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ARTICLE INFO ABSTRACT

We present an efficient workflow that combines multiscale (MS) forward simulation and stochastic gradient
computation - MS-StoSAG - for the optimization of well controls applied to waterflooding under geological
uncertainty. A two-stage iterative Multiscale Finite Volume (i-MSFV), a mass conservative reservoir simulation
strategy, is employed as the forward simulation strategy. MS methods provide the ability to accurately capture
fine scale heterogeneities, and thus the fine-scale physics of the problem, while solving for the primary variables
in a more computationally efficient coarse-scale simulation grid. In the workflow, the construction of the basis
fuctions is performed at an offline stage and they are not reconstructed/updated throughout the optimization
process. Instead, inaccuracies due to outdated basis functions are addressed by the i-MSFV smoothing stage. The
Stochastic Simplex Approximate Gradient (StoSAG) method, a stochastic gradient technique is employed to
compute the gradient of the objective function using forward simulation responses. Our experiments illustrate
that i-MSFV simulations provide accurate forward simulation responses for the gradient computation, with the
advantage of speeding up the workflow due to faster simulations. Speed-ups up to a factor of five on the forward
simulation, the most computationally expensive step of the optimization workflow, were achieved for the ex-
amples considered in the paper. Additionally, we investigate the impact of MS parameters such as coarsening
ratio and heterogeneity contrast on the optimization process. The combination of speed and accuracy of MS
forward simulation with the flexibility of the StoSAG technique allows for a flexible and efficient optimization
workflow suitable for large-scale problems.

Keywords:
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Robust optimization

1. Introduction

We consider the life-cycle optimization of hydrocarbon production
by manipulating well controls (pressure, rates or valve settings) for a
given configuration of wells, a process also known as long-term pro-
duction optimization or recovery optimization. In particular we con-
sider robust optimization of strategies which maximize an objective
function over an ensemble of reservoir model realizations to capture the
effect of geologic uncertainty (Van Essen et al., 2009). The most effi-
cient optimization techniques for this purpose are gradient-based with
gradients computed using the adjoint method (Jansen, 2011). However,
the implementation of an adjoint is time-consuming and requires access

to the simulator source code. This has led to the growing popularity of
stochastic gradient-based optimization techniques which are easy to
implement and flexible to use with different reservoir simulators as well
as a different control types. One of the most used stochastic gradient-
based techniques is Ensemble Optimization (EnOpt) which was first
introduced by (Chen et al., 2009). EnOpt uses a number of perturbed
control vectors around a known control strategy where the number of
perturbations is much lower than the total number of elements in the
control vector (i.e. the number of well controls times the number of
control time periods over the life time of the reservoir). The associated
objective function values of these perturbed controls are used to ap-
proximate the gradient using linear regression.
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For optimization of a single reservoir model, i.e. deterministic op-
timization, the computational effort to estimate the gradient increases
with the number of perturbed controls to be evaluated. However, it is
shown in (Chen et al., 2009) that for optimization over multiple re-
servoir models, i.e. for robust optimization, pairing one reservoir model
to one perturbed control strategy leads to a similar computational ef-
ficiency as gradient-based techniques. An improved version of EnOpt
for robust optimization was introduced in (Fonseca et al., 2016), called
Stochastic Simplex Approximate Gradient (StoSAG), which is theoreti-
cally more sound and produces higher-quality gradients compared to
EnOpt. Inspite of the attractive computational efficiency many high
fidelity simulations need to be run within the optimization workflow.
For real field cases this can be computationally demanding. The for-
ward simulation is the most time consuming aspect of any robust op-
timization workflow. Thus it is essential to improve the forward si-
mulation performance. Additionally, it was shown in (Fonseca et al.,
2015) that, although the one-to-one pairing is computationally effi-
cient, higher quality StoSAG gradients can be achieved by using a larger
number of perturbations. Thus improving the computational efficiency
of individual forward simulations could also be used to achieve higher
quality StoSAG gradients by simulating a larger number of perturbed
control strategies which will consequently improve the overall opti-
mization process.

