Abstract—Comprehension of aesthetical color characteristics based on a computational model of visual perception and color cognition are presented. The computational comprehension is manifested by the machine’s capability of instantly assigning appropriate colors to the objects perceived. They form a scene with aesthetically pleasing characteristics. The present approach to computational cognition is principally the same as contrived earlier [1]. This work distinguishes itself from the earlier work through the involvement of color differences. The color difference computations are carried out based on a standard human color observer model. The color difference information is combined with geometric perception information using the method of fuzzy neural tree based on likelihood. The study exemplifies the suitability of the computational cognition for modeling cognition phenomenon. Cognitive color perception in computational form has generic relevance to applications involving human-like aesthetical appreciation, as is the case in computing; genetic algorithm; fuzzy neural tree; auto-association.

Keywords—visual perception; color difference; cognitive computing; genetic algorithm; fuzzy neural tree; auto-association

I. INTRODUCTION

When a human being has experience with solving problems in a certain field, for instance his professional area, then his cognition is developed in this area. Cognition is to form a situated right strategy that requires some form of abstraction and optimization. Comprehension is the detailed abstraction and instantiation of cognition. The more thorough the comprehension of the task, the more one will be able to provide best solution with minimal reasoning effort involved. That is, the response arises spontaneously in one’s mind without explicit remembrance of the concepts one had to familiarize oneself with, when one was not yet an experienced professional. This description, albeit one could hardly disagree with it based on common experience, does entail two significant problems. The first problem is to specify what is meant by the terms cognition and comprehension with minimal ambiguity. The second problem is to explain, how cognition and comprehension are accomplished, so that they yield a spontaneous, best reaction even in complex task contexts. Both issues are addressed in this study, presenting a computational cognition and comprehension approach, and employing it for a task described below that traditionally defies analysis, since, by definition, this task minimally involves abstractions in the form of linguistic concepts. The task is to comprehend the color aesthetics of a scene through visual perception. The comprehension entails the relations among geometry of environment, viewpoint, color of objects, perception of a scene, and aesthetical quality, so that human, when faced with an arbitrary color composition for the scene, is able to spontaneously propose modifications to the colors of the objects converting a non-aesthetical scene to an aesthetical one. This is one of the remarkable capabilities of human designers, and its computational reproduction is the aim of this work.

It is to emphasize that it is difficult to model cognition and comprehension, in particular in the domain of aesthetics. A judgment stemming from aesthetical comprehension appears to directly emanate from the perception act itself, i.e. without trace of intermediary reasoning and without reference to purpose [2-6]. Although the traditional consensus about this generic character of aesthetics in the literature may be considered as an insight into the topic, nevertheless it implies a severe challenge for modeling of the cognitive phenomenon. One possible direction one can think of to deal with the issue, is to develop non-parametric models of the relationship between a set of features of objects and an aesthetics label associated with the objects, e.g. [7]. A flavor of associated persistent issues in such data-driven modeling approach can be obtained from the literature review [8]. A second direction to deal with the aesthetical cognition modeling problem is to develop theoretical measures of aesthetics and to restrict the purpose of experiment to the validation of the measures [9-12]. Complexity has been considered as a property responsible for aesthetics, where generally high complexity of an object is deemed to yield high aesthetical appreciation of the object. An early work taking this view is due to Birkhoff [7]. The dependence of aesthetics and complexity, however, appears questionable noting the abundant existence of aesthetical objects possessing high, as well as medium, or low complexity.

The present approach to computational cognition is principally the same as given earlier [1]. This work distinguishes itself from the earlier work through the involvement of color. The details of the research will be given in sections II and III. Color difference computations are carried out based on a standard human color observer model [13], and the color difference information is combined with geometric perception information using the method fuzzy neural tree based on likelihood [14]. Invoking the perception computations, the cognition is established by evolutionary computation and brought into refined form through auto-associative radial basis function network (RBF). The validity of the resulting cognitive color perception is verified by computer experiments.
The organization of the paper is as follows. In section II the visual perception, as well as abstraction processes involved in the color cognition are described. In section III a schematic overview of the computational cognitive color perception is given. In section IV the color cognition and comprehension computations are presented. Their validity is verified by computer experiments in section V. This is followed by conclusions.

II. PERCEPTION AND ABSTRACTION IN COLOR COGNITION

A. Perceiving objects and scene

We consider a scene consisting of several objects numbered from 1 to n that has been perceived by an observer. The likelihood an object has been perceived depends on the fulfillment of two conditions. One condition is the object occupies the observer’s visual scope. Omitting color considerations, in [15] perception is modeled as a probabilistic event, obtained via the integral of a probability density that is given per unit solid vision angle. The probability density models visual attention paid by the observer for objects within his visual scope. In the present work a likelihood approach to perception is taken [16]. We consider the likelihood the object has been perceived due to its geometric properties, and we denote it by \(L_c \).

