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ABSTRACT

Stive, M.J.F., 1984, Energy dissipation in waves breaking on gentle slopes, Coastal Eng.,
8:99—127.

The flow field of waves breaking on a gently sloping beach is shown to closely resem-
ble that of hydraulic jumps. This supports the use of the hydraulic jump formulation
for the breaking wave energy dissipation. A correction to this formulation, which takes
into account the effects of turbulent flow, is found to explain the observed discrepancies
between the classical theoretical result and the experiments satisfactorily. These findings
are used to propose a simple, semi-empirical model for the wave height decay which
includes the set-up. The model is generalized to a wider range of wave conditions by
analyzing published data.

1. INTRODUCTION

A main feature of the surfzone is the wave height decay due to the tur-
bulence generated by breaking. Models for the prediction of this decay
are of practical importance in coastal engineering. Realistic results may be
expected from models which introduce a dissipation function for the tur-
bulent motion in the averaged energy equation.,

A formulation of the breaking wave dissipation after that in hydraulic
jumps is frequently used (originally by LeMéhauté, 1962; extended by
Divoky et al., 1970; Hwang and Divoky, 1972; and many others) based on
the visual resemblance between both phenomena. In this paper the assump-
tion of similarity between the two types of flow is investigated by a detailed
comparison between the measured flow fields of a hydraulic jump and a
quasi-steady breaking wave on a gently sloping beach. These results are
used to investigate the modelling of energy dissipation in breaking waves.

The paper is made up as follows. First, a short description of the experi-
ments is given. Secondly, the mean flow and turbulence characteristics in
quasi-steady breaking waves are compared to those in a hydraulic jump.
Thirdly, with the aid of the measured energy flux the energy dissipation
formulated after the hydraulic jump is investigated. Fourthly, a simple

0378-3839/84/$03.00 © 1984 Elsevier Science Publishers B.V.



100

model for the wave height decay is constructed. Finally, this model is
generalized to a wider range of conditions. ‘

This paper is a sequel to two earlier papers studying the two-dimen-
sional breaking of waves on gentle slopes based on the same measurements,
i.e. Stive (1980) elaborating the instantaneous velocity and pressure fields
and Stive and Wind (1982) elaborating the time-averaged momentum bal-
ance,

2. EXPERIMENTS

The measurements from which the present results were derived are the
same as those used in the two previously published studies (Stive, 1980;
Stive and Wind, 1982). To prevent duplication of the description of details
just a brief account of the arrangements, instruments and procedures is
given below.

Arrangements

The experiments were conducted in a wave flume of the Delft Hydraulics
Laboratory, 556 m long, 1 m wide and 1 m high. Periodic waves with minimal
free second-harmonic components were generated in a water depth of
0.85 m. The waves broke on a plane concrete slope 1:40 (see Fig. la).

Instrumentation

Surface elevations in the surfzone were measured by conductivity-type
wave gauges positioned 1 m apart. Although aeration influences the re-
sponse of the gauges, the air content in the breaking waves was estimated
low enough to cause only negligible deviations.

Velocities were measured by means of a laser doppler velocity meter
(LDV). The device was mounted on a carriage such that any desired hori-
zontal or vertical position along the flume could be reached. At different
levels the horizontal and vertical components of velocity were measured
simultaneously with the surface elevation in the cross-sections indicated
in Fig, 1b.

Data-analysis

The velocity data were processed with the aid of an ensemble averaging
technique in which each wave cycle in the time series was considered to
be one realization. The technique results in a description of the horizontal
and vertical velocity components as the sum of an “organized’, periodic
component (denoted by a tilde) and an ‘“unorganized”, residual component
(denoted by a prime), i.e.u = u + u' and w = w + w'. In the breaking region
the residual component is typically formed by the turbulence due to break-
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Fig. 1. a. Experimental set-up. b, Detail experimental set-up.

ing. A characteristic order of magnitude of its rms-value is 0.1 ¢, where ¢
is the wave propagation speed. In the shoaling region the residual com-
ponent shows rms-values below 0.01 ¢. The relative low values in the shoal-
ing region confirm the consistency of the ensemble averaging technique.

The presence of air bubbles such as are met with in the crests of break-
ing waves prevents LDV measurements. However, to derive results for an
integral quantity as the energy flux it is necessary to integrate the velocity
over the full depth. Therefore, estimates of the velocities in the aerated
crest regions were obtained by extrapolation. The method of extrapola-
tion is shortly described and evaluated in Appendix A. Experimental inac-
curacies (indicated by error bars in the figures presenting the data) are
mainly due to the extrapolation.