An increase in computational efficiency for robust optimization
workflows is usually achieved by two general approaches. The first
approach is to use a subset of model realizations for the optimization
which reduces the number of simulations needed, while the second
approach is by using faster simulation models. An overview of different
approaches and workflows for using a subset of model realizations
along with the advantages and disadvantages of these methods can be
found in (Barros et al., 2018). One of the ways to improve the com-
putational efficiency of forward simulation models in optimization is
through the use of Reduced Order Models (ROM) (Jansen and
Durlofsky, 2016; Cardoso Durlofskyet al., 2010; van Doren et al., 2006).
Alternatively, there, has been an increase in the applicability of dif-
ferent simulation strategies to speed up the computational process. One
such technique is the Multiscale (MS) method (Hou and Wu, 1997;
Jenny et al., 2003). MS methods aim to solve the equations at a coarser
scale, yet preserving the fine scale description. MS methods have in-
creasingly been demonstrated as an efficient and accurate technique for
reservoir simulation (Tene et al., 2015; Cusini et al., 2015; Kozlova
et al., 2015, 2016). For an overview of important developments in MS
methods we refer to (Lie et al., 2016). Among these developments, an
important one in the scope of the present work is the development of
iterative MS methods, more specifically the iterative Multiscale Finite
Volume method (i-MSFV) (Hajibeygi et al., 2008; Hajibeygi and Jenny,
2011). Due to the localization assumptions utilized in the construction
of the MS basis functions, the solution obtained via an MS scheme is not
as accurate as the fine-scale solution. However, these discrepancies can
be resolved if an iterative scheme is employed. Moreover, because i-
MSFV provides a fine-scale error estimate and an approximate, however
fully conservative velocity field, it allows for both accurate and efficient
simulation with control of the error estimate (Hajibeygi et al., 2012).

Upscaling/homogenization techniques (Durlofsky, 2005), aim to
compute effective model parameters to represent fine-scale properties
at a coarser, computationally affordable, scale. Even though upscaling
methods can provide accurate production/injection rates (Li and
Durlofsky, 2016), which is essential for stochastic gradient-based
techniques, it is often important to enable the accurate modeling of
physical phenomena that requires a fine-scale heterogeneity re-
presentation, e.g. front displacements, capillarity effects, and mixing.
On the other hand, MS simulation strategies aim to compute coarse
scale primary variables, but are still able to represent an approximate
solution at the fine scale, which is an advantage over upscaling tech-
niques. However, this leads to, consequently, approximate reservoir
responses, which will be utilized by stochastic gradient computation
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methods. On that note, it is shown in (de Moraes et al., 2017; Krogstad
et al.,, 2011) that analytical gradients (e.g. adjoint-based ones) com-
puted via MS strategies provide an accurate enough approximation of
the true gradient, capable of providing optimization results comparable
to fine-scale optimizations. Also, the quality of stochastic gradients
compared to analytically computed ones is discussed in (Fonseca et al.,
2015).

The remainder of the paper is organized as follows. First, we discuss
the StoSAG optimization methodology followed by the multiscale re-
servoir simulation framework which has been implemented in-house
and used in this study. We then provide the workflow used for the
optimization experiments performed in this paper. The computational
gain of the workflow is illustrated via an analysis of the computation
complexity of the algorithms involved. Following the theoretical de-
scriptions of these two building blocks we illustrate the advantages and
computational gains achieved on two different reservoir models for
optimization cases with and without geological uncertainties.

2. Theoretical framework
2.1. Stochastic gradient computation

In model-based optimization problems, traditionally, controllable
variables, in individual wells or at field scale, such as injection or
production rates, bottom-hole pressures (BHP) or inflow control valve
(ICV) settings etc., are manipulated to maximize the value of an ob-
jective function such as Net Present Value (NPV) or Ultimate Recovery
(UR). The controllable variables commonly referred to as controls are
denoted by the vector u which consists of all the variables to be opti-
mized at the different control time steps. In this section we briefly
outline the StoSAG method first introduced in (Fonseca et al., 2014a). A
detailed description of the method can be found in (Fonseca et al.,
2016).

For a control vector u’ € , where N, is the total number of
controls and ¢ is the optimization iteration index, we generate an en-
semble of multi-variate Gaussian distributed perturbed control vectors
{uy, wy,..., uy}, M being total number of ensemble members, around the
control vector u? with a user defined covariance matrix C € No<Nu, At
the first iteration the choice of the control vector is user-defined and at
subsequent iterations determined by the optimization algorithm. The
covariance matrix C is usually kept constant throughout the optimiza-
tion although methods exists to adaptively update the covariance ma-
trix see e.g. (Fonseca et al., 2014b; Stordal et al., 2016). The objective
function J chosen to be optimized is then evaluated for each of the
perturbed control vectors {u;, w,,..., uy} which leads to a corresponding
set of objective function values {J;, J,..., Jy}-

To estimate the stochastic gradient we assemble a mean-shifted
matrix of the control vectors U defined as

Ny

U=[wy —-u’ u—u’-uy —u, D)
and a mean-shifted vector of the corresponding objective function va-
lues j defined as
J=1T@) = T@) Ju) = J@)--J (@) = J @) ©)
The equations described above can be used for deterministic (single
geological model) optimization. Recently many papers have in-
vestigated the theoretical and practical applications of stochastic gra-
dients for robust optimization; see e.g. (Chen, 2008; Fonseca et al.,
2014a) and references therein. In this paper we use a 1:1 ratio, i.e. one
reservoir model to one perturbed control strategy, to robustly estimate
the gradient. This leads to a slightly different notation for the vector of
objective function anomalies given in (2) which for robust optimization
is defined as
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j= J(w, my) — J (0, my) J(up, my) — J (0, my)--

T (uy, myy) — J(ul, my) |

3)

where m are the geological model realizations which are equal in
number to the number of perturbed control vectors. The StoSAG gra-
dient is then calculated via linear regression and is given by (Fonseca
et al., 2016)

g = (UUM);, 4

where the superscript  indicates the Moore-Penrose pseudo inverse and
g € M. The gradient calculated above is then utilized in a simple
steepest ascent algorithm (Nocedal and Wright, 2006) to calculate an
updated control vector until convergence is achieved. (Do and
Reynolds, 2013) have shown that the formulation provided above has
many commonalities with other stochastic gradient methods such as
Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall,
1992).