The second condition for perceiving an object is that its color should differ from the color of its background. A model of human color difference assessment is given in [13] in the form of a space known as the C.I.E. 1976 \(L*a*b* \) color space (CIELAB) having the dimensions \(L^* \), \(a^* \), and \(b^* \). A color is represented by a point in this space. The CIELAB space is based on the standard observer model described in [17], the standard illuminants described in [18], and the experimentally obtained color matching functions given in [19]. The space is approximately perceptually uniform. This means the magnitude of a difference between two colors is given by the Euclidian distance

\[
\Delta E_{ab} = \sqrt{(L_2-L_1)^2 + (a_2-a_1)^2 + (b_2-b_1)^2}.
\]

Although the relative color difference is a deterministic quantity, it is by all means to be an essential probabilistic measure of color perception, and therefore it is considered to be as likelihood. It conforms to all the conditions to be a likelihood [20]. It is the likelihood an object is perceived due to color difference. We denote this likelihood by \(L_{ab} \) and define it by

\[
L_{ab} = \frac{\Delta E_{ab}}{\Delta E_{ab, max}} = \frac{\sqrt{(L_2-L_1)^2 + (a_2-a_1)^2 + (b_2-b_1)^2}}{\sqrt{(L_{max}-L_{min})^2 + (a_{max}-a_{min})^2 + (b_{max}-b_{min})^2}}.
\]

The output neuron of a fuzzy neural tree is termed as root node, denoted by \(\theta \). The inner nodes providing the input to the root node are instances of \(L_j \) in (5). They are termed as penultimate nodes and denoted by \(L_k \). \(\theta \) is obtained via the weighted summation in (6), which represents the final defuzzification of the information processed through the neural tree.

\[
O = \sum_{i} w_i L_{ai}, \quad \sum_{i} w_i = 1
\]

In (6) \(n \) denotes the number of scene objects. In the absence of a priori preferences among scene objects, an important weight vector \((w_1, w_2, \ldots, w_n) \) is the one that is aligned to the feature vector \((L_1, L_2, \ldots, L_n) \). It maximizes the output of the defuzzification operation with the fuzzy logic principles, taking the information from each input into account commensurate with the information’s relative fuzziness. That is, the influence of a root node’s input on the node’s output is proportional to the likelihood associated with the input, namely \(w_k = c L_k \), \(\forall k \in \{1, 2, \ldots, n\} \) where \(c \) is a scale factor and a constant. The aligned defuzzification corroborates with common human vision experience. An object’s attributes influence the perception of a scene’s attributes proportional with the perception of the object. Fulfilling the conditions of defuzzification, \(c \) is to be selected in such a way that the components of \(\mathbf{w} \) sum up to modeled by a fuzzy neural tree (FNT) method [14]. In FNT the output of \(i \)-th terminal node is denoted \(y_i \) and it is introduced to a non-terminal node; the output of \(i \)-th non-terminal node is denoted \(O_i \) and it is introduced to another non-terminal node. The detailed schemes of node connections are illustrated in the earlier publication, where the connection weights between two nodes are denoted by \(w_{ij} \) for both connection cases. In the neural network terminology \(w_{ij} \) is the synaptic strength between the neurons. The node outputs of a FNT have interpretation as likelihood. Accordingly a weight \(w_{ij} \) is shown as the likelihood parameter \(\theta_i \) and the output of an inner node \(j \) that is denoted by \(O_j \) in the earlier publication is shown as \(L_j \) in the following equations and figures. Let us consider a non-terminal node \(j \) that has two inputs, which are the outputs of two previous nodes denoted by \(O_1 \) and \(O_2 \). As the two inputs to a neuron are assumed to be independent of each other, the fuzzy memberships at the inputs can be thought to form a joint two-dimensional fuzzy membership. In this case \(L_j \) is computed by

\[
L_j = e^{-\frac{\sigma^2}{2\sigma_j^2}(a-1)^2} e^{-\frac{\sigma^2}{2\sigma_j^2}(b-1)^2}
\]

where \(\sigma_j \) is a constant, maximizing satisfaction of the consistency condition of possibility theory. For the two-input case \(\sigma_j = 0.299 \). The likelihood parameters \(\theta_1 \) and \(\theta_2 \) are selected commensurate to the amount of information conveyed via the respective connections. This is done in accordance with Shannon’s information theorem. Further, the likelihood parameters must sum up to unity for defuzzification in the rule-chaining process from node to node. Due to these stipulations, the likelihood parameters in (2) are given by

\[
\theta_1 = \frac{1-O_1}{1-O_1+1-O_2}, \quad \theta_2 = \frac{1-O_2}{1-O_1+1-O_2}
\]

so that (4) becomes

\[
L_j = e^{-\frac{(1-O_1)^2}{2\sigma_j^2}(a-1)^2} e^{-\frac{(1-O_2)^2}{2\sigma_j^2}(b-1)^2}
\]

