurysm diameter. To approximate this value, a cross-sectional slice is taken from the middle of the

aneurysm in ANSYS ICEM CFD. The circumference of this slice can then be extracted and resulted in a value

of 112 mm. Treating the curve as an ideal circle leads to an approximated diameter of about 35.6 mm. Non-

dimensionalizing with respect to the aneurysm inlet diameter of 16 mm results in a aneurysm diameter ratio

of Di = 2.23, a value conveniently close to the diameter ratio of the standard case aneurysm, Di = 2.18. Ap-

proximating the length of the patient-specific aneurysm is equally difficult since the aneurysm consists of

more than one divergent-convergent part. The length is calculated through the length of a straight line from

the position of first diverging at the inlet until the location of converging towards the outlets and yields an

approximate length of 75 mm or correspondingly an aneurysm length ratio of Le = 4.7. These values are used

later on to select a 4A geometry that resembles the patient-specific geometry the most.

4.2. MESH

After creation and clean up of the geometries, the domain of interest needs to be discretized. This process,

also called meshing, is conducted with ANSYS ICEM CFD 14.5 which equips advanced geometry acquisition,

mesh generation, and mesh diagnostic and repair tools to provide integrated mesh generation for sophisti-

cated analyses. The aim is to capture all instantaneous flow structures without using any turbulence models,

which means that the full Navier-Stokes equations need to be solved with a spatial and temporal resolution

that is sufficiently high. In the meantime, due to possible applications of the CFD simulations in the clinical

world, simulation time should be kept as small as possible. Since higher spatial and temporal resolutions in

general increase the simulation time, there will be a trade-off between those two aspects.
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(a) Original provided patient-specific geometry. Irregular and nonphysical surface
bumps, attributed to limited imaging resolution can clearly be distinguished. The
actual aneurysm part used is boxed in red.

(b) Patient-specific aneurysm part after clipping and smoothing. The irregularities
have mostly disappeared, but some original aneurysm shape characteristics might
also be lost.

(c) Final patient-specific geometry with added flow extensions at the inlet and both
outlets. The inlet flow extension should provide for nicely developed flow into the
aneurysm.

Figure 4.2: Patient-specific geometry clean-up process

4.2.1. 4A MESH

To estimate different length scales as a starting point for the general mesh element size, it is possible to cal-

culate the Kolmogorov length, which is an indication of the smallest length scales present within the flow. As

an indication the Kolmogorov length scales will be calculated based on the peak Reynolds numbers, which

correspond to the highest velocities in the cardiac cycle. Note that the Kolmogorov length scale based on the

peak Reynolds number is a very conservative estimate, since the mean velocities are much lower, leading to
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much larger Kolmogorov scales. The Kolmogorov length scale can then be calculated as follows:

η= dRe−3/4
p (4.1)

with η the Kolmogorov length scale, Rep the peak Reynolds number, and d the inlet diameter which is always

22 mm and represents an estimate for the largest size of eddies. It is obvious that the Kolmogorov scale also

changes with the peak Reynolds number and since one aspect of this project is to vary the mean Reynolds

number and inherently also the peak Reynolds number, the Kolmogorov length scale will also change. Using

the smallest (1574) and largest (6297) peak Reynolds number, the Kolmogorov length scales range from about

0.08 to 0.03 mm. Another length scale, the Taylor microscale, is defined as:

λ= dRe−1/2
p (4.2)

with λ the Taylor length scale, Rep the peak Reynolds number , and d the inlet diameter which again is al-

ways 22 mm. The Taylor microscale is an intermediate length scale at which the fluid viscosity significantly

affects the dynamics of the turbulent eddies. The Taylor length scale for the range of different peak Reynolds

numbers ranges from 0.6 to 0.3 mm. According to these ranges the first approximate general element size

was chosen to be 1 mm, which is still slightly larger than the estimated Taylor microscales. This somewhat

larger element size is taken as a first estimate with the conservative approximation with the peak Reynolds

number and the outlook on a mesh refinement study in mind. In section 5.2 a mesh independence study is

conducted where two even finer meshes were compared. From those results the coarser mesh with a general

element size of 1 mm was found to be accurate enough.

Next to the general element size, the sizes of the the element very close to the wall are also important. At

locations in close vicinity of the wall the solution gradients are usually very large, since a no-slip boundary

condition is applied. However, accurate calculations in the near-wall region are defining for the validity of the

simulation. In the case of flow through aneurysms it is especially relevant, since the parameter of interest is

usually related to the wall shear stress, the shear stress very close to the wall. In order to resolve the near-wall

boundary layer, the elements close to the wall can be refined. To predict the first near-wall cell size, the un-

known wall shear stress is estimated as a first approximation using the skin friction coefficient C f calculated

from the Blasius relation for internal flows:

C f = 0.079Re−1/4
p (4.3)



4.2. MESH 35

with Rep the peak Reynolds number. From this skin friction coefficient the wall shear stress τw is estimated:

τw = 1

2
C f ρu2

p (4.4)

where ρ is the fluid density and um the mean velocity. The shear or friction velocity uτ can be seen as the wall

shear stress rewritten in terms of velocity:

uτ =
√
τw

ρ
(4.5)

It is now possible to determine the first near-wall cell size with the following expression:

y = y+µ
uτρ

(4.6)

where y+ is the dimensionless wall unit which is the distance to the wall made dimensionless. To resolve the

solution close to the wall, this wall unit needs to be around 1. Applying all these formulas to the range of peak

Reynolds numbers, leads to a range of first near-wall cell heights from 0.2 to 0.05 mm. The smallest first near-

wall cell size is eventually taken to be 0.2 mm for all simulations, again with the estimate of the conservative

peak Reynolds number in mind.

For the case of varying mean Reynolds numbers and Womersley numbers, the geometry and also the mesh

stays the same. For the different length and diameter ratios the geometries change, which means that inher-

ently the meshing process needs to be redone for every geometry. The meshing process is only explained in

detail for the standard case. Discussing the meshing process for every abstract geometry variation would be

unnecessary elaborate since the differences are deliberately kept small.

The 4A geometry is chosen to be modeled by hexahedral elements or bricks. The hexahedron is shaped like

a cube, with 8 vertices, 12 edges and is bounded by 6 quadrilateral faces. Meshes built up by hexahedral el-

ements have in general a couple advantages over meshes shaped by tetrahedrons or prisms. They tend to

use less computation time since the same volume can usually be built up by less elements. At the same time

a hexahedral mesh can be aligned with the flow direction, reducing the amount of numerical diffusion. A

tetrahedral mesh can in this way never be aligned with the flow direction. One way to implement hexahe-

dral element meshing in ANSYS ICEM CFD is by using the blocking feature, which uses a projection-based

mesh-generation environment. Blocking used on the 4A consists of a top-down approach where the outer

geometry is split up in separate blocks in order to gain specific control over minor geometry details. The

blocking strategy is usually implemented when one desires a structured mesh, but since ANSYS Fluent em-

ploys an unstructured solver this is not the main reason. An additional advantage of blocking is that it allows
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Figure 4.3: Normal circular meshing strategies in cylindrical domains give rise to highly skewed elements at a couple points on the
circumference. Skewed elements in general deteriorate the mesh quality. An O-grid reduces the skewing of the elements improving the
overall mesh quality. Reproduced from [29].

for the use of a so-called O-grid. An O-grid reduces the skewness of blocking corners on a continuous curve

or surface which is explained visually in figure 4.3. As with the 4A geometry this is mostly the case for circular

geometries. An O-grid meshing is also inherently suitable for implementing an inflation layer in order to cap-

ture steep solution gradients at the wall. The set-up of the blocking strategy for the 4A is depicted in figure 4.4

and shows the 4A divided into 20 blocks. When using blocking on the different length ratio geometries, an

additional 5 blocks are included since the aneurysm is then expanded by adding a straight cylindrical tube

directly in between the aneurysm halves. The inflation layer or the curved part of the O-grid blocking is de-

Figure 4.4: O-grid blocking of the 4A. The blocking meshing strategy allows for more detailed control over the mesh characteristics.

fined on the edges inside the actual aneurysm. A geometric bunching law is applied which is defined by the

following expression:

Si = R −1

RN−1 −1

i∑
j=2

R j−2 (4.7)

where Si is the distance from the starting end to node i , R is the ratio, and N is the total number of nodes on

the defined edge. The first spacing, at the aneurysm wall, is set at 0.2 mm as discussed earlier. The growth

ratio is set to 1.1, meaning that every following spacing is 1.1 times as large as the previous spacing. The 4

diagonal edges of 14 mm, all contain a total of 25 nodes. The last spacing of these diagonal edges are set

to be around 1 mm, connecting almost seamlessly to the general element sizing of 1 mm in the rectangular

center blocking. The cylindrical inlet and outlet are defined by a uniform bunching law, simply meaning

that the spacing in the streamwise direction is constant. The 111 mm long inlets and outlets consist of 88



4.2. MESH 37

nodes spaced by approximately 1.2 mm, which is a slightly larger element size than the general 1 mm, since

these elements are aligned with the flow. Given here are the specific meshing parameters for the standard 4A

geometry. The meshing parameters of the length ratio and diameter ratio geometries will slightly differ, but

the first layer cell height of 0.2 mm as well as the general element size of 1 mm are tried to be kept the same

for all geometries.

(a) Surface meshing of the 4A still showing the 4 different regions from the block-
ing strategy. The general average element size is around 1 mm.

(b) Cross-section of the 4A mesh de-
picting the O-grid blocking in the
middle of the aneurysm. The infla-
tion layers at the boundary have a first
layer height of 0.2 mm.

Figure 4.5: Surface mesh and cross-section mesh of the 4A

4.2.2. PATIENT-SPECIFIC MESH

The patient-specific geometry is a more complex geometry than the 4A models. A blocking strategy to gen-

erate a hexahedral mesh is not obvious or rewarding in terms of mesh quality. A unstructured mesh consist-

ing predominantly out of tetrahedral elements is generated with the help of ANSYS ICEM CFD. An inflation

layer from hexahedral elements is applied at the wall boundaries to resolve the sharp gradients correctly.