Wave conditions

The experiments were restricted to two conditions (see Table I), which
are referred to as test 1 and test 2. These conditions represent two types
of initial breaking usually found on gently sloping beaches. The initial
breaking behaviour of test 1 falls in the category spilling breaking, while
that of test 2 falls in the category plunging breaking. As characterized by
Svendsen et al. (1978), the rapid transitions of wave shape in the region
right after breaking — the so-called outer region — develop soon, i.e. after
a horizontal distance of several times the breaker depth, into the relatively
well-organized, quasi-steady breaking motion of the inner region, which is
virtually independent of the initial breaking behaviour. At that stage of their
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breaking motion, breakers on a beach may be described as spilling preakers
or bores. Here, the outer region is determined as the region confined be-
tween the cross-section where the wave height is maximum (the “brea}{-
point”) and the cross-section where the wave height over water depth ratio

is virtually constant,

TABLE I

Wave conditions (wave height H, period T, wave length L, where the subscripts o, h and b
denote deep water, horizontal section and breakpoint)

Test H, (m) Hy (m) Hy (m) T(s) H, /L,

1 0.159 0.145 0178 1.79 0.032
2 0.142 0,145 0.226 3,00 0.010

3. THE FLOW FIELD SIMILARITY

The visual resemblance between quasi-steady breaking waves in shallow
water and steady bores or hydraulic jumps is frequently mentioned in the
literature. A comparison between their mean and turbulent flow character-
istics may be made as follows.

Under the assumptions of a (locally) constant wave propagation speed
and a (locally) horizontal bottom, breaking wave results acquired in one
cross-section may be translated into steady mean flow results by choosing
a reference frame which moves with the wave at its local propagation speed
c. For these steady bores the Froude number F,, which indicates the bore
strength, corresponds to the celerity at which the uniform flow of the
trough meets the surface roller so that;

Fy=(c+Ug)/(gdg)*

in which ¢ is the wave propagation speed and U,z the depth-averaged
velocity at the trough or upstream section, both in the original frame of
reference. It is noted that the upstream depth d,; is positioned at the
initiation point of turbulent flow at the surface (the section indicated 1R
in Fig. 2), which corresponds to the upstream depths commonly taken in
hydraulic jump experiments. The Froude numbers thus calculated ranged
from 1.4 to 1.6 indicating that quasi-steady breakers belong to the class
of weak bores.

A mean flow and a turbulent intensity distribution of a quasi-steady
breaker and of a low Froude hydraulic jump (Rouse et al., 1958) are com-
pared in Fig. 8. It appears that the flows are similar in the sense that the
cross-sectional uniformity of both the mean and the turbulent flow at the
toe section is disturbed by the surface roller. The non-uniformity of the
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wake-type flow behind the roller slowly restores to the initial condition
of uniformity.

c —
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Fig. 2. Quasi-steady breaking wave in a frame of reference stationary with respect to
the fixed bottom; coordinates, notation and definitions.

4. EVALUATION OF WAVE PROPAGATION PROPERTIES

Key elements in the modelling of the breaking wave energy decay are
the flux and the dissipation of wave energy. As elaborated further on this
study seeks a simple description for the energy flux and — based upon the
similarity in flow — for the energy dissipation a description closely after
that in hydraulic jumps. To that end a comparison is made between the
measured flux and its linear, shallow-water approximation as well as between
the measured dissipation and the hydraulic jump dissipation. An important
property in the evaluation of the energy flux is the wave phase speed which
is treated first.

Phase speed

The wave phase speed, ¢, in the breaking region is taken as the mean veloc-
ity of propagation of characteristic points of the wave fronts between con-
secutive measurement cross-sections. In Fig. 4 measurements of ¢ are com-
pared to its linear, shallow-water approximation which reads:

¢ = (gh)*

It appears that close to and in the outer region the linear, shallow-water
approximation underestimates the phase speed ¢. This indicates that non-
linear effects are important, as expected for this region with relatively
steep waves. Improvements may be made by introducing non-linear approxi-
mations, In the inner region the waves are less steep resulting in somewhat
smaller discrepancies between the shallow-water approximation and the
measurements. Here significant improvements may be made by introducing
the periodic bore approximation, ¢y, and accounting for the effects due
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Fig. 4. Wave phase speed c.

to turbulence. These approximations may be derived from an evaluation
of the momentum balance equation for a periodic bore (see Svendsen et
al., 1978). Neglecting the effects due to turbulence the result is:

Chore = (%gd:1 da (d; +da) R™%)" . (41)

Turbulent effects may be accounted for in this result by including a cor-
rection term (A,), which is given in Appendix B.