The output neuron of a fuzzy neural tree is termed as root node, denoted by \(\theta \). The inner nodes providing the input to the root node are instances of \(L_j \) in (5). They are termed as penultimate nodes and denoted by \(L_k \). \(\theta \) is obtained via the weighted summation in (6), which represents the final defuzzification of the information processed through the neural tree.
unity as stipulated in (6). In this case the root node output becomes
\[O = \sum_{i=1}^{n} L_i \]
(7)

Based on the above considerations, the FNT to compute perception is shown in figure 1.

![Fuzzy neural tree for perception of a scene](image)

Each inner node is associated to one scene object, and it has two inputs that are the likelihoods given by (1) and (3). Analog to (4) the likelihood parameters of the perception FNT are given by
\[\theta_p = \frac{1 - L_p}{(1 - L_p) + (1 - L_o)} \]
(8)
\[\theta_o = \frac{1 - L_o}{(1 - L_o) + (1 - L_p)} \]
(9)
The output of an inner node of the FNT represents the likelihood the associated scene object has been perceived. We denote the likelihood of perception of \(L_p \). Due to (5) \(L_p \) is obtained by
\[L_p = L_o \left(\theta_p \right) L_p \left(\theta_o \right) \]
\[= e^{-\frac{1}{2\sigma^2} \left[\frac{1}{L_p - 1} \right]^2 \left[L_o - 1 \right]^2} \]
\[e^{-\frac{1}{2\sigma^2} \left[\frac{1}{L_p - 1} \right]^2 \left[L_o - 1 \right]^2} \]
(10)
The root node output of the perception FNT models the perception of the scene, which is the probability the scene has been seen. It is denoted by \(P \). Analog to (7) \(P \) is obtained via aligned defuzzification of the objects’ perception likelihoods given by
\[P = \sum_{i=1}^{n} \left(\frac{L_i}{\sum_{i=1}^{n} L_i} \right)^2 \]
(11)

B. Perceiving chromatic properties of objects and scene

Next to perceiving objects and scene, i.e. noticing their existence, in an aesthetical judgment on the scene’s color, the color parsimony of objects and hence of the scene is a relevant quantity [16]. \textit{CIE Lab Chroma}, denoted by \(C_{ab} \), is defined as the Euclidian distance of a color from the lightness axis \(L' \) in the perceptually uniform CIELAB space \(C_{ab} = \sqrt{a^2 + b^2} \) [13]. The chromatic aspect of color parsimony of an object is defined in this work as the likelihood a color has few chroma. It is denoted by \(L_{C_{ab}} \) and given by
\[L_{C_{ab}} = 1 - \frac{C_{ab} - C_{ab, min}}{C_{ab, max} - C_{ab, min}} = 1 - \sqrt{\frac{a^2 + b^2}{a_{max}^2 + b_{max}^2}} = 1 - \frac{a^2 + b^2}{a_{max}^2 + b_{max}^2} \]
(12)

In the ensuing computer experiments in this work \(C_{ab, max} = \sqrt{a_{max}^2 + b_{max}^2} = 134 \), which is determined by the gamut of the computer monitor. The second condition to fulfilled at the same time is an object’s \(L' \) component should be equal to scene’s aethetisal reference lightness value denoted by \(L'_{ref} \). The lightness of a white reference object has the maximal lightness value, \(L'_{max} = 100 \) [13]. Pitch black color has the minimum lightness value, \(L'_{min} = 0 \). The likelihood, the observer perceived an object’s lightness to be the same as the scene’s reference lightness, is denoted by \(L_{L'} \) and given by
\[L_{L'} = 1 - \frac{L' - L'_{ref}}{L'_{max} - L'_{min}} \]
(13)

Based on the above considerations the fuzzy neural tree for color parsimony is shown in figure 2. Each inner node is associated to one scene object, and it has two inputs that are the FNT terminal nodes given by (12) and (13). Analog to (4) the likelihood parameters of the color parsimony FNT are given by
\[\theta_{C_{ab}} = \frac{1 - L_{C_{ab}}}{(1 - L_{C_{ab}}) + (1 - L_{C_{ref}})} \]
(14)

![Fuzzy neural tree for perceived color parsimony of a scene](image)