2.2. Multiscale reservoir simulation

Multiscale (MS) methods (Jenny et al., 2003; Hou and Wu, 1997), in
summary, use locally constructed MS basis functions to enable the so-
lution of the original fine-scale problem at a coarse scale and allow the
solution to be accurately represented back to the fine-scale re-
presentation of the reservoir model.

In the context of this work we consider an immiscible, in-
compressible two-phase flow regime. Because MS methods are well-
suited to solve elliptic problems, a sequential strategy to solve the
governing equations is traditionally considered. Here, an Implicit in
Pressure, Explicit in Saturation (IMPES) coupling is employed. For
further explanations about the governing equations and solution stra-
tegies see, e.g., (Aziz and Settari, 1979).

The two-level (Zhou and Tchelepi, 2012) MS system can be algeb-
raically expressed as (Zhou and Tchelepi, 2008; Wang et al., 2014a)

(5)

where R is an N; X Nr restriction operator, P is an N X N¢ prolonga-
tion operator, p € ¢ is the coarse-scale pressure solution, q €
the source terms vector, and A is the Ny X N system matrix resulting
from the flow equation discretization (Aziz and Settari, 1979). Also, N
and Nc are, respectively, the fine grid and coarse grid number of
gridblocks. The interpolated fine-scale pressure is obtained by

(RAP)D = (Rq)

(6)

where p’ € R is the approximate fine scale solution. The prolongation
operator P is constructed based on local basis functions. Different
strategies to build the basis functions are available in the literature
(Hou and Wu, 1997; Jenny et al., 2003; Efendiev and Hou, 2009;
Mgyner and Lie, 2016). The restriction operator R can be either con-
structed as the transpose of the prolongation operator in finite-element-
based multiscale methods, or simply be based on the grid geometry in
finite-volume-based ones (Jenny et al., 2003).

Following the MS pressure equation solution, we solve for the sa-
turations at the fine scale. Because of the hyperbolic nature of the
transport equations, a fine grid is necessary in order to capture the
local, sharp saturation fronts. Hyperbolic conservative laws require
locally conservative velocity fields. However, MS approximate solutions
are not conservative at the fine scale. There are different alternatives to
build a fine-scale conservative velocity field to be used in the solution of
the transport equation at the fine scale (Jenny et al., 2005; Hajibeygi
and Jenny, 2011; Hajibeygi et al., 2012).

Finally, because the Courant-Friedrichs-Lewy (CFL) condition for
numerical stability (Coatset al., 2003) can be very restrictive in terms of
the time-step size selection, we employ an asynchronous time-stepping
strategy (Chen et al., 2004). One should note that sequential implicit

p' =Pp,
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(Jenny et al., 2006) and adaptive implicit (Aziz and Settari, 1979) si-
mulation strategies could be considered to address the CFL time-step
restrictions. However, we emphasize that IMPES strategies can deliver
efficient solution strategies due to the straight forward solution of sa-
turation - it can be seen as a simple matrix-vector multiplication. Some
simulators rely on IMPES and deliver very good performances
(Tolstolytkin et al., 2014). In the context of optimization, which is the
focus of this work, any efficient simulation coupling strategy could be
considered. Also, MS strategies introduced by (Efendiev et al., 2008;
Lee et al., 2009), which solve the transport equation at the coarse scale,
could be used in our proposed MS-StoSAG workflow.

3. MS-StoSAG workflow

The main idea of the workflow we present next is to speed up the
forward simulations required for the evaluation of the objective func-
tion and for the StoSAG gradient computation used at every iteration
during optimization. In this direction, regarding MS simulations, we
want to avoid the overhead to the total simulation time due to the
construction of basis function (Tene et al., 2015). This can be achieved
by employing the offline/online basis function construction strategy
introduced by (Efendiev et al., 2015). The construction of the basis
function, for all ensemble members, is performed at an offline stage,
outside the main optimization loop. Online updates to the MS system
are then performed in an online stage so that any required improvement
due to MS solution approximations are compensated. The ensemble
optimization workflow combined with the online/offline MS simulation
strategy is shown in Fig. 1.