Figure 4.6a shows the triangular surface mesh while figure 4.6b portrays a cross section through the middle of

the aneurysm. Since the order of the size of the patient-specific aneurysm is the same as the order of the 4A

geometries the general element size of the patient-specific aneurysm is also kept around 1 mm. An inflation

layer around the inside of the aneurysm wall is implemented by 5 layers of hexahedral elements traversing

from the single inlet throughout the aneurysm and ultimately in both outlet arteries. The first layer height

is set to 0.1 mm. The inflation layer grows in size starting from the wall with a height ratio of 1.2, meaning

that every next element is 1.2 times as large in the direction perpendicular to the wall. The smaller first layer

height with respect to the first layer height of the 4A is chosen because of the more subtle variations of the

wall of the patient-specific aneurysm. It should be noted that no mesh independence study is conducted

for the patient-specific mesh and it is assumed that the general element size of 1 mm is sufficient enough to

portray the most relevant flow structures.
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(a) Detailed view of the patient-specific surface mesh showing triangular sur-
face elements. The general average element size is around 1 mm.

(b) Cross section through the middle
of the patient-specific aneurysm mesh.
A five layer inflation layer is imple-
mented at the aneurysm wall with a
first layer cell height of 0.1 mm.

Figure 4.6: Patient-specific aneurysm mesh

4.3. BOUNDARY CONDITIONS

In order to define a flow problem that results in a unique solution, information on the dependent flow vari-

ables at the domain boundaries need to be specified; the so-called boundary conditions. The 4A geometry

surface consists of three boundaries: the inlet, the outlet, and the wall. The wall boundary condition is rel-

atively straightforward and is applied by using the no-slip condition at the wall, meaning that the blood will

have zero velocity relative to the aneurysm wall. More interesting are the boundary conditions at the inlet

and the outlet, which will be explained in more detail in the following sections.

4.3.1. INLET PROFILE

In order to approach the real flow in an aneurysm and to decrease the need for long extended inlet tubing, it

is preferred to impose a physically realistic inlet profile at the inlet boundary. The choice is made to impose

the velocities at the inlet boundary. These velocities are time and space dependent in the case of pulsatile

flow. For convenience the velocity is assumed to be a product of a time-dependent and a space-dependent

solution:

u(r, t ) = umax(t )

[
1−

( r

R

)10
]

(4.8)

As can be seen in 4.8, the space-dependent part is represented by a power-10 profile. The power-10 profile is

much like a parabolic profile except that it has more flattening at the centerline as can be seen in figure 4.7b.

This profile has similarities with the flat profiles found in pulsatile flows with larger Womersley numbers. It

is then also believed that this shape will soon converge to actual Womersley profiles. R is the radius of the

inlet extensions, which is the same for every simulation of the 4A and has a value of 11 mm. umax(t ) specifies

the time-dependent part of the inlet velocities and corresponds with the maximum velocity at the centerline
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(a) Mills’ pulsatile velocity waveform for a mean Reynolds number of
Rem = 600. High velocities at the peak of systole cause a peak Reynolds
number of Rep = 3148. The black dots represent frequently visualized
phase instances.

(b) 3D representation of the spatial power-10
profile. It is characterized by flat center flow
and high velocity gradients at the boundaries.

Figure 4.7: Temporal and spatial velocity inlet boundary conditions

of the power-10 profile. To get a description of the time-dependent development in the abdominal aorta the

shape of a flow rate waveform is borrowed from Finol and Amon, who used the flow rate as inlet conditions

for a two-aneurysm, axisymmetric, rigid wall model [30]. The waveform originates from Mills et al., who

recorded blood pressure and velocity waveforms in a series of patients at cardiac catheterization [31]. Several

locations of different arteries were measured including the abdominal aortic region. With help of the grabit.m

file created by Jiro Doke, taken from the MATLAB Central File Exchange, it is possible to obtain the shape of

the flow rate by extracting the data points from an image file. The data points are then fitted to a smooth curve

using a smoothing spline fit in MATLAB. The obtained flow rate curve can then be multiplied by a factor to

ensure the correct mean Reynolds number and mean velocities used in the different simulations. Boundary

conditions such as velocity profiles can be implemented in ANSYS Fluent by the use of user-defined functions

(UDF), which are C functions that can be dynamically loaded with the ANSYS Fluent solver. To facilitate the

coding of the UDF, the flow rate profile is decomposed into a Fourier series involving sines and cosines:

Q(t ) = a0

2
+

∞∑
n=1

an cos(ωn t )+
∞∑

n=1
bn sin(ωn t ) (4.9)

with Q(t ) the time-dependent flow rate, t time, a and b the Fourier coefficients, andωn the angular frequency,

which is dependent on a multiplication of the fundamental frequency for every harmonic n. The previous

equation is exact, but for practical purposes a decomposition in only 19 harmonics is used, which yielded a

smooth enough function for the flow rate. The sums of sines and cosines can also be rewritten in a sum with

only cosines and a corresponding phase shift, leading to the following approximation:

Q(t ) ≈ M0 +
19∑

n=1
Mn cos(ωn t +φn) (4.10)
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where Mn is the amplitude of the cosines and φn are the corresponding phase shifts. The parameters for all

19 harmonics of the Fourier decomposition can be found in table 4.1.

Table 4.1: Fourier decomposition of flow rate profile showing the 19 harmonics used with the amplitude of the cosines and their corre-
sponding phase shifts.

n [-] Mn [cm3/s] φn [-] n [-] Mn [cm3/s] φn [-]

0 5.7707 0 10 0.5080 +0.1822
1 5.7439 -2.2214 11 0.7770 -1.8666
2 5.2869 +1.9232 12 0.6569 +2.1061
3 4.6235 -0.2006 13 0.4597 +0.1344
4 2.1714 -2.3405 14 0.2820 -1.4256
5 1.3435 +2.8339 15 0.3636 +3.0315
6 1.2711 +1.0875 16 0.3414 +0.8361
7 1.5537 -0.8632 17 0.3171 -1.3357
8 1.0586 -3.1250 18 0.1604 +2.8307
9 0.6109 +1.5654 19 0.1001 +1.1774

Note that these coefficients represent the flow rate before multiplying the function with the correct values in

order to obtain the desired mean Reynolds numbers. Dividing the flow rate by the constant velocity inlet area

leads to the average velocity:

uavg(t ) = Q(t )

A
(4.11)

Note that the term ’average’ is reserved for the spatial average. The average velocity is still a function of time.

The term ’mean’ is reserved for the temporal average, making it a constant. The same holds for the term ’max’,

which corresponds to the spatial maximum and the term ’peak’ which is linked to the temporal maximum.

The average velocities are known, but to establish the velocities as in 4.8 an expression for umax is needed.

The average velocity can be found by integrating u(r, t ) over the inlet surface as follows:

uavg(t ) = 1

A

Ï
umax(t )

(
1− r 10

R10

)
r dr dθ = 5

6
umax(t ) (4.12)

This expression links the maximum velocity umax to the average velocity in the following manner:

umax(t ) = 6

5
uavg(t ) (4.13)

which leads to the expression for the total time and space dependent velocity profile:

u(r, t ) = 6

5
uavg(t )

[
1−

( r

R

)10
]

(4.14)

where the average velocity uavg is deduced from the Fourier decomposition of the flow rate Q(t ). The veloci-

ties regarded here are only velocity magnitudes; they do not yet have any direction. When implementing the

velocity profile UDF, the velocities are taken to be in the streamwise direction, normal to the surface area of
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the inlet.

Figure 4.7a shows the Mills’ velocity profile adjusted to a mean Reynolds number of Rem = 600. The car-

diac cycle can roughly be split up in two regimes: the systolic and the diastolic phase. The systolic phase, or

systole, represents the time during which the left and the right ventricles contract and eject blood into the

aorta and the pulmonary artery, respectively. The systole itself can again be split by a systolic acceleration

first aroundΦ= 0.2, followed by the systolic deceleration after the peak atΦ= 0.32. After the systolic declara-

tion, Mills’ profile even reaches a small negative inlet velocity at Φ= 0.52 and reverses the flow. The diastolic

phase is when the hart rests and fills with blood and is characterized by a overall constant and relatively low

velocity profile. Simulation data of interest is exported at 20 different locations within the cardiac cycle; from

phase 0.05 to 1 with steps of 0.05. Ten points of interest within the cardiac cycle, as depicted by the dots in

figure 4.7a, are used later on for visualization purposes.

4.3.2. PRESSURE OUTLET

The outlet boundary condition is set to an outflow gauge pressure of zero for both the 4A outlet and both

the outlets of the patient-specific aneurysm, and is called a zero pressure outlet or a traction free boundary

condition. Since the operating pressure of the simulations is automatically set to atmospheric pressure in

the ANSYS Fluent solver, applying the a gauge pressure of zero is like cutting the aneurysmal artery open and

exposing it to the outside air conditions when running the simulations. This simplification can result in a

significant difference from actual blood flow, since it neglects the change in pressure and flow rate by wave

reflection [32]. However, due to the modeling of the artery walls as rigid, wave reflection is no longer an issue.

4.4. SOLVER SETTINGS

It is possible to choose between two different flow solvers in ANSYS Fluent: a pressure-based or a density-

based solver. The pressure-based solver was originally developed for low-speed incompressible flows, while

the density-based solver was intended for high-speed compressible flows [33]. Both solvers calculate the ve-

locity flow field from the momentum equations. Since the blood flow in the aneurysm is being modeled as

incompressible and in general maintains low speeds, it is obvious to implement the pressure-based solver for

the simulations during this project. The Pressure-Implicit with Splitting of Operators (PISO) scheme is used

for the pressure-velocity coupling since it is highly recommended for all transient simulations.

As already discussed, ANSYS FLUENT uses a control-volume-based technique to convert a general scalar

transport equation to an algebraic equation that can be solved numerically. This control volume technique
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consists of integrating the transport equation about each control volume, yielding a discrete equation that ex-

presses the conservation law on a control-volume basis [33]. The general transport equation can be written

in integral form for an arbitrary control volume V :

∫
V

∂ρφ

∂t
dV +

∮
A
ρφu ·dA =

∮
A
Γφ∇φ ·dA+

∫
V

SφdV (4.15)

with ρ the density, t the time, u the velocity vector, A the surface area vector, Γφ the diffusion coefficient for

φ, and Sφ the source term of φ per unit volume. φ now represents a general scalar quantity to illustrate the

workings of the transport equation; when taking φ = 1, the equation turns into the continuity equation re-

garding mass preservation. If φ represents the x-velocity u, the y-velocity v , or the z-velocity w the equation

represents conservation of x-momentum, y-momentum, or z-momentum, respectively. After discretization

(not given here) of the general transport equation, the equation can be linearized. With a linearized equa-

tion for every cell, a set of algebraic equations with a sparse coefficient matrix is generated. ANSYS Fluent

solves this system with the help of a point implicit linear equation solver together with an algebraic multigrid

method.

