Terminal do Seixal
Hydro-Morphological Study

additional work

figures

July 1982 / P647

PORT AND WATERWAY ENGINEERS
Siderurgia Channel alignment

Figure 1.1.1.
Siderurgia Channel alignment with 2 reclamations

Figure 1.2.1.
scale 1 : 150000

Computed flow field; 9 hours after HW at Lisbon

- velocity = .83 m/s
- land node
- dry shoal node

Mean Spring Tide Tagus Inner Estuary Figure 2.2.1.
Computed flow field at Lisbon Inner Estuary

scale 1:150000
Computational model
velocity = 0.83 m/s

Mean Spring Tide

Tagus Inner Estuary

Figure 2.2.2.
Mean Spring Tide

scale 1 : 150000

Computed flow field: 9 hours after HW at Lisboa

+ velocity = 0.83 m/s
- land node
- dry shoal node
scale 1 : 150000
Computed flow field: 15 hours after HW
at Lisboa
+ velocity = .83 m/s
- land node
- dry shoal node
Computed water level curves

- N = 18 M = 15
- N = 46 M = 24
- N = 71 M = 39

Mean Spring Tide

Siderurgia Channel (12 m)
Computed water level curves

- $N = 28, M = 18$
- $N = 20, M = 45$
- $N = 62, M = 14$

Mean Spring Tide

Siderurgia Channel (12 m)

Figure 2.3.2.
Computed water level curves

- N = 19 M = 4 station 226
- N = 62 M = 29 station 227
- N = 3 M = 17 station 228

Mean Spring Tide Siderurgia Channel (12 m) Figure 2.3.3.
Computed velocity curves

- - - - - - N = 18 M = 15
- - - - - - N = 46 M = 24
- - - - - - N = 71 M = 39

Mean Spring Tide Siderurgia Channel (12 m) Figure 2.3.4.
Computed velocity curves

- - - - - - N = 28 M = 18
- - - - - - N = 20 M = 45
- - - - - - N = 62 M = 14
Computed velocity curves

- N = 19 M = 4 station 226
- N = 62 M = 29 station 227
- N = 3 M = 17 station 227

Mean Spring Tide
Siderurgia Channel (12 m)
scale 1 : 50000
Computed flow field: 9 hours after HW at Lisbon

+ velocity = .80 m/s
- land node
- dry shoal node
Computed flow field: 15 hours after HW at Lisbon

scale 1 : 50000

Mean Spring Tide Siderurgia Channel (12 m)

+ velocity = 80 m/s
* land node
* dry shoal node

Figure 2.3.8.
Computed water level curves

- --- - N = 18 M = 15
- --- - N = 46 M = 25
- --- - N = 71 M = 39

Mean Spring Tide Siderurgia Channel (12 m) with relocations Figure 2.3.9.
Computed water level curves

- N = 28 M = 18
- N = 20 M = 45
- N = 62 M = 14

Mean Spring Tide Siderurgia Channel (12 m) with relocations

Figure 2.3.10.
Computed water level curves

- N = 19 M = 4 station 226
- N = 62 M = 29 station 227
- N = 3 M = 17 station 228
Computed velocity curves

N = 18 M = 15
N = 46 M = 25
N = 71 M = 39

Mean Spring Tide Siderurgia Channel (12 m) with reclamations Figure 2.3.12.
Computed velocity curves

- N = 28 M = 18
- N = 20 M = 45
- N = 62 M = 14

Mean Spring Tide Siderurgia Channel (12 m) with reclamation

Figure 2.3.13.
Computed velocity curves

- N = 19 M = 4 station 226
- N = 62 M = 29 station 227
- N = 3 M = 17 station 228
scale 1 : 50000
Computed flow field: 9 hours after HW at Lisbon
- velocity = 0.80 m/s
- land node
- dry shoal node

Mean Spring Tide Siderurgia Channel (12 m) with relocations Figure 2.3.15.
scale 1: 50000

Computed flow field; 15 hours after HW at Lisbon

* velocity = 0.80 m/s
* land node
* dry shoal node

Mean Spring Tide Siderurgia Channel (12 m) with reclamation Figure 2.3.16.
Siltation after 1 year **12m channel**

scale 1 : 50000
- erosion of 100 cm or more
- erosion of 50 cm
- siltation of 100 cm or more
- siltation of 50 cm

Mean Spring Tide without reclamation

Figure 3.2.1.
Siltation after 1 year **12m channel**

scale 1 : 50000
- erosion of 100 cm or more
- erosion of 50 cm
- siltation of 100 cm or more
- siltation of 50 cm

Mean Spring Tide with 2 reclamation Figure 3.2.2.