Energy flux

The time-averaged or mean energy flux, F, per unit width is defined as:

F= {l [p +pgz + %p U2+ w?)] udz (4.2)

where the integral is performed over the instantaneous fluid depth, d,
and the overbar denotes time averaging. Furthermore p is the pressure.
Based upon the pressure measurements reported in Stive (1983) it was
found that the mean energy flux in the quasi-steady breaking region may be
approximated to within 10% by the hydrostatic equivalent of eq. (4.2):

F=pgef(§—F) +/ Yo u +w?)udz

The first term is known from surface elevation measurements and the
second term from the measured and extrapolated velocity field. Results
are given in Fig. 5. In the initial breaking region, the hydrostatic approxima-
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tion is not valid and the extrapolation of the velocities is not possible. It
was assumed instead that the mean energy flux varies linearly from the
breakpoint to the seaward boundary of the inner region. The mean energy
flux at the breakpoint was calculated from the deep water condlt}ons as-
suming constancy of energy flux up to the breakpoint. Taking into ac-
count dissipative effects due to the channel friction the latter estimate may
also be assumed accurate to within 10%.
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Fig. 5. Mean energy flux F.
The linear, shallow-water approximation to the mean energy flux reads:
F =5 pg H* (gh)* (4.8)

This approximation is compared to the measurements in Fig. 5. The ob-
served discrepancies in the outer region are again due to non-linear effects.
These effects decrease significantly in the inner region resulting in only
small discrepancies between the linear, shallow-water approximation and
the measurements.

Energy dissipation

The measured energy dissipation is derived from the measured spatial
variation of the mean energy flux through application of the mean energy
balance for a control volume which is stationary with respect to the fixed
bottom and which extends vertically from the bottom to the free surface
and horizontally from one measurement cross-section to another over a
distance Ax. So the measured mean dissipation rate per unit area, € onc.s
is given by: '

€meas, = ~AF yens [AX (4.4)

A comparison between the measured dissipation and the dissipation for-
mulated after the hydraulic jump may be made as follows. As described in
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Appendix B the result for the dissipation rate of a periodic jump, ‘which
may be considered as the periodic version of the classical result, reads:

€hore = P& Chore N (d2 — d1)*/(4d d,) (4.5)

After conversion of this result to an average dissipation rate per unit
area through dividing by the wave length L and after equating the height
of ghe jump to the wave height, i.e. d, — d; = H, the average breaking wave
dissipation rate per unit area formulated after the hydraulic jump may
be expressed as:

€= bore Ae (4.6)
where Ebore = Gbore/L =l Prg CHah/(dldzL)

and where the non-dimensional dissipation factor A, accounts for the
differences between the dissipation in a bore and that in a classical hydraulic
jurop, for which A, equals 1. From the measured variations of energy
flux, wave height and wave propagation speed a measured value for A,
was calculated by combining egs. (4.4) and (4.6):

4 (AF meas. /M%) €nore (4.7)

€ meas,

where AF .. is the change in energy flux measured in consecutive cross-
sections at a distance of Ax. This indirect representation of the measured
dissipation facilitates the comparison relative to the classical hydraulic jump
formulation.

The results for the dissipation factor A, shown in Fig. 6 indicate that
in the inner breaking region the classical jump result underestimates the
measured dissipation by 30 to 50% depending mainly on the deep-water
wave steepness and less on the distance to the initial breaking region. In
the outer breaking region the agreement is closer. It must, however, be
questioned whether this is a matter of coincidence since the highly unsta-
tionary, jetlike motion can hardly be expected to be described by the bore
motion. Therefore no closer investigation will be made for this region.

Regarding the inner breaking region improvements on the hydraulic
jump dissipation according to expression (4.5) may be attempted by in-
troducing formal corrections for the assumptions made in the classical
case. The classical assumptions that apply to both the upstream (trough)
and downstream (crest) section are: (1) the flow is free of turbulence; (2)
the mean horizontal velocity is uniform over the depth; and (3) the pressure
distribution is hydrostatic.

The effect of deviations from these assumptions may be investigated by
introducing correction coefficients, i.e. a coefficient @ in the momentum
equation and a coefficient § in the energy equation which both equal 1 in
the classical case. The definitions of @ and 8 introduced to express the cor-
rections are given in Table II. Deviations from the classical assumptions
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are accounted for by deviations of a and § from 1, which result in correc-
tions to ey, according to expression (b.1) as derived in Appendix B.

It is noted that in defining the coefficients the horizontal ensemble
mean velocities are transformed to U = & — ¢ so that the ensemble mean
motion is steady. Furthermore, a depth-averaged horizontal velocity is
introduced as:

1

V=—[ bde
at

1]

The coefficients a¥, BY, at and gt could be calculated directly from the
measured internal flow fields. In the upstream section 1 the coefficients
are very close to 1 and 0 implying nearly depth-uniform, turbulence-free
flow conditions. The results for section 2 are given in Fig. 7, where they
are compared to the values as calculated from the measurements of Rouse
et al. (1958) in their cross-sections 2 and 8, which are estimated to be
equivalent to the crest section of the breakers from inspection of Fig. a.2.

It appears that the non-uniformity coefficients av and v are comparable
in breakers and in jumps, but that the turbulence coefficients «t and in
particular gt are somewhat lower in breakers than in jumps, which is prob-
ably due to the weaker bore strength of the quasi-steady breakers.