In 4.15, the value of φ is stored at the cell center, but also the face values φ f are required for the convec-

tion terms and are to interpolated from the cell center values. To achieve this a spatial discretization scheme

needs to be implemented. A second order central differencing scheme is chosen in order to reduce the risk

of false diffusion. Since pulsatile flow is regarded, temporal discretization is also at issue and is represented

by a second-order implicit time integration which has the advantage that it is unconditionally stable with

respect to time step size. Before running the actual simulations itself, the flow field in the domain needs to be

provided with an initial guess called initialization. Hybrid initialization is used for all simulations during this

project and makes use of Laplace’s equation to determine the velocity and pressure fields [33].

4.5. SIMULATION DETAILS

Thirty cardiac cycles are performed for every different mean Reynolds number, Womersley number, aneurysm

length ratio, and aneurysm diameter ratio case using transient flow simulations in ANSYS Fluent. No turbu-

lence model is deployed since the mesh resolution and temporal resolution is assumed to be fine enough to

resolve all instantaneous flow structures. Additionally, most of the turbulence models available are developed

for use on highly turbulent flows. Since the pulsatile blood flow examined here is in the transitional regime,

the full or "laminar" Navier-Stokes equations are solved. A constant and fixed time-step is used of 0.005 s

for all the simulations and was deemed a sufficiently small time step and amounts to a CFL condition with

a maximum of 5 for even the largest peak velocities used. Note that additionally the CFL condition is now a
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less stringent one since a second-order implicit time integration scheme is used. The convergence criteria

for the continuity, as well as the x, y , and z-momentum equations were all set to a value of 0.001. At every

time-step 40 inner iterations were allowed to reach convergence. In general convergence was easily reached,

but it should be noted that when reaching the peak systole velocities within the cardiac cycle the convergence

criterion for the continuity equation sometimes only reached as low as 0.01. The outer temporal convergence

is also checked using a validation study in section 5.3. For the standard case, where a cardiac cycle has a du-

ration of 0.8 seconds, total of 24 seconds were simulated by 4800 outer iterations with the already mentioned

time-step of 0.005 s. The first two cardiac cycles were always disregarded when evaluating the results in order

to neglect start-up effects. The Womersley numbers are adjusted by changing the period of the cardiac cycles.

Since always 30 cardiac cycles are simulated, the total time and outer iterations simulated are less for higher

Womersley number and vice versa.

Different computers are used to run the simulations on, but in general the workstations used are fitted with

a Intel Xeon 3.7 GHz processor with four cores available. Duration or total wall-clock time of one simulation

on average took 20 to 24 hours.

4.6. POST-PROCESSING WITH MATLAB

In order to have more control over the visualization of output variables, the post-processing is conducted in

MATLAB rather than in ANSYS Fluent or CFD-Post itself. For example, when 30 cardiac cycles each with a du-

ration of 0.8 seconds (for the standard case) are simulated, a total simulation time of 24 seconds is run. A fixed

time-step of 5 ms means that a total of 4800 (outer) iterations are performed. To minimize data export and

increase easy handling of the data, every 8th time-step data is exported leading to 600 files for each variable.

Only the image files (png) of the velocity magnitude in the x y-plane are exported every time-step in order to

create smooth video visualization later on. Next to this, four variables are exported for every simulation; the

velocity vector (x,y, and z components) in the x y-plane, the wall shear stress distribution (x,y, and z compo-

nents) at the artery wall, the vorticity vector (x,y, and z components) at the x y-plane, and the instantaneous

pressure at the aneurysm centerline. Note that the data is not exported throughout the whole volume, but

only on the x y-plane, the walls, or the centerline.





5
VALIDATION

It is appropriate for some of the choices made during the modeling of the pulsatile blood flow through an

aneurysm, to be validated and substantiated. The development of the inlet profile in a straight cylindrical

tubes is addressed to select a suitable inlet and outlet length. Additionally, a base-line value for the OSI is

established in a straight cylindrical tube for the standard simulation parameters in order to provide a con-

text for the OSI results. Lastly, a mesh independence study is performed as well as an investigation into the

temporal convergence.

5.1. DEVELOPMENT OF INLET PROFILE

In order to track the development of the inlet profile, a simulation is run on a straight cylindrical tube of a

length of 280 mm. Conditions as for the standard case are again used with a mean Reynolds number of Rem =
600 and a Womersley number of Wo = 16.9 At every 20 mm downstream along the cylinder, the streamwise

velocity along the line perpendicular to the flow direction is recorded. The resulting development of the inlet

profile is especially significant in the first 100 mm of the cylindrical tube. An example of the development is

depicted in figure 5.1 by showing the profiles at two different locations: 0 m and 0.12 m. The different colored

lines in the plots correspond to all 20 phases that are exported within one cardiac cycle. 30 cycles in total have

been simulated, but shown are only the profiles in the last and thus 30th cardiac cycle. Figure 5.1a shows the

streamwise velocity profiles at the starting point of the tube, x = 0, where the boundary condition is imposed.

The power-10 profile can clearly be identified by spotting the flattened profiles at the centerline. Also, no

backflow at the artery walls is yet to be seen. This is only logical as the power-10 profile inherently does not

contain any backflow. Negative velocities are not visible in the plotted power-10 profiles, since the twenty

predefined linear-spaced data export points coincidentally exclude the negative velocity dip in the cardiac

cycle. When progressing to a location further downstream of the tube at x = 0.12 as shown in figure 5.1b, the

profiles obviously begin to change shape. Backflow or retrograde flow can be seen to emerge on the vessel

wall. The phases that contain the higher velocities, in the peak of the cardiac cycle, develop from a flattened

45
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(a) Streamwise velocity profiles of all exported phases
within the thirtieth cardiac cycle at x = 0. The power-10
profile clearly can be distinguished since the flow has not
yet had the chance to develop so close at the inlet bound-
ary.

(b) Streamwise velocity profiles at location x = 0.12. The
profiles are developing towards a more Womersley-like
shape. For some phases back flow at the wall is occurring.

Figure 5.1: Streamwise velocity profiles at x = 0 and x = 0.12

profile to a more curving, parabolic-like profile at the centerline, far away from the walls. In order to make

an attempt at quantifying the development of the inlet profile, the differences between the profiles at the 15

different locations are regarded. First the difference between the previous and the next streamwise location

is taken for every of the 20 phases. The mean of the standard deviation of the difference then is a rough

indication of how much the average deviation of the difference between following velocity profiles decreases

as can be seen in figure 5.2. The streamwise distance on the horizontal axis points out the difference between

that distance and the distance 20 mm upstream. The values plotted are with respect to the mean streamwise

velocity of the standard case, which has a value of 0.09 m/s. Note that the last difference between locations

Figure 5.2: Mean of the standard deviation of the difference in x-velocity between following streamwise locations. The streamwise
distance on the horizontal axis points out the difference between that distance and the distance 20 mm upstream. The exponential fit
shows the fast decrease of the difference between successive streamwise locations illustrating the development of the velocity profile.

x = 260 mm and x = 280 mm is not taken into account, since the profiles directly at the outlet are slightly

different due to the outlet conditions. When choosing an appropriate inlet length in order to let the velocity
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profile develop to an accurate representation of the true profile, qualitative and quantitative arguments are

regarded. The major development takes place in the first 20 mm, but already after 100 mm the profiles are

not changing very much qualitatively. All profiles at every recorded streamwise location can be consulted in

appendix A.2. Quantitatively, the mean of the standard deviation of the difference drops below 10 percent

after a tube length of 60 mm and differences get smaller than 5 percent (for the second time) around 100

mm and 120 mm of inlet tubing. Based on these observations an actual inlet and outlet extension for the 4A

is chosen to be around 100 mm. For convenience during creation of the 4A models a final inlet and outlet

length of 111 mm is implemented, which leads to a total length of 280 mm for the flow domain when adding

the 58 mm of the actual aneurysm itself.

5.2. OSI VALUES IN STRAIGHT CYLINDRICAL PIPE

To check how the OSI values respond to the inlet profile only (not taking into account the aneurysm geom-

etry) pulsatile blood flow is simulated in a straight cylindrical pipe with standard case parameters; a mean

Reynolds number of Re = 600 and a Womersley number of Wo = 16.9. Figure 5.3 shows the OSI distribution

over the 280 mm long pipe. At the inlet, on the outermost left, the boundary velocity profile is imposed. The

Figure 5.3: OSI distribution on the straight cylindrical pipe wall. The OSI of zero at the inlet boundary is due to the undeveloped power-10
profile. After 60 or 70 mm the baseline OSI value of 0.35 sets in.

OSI at the inlet is completely zero, because here the power-10 profile is still in effect. The power-10 profile

shows no retrograde flow and because of that no OSI value is seen at the inlet. Directly after the inlet, when the

flow is developing, the OSI values start to increase in the streamwise direction. After the flow is developed, the

changes in OSI values are less prominent and stay leveled at an OSI of around 0.35. Remarkably, this value

is still rather high and is contributed to the continuously fluctuating direction of the velocity profile at the

wall. It is valuable to keep the "standard" value of 0.35 in mind when other OSI plots are evaluated. To verify

if the obtained simulation solution is not dependent on the resolution of the mesh that is used, a mesh inde-

pendence study is conducted. Three hexahedral meshes are constructed with the help of an O-grid blocking

procedure. The first and coarsest mesh contains 342.000 elements with an average element edge size of 0.96
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(a) Coarse mesh refinement with a
total of 342.000 elements.

(b) Medium mesh refinement with a
total of 611.000 elements.

(c) Fine mesh refinement with a to-
tal of 1.112.000 elements.