In our implementation, although a simple steepest-ascent with a
variable step size optimization algorithm has been used, the framework
is flexible to allow for the use of more sophisticated algorithms.
Furthermore, for the robust optimization considered in this work, the
uncertainty associated with the fine-scale parameters is accounted for
through an ensemble of equiprobable geological realizations (Aarnes
and Efendiev, 2008; Dostert et al., 2008). have addressed the applica-
tion of MS methods for stochastic subsurface fluid flow modeling. Even
though these MS methods have not been considered in this work, it can
be observed that the framework here presented is independent of a
particular MS method, and hence any formulation, including the sto-
chastic MS version, could be considered in our proposed MS-StoSAG
workflow.

A key aspect of our MS-StoSAG workflow is the online stage. This
online stage happens during each forward MS simulation. In our si-
mulator the flow (pressure) equation, is solved via the Multiscale Finite
Volume (MSFV) method (Jenny et al., 2003). The MSFV method, by
construction, is mass conservative (Jenny et al., 2003). The restriction
operator in (5) is based on a finite volume integration operator at coarse
scale resulting on a matrix of 0's and 1's (see e.g. (Wang et al., 2014a)),
whilst the prolongation operator is based on basis functions constructed
via the local solutions of the governing flow equation, subject to as-
sumed local boundary conditions, without right-hand-side (RHS) terms

- V-@Ve) =0, )

where A is the mobility and ¢ is the basis function value. This involves
the definition of a primal coarse grid (on which the conservative coarse-
scale system is constructed) and a dual coarse grid, which is obtained by
connecting coarse nodes. A coarse node is a fine cell inside (typically at
the center of) each coarse cell. Basis functions are solved locally on
these dual coarse cells. Such overlapping coarse and dual coarse grids
are crucial for conservative solutions in MSFV. An illustration of the
MSFYV grids is provided in Fig. 2.

As basis functions do not account for RHS terms, well terms are
considered as supplementary functions, called well functions (Jenny
and Lunati, 2009). Well functions are local solutions of the flow pro-
blem considering unity solutions at the well (i.e., p, = 1). An illus-
tration of basis and well functions is provided in Fig. 3. The
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gradient control vector
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to evaluate
updated
control vector

Stop

Reduce
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Fig. 1. The MS-StoSAG optimization workflow. MS reservoir simulation is used in the evaluation of the model responses.
Note that both the simulation of the ensemble members for NPV calculation and for the StoSAG gradient computation benefit from faster MS simulations. Basis
functions are only built once, at the beginning of the optimization process, at the offline stage.

Fig. 2. Illustration of MSFV coarse grids for a 2D
domain. Given a fine-scale grid (shown in light solid
black lines), the coarse grid (shown in solid bold
black) is imposed as a non-overlapping partition of
the computational domain. The coarse nodes (ver-
tices) are then selected (filled in red cells).

Connecting coarse nodes constructs the dual-coarse
grid (highlighted in blue) where basis functions are
solved. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 3. (a) Basis function, (b) sum of all basis functions and (c) well function for a given heterogeneous porous media (represented in the bottom of the plots) in a
given dual-grid cell containing a well (source term). The well perforates two fine grid blocks in the center of the dual grid block.

prolongation operator can be expressed in terms of the basis functions
corresponding to each coarse cell j =1, ...,N¢, and each well function
¥, corresponding to all w = 1, ...,N,, wells adds a column vector to the
porous rock prolongation operator

] ' ®

We highlight that, in our implementation, the computation of well/
basis functions is only performed at the offline stage, as a pre-proces-
sing step. The basis functions are not updated because, firstly, the

Yoo Py

P= [4,1 b

smoothing step of the iterative Multiscale Finite Volume (i-MSFV)
method (discussed below) addresses the discrepancies left over from the
MS solution stage and, secondly, it is more computationally efficient in
the optimization context since basis functions can be computed a priori,
i.e. at an offline stage. Building basis functions is a key element in the
multiscale simulation framework. An optimum balance between effi-
ciency and accuracy is directly associated with the coarsening ratio
employed in the construction of the coarse grid. The ability of capturing
the fine-scale heterogeneities and the position of the coarse nodes
(Wang et al., 2016) are examples of factors that influence the choice of
the coarsening ratio. In (Wang et al., 2014b) it is indicated that,
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Solve transport. 0
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Fig. 4. Schematic description of the MS reservoir simulation.

generally, a coarsening factor approximately equal to the square root of
the number of grid-blocks in each direction leads to a good perfor-
mance/efficiency trade-off. For the robust optimization experiments
considered in this paper the basis functions for every single geological
model realization have been built. However, because we do so at the
offline stage, the computational cost of building all the basis function is
relatively small when compared to the overall optimization cost.

