ELECTROCHEMICAL HEALING OF MAX PHASE CERAMICS

Amr M. Abdelkader¹ Santiago J. Garcia¹, and Sybrand van der Zwaag¹

¹Novel Aerospace Materials, Faculty of Aerospace Engineering, Delft University of Technology. Kluyverweg 1, 2629 HS Delft. The Netherlands.

Email: aabdelkader@tudelft.nl; S.J.GarciaEspallargas@tudelft.nl; S.vanderZwaag@tudelft.nl

Keywords: MAX phase ceramic, Self healing, Scratch

ABSTRACT

Earlier work [1] has shown that metallo-ceramic MAX phase materials, such as Ti₃AlC₂, not only have very attractive properties, combining those usually attributed to metals and those attributed to ceramics, but also display self healing properties when exposed to high temperatures. The restoration of the tensile strength is due to the formation of an oxidic residue, in particular well-adhering Al₂O₃ and loosely-bound TiO₂, within the crack zone leading to quite adequate load transfer. However this healing mechanism does not operate below typically 1173K in realistic times because of low oxidation rates.

In this work we present a novel approach to heal the cracks on Ti-Al-C ceramic samples at ambient temperatures. The approach is based on inducing localized electrochemical reactions in the crack zone using various types of aqueous solutions and DC voltammetry. In the presentation we will present the initial results on this new mode of inducing electrochemical healing and will compare the morphology and composition of the electrochemical products with that created by oxidative healing.

The electrochemical response of the Ti₂AlC sample to various DC voltammetry was investigated in 3.5% NaCl solutions, 16.35% H₂SO₄, or 10.6% Na₂CO₃ solutions. In all the experiments the MAX phase served as the working electrode, Pt mesh as the counter electrode, and saturated Ag/AgCl as reference electrode.

The results obtained form potentiostatic polarisation of the MAX sample in 1M Na₂CO₃ at 2V versus Ag/AgCl reference for 2 hours showed that a surface crack was fully filled with a white deposit from the electrolyte (Figure 1). However, healing the crack needs this deposit to be adhered to the substrate materials and our previous results showed the best way to achieve this strong overlap is by using a filling material that is produced from the substrate materials [1]. For that purpose, the MAX sample was subjected to anodising process in H₂SO₄-based solution. The results showed that attacking the MAX sample surface by the electrolyte solution to form filling materials from the bulk substrate is possible in the presence of chloride ions in the electrolyte at temperature higher than 332K. More research into the optimal composition of the electrolyte and the imposed potential to fill the crack with a load bearing deposit is required, yet the approach seems promising.
Figure 1: filling the crack on the surface of MAX by anodic polarisation in 1M Na$_2$CO$_3$

REFERENCES