Figure 5.4: Cross-section through the O-grid meshing of the different 4A refined meshes.

mm in the y and z direction and an average of 1.2 mm in the x or streamwise direction. The elements in the

streamwise direction are allowed to be a bit larger in order to keep the mesh element count at a reasonable

amount. The second, more spatially refined mesh has a total of 611.000 elements with an average element

edge size of 0.78 mm in the y and z direction and an average of 0.99 mm in the x or streamwise direction. The

Figure 5.5: OSI of the 4A for the three mesh refinement sizes (top) and their differences (bottom). Although there are local differences up
to 5 percent of the total OSI difference, the standard deviation stays constant around 1 percent. Qualitatively, the results are in relatively
good agreement.

last, and most refined mesh consists of 1.112.000 elements with an average size of 0.62 mm in the y an z direc-

tion and an average element size of 0.83 mm in the streamwise direction. Since the flow can exhibit turbulent

fluctuations it is not possible to compare instantaneous solution fields for the use of a mesh independence
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study. As an alternative an averaged quantity is examined and since the OSI is such an averaged quantity and

at the same time the main parameter of interest it is used in the mesh independence study. Figure 5.5 shows

the crosswise planes through the center of the 4A of the coarse, medium, and fine mesh. To test the mesh in-

dependence, simulations are run with the properties of the standard case. Note that the mesh independence

is not tested for the other aneurysm length or diameter ratios which will undoubtedly will yield different re-

sults, but yet it is still assumed that the mesh independence results would be partly similar for those cases.

Figure 5.5 shows the OSI values for the three meshes with different refinement. Below the OSI values, the

local differences in OSI values are plotted between the coarse and the medium mesh and the medium and

the coarse mesh. The OSI values are compared after interpolation of the more refined meshes to the one step

less refined meshes. Qualitatively, the OSI values seem to have similar axisymmetric structures and are in

good overall accordance. Looking at the OSI differences between the coarse and the medium refined mesh,

local hot OSI difference hot spots can be seen reaching values as high as -0.05 or 0.05 or 5 percent on the total

OSI difference scale. The standard deviation of the local OSI differences is 1.1 percent again with respect to

the total OSI difference scale. The OSI difference between the medium and the fine mesh refinement still

reaches local OSI difference of 5 percent, while the standard deviation is 0.9 percent. Since the qualitatively

comparison and average agreement according to the standard deviation of the OSI differences of around 1

percent is deemed reasonable, the choice is made to continue all of the simulations with the coarsest mesh.

Additionally, the advantage of using the smallest mesh size resulting in shorter simulation times, is certainly

not overlooked.

5.3. CONVERGENCE OF OSI

Next to the convergence of the inner iterations to a desired convergence level, as discussed in section 4.5, the

outer iterations that advance the simulation in time need to converge. Owing to the possible turbulent fluc-

tuations, time-averaged parameters like the OSI require a number of realizations to reach this convergence.

To that cause, figure 5.6 shows the OSI for the standard case 4A simulated for periods of 10, 20, or 30 cardiac

cycles. Below these OSI values, the differences are depicted between the 10 and 20 simulated cycles and be-

tween 20 and 30 simulated cycles. Looking at the OSI values of 10 simulated cycles, it can be seen that the OSI

value bands structure is less sharply defined. At 20 and 30 simulated cycles these bands have less fluctuating

patches and form more tightly defined OSI rings. The standard deviation of the local OSI differences also are

slowly decreasing when simulating a larger number of cardiac cycles. This could imply that even after 30 sim-

ulated cardiac cycles the OSI values are not fully converged. To investigate the progress of convergence with

increasing number of simulated cycles, the standard deviation of the local differences between consecutive

number of simulated cardiac cycles is plotted in figure 5.7. The standard deviation of the local OSI differences
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Figure 5.6: OSI of the 4A for the three different numbers of simulated cardiac cycles (top) and their differences (bottom). The average
OSI difference indicated by the standard deviation of the local OSI values is still decreasing with a larger number of simulated cardiac
cycles.

keeps decreasing with a larger number of simulated cardiac cycles indicating that the the simulations are not

yet fully converged in time. Due to this observation the choice is made to simulate 30 cardiac cycles for every

planned simulation case. It should be noted that the spatial and temporal convergence is now treated as in-

Figure 5.7: Standard deviation of the local OSI differences for an increasing number of simulated cardiac cycles. The continuing decrease
on this log-log plot indicates that after 30 cardiac cycles full convergence is not yet reached.

dependent of each other, which certainly does not has to be the case. When looking at mesh independence

30 cycles where simulated for all refined meshes. Similarly, when checking the temporal convergence, only

the coarsest mesh is used. Other combinations are not studied.
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RESULTS & DISCUSSION

In this chapter the simulation results are presented. The first section will treat the standard 4A case to get

a feel for the relevant flow properties. Next, the OSI dependence for the variation in mean Reynolds num-

ber, Womersley number, aneurysm length ratio, and aneurysm diameter ratio is presented independently.

Next, the patient-specific simulation results are discussed and the last results contain the comparison of the

patient-specific simulation with a comparable 4A simulation case.

6.1. GENERAL FLOW DESCRIPTION STANDARD CASE

Instantaneous velocity magnitude

Figure 6.1 shows 10 snapshots of the instantaneous velocity magnitude in the x y-plane corresponding with a

longitudinal or sagittal slice. The snapshots are taken in the 30th and last cardiac cycle that is simulated. The

snapshots correspond, from top to bottom, with the different phases within the cycle shown by the black dots

in the bottom-right inset of the figure. Note that in total 20 phases within a cycle are exported but only the

phases 0.05, 0.25, 0.3, 0.35, 0.45, 0.5, 0.55, 0.7, 0.8, and 0.9 are depicted, since the most relevant flow proper-

ties are assumed to be visible there. At the first two phases,Φ= 0.05 andΦ= 0.25, some low-velocity left-over

vortices from the previous cardiac cycle can be spotted, indicating that the flow is not perfectly periodic. At

Φ= 0.3 the acceleration at the peak of the systolic phase reaches it maximum which is indicated by the high

velocity stream at the inlet an outlet tubing. In the aneurysm itself the velocities are lower because of the

widening of the diameter. After deceleration of the flow at Φ = 0.45, a velocity burst is generated which tra-

verses the widening of the diameter during the phases Φ = 0.5, Φ = 0.55, and Φ = 0.7. Finally, near the end

of the cardiac cycle, the velocity burst hits the convergent part of the aneurysm at Φ = 0.8, creating vortices

that reside in the aneurysm at Φ = 0.9. From the velocity magnitude plots it is not directly visible that for

most of the phases not concerned with the large systolic acceleration, a low velocity upstream flow is present

indicated by the periodic streamlines presented later on in figure 6.3.

51
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Figure 6.1: Velocity magnitude in the x y-plane of the 4A for different phases. At Φ= 0.3 the velocity magnitude reaches its maximum at
peak systole with a velocity burst that traverses the aneurysm as result. Low velocity upstream flow surrounds the velocity burst.

Vorticity and TKE

Some other parameters can be regarded to describe the flow in the 4A. Figure 6.2 shows on the left the periodic

z-vorticity, which are the vortices spinning in the x y-plane. Red colors indicate vortices spinning counter-

clockwise and a blue color indicates the vortex spinning clockwise. A darker color indicates a relatively strong

vortex, which spins relatively fast. The right side of figure 6.2 shows the turbulent kinetic energy, averaged

over the phases to show the mean TKE of a phase; it shows the average fluctuations that are different each cy-

cle. The darker the color, the more kinetic energy there is contained in the random fluctuations. At Φ= 0.35,

the velocity has just had its systolic peak indicated by the higher vorticity due to high values of shear at the

walls. From the vorticity plots at phases Φ= 0.5 and Φ= 0.6, it is clear that there is indeed a generated vortex

pair, that perhaps actually could be a vortex ring in three dimensions, that transverses the aneurysm. Since

the vorticity data is only exported at a 2D midplane section of the aneurysm this can not directly be verified.

However, the axisymmetric nature of the 3D OSI surface plots, as in figure 5.5, lead to the presumption of

the existence of a vortex ring. Looking at the corresponding phases of the TKE, there are no dark spots at the
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Figure 6.2: Periodic z-vorticity and turbulent kinetic energy for 5 phases within the cardiac cycle. Areas with TKE values (right) that
correspond with locations of vorticity (left) indicate local variations of the periodic vortices.

places of the vortices. This indicates that the vortices are almost exactly the same each time they are gener-

ated. Skipping to the phaseΦ= 0.8, one can see that the vortices that hit the convergent part of the aneurysm

generate patches counter-rotating vorticity even closer to the wall. This time, from the corresponding TKE,

it is obvious that the vortices do induce the creation of turbulent kinetic energy. It is most probable that the

TKE arises from local variations in vortex path and strengths; the vortices are just a bit different each time

they hit the wall.

Streamlines averaged per phase

For a description of the mean periodic flow in every phase of the cardiac cycle, figure 6.3 depicts the stream-

lines generated from the mean periodic velocity vectors in the x y-midplane. The first 2 cardiac cycles are

disregarded when taking this mean. The early systolic phase consists of a more or less constant inlet velocity

up toΦ= 0.08 and is followed by a slight deceleration during 0.08 >Φ> 0.2. AtΦ= 0.05 in the figure the resid-

ual vortices from the previous cardiac cycle are still present. The deceleration during 0.08 >Φ> 0.2 causes a

decrease of the mean inflow velocity which in turn causes negative velocity gradients resulting in a growth of

the recirculation regions. During 0.2 >Φ> 0.3 at systolic acceleration, the velocity reaches its maximum and

a large pressure gradient exists. The temporal acceleration is not held back a lot by the spatial deceleration
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Figure 6.3: Streamlines taken from the periodic averaged velocities of every phase within the cardiac cycle. At Φ = 0.3 the aneurysm is
cleared of vortices by the peak systole acceleration and generates a vortex pair traversing the aneurysm during the phases 0.45 <Φ< 0.8.

caused by the divergent part of the aneurysm, since the large flow acceleration effectively clears the aneurysm

of the previous vortices as can be noticed by the streamlines following the contours of the aneurysm shape.

In the late systolic deceleration phase 0.3 >Φ> 0.5 the flow rate is undergoing a temporal deceleration which

destabilizes the flow and creates a strong vortex pair, or perhaps vortex ring in 3D. This vortex pair traverses

through the aneurysm towards the outlet and could already be spotted in the velocity magnitude plots in

figure 6.1 as a velocity burst. The large vortex pair is propelled into the aneurysm during the diastolic phase

which begins atΦ= 0.5 and is characterized by a graduate temporal acceleration. Just beforeΦ= 0.5 the inlet

profile reaches negative flow velocities which results in reversing of the flow in the aneurysm. Note that for a

large part of the streamline plots there is already retrograde flow as indicated by the direction of the stream-

lines. However, usually the velocity magnitude of the backflow is very small, resulting in an almost stagnant

surrounding flow regime; the flow is effectively standing still. The small diastolic deceleration at 0.7 >Φ> 0.8
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does not seem to have a large on effect on the flow as the vortices from before enter the outlet and become

slightly smaller. The small late diastolic regime at the end of the cardiac cycles shows the breaking up of

the vortex pair into smaller vortex structures when arriving at the aneurysm outlet. The vortices fill up the

aneurysm until the cycle renews.