The approximate multiscale pressure solution provided by (6) is
inaccurate when compared to the fine-scale solution of the pressure
equation. Firstly, by design, the MSFV solution reflects the localization
assumptions utilized to compute the basis functions in (8). Secondly,
non-monotone solutions may occur for geological settings with high
permeability contrasts, specially in low permeability regions
(Hajibeygi, 2011) (as demonstrated, e.g., for the SPE10 benchmark case
(Christie Bluntet al., 2001)). Again, the non-monotone solutions are
associated with the construction of the MSFV basis functions. Different
strategies have been proposed in the literature to address this issue, e.g.
the monotone MSFV (m-MSFV) (Wang et al., 2016) and the Multiscale
Restriction Smoothed Basis (MsRSB) (Mgyner and Lie, 2016) methods.
However, in this work, all these discrepancies can be resolved if an
iterative scheme is employed (Hajibeygi and Jenny, 2011).

The iterative Multiscale Finite Volume method (i-MSFV) is capable
of resolving these differences by resolving the high frequency errors via
some iterative (smoothing) solutions at the fine scale and resolving the
low frequency errors via the MSFV coarse-scale solution. In brief, the
method consists of re-writing Eqs. (5) and (6) in residual form and
iteratively solving the resulting system of equations until a convergence
criterion is met. Note that i-MSFV delivers conservative coarse-scale
solutions after any iteration stage. As such, it is not used as a linear

solver, but to maintain the desired user-defined accuracy. This is, in our
implementation, the online stage that addresses the MS solution in-
accuracies. This is illustrated in Fig. 4.

Regarding the conservative velocity field reconstruction, we also
rely on the i-MSFV method, by smoothing the fine-scale i-MSFV solu-
tion until a sufficiently small fine-scale residual is achieved.

We address the CFL time-stepping restrictions by solving the
transport equation using small time-steps, hence honoring the CFL
condition, but keeping pressure and velocity fields unchanged. The
transport solver time-step At; is limited by CFL conditions, but the flow
solver time-step At), is not. The velocity field is kept unchanged until the
transport solver time t, reaches At,. The simulator outputs the in-
formation required to compute the gradient and objective function
when the final time ¢; is reached.

3.1. A note about computational complexity

We measure the computational efficiency of our workflow by
comparing the relative computational complexity of a steepest ascent
iteration using our MS-StoSAG strategy to the alternative of employing

Table 1
Costs associated with oil production.
Value Unit
Oil price 252 $/m°
Cost of injected water 60 $/m°
Cost of produced water 30 $/m?®
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a fine-scale simulation in the forward-model evaluations.

In the scope of our applications, because of the underlying physics
and solution strategies employed, the computational cost of the forward
simulation can be assumed to be the cost of the pressure equation linear
system solution. This is because (1) for incompressible flow there is no
partial derivative computation involved, (2) in the IMPES strategy the
solution of the transport equation is proportional to a matrix-vector
multiplication. Furthermore, the computational complexity of all other
steps of the workflow can also be considered negligible when compared
to the cost of solving a linear system.

The complexity of solving a linear system of size N is assumed to be
¢ (aN"), where a and b are constants associated with the specific linear
solver employed. One steepest ascent iteration, disregarding any
backtracking for the sake of simplicity, requires the evaluation of M
forward simulations to evaluate all realizations' objective function va-
lues. Additionally, in order to estimate the StoSAG gradient in a 1:1
approach, we need to evaluate another M forward simulations.
Therefore, Crs(2 X M X aNg) is the cost of one steepest ascent iteration
if fine-scale simulation is employed and
Ops(2 X M X Niygs X (aNg + Ng X aN}é)) is the cost for the MS simula-
tion when empoying a two-stage i-MSFV strategy, where N is the
total number of i-MSFV iterations and Ns is the total number of
smoothing steps per i-MSFV iteration.

Given that we are interested in evaluating the relative gain of the
workflow compared to ensemble optimization when fine-scale forward
simulations are employed, we can say that, given our setting, this can
be assessed by simply computing the ratio

Ops(2 X M X aNb)
Ons (2 X M X Nyys X (@Ng + Ng x aNb))

@F S

Ous

_ CFs (aNzl;)
Ovs(Niys X (aNg + Ng X aNp))

Thus, because of the discussion above, and because our steepest
ascent stopping criteria is the maximum number of iterations, the
computational gain of the MS-StoSAG workflow for the MS setting we
use can be directly estimated from the computational cost ratio be-
tween fine-scale and MS cost to solve the flow equation. This will be the
metric used when evaluating the computational cost in the numerical
experiments.

4. Numerical experiments

We illustrate the application of our proposed framework for life-
cycle waterflooding optimization of two different models. For both
models, the controls are bottom-hole pressures in the injection and
production wells. The objective function used for optimization is a
standard economic objective, Net Present Value (NPV), as defined in
Eq. (9), for which we use the prices provided in Table 1.

— )T = (G )T Dl

1
(1 +b)#

J= ZK: [(qg,k)'ro
k=1 9

where q,, represents the oil production rate in m>/day, Qupc is the
water production rate in m®/day, g, is the water injection rate in m®/
day, r, is the price of oil produced in $/m>, Typ is the cost of produced
water in $/m>, r,; is the cost of injected water in $/m>, A is the dif-
ference between consecutive time steps in days, b is the discount factor
expressed as a fraction per year, t; is the cumulative time in days cor-
responding to time step k, and 7 is the reference time period for dis-
counting, typically one year.