The measured coefficients were applied to account for their effects on
the estimated dissipation (relative to the classical hydraulic jump formula-
tion) through equation (b.1) as given in Appendix B. These effects are il-
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lustrated by the curves 1 and 2 in Fig. 6. Curve 1 only incorporates the
effects of non-uniformity of the flow profile (av # 1, v # 1) at the crest.
Curve 2 only incorporates the effects of turbulence at the crest so far as it
concerns the flux of momentum (ot # 0). Here the effects of turbulence on
the flux of energy are neglected (i.e. 8t = 0) based on the consideration
that the turbulent energy convected downstream through section 2 will
dissipate after all. From the results in Fig. 6 it may be concluded that the
major correction to the estimated jump dissipation is due to the turbulent
flux of momentum at the crest section. This correction increases the esti-
mated jump dissipation such that it only differs a small amount from the
measured dissipation.

The effects of non-hydrostatic pressure could not be derived directly
from the measurements. Estimates were made based on the approach de-
scribed in Svendsen and Madsen (1981) who use the curvature of the stream-
lines in the nearly steady waves to derive the effects of non-hydrostatic
pressure. This approach agreed well with the analysis of pressure results
described in Stive (1983). Based on the measured surface curvatures and
the measured mean flow profiles, the estimated jump dissipation was calcu-
lated to increase 10% maximally.
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An additional effect increasing the jump dissipation but not yet accounted
for is the production and dissipation of turbulence behind the crest section.
This turbulence is produced by the shear due to the non-uniform flow
profiles behind the crest section. From the energy balance made up by
Rouse et al. (1958) for their weakest jump it may however be concluded
that the production and dissipation behind the downstream section equiv-
alent to the present crest section is less than 10% of the magnitude of the
estimated jump dissipation.

Summarizing it may be concluded that the dissipation rate of the present-
ly investigated quasi-steady breaking waves is underestimated by the clas-
sical hydraulic jump approach by 30 to 50%. The differences are found to
be mainly explained from the effects of turbulent flux of momentum.

5. A WAVE HEIGHT DECAY MODEL
The energy balance equation

Starting point in the derivation of a simple model for the wave height
decay is the energy balance equation (4.4) in differential form:

d Fees
T €
Since it appears further on that the solution greatly simplifies by introduc-
ing the linear, shallow-water approximation for the mean energy flux ¥ a

definition for F is introduced in close analogy to linear, shallow-water
wave theory:

F=AgppgH'

where Ap is a non-dimensional energy flux.
Substitution of this definition in the energy balance equation yields a
still general, first-order differential equation in H:

aH Hde H ddg_ —¢
dx 2 dx 24p dx 2gHApe

A key element in solving this equation for H is the energy dissipation e.
In its turn the dimensionless dissipation factor A, was shown to be the
determining factor for e. It is argued here that discrimination between the
inner and outer breaking region with respect to the dissipation cannot
realistically be made without having obtained more systematical knowledge
of the dissipation than presently available. Therefore, a sophisticated ap-
proach to the dimensionless dissipation A in the sense of A, being a func-
tion of the horizontal position in the surfzone is not justified. Consistent
with this it is assumed that the factor A, is a constant over the surfzone

(5.1)
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on a beach of constant slope, which is at most a function of the deep water
wave steepness and perhaps the bottom slope. o

Solving the above differential equation (5.1) for H also requires informa-
tion about Ay and c, i.e. the non-dimensional energy flux and the wave
propagation speed. An important question now is how Well these coeffi-
cients have to be approximated to give an acceptable solution for H. ngarl_y
the approximations to Ay and ¢ will only have to be as accurate as is justi-
fied by the approximation to A,, i.e. A, is a constant oyer'the surfzone,
This may be investigated by comparing the measured variation of A_ ac-
cording to expression (4.7) where A_ is determined from measurgd Va}ues
of F, ¢ and H, with the variation of A, as derived from approx1mafﬁ10ns
to Ap and ¢ and measured values of H. Here this is done for the linear
shallow water approximations to Ap and ¢, i.e. Ap = % and ¢= (gh)*%. The
results (see Fig. 8) show that the applied approximations yield no larger
deviations in A_ from a constant value than the measurements. It may
therefore be concluded that more accurate approximations to Ay and ¢
will not result in more accurate solutions for H, so it is sufficient for the
present purpose to rely on the linear, shallow-water approximations for

Ap andc.
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Introducing these approximations in the differential equation for H
yields:

dH+H dh+A ( h )%(H)2-o
“\erz/ \n/ (6.2)
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where for e the jump expression (4.4) is used, in which h/d,d, is replaced
by 1/h in line with the approximations made so far.