Pressure

The pressure field is evaluated by taking the periodic averages of the instantaneous pressures at the center

line of the aneurysm. In figure 6.4 the pressures for a range of phases is shown relative to the static gauge pres-

sure of zero at the outlet. It can be clearly seen that according to previous observations, the pressure gradient

is large and positive during the large acceleration in the cardiac cycle Φ = 0.25 and Φ = 0.3. A large negative

pressure gradient is spotted at the end of the largest deceleration at Φ = 0.5. In addition, the pressure stabi-

lizes when the large temporal pressure gradient encounters the deceleration due to the spatial convergence

of the aneurysm shape. However, no large adverse pressure gradients can be distinguished in the aneurysm.

Figure 6.4: Periodic averaged pressure at the centerline of the standard case 4A. During peak systolic acceleration atΦ= 0.25 andΦ= 0.3
a large pressure gradient is visible while for Φ= 0.5 an overall negative pressure gradient can be seen due to the systolic deceleration. In
the aneurysm itself for streamwise directions between -0.029 and 0.029 m, indicated by the vertical dashed lines, the pressure stagnates
in the adverse direction.
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6.2. OSI DEPENDENCE

The main objective of this project is to investigate the influence of the changing of input parameters on the

OSI distribution on the aneurysm wall. This section will treat the mean Reynolds number range, the Womer-

sley range, the aneurysm length ratio, and the aneurysm diameter ratio separately. Finally, an overview and

summary of all the different ranges and their influences on the OSI are discussed.

6.2.1. REYNOLDS NUMBER RANGE

To change the mean Reynolds number in the simulations, the velocity inlet profile was adjusted by multiply-

ing the profile by a factor that resulted in the needed mean Reynolds number. The peak Reynolds number

was not adjusted independently of the mean Reynolds number and therefore it is changed by the same factor

and the profile structure remains unchanged. Figure 6.5 shows the OSI for the range of mean Reynolds num-

ber from 300 to 1200. One of the most striking features of the OSI for this range of mean Reynolds numbers

is the overall formation of axisymmetric rings or streaks of different OSI values. This structure sets in around

a mean Reynolds number of Rem = 500 and starts losing its sharp features already at the largest diameter of

the aneurysm at Rem = 600, but retains its axisymmetric circumference. At higher mean Reynolds number,

for Rem = 1100 and Rem = 1200 the OSI in the divergent part of the aneurysm starts losing its axisymmetric

ring pattern and fluctuations in the OSI start to occur. These fluctuations could be the result of insufficient

temporal convergence due to an increase of the mean Reynolds number as indicated in section 5.3.

Mean streamlines with OSI overlay

The direction of the wall shear stress vector is in general aligned with the velocity vector very close at the wall.

The OSI shows the excursion of the wall shear stress vector from this mean direction. To visualize in more de-

tail what is happening in the flow at different mean Reynolds numbers, the streamlines taken from the mean

velocity vectors in the x y-plane are overlaid with a more transparent projection of the OSI values at the sur-

face. Although the velocity vectors are only taken at the midplane and therefore only represent the situation

of the flow at two line locations at the wall, the OSI and flow is assumed to be axisymmetric and in general

corresponding with the flow situation all around the aneurysm wall. An overview of all overlays can be found

in appendix A.3, but a selection of these overlays is depicted in figure 6.6 capturing the most characteristic

changes in streamlines and OSIs. At Rem = 300, the mean flow consists of an average flow going from inlet to

outlet and a large circulation region filling the whole aneurysm. Progressing to Rem = 500 the formation of a

second vortex on top of the previous large vortex can be spotted. Regions of high OSI seem to concentrate on

the stagnation points at the wall where the two vortices meet and where the mean flow stream separates and

attaches at the inlet and outlet, respectively. A total of 4 stagnation points can be distinguished. At an even
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Figure 6.5: Oscillatory Shear Index (OSI) at the wall of the 4A for different mean Reynolds numbers. Axisymmetric bands of alternating
higher and lower OSI values can be distinguished for most of the cases. The standard case, Re = 600, is indicated by the boxed label.

higher mean Reynolds number at Rem = 900, three circulation zones exist in the aneurysm, but still the same

number of stagnation points overlapping with regions of high OSI occur in the aneurysm. Dark red, high OSI

valued rings still overlap with the stagnation points, although higher values now also occur at non-stagnation

points. Ending with Rem = 1200, the mean flow produces again only one circulation zone filling up the whole

aneurysm. Now, however, there is large region with high OSI values, that is less sharply defined and showing

fluctuations in the OSI. The trend of high OSI values at stagnation points is still ongoing, but other mid-vortex

locations are also generating higher OSI values.
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Figure 6.6: OSI values overlaid on the midplane mean streamlines for a selection of mean Reynolds numbers. The OSI valued axisym-
metric band seem to originate from the stagnation points of the vortices inside the aneurysm.

Average OSI and TKE to PKE ratio

In order to quantify the progression of the OSI values at different mean Reynolds number, the average OSI is

calculated over the aneurysm surface as well as the turbulent kinetic energy (TKE) contained in the aneurysm

midplane with respect to the periodic kinetic energy (PKE). The TKE is the energy contained in the fluctua-

tion that are different each cycle, whereas the PKE is the energy contained in the structures that are the same

each cycle. The TKE to PKE ratio indicates which mechanism is more important and can then perhaps be

related to changes in OSI values. Figure 6.7a shows the mean OSI averaged over the aneurysm surface. A

linear function is fitted through the data points. The linear function is plotted to show a general trend as the

mean Reynolds number progresses to higher values. The mean OSI seems to decrease with increasing mean

Reynolds number, which in itself is a quite remarkable result when regarding the increase in turbulence in-

tensity with increasing Reynolds number; the turbulent fluctuations are assumed to increase the OSI values.

The average OSI decreases roughly from an OSI value of about 0.41 to 0.35, which is a decrease of around

15 percent over a Reynolds number increase of 900. Recalling the baseline OSI value of 0.35 for the straight

cylindrical pipe, shows that the presence of the geometrical aneurysm shape alone is responsible for a rise in

average OSI from 0.35 to 0.375 for a mean Reynolds number of Re = 600. The highest mean Reynolds number

values decreases the average OSI value for the 4A as low as the baseline value of 0.35 for the straight pipe.

With respect to the OSI baseline of 0.35, the mean Reynolds number range decreases the average OSI from 17
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(a) Surface-averaged OSI values plotted against the mean
Reynolds number. The baseline value is at an average OSI
of 0.35. A linear function is fitted to the simulation data as
to indicate a general trend; the average OSI decreases with
increasing mean Reynolds number.

(b) Turbulent kinetic energy with respect to periodic kinetic
energy for increasing mean Reynolds number. A jump at
Rem = 600 indicates laminar flow until then. Subsequently,
an increase in the TKE to PKE ratio can be observed for in-
creasing mean Reynolds numbers. At Rem = 1200, the TKE
to PKE ratio dips below the previous value, perhaps show-
ing stagnation of the increase.

Figure 6.7: Average OSI and TKE to PKE ratio for increasing Reynolds numbers

to almost 0 percent. It should be noted that the fitted linear function by no means is an exact representation

of the behavior of the average OSI at different Reynolds number, but solely offers a basis for qualitative state-

ments.

Due to the triple decomposition of the velocity field in a mean, a periodic, and a fluctuating component, it

is possible to attribute characteristics of the flow to these different parts. The turbulent kinetic energy (TKE)

is a measure for the energy that is contained in the fluctuating velocity vector that are different each cardiac

cycle. In the same manner the periodic kinetic energy is the energy that is stored in the motions that are the

same each cycle. By looking at the ratio of the two it is possible to get to know some information about how

the actual turbulent fluctuations are progressing with an increasing mean Reynolds number. The thought in

general is that a fluctuating velocity vector also yields a fluctuating wall shear stress vector which in turn yield

a higher OSI value. In figure 6.7b, this turbulent kinetic energy per periodic kinetic energy for the range of

mean Reynolds numbers is depicted. At the lower Reynolds numbers of Rem = 300, Rem = 400, and Rem = 500,

it can be seen that the ratio has a value of almost exactly zero since the TKE itself is zeros. The flow for the low

Reynolds numbers can then be regarded as completely laminar. Between Rem = 500 and 600, a sudden in-

crease in TKE to PKE ratio is taking place, which steadily continues along the range of Rem = 500 - 1000. After

reaching Rem = 1100 the increase of TKE to PKE ratio is stagnating and the highest mean Reynolds number of

Rem = 1200 is subjected to a small decrease. The decrease of average OSI, although there is a increase in TKE

to PKE ratio, indicates that the OSI parameter is more sensitive to the periodic component of the flow than it
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is to the turbulent fluctuations.
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6.2.2. WOMERSLEY RANGE

To incorporate a change in Womersley number, the period or frequency of the time-dependent velocity inlet

profile was adjusted. The lowest Womersley number corresponds with the lowest frequency or the slowest

heart rate. The highest Womersley number then corresponds with the highest heart rate of the range. Fig-

ure 6.8 shows the OSI values of the 4A plotted on its 3D surface. The axisymmetric bands of alternating higher

Figure 6.8: Oscillatory Shear Index (OSI) at the 4A wall for different Womersley numbers. Just as for the range of mean Reynolds numbers,
axisymmetric bands can be observed. When increasing the Womersley number, these bands diffuse into larger areas of high OSI. The
standard case Womersley number is indicated by the boxed label.

and lower OSI values are also present for most of the Womersley numbers shown. When moving up in Wom-

ersley number from Wo = 15.1 to Wo = 16.9, the bands in the convergent part of the aneurysm do not seem

to change a lot in value and structure. The divergent part shows a downstream shift in the dark-red, high OSI

value band. At Wo = 18.1 the previously blue, low OSI valued rings at the aneurysm outlet begin to rise in
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value as well as the overall OSI value in the total aneurysm. This process continues leading to higher values

in the convergent part and a weakening of the distinction between axisymmetric bands at Wo = 19.6. Driving

up the frequency parameter even more, Wo = 21.4 now shows a total dark red divergent part, which starts

to creep upstream in Wo = 27.7. This evolution continues until finally, at Wo = 27.7, the aneurysm is almost

totally covered in dark red, high OSI values, with exception of the first small divergent part at the inlet and the

part of the outlet furthest downstream.