The output of an inner node of the FNT represents the likelihood the associated scene object is achromatic and while having the same lightness as the reference \(L'_{ref} \). We term this quantity as the \textit{likelihood of color parsimony} and denote by \(L_{C_{ab, ref}} \). Due to (5) it is obtained by
\[L_{C_{ab, ref}} = L_o \left(\theta_{C_{ab}} \right) L_p \left(\theta_{C_{ab}} \right) \]
\[= e^{-\frac{1}{2\sigma^2} \left[\frac{1}{L_{C_{ab, ref}} - 1} \right]^2 \left[L_o - 1 \right]^2} \]
\[e^{-\frac{1}{2\sigma^2} \left[\frac{1}{L_{C_{ab, ref}} - 1} \right]^2 \left[L_o - 1 \right]^2} \]
(16)

The root node output of the color parsimony FNT models the perception of the chromatic properties of the scene. It is de-
noted by $\mathbb{P}_{c_{Gt}^L}$ and obtained via aligned defuzzification of the color parsimony and lightness conformity likelihoods given by

$$
\mathbb{P}_{c_{Gt}^L} = \sum_{i=1}^{n} \frac{1}{w_i} \mathbb{L}_{c_{Gt}^L} = \sum_{i=1}^{k} \frac{1}{L_{p}^L} \mathbb{L}_{c_{Gt}^L}
$$

(17)

Where the parameter n denotes the number of scene objects. One notes that in (17) the vector \mathbf{w} is not aligned to the vector $(L_{c_{Gt}^L}, L_{c_{Gt}^L}, \ldots, L_{c_{Gt}^L})$ consisting of the objects’ color parsimony likelihoods from (16); but it is aligned to the vector $(L_{p,1}, L_{p,2}, \ldots, L_{p,n})$ consisting of the objects’ perception likelihoods from (10). This is done so that an objects’ chromaticity influences the perception of a scene’s chromatic properties commensurate with the object’s likelihood of perception [16].

III. OVERVIEW OF THE COGNITIVE COLOR PERCEPTION MODELING

Establishment of cognition in computational form is initiated in this work by multiobjective evolutionary search. The resulting non-dominated parameters form the basis for color cognition, as they are considered to be representatives of the smooth continuum of relationships among them. The relationships are stored in an auto-associative radial basis function network (RBF), which provides the actual continuum. This is the basis of computational cognition considered in the present work, and its formation is schematically shown in figure 3. The inputs are color components assigned to the scene objects and specified in red, green, blue (RGB) color space, and they are converted to $L'\alpha'\beta'$ color coordinates as indicated in the figure. The evolutionary search is guided by consecutive instantiation, perception and abstraction processes that are repeated multiple times, providing the feedback that drives the evolutionary process. The result of the search is a set of solutions that are conforming to the abstractions in Pareto optimal sense. In contrast to conventional multiobjective optimization occurring without reference to cognition, in computational cognition, the selection of a solution among the Pareto optimal ones for execution is not merely based on the objective function values of the solutions, but it also include consideration of detailed features of the solutions. In the present case of color cognition, these features are the detailed components of a color, such as amount of red, green and blue light that constitute the color. In the figure, instantiation refers to the assignment of possible colors to the objects of a scene.

IV. MULTIOBJECTIVE SEARCH & AUTOASSOCIATION FOR AESTHETICAL COLOR COGNITION

A. Multiobjective Evolutionary Search for Color Cognition

As described in [16] a certain color composition of a scene should be termed as aesthetical, when it fulfills the following condition for a certain $L_{r} \in \{L_{r}^*: 0 \leq L_{r}^* \leq 100\}$. There exists no other color composition for this scene that at the same time yields a greater scene perception \mathbb{P} AND greater color parsimony $\mathbb{P}_{c_{Gt}^L}$. In the special case that $L_{r}^* \approx 100$, then the aesthetics is of beautiful kind; when $L_{r}^* = 0$ then it is of sublime kind. The condition described is the non-dominance criterion used in Pareto-based multi-objective optimization, when (11) and (17) are considered as two objectives subject to simultaneous maximization. The optimization should be carried out by a stochastic optimization algorithm due to the nonlinearity involved in the objectives. In this work we use an evolutionary algorithm to find Pareto front of aesthetical color compositions for a certain scene. The details of the scene will be addressed in the ensuing sections. For now we concentrate on the general role Pareto optimal solutions play in cognition formation.

Pareto front for the aesthetical perception problem is shown in figure 4a for the case of beautiful color compositions, and in figure 4b for the case of sublime color compositions.

![Fig. 4. Pareto front of beautiful color compositions where $L_{r}^* = 100$ (a); of sublime color compositions where $L_{r}^* = 0$ (b)](image)

As to multiobjective optimization, selection of a solution among the Pareto solutions is generally due to considerations in objective function domain exclusively. In contrast to this, in cognition, selection among non-dominated solutions is due to preferences for specific combinations of decision variable values. That is, cognitive considerations concern the decision variable domain. Systematic selection of one of the Pareto...
solutions found by an appropriate search method due to preferences in the decision variable domain is defined as computational cognition in this study [22]. Cognition can lead to comprehension, when the relationship pattern inherent to the restricted number of non-dominant solutions is generalized in such a way, that it encompasses a theoretically infinite number of hitherto unknown non-dominated solutions.