The momentum balance equation

In the resulting energy balance equation (5.2) we are still left with an un-
known term, the mean water depth & which includes the wave set-up ¢.
Therefore, the averaged momentum equation is introduced to provide a
solution for ¢:

dS,., d¢
+pgh—=0
P

where S, = 5 (p +pu?) dz — % pg (¢ — ¢)? is the radiation stress. As was

done for the energy flux a definition is introduced in close analogy to
linear, shallow water wave theory, i.e.

Sxx = Ag pgH?

where A, is a non-dimensional radiation stress. The measured variations
in A, (see Stive and Wind, 1982, for details) are given in Fig. 9 where they
are compared to the linear, shallow-water approximation A, = 3/16. The
discrepancies are most pronounced in the outer breaking region, again in-
dicating that in this region non-linear effects are important. Consistent with
the foregoing approximations for the non-dimensional flux and dissipation
of energy, the non-dimensional radiation stress A is assumed to be a con-
stant over the surfzone. However, as shown in Stive and Wind (1982), the
set-up is ill-predicted unless the effect of non-linearity at the breakpoint
is taken into account. Therefore A, is allowed to deviate from the linear,
shallow-water approximation (4 = %) in order to reproduce a mean set-up

03 Q3
TEST) TEST 2
A, 02 /- ,\}\\ A, 02 I/\\ =
\ .
01 01 / i
o] 4]
a3 35 37 39 41 43 33 35 37 39 41 43
—tp % () — x{m)

[} measurements
wmmeme  linear , shallow water approximation (A = 3/16)

Fig. 9. Non-dimensional radiation stress A.
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slope of the right order of magnitude, without abandoning the assump-
tion that A. is constant over the surfzone, After some rewriting the fol-
lowing additional differential equation now arises:

h dh h
aH + =0 (5.3)

——— s =
dr 24H dx 24H °

where s, = — dhgyr,/dx is the bottom slope.

Solutions

The pair of first-order, non-linear differential equations, equations (5.2)
and (5.3), may be solved numerically given a value for the factors A, and Ag
and initial values for H and h at for instance the point of initial breaking.
A second-order Runge-Kutta procedure was used in the numerical evalua-
tion of the differential equations. A step length of the order of the water
depth at the breakpoint already proved to yield stable numerical results.
However, close to the waterline where the ratio H/h increases rapidly the
results explode. This phenomenon is closely related to the classical shore-
line singularity for dimensionless progressive waves.

An analytical solution to the problem may be found by assuming the
set-up slope to be linearly proportional to the beach slope s,. In this sim-
plified case equation (5.3) becomes superfluous. For the present experi-
ments with a beach of constant slope, this implies that the gradient of the
mean water depth, i.e. dh/dx = m — s, = — s, is also a constant. After nor-
malization of the wave height and mean water depth by their breakpoint
values, i.e. H = H/H}, and A = h/hy, equation (5.2) may be rearranged to yield:

@ 2B
FE R (54
where

__Ae(Hb hy, \ %

o= () (5.5

thich is a constant for a given wave steepness and beach slope. The solu-
tion to (5.4), under the initial condition H = 1 for A = 1, is given by:

4\ ., 4 .
A =(1 —Ea)h/‘ +§oh"”’ (5.6)

Note that A~ (% o)™ k% for A - 0 so that this model predicts a vanish-
ing wave height at the water line but like the numerical model a diverging
H/h ratio. Physical validity of both models close to the water line may be
enhanced by incorporating additional physical damping mechanisms.
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An advantage of the analytical solution is that the sensitivity of the
wave height decay to variations in ¢ and thus in the dissipation factor A,
is easily inferred, Values of H and of H/A versus A, according to equatlon
(5.6), are presented in Fig. 10 for a range of o values. This range is further
on shown to be applicable to the considered wave conditions.
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Fig. 10. Results of analytical model; normalized wave height and wave height to mean
water depth ratio versus mean water depth,

Comparison of measurements and computations

A comparison between the numerical and analytical model results and
the experimental results for both tests is presented in Fig. 11. In the model
calculations, the constant dissipation factor A, was set equal to the average
over the surfzone of A, as calculated from the linear, shallow-water approxi-
mation to Ap and ¢ and the measured wave heights, i.e. A, = 1.3 for test 1
and A, = 1.6 for test 2 (see Fig. 8). The value applied in the numerical
model for the radiation stress factor A, was taken as the value calculated
to yield the measured surfzone averaged set-up slope, i.e. A, = 0.11 for
test 1 and A, = 0.10 for test 2. In the analytical model the mean slope of
the total water depth (which is essentially a constant) was taken equal
to the one measured.