In the MS simulation of all numerical experiments there is no basis
function reconstruction. Instead, we delegate the resolution of the dis-
crepancies left by the localization assumptions and inaccuracies due to
outdated basis functions to the i-MSFV smoothing step. Also, the con-
servative velocity field is reconstructed directly from the smoothed
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Fig. 5. The permeability realization used for deterministic optimization and
well placement.

Table 2

Fluid properties for five-spot Model.
Property Value Unit
Oil dynamic viscosity (1,) 0.5 % 1073 Pas
Water dynamic viscosity (u,,) 1.0 x 1073 Pas
End-point relative permeability, oil (kyow) 0.9 -
End-point relative permeability, water (kny) 0.6 -
Corey exponent, oil (N,) 2.0 -
Corey exponent, water (N) 2.0 -
Residual-oil saturation (Sor = 0.2) 0.2 -
Connate-water saturation (S,yc) 0.0 -

4.36 |-
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A
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: | | | | |
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Fig. 6. Comparison of the objective function through the iteration process for
fine scale and the two i-MSFV strategies, toy model.

pressure field. Therefore, we require the i-MSFV loop to reduce the fine
scale residual with one order of magnitude, while the fine scale residual
tolerance after smoothing is set to 107%. A [>-norm is employed to
compute the residual norm. The stabilized bi-conjugate gradient itera-
tive solver with ILUT preconditioner (Saad, 1994) is used as the fine-
scale smoother.

4.1. Toy model - five-spot model
In the first numerical experiment, in order to evaluate the proposed

workflow in a relatively controlled environment, a toy-model, con-
sisting of a simple synthetic 2D inverted five-spot model is considered.
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Fig. 7. Comparison of the optimal control strategies between fine scale and two i-MSFV strategies, toy model.
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Fig. 8. Four different permeability realizations from the ensemble of 1000 members used in the toy model numerical experiments.

It consists of a 21 X 21 regular mesh with grid block size dimensions of
33.3 X 33.3 X 2 m. The reservoir porosity is constant and equal to 0.3.
The permeability distribution is depicted in Fig. 5 and the fluid prop-
erties are described in Table 2. For the optimization, we have 5 control
variables per control time step. In this exercise we use 6 control time
steps of 720 days each, thus we optimize 30 variables. The values of the
bottom-hole pressures are bounded for the production wells between a
minimum value of 28 MPa and a maximum value of 30 MPa. The in-
jection well pressures are bounded between a minimum value of
30 MPa and maximum value of 32 MPa.

4.1.1. Deterministic life-cycle optimization

We first consider a single model realization. For this purpose we use
an ensemble of 50 perturbed control vectors with a perturbation size
defined as 10% of the difference between the min and max bounds of
the controls. The stopping criteria used is a maximum number of 25
optimization iterations. The initial starting strategy is one wherein the
injector well operates at a constant BHP of 31 MPa and the production
wells at a constant BHP of 29 MPa. When working with reduced order
or upscaled models it is imperative to compare and validate the results

with respect to the fine scale model realization.

4.1.1.1. Multiscale optimization. We consider two different coarsening
ratios to test the efficiency of our proposed MS-StoSAG workflow. The
two coarsening ratios are 7 X 7 and 3 X 3. Thus a deterministic
optimization with the optimization parameters discussed above is
performed for 3 different models, fine scale, i-MSFV 7 X 7 and i-
MSFV 3 x 3. The optimization process is illustrated in Fig. 6. We
observe that all three models find optimal strategies which produce
approximately similar NPV values. We also observe that while the i-
MSFV 7 x 7 model achieves a slightly lower NPV compared to the fine
scale model, the i-MSFV 3 x 3 model achieves a higher NPV than the
other two models. Thus the coarsest model used produced the highest
NPV which may be counter-intuitive. Cross validation of the i-MSFV
strategies on the 21 X 21 fine scale model produces NPV values which
are indistinguishable from each other which could be the result of a
relatively simple small model. Fig. 7 is a comparison of the optimal
control strategies obtained from the different models. We observe that
all the strategies are very similar to each other thus the objective
function values are also similar.
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Fig. 9. Comparison of the mean objective function value for the three different
simulation strategies, fine scale (blue), i-MSFV 7 X 7 (orange) and i-MSFV
3 X 3 (red), toy model. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

4.1.1.2. Sensitivity to optimization parameters. The parameters which
influence the computation of a stochastic gradient such as the ensemble
size of the perturbed controls, perturbation sizes to generate the
ensemble of controls, random seeds used to generate the perturbed
controls were varied and tested with the different i-MSFV models. The
results from this exercise followed the exact same trends as reported in
earlier publications see e.g. (Fonseca et al., 2015) who investigated the
impact of gradient quality based on the various parameter choices.