B. Cognitive Perception by Autoassociative Radial Basis Function Network

From the Pareto optimal solutions, cognitive color perception is obtained by establishing the autoassociative radial basis function (RBF) network seen in figure 5.

This network is referred to as perceptual cognitive network. Autoassociation implies that the input and output vectors are identical, each consisting of chromaticity coordinates associated with every object of the scene. Due to the present computer implementation, the chromaticity is expressed by red (R), green (G), and blue (B) coordinates in the standard RGB (sRGB) color space [23]. The subscript at each coordinate indicates the scene object it belongs to. The network is trained by data pairs respectively formed by each Pareto solution vector and a duplicate of it. Clearly, due to the training, a non-dominated vector at the model input is to produce an exact copy of itself at the model output. The essential contribution of cognitive perception is that for a dominated input vector it produces an output that is also nearly non-dominated. The naturally high number of hidden layer neurons of the network ensures that the difference between input and output vector is desirably small at the same time. Through the network training the explicit abstract conditions to be fulfilled have been converted into relations among the decision variables, so that their presence became implicit. The effect of cognitive perception during the pursuit of an aesthetical color composition is shown in figure 6. The Pareto frontier implies a hypersurface in the decision variable space [22], which is the color space in our case. Namely from a desired solution D that is located at some distance from the Pareto frontier, comprehension produces solution C that is near to the Pareto front nearby P. This models the common observation that human with established cognition rarely displays suboptimal behaviour. Manifestations of cognition generally satisfy a second condition; namely the resulting solution minimally differs from the corresponding stimulus in the decision variable domain, i.e. in color space. Indications of this characteristic of cognition can be found in human behavior. For instance an architect generally makes relatively small modifications to his design at every creative step during the design process. Yet, with every step he aims to maximally improve the design’s performance with respect to the objectives. The perceptual cognitive network by RBF displays similar behavior as follows. We consider a suboptimal response D that is obtained by modifying a few x values of a non-dominated solution P. This is shown in figure 7a, in the three-dimensional space formed by a subset of the decision variables.

One notes that we consider the difference between D and P to be exclusively with respect to the three decision variables that form the space in figure 7a, while for the remaining 12 decision variables $R_{s1w}, G_{s1w}, \ldots, B_{c1t}$ solution D and P are considered to have identical values. Figure 7b shows the same solutions in the space formed by two exemplary decision variables and the first objective, given by (11). Figure 7c shows them in the space formed by the same two exemplary decision variables and the second objective, given by (17). Stimulating the cognition network by D then the solution C produced at the network output is bound to be similar to P in terms of their x data vectors as seen in figure 7b and 7c. This behavior is due to the multi-dimensionality of the dataset, where the autoassociative relation is established via combinations among all input variables as seen in figure 5. This is illustrated in figure 7a by the ellipsoids representing the multidimensional Gaussian basis functions of the cognition network. Point D is represented chiefly by the basis function belonging to point P, and two aesthetical solutions $A2$ and $A3$ that are the Pareto points with greatest affinity to D in the decision variable domain. As many decision variables values are identical to P, only slight movement away from D in the multi-dimensional space suffices to produce a solution with significantly different objective function values. With respect to the objective function domain, the response C will be close to the location of P on the Pareto front as shown in figure 6. This is due to the local representation nature of the radial basis functions, which ensures that the population members that are near to the original point P in the multi-dimensional response space are commensurately more effective in representing C [1].
V. COMPUTER EXPERIMENTS

The above theoretical considerations are verified by means of computer experiments. An architectural scene is considered consisting of the following five objects: a wall oriented approximately perpendicular to the central perception direction and referred to as frontal wall; a wall oriented laterally to the perception direction and referred to as side wall, a floor, a ceiling and a column. For this scene a Pareto front of aesthetic color compositions is obtained using a multiobjective genetic algorithm based on non-dominated sorting [24]. The decision variables are 3 chromaticity coordinates per object, namely the red (R), green (G), and blue (B) variables specifying the object’s color in the standard RGB (sRGB) color space. The variables are the same as those used in the network in figure 5. The problem is maximizing (11) and (17) where \(L' = 100 \) in (14). This means beautiful color combinations are sought. In the genetic search the population size is 300, and the algorithm parameters are set to standard values. Among the resulting 300 Pareto solutions 26 are used for the perceptual cognitive network training, where the sigma of the radial basis functions is set to \(\sigma = 1.04 \). The selection of the 26 training samples is based on having sufficient diversity in the data for effective network training. Using the trained perceptual cognitive network, two sets of experiments are carried out in the following subsections. One notes that the colors in ensuing figures depicting the architectural scene subject to cognitive perception analyses are bound to appear somewhat incorrect in printed copies of the paper. This is due to the restricted color space gamut of printing process compared to that of electronic representation on computer screen. One also notes that the field of view of the virtual camera, from which the pictures in the figures were rendered, matches the scope of the probabilistic vision model that was used to establish the cognitive color perception for the experiments.