The results for the computed normalized wave height versus mean water
depth of both the numerical and the analytical model are in very satisfactory
agreement with the experimental results (Fig. 11). The numerical results
for the normalized set-up, i.e. { = E/hb, versus mean water depth are less
satisfactory. Because of the empirical correction to the radiation stress
factor the mean set-up slope is well reproduced, of course. However, the
qualitative variation of the set-up is only partially predicted. Specifically
in the outer breaking region the prediction is poor which is due to the
effects of non-linearity as discussed in Stive and Wind (1982).
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The following intermediate conclusions may now be drawn. In view of
the fact that the dissipation factor and the radiation stress factor were
movre or less empirically determined, it is not surprising that the wave height
decay and the set-up are reasonably predicted in order of magnitude. A
surprising result is, however, that contrary to the set-up the wave height
decay is predicted quite accurately in the whole of the surfzone, despite
the rather crude modelling of A, and A as constants over the surfzone.
Apparently the set-up is a more sensitive quantity in this respect than the
wave height.

6. GENERALIZATION OF THE MODEL

The relative success of the described model to simulate the wave height
decay for the present tests makes it worthwhile to investigate a generaliza-
tion of the model parameters A, and A, for a wider range of wave condi-
tions. To this end published data on wave height decay and set-up were
analyzed. The analysis is logically confined to those conditions for which
the surfzone has a significant inner breaking region. These conditions are
met for waves of moderate steepness on beaches of a slope of 1 in 20 and
smaller. In terms of the similarity parameters &, = s, (HO/LO)_"’ or £y, =
8o (Hy/Lo) " (Battjes, 1974) this corresponds to ¢, < 0.5 or &, < 0.4,

The results of this study led to the supposition that the dissipation factor
A, is a function of the deep-water wave steepness which may be explained
as follows. The bore strength was found to vary inversely with the wave
steepness. In its turn it is the bore strength which determines the intensity
of the turbulent effects at the crest section (see Fig. 7) and thus the mag-
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nitude of the dissipation factor A, . Since a decrease in bottom slope may
be expected to have qualitatively the same effect on A_ as an increase in
incident wave steepness A, is more generally assumed to be a function of
the surf-similarity parameter £,.

The results of the previous study (Stive and Wind, 1982) led to the
Ssupposition that the radiation stress factor A, is a function of the relative
water depth at the breakpoint, hy/L,. This may be explained by the fact
that the set-up is strongly determined by the non-linear effects at and
around the breakpoint, which effects will be more pronounced for decreas-
ing relative water depths.

Based on the above assumptions, generalized expressions for the model
parameters A, and Ag were sought from data of Horikawa and Kuo (1966)
on wave height decay and data of Van Dorn (1976) and Singamsetti and
Wind (1980) on wave height decay and set-up as follows.

Restriction of the analysis to beach slopes of 1 in 20 and smaller yields
a total of eight data sets describing the wave height decay on slopes ranging
from 1 in 20 to 1 in 80 (see Fig. 12 a—h, the hatched bands represent the
data scatter). For each slope a range of o-values was determined (see Fig.
13a) for which the analytically derived wave height decay curves cover
the band of scattered wave height data well. In determining o the mid-
point value of the given wave steepness range was taken a priori, The scatter
in the data does not allow a discrimination between conditions of different
wave steepness on a particular slope. The indicated variation in o-values
is thus incorporating effects of scatter and of a variation in wave steepness.
From relation (5.5) the resulting range of values for the dissipation fac-
tor A, could be derived (Fig. 13a). As expected the dissipation factor is
an increasing function of the similarity parameter ¢  which may be approxi-
mated by:

A_ =2tanh B¢ (6.1)

Values for A, < 1 in the lower range of £, are likely to correspond to
very weak bores which take up only a fraction of the wave height. Regard-
ing the variation of the analytical model parameter ¢ it is interesting to
note that o itself is closely related to Eb and thus to £,. Relation (5.5)
may be rewritten to yield:

(er th) Ae Ep (6.2)

Note that from equation (6.1), A, £5' > 10 for &, - 0. Since &, = §, for
small ¢, it follows from (6.2) that o — 4 (Hy/hy)" which explains the
constancy of ¢ in the lower range of ¢, (Fig. 13b).

Inspection of the set-up data presented by Van Dorn (1976) and Singam-
setti and Wind (1980) indicated that these data are more stable than the
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wave height decay data. Yet the set-up data are also indicated by one
hatched band per slope (see Fig. 12 e—h), since the data were found to
show very little variation with the incident wave steepness after normaliza-
tion by the water depth at the breakpoint. So in this case the hatched band
is incorporating effects of a variation in wave steepness mainly. For each
of the set-up measurements a value for the radiation stress factor A; was
determined for which the surfzone averaged set-up slope is reproduced.
These values showed no systematic variation with £, but as expected they
are found to vary systematically with the relative water depth at the break-
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point, hy /L, (see Fig. 14). In this figure theoretical b;eakpoint values for
A. are indicated according to the linear theory, the linear, shallow-_water
theory and Cokelet’s (1976) non-linear theory for waves gf maX}mgm
energy flux. The correlation between the non-linear theoretical variation
and the measured variation of A confirms the importance of the non-
linearities at the breakpoint for the set-up. For the present purpose it is
sufficient to approximate A by:

A = 0.08 +0.88 hy /L, for hy/Ly < 0.08, (6.3)

while for hy/L, > 0.08 (where few data are available) the linear approxi-
mation seems to suffice.
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Fig. 14. Non-dimensional radiation stress A as a function of the relative breaker depth
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Numerical model results for the wave height decay and, where relevant,
for the set-up based on the derived expressions (6.1) and (6.3) for A, and A
are compared to the published data in Fig. 12 a—h (for each of the slopes
the midpoint wave steepness is taken). Inspection of these figures reveals a
satisfactory agreement between calculated and measured wave height decay
although the initial decay rate is overestimated in most cases. The agree-
ment between measured and calculated set-up is less satisfactory. As ex-
pected the surfzone averaged set-up slope is reasonably predicted, but the
set-up variations are qualitatively ill-predicted. The discrepancies are mainly
due to a pronounced overestimate of the initial set-up. It is concluded that
improved predictions of the wave height decay and specifically the set-up
require a more sophisticated modelling of A, and A in the outer break-
ing region.

Finally, an independent check on the modelling of the wave height decay
in the inner breaking region may be obtained from a comparison with
more refined data from Svendsen et al. (1978). Like the present experi-
ments their experiments were carried out with periodic waves deprived
of their free second harmonics. As a result the scatter in their data is re-
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duced enough to reveal the influence of the incident wave steepness on
the wave height decay in the inner breaking region. Here the measured and
calculated ratios of wave height to mean water depth are compared for
four tests with incident wave steepnesses varying between 0.009 and 0.084
(see Fig. 15). The model calculations are again based on numerical integra-
tion of equations (5.2) and (5.3) using the parameter expressions (6.1)
and (6.3). It is noted that this is an independent check on the modelling
of the dissipation factor as a function of the surf-similarity parameter
[equation (6.1)], since this equation was based on variations in bottom
slope only. Taking into account that the ratio H/h is a rather sensitive
quantity, which is reflected in the still existing data scatter, and that the
present model contains insufficient physical damping near the shore line,
it may be concluded that the model predicts the influence of the incident
wave steepness on the wave height decay in the inner breaking region qualita-
tively well and quantitatively reasonably.
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Fig. 15. Comparison between model results and experiments of Svendsen et al. (1978);
wave height to mean water depth ratio versus normalized distance to breakpoint.

7. CONCLUSIONS

Flow field measurements for two quasi-steady breaking wave conditions
on a gently sloping beach confirm the resemblance between quasi-steady
breakers, bores, and weak hydraulic jumps. This gives support to a formula-
tion of the dissipation rate of quasi-steady breakers after that of hydraulic
jumps.

The periodic version of the classical hydraulic jump formulation is shown
to underestimate the measured dissipation rates in the present experiments
by 30 to 50%. It is shown that this discrepancy is mainly associated with
the turbulent flux of momentum of the flow at the crest section. This
effect may be incorporated through a dissipation factor A,. These conclu-
sions are derived for the inner breaking region.
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A simple model is proposed for the wave height decay, based on the
solution of a system of differential equations, being simplified forms. of
the averaged equations of energy and momentum. In the energy. eqlllat.lon
the dissipation is modelled after that of the hydraulic jump, with the dissipa-
tion factor A, constant over the entire surfzone. In the momentum equa-
tion the radiation stress is modelled after linear, shallow-water theory
with a correction factor A which is a constant over the surfzone. For the
present experiments the wave height decay and the mean set-up slope ap-
pear to be well predicted, if empirically determined values for the factors
A, and 4 are used. _

Finally, the model is generalized for a wider range of wave conditions.
From an analysis of published data, empirical relations for the model param-
eters A, and A, are derived, Based on the empirical relations the model
yields good results for the overall wave height decay and the mean set-up
slope for waves of moderate steepness on slopes of 1 in 80 to 1 in 20.
Apparently the less satisfactory results for the initial wave height decay
and for the associated qualitative variation of the set-up may be improved
by a more sophisticated modelling of the dissipation and radiation stress
factors A, and A, in the initial breaking region.
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APPENDIX A, EXTRAPOLATION OF THE VELOCITY FIELD

Velocity measurements were performed in the air-free flow region, i.e.
the region roughly below the level of the wave troughs. In the aerated
crest region the velocity field was extrapolated as described extensively in
Stive and Wind (1982). Here the procedure of extrapolation of the velocities
is shortly repeated and evaluated.

The mean horizontal flow profile was extrapolated linearly aided by
application of the equation of conservation of mass for a locally steady
wave, which reads:

J adz et =)

With the propagation speed ¢ and the surface elevation ¢ known from the
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measurements, a value for the velocity integral is obtained which serves as
a constraint for the extrapolation of the ii(z) values performed between
the highest measurement level and the fluid surface.