Producer 4

Journal of Petroleum Science and Engineering 172 (2019) 247-258

Table 3
Comparison of the computational effort and average number of smoothing steps

(Ns) for the different i-MSFV cases, toy model.

Simulation strategy CFs. Ns
“Ms

i-MSFV (7 X 7) 4.3 1

i-MSFV (3 x 3) 47 2

Fig. 11. Illustration of the well configuration used for the Kanaal reservoir
model with injectors in the middle row denoted by X.

4.1.1.3. Robust life-cycle optimization. Inclusion of uncertainty within
the optimization framework is usually accounted for by utilizing an
ensemble of equiprobable geological model realizations. In this paper a
large ensemble of 1000 realizations of the five-spot model was
generated via the decomposition of a reference permeability image
using Principal Component Analysis parameterization. See (Jansen,

Producer 3
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Fig. 10. Comparison of the controls that generated the highest NPV, toy model.
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Table 4

Fluid properties for the Kanaal reservoir model.
Property Value Unit
0il dynamic viscosity (4,) 2% 1073 Pas
Water dynamic viscosity (u,,) 1.0 X 1073 Pas
End-point relative permeability, oil (kyow) 0.9 -
End-point relative permeability, water (kny) 0.8 -
Corey exponent, oil (N,) 2.0 -
Corey exponent, water (Ny,) 2.0 -
Residual-oil saturation (Syr = 0.2) 0.2 -
Connate-water saturation (Syc) 0.0 -

2013) for more details. Fig. 8 illustrates 4 different permeability
realizations from a reduced ensemble of 50 members used in the
optimization experiments. The reduced ensemble was selected by
simulating all 1000 realizations with the same control vector and
uniformly sampling realizations based on the highest, lowest and
intermediate objective function values. We acknowledge that there
exists a range of formal clustering techniques to carefully select a
representative ensemble. For the proof-of-concept optimization
experiments in this paper the representativeness of the selected
ensemble to a larger ensemble is deemed to be outside the scope of
this paper.

The objective function used for the robust optimization experiments
is the expected NPV calculated over the 50 realizations. Fig. 9 illustrates
the evolution of the mean NPV through the optimization process for the
different simulation models. The same coarsening ratios and initial
starting strategy has been used as the deterministic case. The fine scale
strategy achieves the highest objective function values followed by the
i-MSFV 7 x 7 model and the i-MSFV 3 x 3 model. Though the five-spot
model is relatively small it is reassuring that, irrespective of the dif-
ferent models (fine scale or i-MSFV) used, very similar objective func-
tion values have been achieved when geological uncertainties are ac-
counted for.

Fig. 10 is a comparison of the optimal control strategies for two
different models, fine scale and i-MSFV 3 x 3. The optimal control
strategies achieved after robust optimization are quite different from
the strategies achieved for deterministic optimization which could be
the impact of geological uncertainties, the correspondingly different
basis functions and impact of coarsening ratio on the different reali-
zations. A-priori determination of the impact of these factors on the
results is non-trivial and is probably model dependent.

4.1.2. Computational efficiency

Table 3 provides a comparison of the computational efficiency and
speedup gained for the different models used for the experiments. We
use the linear solver time to measure the speed up. This accounts for all
computations performed by the i-MSFV solution strategy, i.e solution of
the coarse system plus fine-scale smoothing. Also, it is well-known that
the linear system solution is the most time-consuming part in reservoir
simulation framework (Aziz and Settari, 1979).
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Fig. 13. Comparison of objective function value between fine scale and the
different i-MSFV strategies used, Kanaal model.

An approximately factor 4 speedup can be achieved for this rela-
tively small five-spot model. The average number of smoothing steps
throughout the optimization is approximately similar, irrespective of
the coarsening ratio used which is model- and problem-dependent. The
tolerances of the residual for the MS solution and the smoothing steps
are the same for all cases. In order to understand and validate the ef-
ficiency of the proposed framework a larger model is used below.

4.2. Kanaal reservoir model

A second example is considered to illustrate the effectiveness of our
proposed workflow. We use a 99 x 99 2D model with grid blocks of 10
X 10 x 5m. Thus we have approx. 10,000 grid blocks in this model
compared to the 441 grid blocks in the five-spot model. The geological
description used in this model has been inspired from a typical chan-
nelized North Sea reservoir. The channels (Kanaal in Dutch) are set in a
sandy shale background with permeabilities ranging from 10 to 50 mD.
The channels have permeabilities ranging from 250 to 700mD with
constant porosities of 20%. This reservoir is developed using a line
drive well configuration with 3 injection wells and 6 production wells
as illustrated in Fig. 11. The fluid properties of this reservoir are given
in Table 4.