Mean streamlines with OSI overlay

As was done for the mean Reynolds number, the time-averaged streamlines are overlaid with the axisymmet-

ric OSI values. Figure 6.9 shows these overlay plots for a selection of Womersley numbers. A total overview for

all Womersley numbers can be found in appendix A.4. At Wo = 15.1, the lowest simulated Womersley number,

Figure 6.9: OSI values overlaid on the midplane mean streamlines for a selection of Womersley numbers. With larger Womersley num-
bers, the number of vortices contained in the aneurysm decreases. As the stagnation points also decrease, the structure of OSI bands
blends into one large area of high, dark red OSI.

the streamlines of the mean velocity field show that the aneurysm contains three mean vortical structures. In

the convergent part, the red, high-value OSI band seems to collide with the stagnation points between two

vortices and between the vortex closest to the outlet and the downstream outlet flow. The high valued OSI

band in the divergent aneurysm part, is not that narrow and defined but is also surrounding the stagnation

point of two colliding vortices. For Wo = 16.9, which is the standard case Womersley number, the OSI values

and bands remain for the most part the same in the convergent part of the aneurysm. The outermost left and

right vortices in the aneurysm now start to interact below the middle vortex. At the wall the situation does



6.2. OSI DEPENDENCE 63

not change significantly, probably since the stagnation points roughly stay in the same position. For Wo =

19.6, the outermost aneurysm vortices are almost completely merged in one larger vortex, but looking closely

reveals a small vortex on top of the larger one. Probably because of the stagnation points between the large

and the smaller vortex, two dark red streaks are still distinguishable, albeit not that sharp. For Wo = 27.7, the

largest of the Womersley numbers, most of the vortices present in the aneurysm have formed into one large

vortex that spans the total bulge of the aneurysm. High OSI values are now present across the total surface of

the aneurysm, but can no longer be attributed to the stagnation points of the mean vortices. At this Womers-

ley number, the frequency of the inlet profile is very high. Due to the flow reversal inherent to the used inlet

profile, the mean velocity is also changing direction faster than for lower Womersley number. This could be

an explanation for the increase of OSI values when increasing the Womersley number.

Average OSI and TKE to PKE ratio

The surface-averaged OSI for all simulated Womersley numbers is depicted in figure 6.10a. The average value

of the OSI for the lowest three Womersley numbers is relatively low. From Wo = 18.1 the average OSI starts to

increase and to a maximum of around 0.43 for the highest Womersley number. To accentuate any possible

(a) Average OSI plotted for the range of Womersley num-
bers. The baseline average OSI is at 0.35. The smallest 3
Womersley numbers do not show significant differences,
but for higher values the average OSI begins to increase.
The linear fit shows a general trend of increasing average
OSI with increasing Womersley numbers.

(b) The TKE to PKE ratio for the range of Womersley num-
bers shows a steep decline from 7 to almost 0 percent for
the 5 smallest Womersley numbers. After hitting this min-
imum, the TKE to PKE ratio slowly increases to 1 percent
when increasing the Womersley number further.

Figure 6.10: Average OSI and TKE to PKE ratio for the range of simulated Womersley numbers

trend, a linear least-squares fit is applied to the acquired data points of the average OSI. Judging by this linear

fit, the average OSI seems to increase with increasing Womersley number. From lowest to highest Womersley

number the increase in average OSI is from around 0.37 to 0.43 corresponding to an increase of about 16%

with respect to the lowest value. With respect to the baseline OSI value of 0.35 for the straight cylindrical pipe,

the Womersley number range constitutes a increase of 6 to 23 percent.
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The turbulent kinetic energy with respect to the periodic kinetic energy contained in the midplane of the

4A, is shown in figure 6.10b. At the lowest Womersley number, Wo = 15.1, the TKE to PKE ratio is the highest

with almost 7%. Up until a Womersley number of Wo = 19.6, the TKE to PKE ratio makes a steep decline to

almost zero percent, indicating more or less laminar flow. From the minimal point at Wo = 19.6 to the high-

est Womersley number of Wo = 27.7 the TKE to PKE ratio ratio almost stays constant, with a slight increase

to about 1%. When increasing the Womersley number the frequency or the heart rate inherently increases

along with it. Cardiac cycles are now succeeding each other much faster. Possible eddies that are created

could have a lifetime that is longer than the frequency parameter permits; the eddies are already swept away

by the systolic acceleration that is next in line. The steep decline and eventual value of zero TKE to PKE ratio

could be the result of that mechanism. It would also indicate that the increase in average OSI value can be

attributed to the periodic kinetic energy instead of the turbulent kinetic energy.
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6.2.3. LENGTH RATIO

Simulations for 5 different aneurysm length ratios have been performed. The inflow conditions were set to

those of the standard case: a mean Reynolds number of Rem = 600 and a Womersley number of Wo = 16.9.

The diameter ratio is kept constant. Only the center part of the 4A is elongated without changing the cur-

vature of the divergent and convergent parts of the aneurysm. Figure 6.11 shows 3D renderings of the OSI

values plotted on the aneurysm wall for different length ratios. Starting from the standard case at Le = 2.6,

Figure 6.11: Oscillatory Shear Index (OSI) at the 4A wall for different length ratios. Elongating the aneurysm centerpiece reveals a second
dark red, high valued OSI band. When increasing the aneurysm length ratio even further, this second axisymmetric ring spreads out in
the streamwise direction.

again the axisymmetric rings of OSI values are clearly present. When enlarging the middle section, at Le = 2.2,

the divergent and convergent part show the same structures and values. The new straight center part reveals

two axisymmetric rings of high OSI that are occasionally linked by streamwise patches. Stretching the center

part even more at Le = 4.0 and Le = 4.6 shows broader red streaks appearing that fade out when approaching

the end of the straight center part. The last and largest length ratio aneurysm shows a continuation of this

process, where in general the convergent and divergent parts of the aneurysm remain unchanged. The elon-

gated centerpiece shows a gradient in OSI values from dark red at the end of the divergent part to softer red

at the beginning of the convergent part.
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Mean streamlines with OSI overlay

The streamlines taken from the mean velocity vectors are overlaid with the average OSI values, but this time

for the different aneurysm length ratios. All five length cases can be found in appendix A.5. Here, in fig-

ure 6.12, only a selection of two cases is shown. The first length case, for an aneurysm length ratio of Le =

3.3, is the first excursion from the standard case with an elongated centerpiece. Four separate vortices can be

Figure 6.12: OSI values overlaid on the mean streamlines for two aneurysm length ratios. The small vortex in the left corner of the
aneurysm is still present when elongating the aneurysm, whereas the larger circulation zone extends along the aneurysm.

distinguished; one large vortex is taking up all the space of the divergent and central part of the aneurysm and

has a small vortex one top near the left corner. The divergent part consists of two vortices on top of eachother,

where the top one also occupies the right corner of the aneurysm. The dark red streaks of high value OSI, cor-

respond with the stagnation points of the vortices. The lengthening of the aneurysm at Le = 4.6 has the largest

effect on the largest vortex by elongating it in the streamwise direction. The structured axisymmetric bands

in the convergent part seem to break up for longer aneurysm length ratios.

Average OSI and TKE to PKE ratio

The average OSI for the smallest aneurysm length ratio of Le = 2.6 is around 0.375 and starts increasing with

increasing length of the aneurysm. Up to an aneurysm length ratio of Le = 4.0 the average OSI shows a steady

increase from 0.37 to 0.41. Over the simulated range, the average OSI has increased about 11 percent with

respect to the smallest length ratio case. Regarding the OSI baseline of 0.35, the aneurysm length range in-

creases the OSI from around 6 to 17 percent. At the larger lengths, Le = 4.0, Le = 4.6, and Le = 5.3, the increase

in average OSI stagnates and keeps its value around 0.41. When elongating the aneurysm even further it is

assumed that the average OSI value in general will stay the same and is indicated by the dotted line in fig-

ure 6.13a. With longer midpieces, the aneurysm geometry takes the shape of a cylindrical straight pipe only

with a larger diameter. The flow has the time (and space) to turn into a fully developed flow, as can be seen in

section 5.2. The vortex dynamics will only take place at the divergent and convergent parts of the aneurysm
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(a) Average OSI for the aneurysm length ratio range. The
average OSI increases with increasing length ratio, but stag-
nates when reaching the highest length ratio. The OSI base-
line is at a value of 0.35.

(b) TKE to PKE ratio for the different aneurysm length ra-
tios. The TKE to PKE ratio decreases from around 5 percent
to 2.5 percent between Le = 3.3 and Le = 4.0

Figure 6.13: Average OSI and TKE to PKE ratio for the aneurysm length ratios

and therefore probably stagnate the increase in OSI values. To still indicate a general trend conform the other

parameter ranges, a linear fit is also plotted indicated by a solid line.

Figure 6.13b shows the ratio of the turbulent kinetic energy and the periodic kinetic energy for the range

of aneurysm length ratios. The TKE to PKE ratio never reaches a value of zero, meaning that fully laminar

flow is never the case for any of the aneurysm length ratios as opposed to the mean Reynolds and Womers-

ley ranges. The first length ratio, corresponding with the standard case, has a TKE to PKE ratio of 5 percent.

Roughly the same amount of turbulent kinetic energy can be seen at the following length ratio, Le = 3.3. A

drop of the TKE to PKE ratio takes place at Le = 4.0 which continues and eventually stabilizes for the last two

aneurysm length ratios at a value of around 2.5 percent.
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6.2.4. DIAMETER RATIO

Pulsatile flow through five different aneurysm diameter ratios is simulated. Since the inlet diameter is the

same for all cases, but the diameter of the largest part of the aneurysm changes, it is not possible to retain the

exact shapes and angles at the divergent and convergent parts of the aneurysm. Note that the angle can also

influence the flow, especially regarding flow separation when entering the divergent part of the aneurysm.

The result for the OSI values at the aneurysm wall are presented in figure 6.14. The smallest diameter ratio

Figure 6.14: Oscillatory Shear Index (OSI) at the 4A wall for different diameter ratios. The overall axisymmetric structure of OSI bands is
maintained with increasing diameter ratios, although the bands are less sharply defined for the larger diameter ratios.

for Di = 1.81 shows sharp distinguishable axisymmetric OSI rings with well-defined edges. The divergent part

contains a gradient-like OSI value zone from relatively low OSI (0.3) to relatively high OSI (0.5). The conver-

gent part has alternating bands of high and low OSI values. Overall the structure of the axisymmetric OSI

value bands does not change significantly during the increase of the aneurysm diameter ratio.