The fact that application of the mass conservation equation as described
above leaves little margin for different flow results may be confirmed by
the results in Fig. a.1. Here the measured and extrapolated horizontal
flow results at the crest of the present study are compared with “spilling”
breaker measurements of Van Dorn (1978). It is noted that although the
extrapolation at the crest is rather drastic in its prediction of a change of
trend, a satisfying agreement is found at the higher fluid levels.

In the non-aerated regions of the quasi-steady breaking waves the tur-
bulent velocity intensities (i, Wpys) behave similar to those in wakes.
Therefore, the turbulent intensities were extrapolated on the basis of flow
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results for wakes as basically given by Tennekes and Lumley (1972).
Through application of the self preservation hypothesis to the velocity
defect, i.e. the difference between the local velocity & and the undisturbed
stream velocity i, it is found that the ratio of the turbulent intensities
to the local maximum velocity defect, i, behaves like (see also Fig. a.2):

Ui/ = 0.50 £% exp (—Y% £?) (a.1)
Wime/ls = 0.44 £% exp (—4 £?) (a.2)

where ¢ is a normalized lateral distance to the wake axis which is related
to the local velocity defect by:

(tig —U)/iig = exp (—% £7) (a.3)

Both the breaking wave results and the low Froude hydraulic jump results
of Rouse et al. (1958) compare reasonably well to these relations (see

1.0 T
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Fig. a.2, Velocity defect and turbulent intensity in breaking waves and a hydraulic jump.
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Fig. a.2). This confirms the similarity between both classes of flows and
it supports the extrapolation procedure which was adopted.

APPENDIX B, HYDRAULIC JUMP DISSIPATION

Here a concise derivation is given of a “formally corrected” expression
for the hydraulic jump dissipation, of which the “classical” expression is
shown to be a special case,

Consider a moving control volume in which the ensemble mean mo-
tion is steady. The control volume occupies the entire fluid depth. In this
reference frame with stationary mean motion, we may distinguish the fol-
lowing ensemble mean (denoted by a tilde) and turbulent (denoted by a
prime) quantities:

(v,w,p,$) = (B,w,p,§) + (W', w',p")

in which v =u —e¢, v =1 —c¢ and v' = u', where u is the horizontal com-
ponent of velocity and ¢ is the wave propagation speed in the frame of
reference stationary with respect to the flume (see Fig. 2 for coordinates
and notation in the latter frame).

The energy balance for the frame of reference in which the mean mo-
tion is steady, neglecting dissipation due to bottom friction, is written as:

2 J [p+pgz+thp(®+w?)] vdz=—e
0x d
where ¢ is the instantaneous viscous dissipation rate per unit horizontal
area,

In order to express the effects of non-uniformity of the mean flow profile,
turbulence and non-hydrostatic pressure on the momentum flux and on
the energy flux the coefficients as given in Table II are introduced. In the
expressions for At terms considered important, e.g. those representing
transport of turbulent stresses, are included whereas terms considered less
important, e.g. those representing diffusion of turbulence, are neglected.

Introducing these coefficients in the energy equation and integration
from section 1 to 2 yields:

logVd? + % p V3 dg] ; F 7 €corr,

It is noted that at the boundaries contributions to the fluxes of mass, mo-
mentum and energy due to the turbulent fluctuations in { are assumed
negligible. Furthermore, turbulent interactions between p and v are as-
sumed negligible in (the derivation of) this equation. Using the continuity
equation (Vd = —ch) and after some rearrangement the following expres-
sion may be derived for the viscous dissipation of energy in the volume
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bounded by sections 1 and 2:

Bi ﬁz)

€corr, ~ pgch (dl et dg) + b pc3h3 (E—E—%—

Under the assumptions of uniform velocity, absence of turbulence :—md
hydrostatic pressure in sections 1 and 2, implying v = 1, @t = 0 _and gp = 03
the following expression for the hydraulic jump or bore dissipation results:

€hore = PEChore M(d2 —d,)’/(4d,d,)
where ¢y, = (Ygd d, (d; + d,)h~?)%,

which transforms into the classical expression for a hydraulic jump usin.g
the continuity equation and h = d,. Alternatively the effects o_f' non-uni-
formity, turbulence and non-hydrostatic pressure on the bore dissipation

may now be expressed by:

[ (61
€corr. = €bore A:/: [1 + M (AcAp —1) (b.1)
8, — ¢ \? 5—1
where Ag:= u y Ag =( ) = and § =d,/d;.
§2—1 Chore ad —ay

The above derivation and resulting expression (b.1) for A_ closely cor-
respond to Svendsen et al. (1978). The difference between their equation
(55) and expression (b.1) lies in the presence of the term A, the inclusion
of the pressure effects in « and g and the inclusion of the turbulent effects
in 8.
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