A. Experiment Set Nr. 1: Behavior for randomized stimuli

The first set concerns the general behavior of the perceptual cognitive network for partly or totally random stimuli shown in figures 8-11. The figures include the objective function space, respectively labeled as figure (a) and (b), where the Pareto optimal solutions are displayed by means of black colored, small dots.

a.) Injecting random color values to the existing Pareto set

Figure 8a shows modified versions of the 300 Pareto solutions that are referred to as perturbed Pareto solutions in this and subsequent figures. In the figure, for each Pareto solution, the green color component of the front wall, the red component of the floor, and the blue component of the column are replaced by a random value. The corresponding variables are denoted by \(G_{fw} \), \(R_f \) and \(B_{col} \) in figure 5. The random values are generated within the boundaries specified by the minimum and maximum values in the Pareto set for the respective variable. From figure 8a it is seen that the random injection causes most of the Pareto solutions to deviate from their original location on the Pareto front, and the deviation is most severe in the region of high color parsimony. The 300 perturbed solutions are used as input to the cognitive perception network, and the 300 solutions produced by the network are shown in figure 8b. From the figure it is seen that those solutions that deviated significantly from the Pareto front are brought close to the front, so that all solutions resulting from the perceptual cognitive network are nearly non-dominated. Figure 8c and 8d show one of the perturbed solutions in figure 8a and its cognitive perception counterpart in figure 8b respectively. The solutions are marked by a diamond shape in figures 8a and 8b. Figure 8e shows the difference between the solutions in figures 8c and 8d as to the decision variable values (e).

Figure 9 shows a second experiment based on another set of perturbed solutions. This time for each solution, the green component of the front wall, red component of the floor, and blue component of the column are replaced by a random value. So, compared to the privous experiment, instead of the green component of the column the blue one is modified. The respective variables are denoted by \(G_{fw} \), \(R_f \) and \(B_{col} \) corresponding to figure 5. Again the random values are generated within the boundaries specified by the minimum and maximum values in the Pareto set for the respective variable. Comparing figure 8a and 9a it is seen that the random injection causes less deviation from the Pareto front in the second experiment. This indicates that in this design problem, in order to reach an aesthetical scene, there is generally more tolerance about the blue component of the column compared to its green one. Using the perturbed stimulus, the output from the perceptual cognitive network is shown in figure 9b, demonstrating the method’s effectiveness also...
Pareto solutions where the color components Q_{FV}, R, and B_{min} in figure 5 have been replaced by random values (a); resulting solutions from cognitive color perception (b); one of the perturbed solutions (c) and its cognitive perception counterpart (d); comparison among the two solutions as to their decision variable values (e).

for this case. One notes from figures 8b and 9b that the region along the Pareto front, where the comprehension is most effective, remains the same as in the first experiment. Figure 9c and 9d show one of the perturbed solutions in figure 9a, as well as its cognitive perception counterpart in figure 9b respectively. Figure 9e shows the difference between the solutions in figures 9c and 9d as to the decision variables. From figure 9e one notes that through minimal modifications to the decision variables the cognition network manages to maintain the same intensity of perception while increasing the color parsimony of the scene. This is a complex accomplishment, as it involves multiple implicit reasons. The modest color difference between frontal wall and floor, despite the wall’s outstanding chroma, is increased by slightly reducing the green component of the frontal wall. A second positive effect of this modification is the increased color difference between column and wall. The ceilings redness is very slightly reduced without sacrificing the color difference with the sidewall, due to the sidewall’s existing redness. This permits reducing some greenness at the column, so that the modest blue-yellow difference of the scene is enforced.

b.) Cognition for random color stimuli generated within the Pareto set boundaries