Mean streamlines with OSI overlay

The streamlines, taken from the mean velocity vectors in the midplane with OSI overlay of the 4A for all

aneurysm diameter ratios are given in appendix A.5. The overlay for the smallest and largest 4A diameter
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ratio are shown in figure 6.15. For both cases the dark red, high OSI valued bands, correspond with the stag-

nation points of the vortices present in the aneurysm. However, for the smallest diameter the bands are more

Figure 6.15: OSI values overlaid on the mean streamlines for the smallest and largest aneurysm diameter simulated. The number of
vortices contained inside the aneurysm stays constant for all diameter ratios. The structure of axisymmetric OSI bands therefore mostly
remains the same.

distinct as opposed to the more diffuse bands for the largest diameter ratio. Taken over the range of all di-

ameter ratios, the amount of vortices present in the aneurysm does not change; three vortex structures can

be distinguished at all times, as can be seen in appendix A.6. Since these vortex structures do not change

significantly when changing the aneurysm diameter ratio, the OSI structure probably also remains largely

unchanged.

Average OSI and TKE to PKE ratio

Over the small range of aneurysm diameter ratios, the average OSI value decreases from 0.39 to around 0.37,

which corresponds with a decrease of about 5 percent with respect to the smallest aneurysm diameter ratio

case. With respect to the baseline OSI value of 0.35, the aneurysm diameter range decreases the average OSI

from around 11 to 6 percent. At the last, and largest diameter ratio, the average OSI has a small increase rel-

ative to the previous diameter. When decreasing the aneurysm diameter ratio even more than the smallest

case simulated here, the shape of the 4A will converge to a straight cylindrical pipe. The baseline OSI value

for a straight cylindrical pipe was around 0.35 and the general trend indicated by the linear fit is therefore not

assumed to continue when decreasing the aneurysm diameter ratio even further. At the smallest aneurysm

diameter ratio, the TKE to PKE ratio is zero, indicating that the flow for this diameter is almost completely

laminar. The shape of the 4A for the smallest diameter ratio is the closest to a straight cylindrical pipe, mak-

ing it more difficult for the flow to separate. When increasing the 4A diameter ratio, the TKE to PKE ratio starts

to increase until it reaches a value of about 5 percent for a diameter ratio of Di = 2.18, which is the standard
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(a) Average OSI plotted against aneurysm diameter ra-
tio. The linear fit indicates a general trend of decreas-
ing average OSI for increasing diameter ratio. When
the diameter ratio should approach 1, the average OSI
is assumed to yield the baseline value of 0.35.

(b) TKE to PKE ratio for aneurysm diameter ratios. The
smallest diameter ratio exhibits laminar flow due to a
TKE of zero. The TKE to PKE ratio jumps in average
OSI for the first cases, but stagnates at a value around
5% later on.

Figure 6.16: Average OSI and TKE to PKE ratio for the aneurysm diameter ratios

case. Increasing the 4A diameter ratio does not increase the TKE to PKE ratio very much. The top value is

reached at the largest aneurysm diameter ratio of Di = 2.55.
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6.2.5. OVERALL OSI DEPENDENCE

To summarize the OSI dependence on the different ranges all average OSI values are plotted in figure 6.17.

The individual ranges are normalized with the corresponding range values for the standard case; the mean

Reynolds number range is normalized with the standard case mean Reynolds number of Rem = 600, while

the Womersley range is normalized with the standard case Womersley number of Wo = 16.9 and so on. The

standard case therefore has a value of 1 when normalized in the plot and consists of four coinciding markers.

Figure 6.17 also shows linear fits through the data points in order to indicate general trends in the average

Figure 6.17: OSI dependence for all input parameters summarized in one plot. The standard case is located at a normalized param-
eter value of 1. The baseline OSI value of the straight cylindrical pipe is visualized by the horizontal dashed line at 0.35. The average
OSI generally increases with increasing Womersley number and aneurysm length ratio, while the average OSI generally decreases with
increasing mean Reynolds number and aneurysm diameter range.

OSI. The baseline OSI of 0.35 is plotted as reference point. As seen before, at the evaluation of the individual

ranges, the average OSI generally increases with increasing Womersley number and aneurysm length ratio.

The average OSI generally decreases with increasing mean Reynolds number and aneurysm diameter range.

It should be noted that the linear fits hardly represent the actual progress of the average OSI when varying the

parameter range. For example, the average OSI for the aneurysm length ratio seems to stagnate its increase

and will probable not increase for every larger aneurysm length ratio as the linear fit implies. Additionally, it

is assumed that the input parameters given here act independently, but is plausible that the input parameter

also interact with eachother through various mechanisms. For example, a high mean Reynolds number and

a large Womersley number implemented at the same time could generate a whole new regime of average OSI

values by means of their interaction.
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6.3. PATIENT-SPECIFIC ANEURYSM

Pulsatile blood flow is simulated in the patient-specific aneurysm at standard conditions: a mean Reynolds

number of Re = 600 and a Womersley number of Wo = 16.9. The instantaneous velocity magnitudes in the sev-

enth cardiac cycle are plotted for a sagittal cross section in figure 6.18 to visualize the general flow. The first

Figure 6.18: Instantaneous velocity magnitudes of the patient-specific aneurysm at different stages in the seventh cardiac cycle. At
Φ= 0.45 a jet is seen due to flow separation when entering the divergent part of the aneurysm.

two phases Φ = 0.05 and Φ = 0.25 show the the early systolic phase with some left over velocity magnitudes

from the previous cycle. At Φ= 0.3 the velocity inlet profile reaches its maximum velocity clearly seen by the
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dark red, high velocity streak in the inlet tubing. The velocity slows down during the decelerating systolic

phase forΦ= 0.35 and atΦ= 0.45. A jet of higher velocity is ejected into the aneurysm due to flow separation

when reaching the divergent part. Upon reaching the lowest velocity of the cardiac cycle, at Φ = 0.5, the jet

is seen to break down into smaller structures. During the diastolic phase at Φ= 0.7, Φ= 0.8, and Φ= 0.9 this

process continues, but does not dissolve the structures completely.

Vorticity and TKE

The periodic vorticity and turbulent kinetic energy are also depicted for the patient-specific aneurysm at se-

lected phase instances in figure 6.19. At the very beginning of the systolic acceleration forΦ= 0.25, some left

over vorticity from the previous cycle can bee seen in the beginning of the aneurysm. In the same phase, a lot

of residual TKE can be observed that is not the cause of local variations of the vortices. Skipping to Φ= 0.35,

the flow has just reached its highest inlet velocity and is already decelerating. The jet formed due to flow

separation can be spotted by the streaks of high vorticity that enter the aneurysm indicating the roll-up of the

separated boundary layer. Investigating the TKE at Φ= 0.5 reveals that these larger vortices are similar each

cycle due to the absence of TKE directly surrounding them. When the jet breaks up atΦ= 0.6, and nearly hits

the bottom aneurysm wall, high TKE values surrounding the vortices indicate variations in vortex paths and

strengths. Even when the vortical structures are losing strength at Φ= 0.8 the TKE still remains very present

and points out left-over turbulence similar to the results found by Poelma et al. [16].

OSI

The OSI values on the surface of the patient-specific aneurysm are plotted in figure 6.20. The left part shows

two sagittal views, and the right depicts an anterior and a posterior view of the same patient-specific aneurysm.

The axisymmetric bands of OSI values as in the 4A model are certainly no longer visible here in the patient-

specific aneurysm. Instead more or less randomly distributed streaks and patches of OSI values are visible.

6.4. COMPARISON OF PATIENT-SPECIFIC ANEURYSM AND 4A

Earlier in section 4.1.2 the geometry of the patient-specific aneurysm was already captured in single values

for the aneurysm length and diameter ratios, leading to values of Le ≈ 4.7 and Di ≈ 2.23. To compare the

results of the geometrical simplified model and the patient-specific aneurysm, the most comparable 4A ge-

ometry needs to be selected. Since the diameter ratio of 2.23 is the closest to the standard case geometry the

creation of a new geometry can be avoided. The patient-specific length ratio of Le ≈ 4.7 leads to the closest

comparable 4A model with a length ratio of Le = 4.6. Next to the geometrical parameters also the standard
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Figure 6.19: Periodic vorticity and turbulent kinetic energy in the mid-plane of the patient-specific aneurysm. The periodic vortivity
(left) shows the vortex structures that are identical each cardiac cycle. The turbulent kinetic energy (right) shows the energy contained
in the fluctuations that are different each cycle.

case mean Reynolds number of Rem = 600 and Womersley number of Wo = 16.9 are used in both the patient-

specific and the comparable 4A geometry. As already seen in figure 6.11 and figure 6.20, the OSI distribution

on the 4A wall versus the patient-specific are by no means similar. The axisymmetric rings of same-valued

OSI are absent for the patient-specific aneurysm. The perfect axisymmetric shape of the 4A geometry as op-

posed to the life-like irregular geometry of the patient-specific aneurysm probably lies at the root of the OSI

differences.
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Figure 6.20: OSI distribution on the surface of the patient-specific aneurysm shown by two sagittal views and a posterior and anterior
view. Axisymmetric rings as for the 4A, are no longer visible. Instead seemingly random patches and streaks of OSI reside on the surface.

(a) Streamlines taken from the mean velocity vector in
the mid-plane of the 4A with Le = 4.6. A large circu-
lation zone fills up the aneurysm. The center flow is
directed at the outlet.

(b) Mean streamlines for the patient-specific
aneurysm. The most striking difference with the
4A is the impingement of the jet leaving the inlet on
the bottom of the aneurysm wall.

