Challenges from a low-energy river in Bangladesh
Planform changes, stratigraphy, sharp bends and response to constriction (PPT)
Mosselman, Erik

Publication date
2020
Document Version
Final published version

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.
Challenges from a low-energy river in Bangladesh:

Planform changes, stratigraphy, sharp bends and response to constriction

Erik Mosselman

Symposium “Why river managers should care about the alluvial subsurface”
Wageningen

18 February 2020
Finding a low-energy river in Bangladesh

\[P < 10 \text{ W/m}^2 \]

\[\rho g \frac{Q}{B} i < 10 \text{ W/m}^2 \]

- \(\rho = 1000 \text{ kg/m}^3 \)
- \(g \approx 10 \text{ m/s}^2 \)
- \(i < 10^{-4} = 0.1 \text{ m/km} \)
Finding a low-energy river in Bangladesh

\[i < 10^{-4} = 0.1 \text{ m/km} \quad i = 0.07 \text{ m/km} \]

\[\frac{Q}{B} < 10 \text{ m}^2/\text{s} \quad Q = 50000 \text{ m}^3/\text{s} \]

\[B = 10000 \text{ m} \]

Brahmaputra!

Deltares
this is not the other side of the river
Bank protection and river training
Stratigraphy
Stratigraphy
Sharp bends

- Result of river training
- Scour holes up to 30-40 m deep (15-storey building)
Bank stabilization and constriction

Bank stabilization
- Prevention of misery of people losing everything *(no other choice than to move to city slums)*
- Prevention of breaching of dikes by erosion *(the main benefit in cost-benefit analyses)*
- Stabilization of offtakes for water supply

Constriction
- Strong lobbies and agendas *(not justified by cost-benefit analyses)*
- Land reclamation *(for economic zones … and ecotourism)*
- Development of inland waterway by narrowing and deepening
- Dredging and sand mining
- ... Singapore offered to take out the sediment for free

Deltas

16
Response to constriction

Theory: \[i_{new} = i_{old} \left(\frac{B_{new}}{B_{old}} \right)^{1-3/b} \]

Morphological computations by Institute for Water Modelling:
- About 5 m bed degradation in 25 years

Yet … in Brahmaputra less extreme than in other rivers:
- Width taken away more from islands than from channels
- Formula relatively insensitive due to low \(b \):
 - common Engelund-Hansen: \(b = 5 \)
 - calibrated for Brahmaputra: \(b = 3.66 \)
 - (physically realistic: \(b > 3 \))
- More sinuous alignment for main channels

Deltareas
New approach to bank stabilization