In a third experiment, instead of merely three, all 15 components of the input vectors are randomized, abandoning the previous strong resemblance of the cognition stimulus to the Pareto optimal solutions. The only information used from the Pareto set are the 15 pairs of minimum and maximum values forming the set boundary in the decision variable domain, as the random vectors are generated within these boundaries. The random solutions are shown in figure 10a. As one should expect, among the random vectors almost none is close to the Pareto front. Using the random stimulus, the output from the perceptual cognitive network is shown in figure 10b. From the figure one notes that all of the random stimuli are brought close to the Pareto front by the perceptual cognitive network, manifesting the robust nature of the model, and explaining the same property of its actual counterpart. Considering the density of resulting solutions one notes that from most of the random stimuli the perceptual cognitive network produces solutions in the zone along the Pareto front, where color parsimony is rather low, while the scene perception is rather high. The cause of this behaviour lies in the nature of the aesthetical problem. One notes that it is more difficult to reach solutions having low chromaticity while minimally sacrificing perception intensity, compared to reaching solutions with high perception and some moderate chromaticity parsimony. This is because the conflict between the two dimensions is more ‘severe’ for the former condition compared to the latter. The severity is in the following sense. When an object has a certain color with low chroma, the region of other colors in the color space that also have a low chroma while yielding a high color difference with the first color at the same time, is relatively small. This is a property of the shape of the perceptually uniform CIE Lab space, and it originates in the pronounced metamerism of human vision nearby the color white [25]. In contrast, when the stipulation of low chromaticity is relaxed, then there exist a large amount of color combinations producing equally high contrast with a second color. Therefore solution density is generally significantly lower at the front’s extremity of high color parsimony, compared to the extremity of high scene perception. This character of the aesthetical problem should show up even more conspicuously, the less ‘Pareto-like’ a stimulus for cognition is. Before addressing this it is
noteworthy to mention that in contrast to the previous two experiments, although the solutions in figure 10b are near to the front, around the knee point of the front, they do not touch the front. This indicates that perceptual cognitive network created solutions that, from decision vector viewpoint, may have little in common with the original Pareto solutions. This is quite remarkable, since it shows that the perceptual cognitive network structure implies vast flexibility in reaching the goals at hand, and that in deed it did grasp the goals. This indicates the explanatory potential of the cognition model, as it provides a reproduction of the original, goal oriented character we commonly observe in human creativity. Figure 10c and 10d show one of the random scenes highlighted in figure 10a, as well as its cognitive perception counterpart in figure 10b respectively. Figure 10e shows the difference between the solutions in figures 10c and 10d as to the decision variables. Due to the cognition, the saturation of the column’s purple color is increased, and the blue components of both floor and ceiling are reduced. This yields several gains. First the color differences between column and floors as well as column and ceiling are increased. Second, the yellow aspect of floor and ceiling is pronounced. Therefore the ceiling and floor have a greater color difference with the two walls. The experiment exemplifies that even for a random stimulus; the network is able to maintain basic characteristics of the stimulus, such as the general hue pattern among the objects, while, through subtle modifications, it yields aesthetical enhancement.

In a fourth experiment the stimuli for the perceptual cognitive network are totally random color vectors, i.e. the boundaries for the random generator are taken to be utmost extensive, namely they are the boundaries of the RGB color space. The random stimuli are shown in figure 11a. The figure confirms the analysis in the previous paragraph, that encountering a solution with high color parsimony is a rarer event compared encountering a solution with high scene perception. The result produced by the perceptual cognitive network is shown in figure 11b. As in the previous experiment all solutions are close to the Pareto front, while the majority of solutions occur nearby the region of high scene perception and moderate color parsimony. One should stress the remarkable character of this result. Although the stimulus to color comprehension contains no information at all about Pareto optimal solutions, and partly is unknown to the network, cognition yields satisfactory results. Certainly, from practical viewpoint this behavior may not be valuable, since in general cognition is particularly concerned with the exact decision variable combination. However, from a theoretical viewpoint it substantiates the earlier indications, the cognitive perception modelling approach presented indeed does corroborate with the common manifestations of human cognition. The result gives an explanation, how it is possible that any perceptual stimulation of a developed human brain, even background noise, may be subject to conversion to a reasonable response. The quality of the conversion appears to be exclusively a matter of the degree, by which the brain embodies the required cognition in the form of applicable cognition network. For instance, a trained pianist is able to perform a piece while thinking of unrelated matters or not thinking at all. Based on this work we can assert that this ability is due to the large number of interconnections constituting the perceptual cognitive network, even considering a moderate problem having 15 input variables. Therefore, there are a great many of possible ways to imbue the non-dominance property into a stimulus, and as all the samples used to establish the cognition model are Pareto points, then any stimulus to the network will be represented by means of membership degrees from Pareto points. Therefore a response by the cognitive output is bound to conform to the Pareto front [22]. This property of the model sheds some light on the enigmatic coincidence of immediacy and approximate adequacy that characterizes a creative act, as it occurs for instance during the early phase of design, planning, or art creation. Figure 11c and 11d show one of the random scenes in figure 11a, as well as its cognitive perception counterpart in figure 11b respectively. Figure 11e shows the difference between the solutions in figures 11c and 11d as to the decision variables. Comparing figures 10e and 11e, one note that the cognition network modifies the stimulus more drastically in the latter case in order to reach aesthetical scene, as one may expect. However, comparing figures 11c and 11d one notes that the response still maintains some characteristics of the scene, namely aspects of the basic hue pattern. The results confirm corroboration of the model with the behaviour manifested by design professionals.