Figure 6.21: Comparison of the mean streamlines of the 4A and the patient-specific aneurysm

Figure 6.21a and figure 6.21b show the streamlines calculated from the time-averaged velocity vectors for

the aneurysm length ratio of Le = 4.6 and the patient-specific aneurysm, respectively. At the patient-specific

aneurysm one can distinguish the recirculation zones due to flow separation at the top and the bottom of the

averaged jet leaving the inlet. A large difference between the compared results is that in the patient-specific

case the jet coming from the inlet tubing impinges on the bottom of the aneurysm wall creating an stagnation
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region. From the results of the 4A simulation cases, the high valued OSI streaks were usually spotted at stag-

nation points. Looking at the OSI values for the patient-specific aneurysm in figure 6.20, the location where

the averaged streamlines impinge do not show a dark red region. Even more, it is shown to have low OSI

values. The difference between the mean flow flowing directly from inlet to the opposite outlet in the 4A, and

the jet impinging on the aneurysm wall for the patient-specific aneurysm, raises the question if the angle of

incidence could also be of interest for aneurysm flow. The large differences in OSI values between the 4A and

the patient-specific aneurysm, lead to believe that real-life aneurysm flow is not captured by only the input

parameters regarded here. Additionally, the mechanism of high OSI valued regions at stagnation points does

not seem to hold for complex geometries, or is disturbed by another flow mechanism.

Lastly, the question arises if the OSI is an appropriate hemodynamic parameter to capture aneurysm flow in

simple model parameters. It is assumed from the difference of the 4A OSI and the patient-specific OSI, that

irregular changes in geometry have a large influence on the OSI and a more robust hemodynamic parameter

might therefore be in place.
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CONCLUSIONS & RECOMMENDATIONS

According to the simulation results of the OSI dependence on input parameters, simulation results of the

patient-specific aneurysm, and a comparison between those two, a couple of conclusions can be presented.

Next, some recommendations that could be worth investigating during future research are given.

7.1. CONCLUSIONS

• OSI dependence on input parameters for the 4A

The main objective of this project was to investigate the effect of changing input parameters on the

oscillatory shear index (OSI) in pulsatile blood flow through abdominal aortic aneurysms. Linear fits

through the data points obtained from each simulation indicate general trends of the average 4A OSI

behavior when changing the input parameters. These trends show that the average OSI increases for

increasing Womersley numbers and increasing aneurysm length ratios. The average OSI decreases for

increasing mean Reynolds numbers and increasing diameter ratio. The surface-averaged OSI decreases

15 percent over the mean Reynolds number range of 300 ≤ Re ≤ 1200, the surface-averaged OSI in-

creases 16 percent over the Womersley number range of 15.1 ≤ Wo, α ≤ 27.7, the surface-averaged OSI

increases 11 percent over the aneurysm length ratio range of 2.6 ≤ Le ≤ 5.3, and the surface-averaged

OSI decreases 5 percent over the aneurysm diameter ratio range of 1.81 ≤ Di ≤ 2.55. According to these

percentages, the flow parameters mean Reynolds number and Womersley number have the largest im-

pact on the average OSI values.

• High OSI at stagnation points of mean vortex structures for the 4A

The axisymmetric and alternating OSI value rings residing on the 4A surface emerge from the under-

lying mean vortex structures that arise in the aneurysm. The number of vortices or circulation zones

form the basis of this banded axisymmetric structure. Axisymmetric regions of high OSI seemingly arise

at stagnation points, where there is variation of the direction of the wall shear stress vector due to the

77
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slightly different realizations in the stagnation points of the mean vortex structures at the wall. High

valued OSI rings do always seem to arise at the stagnation points, but it is not a required condition

for high OSI values; high OSI values also can emerge on location that are not corresponding with stag-

nation points implying that high OSI is also caused by another mechanism than variations of the wall

shear stress direction of the mean vortex structures.

• Mean Reynolds number and Womersley number have the largest influence on OSI for the 4A

The flow parameters have a more significant influence on the OSI distribution for the 4A than the ge-

ometric parameters, disregarding the differences in ranges and number of simulations performed per

range. When elongating the aneurysm length ratio, the middle aneurysm section begins to expand

to a long straight cylindrical pipe. Since the flow now has time to become fully developed, the wall

shear stress vector at the aneurysm wall is fluctuating less heavily, resulting in an lower average OSI.

Increasing of the aneurysm diameter ratio is shown to have little effect on the number and configu-

ration of the mean vortices residing in the aneurysm. The stagnation points can shift around slightly,

but since the vortex dynamics does not change in general, the average OSI is not largely influenced. In

other words: aneurysm diameter ratio has relatively little effect on the OSI, since the vortex dynamics

changes marginally when changing the diameter ratio.

• Surface-averaged OSI for the 4A has an inverse relation with TKE to PKE ratio

The surface-averaged OSI seems to have, according to rough linear trends, an inverse relation to the

ratio of turbulent kinetic energy (TKE) to periodic kinetic energy (PKE). Leading to the assumption that

the cause of high OSI is to be found in the periodic flow component instead of the fluctuating compo-

nent that is different each cardiac cycle. Beforehand, it was assumed that these turbulent fluctuations

would cause higher OSI values due to a more fluctuating wall shear stress vector distribution. It should

be noted that this inverse relation is not explicitly shown to be in effect, but is noticed when comparing

the average OSI values and the TKE to PKE ratio for the different input parameter ranges.

• Current input parameters insufficient

The comparison between the 4A and patient-specific aneurysm model leads to the believe that the

selected input parameters, the mean Reynolds number, the Womersley number, the aneurysm length

ratio, and the aneurysm diameter ratio, not yet can fully capture the blood flow through a patient-

specific aneurysm when regarding the OSI as hemodynamic parameter of choice. High OSI values do

not arise at stagnation points in the patient-specific aneurysm as evidently as they do for the 4A.
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7.2. RECOMMENDATIONS

• Interdependency of input parameters

The different input parameter ranges are all simulated and investigated independently of each other;

when changing one input parameter the rest was fixed at the standard case scenario. However, are

probably not completely independent. During exercise, for example, cardiac output and heart rate usu-

ally both increase at the same time, meaning that the mean Reynolds number and Womersley number

could be dependent. It is of course also logical that combinations of different aneurysm length and di-

ameter ratios can exist simultaneously. It would be interesting to investigate these dependent relations

and especially focus on the dependence between mean Reynolds number and Womersley number,

since they have shown a relatively large influence on average OSI values.

• Additional input parameters of importance

Other input parameters that are important for pulsatile blood flow through aneurysms might be over-

looked. An indication is already given about the angle of incidence of the blood flow entering the

aneurysm and impinging the aneurysm wall. A more extensive study on the effects of other relevant

input variables could be of interest. Perhaps 3D aneurysm models with inlets and outlets not directly

opposite to each other could be modeled by implementing an separation angle.

• More appropriate hemodynamic parameters than OSI

The cause for the dissimilar results between the 4A and the patient-specific aneurysm could also be the

cause of the hemodynamic parameter used in this project: the OSI. The OSI has shown to be sensitive

to geometrical irregularities. Other hemodynamic parameters could be regarded as to search for a more

robust parameter that could indicate a more general flow description that can be used in correspon-

dence with the more abstract model and indicate aneurysm rupture or growth more generally.

• Importance of periodic versus fluctuating mechanisms

Since there seems to exist an inverse relation between the average OSI and the turbulent kinetic energy

per periodic kinetic energy, it would be interesting to investigate the importance of the periodic and the

turbulent flow characteristics and their balance. A first and most obvious approach would be to also

decompose the OSI into a mean, periodic, and fluctuating components. Another method of choice

could be principal component analysis or POD. POD is a statistical method that points out the time-

independent flow patterns that contain a lot of energy. More insight could be achieved on what is the

most important mechanism for wall shear stress fluctuations at the artery wall.
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A.1. INLET PROFILE UDF FOR STANDARD CASE

#include "udf.h"

#define pi 4*atan(1)
#define R 11e-3
#define mf 2.9772
#define T 0.8
#define A pi*pow(R,2)

DEFINE_PROFILE(x_velocity,t,i)
{

real pos[ND_ND], y, z, r, time, q, umax;
face_t f;

begin_f_loop(f,t)
{

F_CENTROID(pos,f,t);
time = CURRENT_TIME;
y = pos[1];
z = pos[2];
r = sqrt(pow(y,2) + pow(z,2));

q = 5.7707 +\
5.7439*cos(2.*pi*1.*(time/T) - 2.2214) +\
5.2869*cos(2.*pi*2.*(time/T) + 1.9232) +\
4.6235*cos(2.*pi*3.*(time/T) - 0.2006) +\
2.1714*cos(2.*pi*4.*(time/T) - 2.3405) +\
1.3435*cos(2.*pi*5.*(time/T) + 2.8339) +\
1.2711*cos(2.*pi*6.*(time/T) + 1.0875) +\
1.5537*cos(2.*pi*7.*(time/T) - 0.8632) +\
1.0586*cos(2.*pi*8.*(time/T) - 3.1250) +\
0.6109*cos(2.*pi*9.*(time/T) + 1.5654) +\
0.5080*cos(2.*pi*10.*(time/T) + 0.1822) +\
0.7770*cos(2.*pi*11.*(time/T) - 1.8666) +\
0.6569*cos(2.*pi*12.*(time/T) + 2.1061) +\
0.4597*cos(2.*pi*13.*(time/T) + 0.1344) +\
0.2820*cos(2.*pi*14.*(time/T) - 1.4256) +\
0.3636*cos(2.*pi*15.*(time/T) + 3.0315) +\
0.3414*cos(2.*pi*16.*(time/T) + 0.8361) +\
0.3171*cos(2.*pi*17.*(time/T) - 1.3357) +\
0.1604*cos(2.*pi*18.*(time/T) + 2.8307) +\
0.1001*cos(2.*pi*19.*(time/T) + 1.1774);

q = (6./3.)*q;

umax = (6.*q*1e-6*mf)/(5.*A);

F_PROFILE(f,t,i) = umax*(1. - pow(r/R,10));
}

end_f_loop(f,t)
}
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A.2. INLET PROFILES

Figure A.1: Development of streamwise velocity profiles at different streamwise locations
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A.3. OSI AND STREAMLINES OVERLAY FOR MEAN REYNOLDS NUMBERS

Figure A.2: Axisymmetric OSI on streamlines overlay for range of mean Reynolds numbers
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A.4. OSI AND STREAMLINES OVERLAY FOR WOMERSLEY NUMBERS

Figure A.3: Axisymmetric OSI on streamlines overlay for range of Womersley numbers
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A.5. OSI AND STREAMLINES OVERLAY FOR LENGTH RATIOS

Figure A.4: Axisymmetric OSI on streamlines overlay for range of length ratios
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A.6. OSI AND STREAMLINES OVERLAY FOR DIAMETER RATIOS

Figure A.5: Axisymmetric OSI on streamlines overlay for range of diameter ratios
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