B. Experiment Set Nr. 2: Detailed Analyses of the Color Comprehension

The second set of experiments concerns analyses of the comprehension mechanism in detail, namely verifying its effect on the decision variables. More precisely, the theoretical considerations illustrated in figure 7 are verified. For a small modification of a Pareto solution’s decision variable values, the
resulting solution should minimally differ from the corresponding stimulus in the decision variable space. To investigate the fulfillment of this condition by the perceptual cognitive network, three experiments are carried out, and the results are shown in figures 12-14.

One of the Pareto optimal color compositions is selected and denoted by P in figure 12a. The corresponding scene is shown in figure 12b. Nine color properties of P are modified as marked by the red arrows in figure 12e, yielding solution D that is shown in figure 12c. The modification concerns the color of the frontal wall from cyan to purple, the ceiling from beige to an intensely saturated green, and the column from a purplish white to steel grey. Stimulating the perceptual cognitive network with solution D yields solution C shown in figure 12d. Referring to figure 12e one notes that solution C is similar to solution D with respect to the frontal wall color and the color of the column, while the color of the floor and ceiling are quite strongly altered, for C to be located near to P on the front as seen in figure 12a. This behaviour can be elucidated from the perception plot in figure 12f. In order to let C be near to P on the beauty frontier, the intense perception of the D’s ceiling is lowered and the floor perception is increased by cognition. As both objects have highest likelihood of perception in the scene, the mutual balance among their perceptions is most important to maintain the beauty of the scene, while the other objects’ perceptions remain less affected.

A second Pareto optimal color compositions is selected and denoted by P in figure 13a. The corresponding scene is shown in figure 13b. Three color properties of P are modified as marked by the red arrows in figure 13e, yielding solution D that is shown in figure 13c. The modification concerns the color of the frontal wall from purple to blue, and the floor from green to a saturated purple. Bringing D back to the Pareto front as C shown in figure 13d, comprehension is able to largely accommodate the demand for blue frontal wall by taking some red out from ceiling and sidewall and adding some red to the floor. However, comprehension rejects the demanded diminishment of the green component of the floor. The floor should have sufficient green component, otherwise the floor would not have enough contrast with the two walls that are now both lacking in red, whereas originally the side wall was lacking in green, not in red. Compared to the comprehension event in figure 12, change in object perception is only minimally occurring in figure 13.

A third Pareto optimal color compositions is selected and denoted by P in figure 14a. The corresponding scene is shown in figure 14b. A single color properties of P is modified as marked by the red arrow in figure 14e, yielding solution D that is shown in figure 14c. The modification concerns the color of the frontal wall from green to turquoise. One notes that in this case D is very near to the Pareto front in contrast to the previous two experiments. The cognitive color perception model yields solution C in figure 14d located on the Pareto front. It partly accommodates the requested color change for the frontal wall by minimally modifying several color components of the other objects.

The three experiments confirm the corroboration between the model and manifestations of human cognition, namely a common behavior of designers: The dosage of change exerted to a stimulus is commensurate with the already present affinity of the stimulus to the goals at hand.
CONCLUSIONS

Computational human's cognitive color perception is presented. The research reflects several commonly observed properties of cognition phenomenon. In particular the ability of an experienced human designer, to obtain aesthetic color compositions without explicit involvement of reasoning and search processes, is computationally reproduced by the cognitive perception model. The theoretical considerations are verified by means of computer experiments, showing the effectiveness of the work. Next to yielding aesthetic solutions for a scene at hand, analysis of cognition network behaviour is demonstrated to yield novel, deep insight into the nature of the aesthetic problem at hand; for instance, which region of the aesthetic domain is more difficult to reach than others. Computational cognitive perception also provides unique insight into the cognition phenomenon. The model reveals how a designer adjusts the dosage of change to a scene commensurate with the affinity the scene already has to the aesthetic goals at hand. Its ability to identify small modification of objects' colors, that turn out to stem from astonishingly complex implicit reasoning, yielding multiple desirable effects, is reproduced. This gives an explanation to the mysterious 'creative leap' phenomenon designers commonly experience: Apparently from nowhere, a quite suitable solution appears in a 'creative leap' phenomenon designers commonly experience: A possible subject for computation. Next to its practical value for diverse design and industrial applications, the novel insight gained into the cognitive aspect of perception contributes to the underlying theoretical bases of such implementations.

REFERENCES