An ensemble of 50 geological realizations has been created using
geological modeling software (Schlumberger and Petrel, 2016) to be
used for the robust optimization experiments. Each of the realizations
has been constrained to well logs from 4 exploration wells which were
generated from a base-case model. This base-case model does not form
part of the ensemble of model realizations. An illustration of a subset of
models is illustrated in Fig. 12. The life cycle period for this reservoir is
12 years. We allow the controls, i.e. the bottomhole pressures in all
wells, to be manipulated once every 6 months, i.e. 24 we have control

Fig. 12. Four different permeabilty realizations from an ensemble of 100 members, Kanaal model.
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Fig. 15. Comparison of the optimal control strategies from i-MSFV 11 x 11 and i-MSFV 3 X 3 strategies, Kanaal model.

time steps. Thus for the 9 wells we optimize a total of 9 X 24 = 216
controls. The values of the bottomhole pressures are bounded for the
production wells between a minimum value of 28 MPa and a maximum
value of 30 MPa. The injection well pressures are bounded between a
minimum value of 30 MPa and maximum value of 32 MPa.

4.2.1. Robust life-cycle optimization

For this example we focus on robust optimization experiments. The
initial control strategy corresponds to the bottomhole pressures on their
maximum bound for the injectors, i.e. a constant pressure of 32 MPa,
and on their minimum bound for the producers, i.e. 28 MPa. Different
coarsening ratios and their impact on the optimization are investigated.
The coarsening ratios for this example are 3 X 3,11 x 11 and 33 x 33.
The fine scale model is 99 X 99. We observe in Fig. 13 that all the
optimization experiments find solutions that achieve an objective
function value higher than a reactive control strategy, where the pro-
duction wells are shut-in once the water-oil ratio exceeds a preset
maximum. The economic water cut for the reactive control strategy for
the prices considered in this paper is 82%. The reactive control strategy
has been used as a reference solution when evaluating the performance
of life-cycle optimization techniques in line with the approach first
introduced in (Van Essen et al., 2009). We also observe from Fig. 13
that different coarsening ratios achieve different optimal mean NPV
values with similar trends as observed for the five-spot model. It is also
important to note that, in this case, the optimization runs performed
with the MS-StoSAG workflow provide mean NPV values higher than
the one obtained by the fine-scale optimization.

4.2.2. Comparison of optimal strategies

Fig. 14 is an illustration of the optimal controls for 2 wells for the
fine scale model and the coarser scale i-MSFV 11 x 11 model. The
optimal controls obtained by the other models are significantly dif-
ferent from each other with the same trend observed for the other seven
wells. This is a fact that has been consistently observed in the literature,

first noted in. Considerably different control settings can lead to rela-
tively similar NPV values due to the over-parameterization of the op-
timization problem. This is in accordance with numerous other studies;
see, e.g., (Jansen et al., 2008; Van Essen et al., 2011; Do and Reynolds,
2013). A comparison of the optimal controls for two different i-MSFV
models is illustrated in Fig. 15. Once again, we observe that different
optimal control strategies achieve very similar objective function va-
lues.

In addition to visually recognising differences in the optimal control
strategies we provide in Table 5 a comparison of the optimal volumes of
oil and water produced and injected for the different simulation models.
We observe an interesting trend in the results. Higher volumes of oil
and water are produced in the i-MSFV models compared to the fine
scale model. Additionally we observe that the higher the coarsening
ratio, the higher are the production and injection volumes. An im-
portant aspect to be considered here is the ability of the local basis
functions to represent the fine-scale heterogeneities. The coarsening
ratio and the positioning of the coarse node vertices are instrumental in
achieving higher quality basis functions. Different strategies exist to
achieve higher quality basis functions (e.g. (Wang et al., 2016)), how-
ever, in our experiments, we rely on the ability of the i-MSFV to correct
the MSFV solution approximations/errors.

Table 5
Comparison of optimal total produced oil (Q,) and water (Qyrq) and total in-
jected volume (Q,ny) for the different simulation strategies, Kanaal model.

Simulation Strategy Qo (m?) Quprod (m3) Qw,-nj(m3)
Fine scale 3.82e5 2.88e5 6.37e5
i-MSFV 33 x 33 3.87e5 3.09e5 6.97e5
i-MSFV 11 x 11 3.86e5 3.03e5 6.90e5
i-MSFV 3 x 3 3.92e5 3.32e5 7.24e5
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Table 6
Comparison of the computational effort and average number of smoothing steps
(Ns) for the different i-MSFV cases, Kanaal model.

Simulation strategy CFs Ns
‘MS

i-MSFV 33 x 33 4.44 5

i-MSFV 11 x 11 5.69 12

i-MSFV 3 x 3 4.62 18

4.2.3. Computational efficiency

In this section we compare the computational efficiency and
speedup gained for the different coarsening ratios. For the larger Kanaal
model an approximately 5 times speedup in computational efficiency is
achieved as observed in Table 6. The tolerances of the residual for the
MS solution and the smoothing steps are the same for all the cases. We
also observe a clear trend in the average number of smoothing steps
required for the different coarsening ratios with a higher number of
smoothing steps being required for a coarser model.

5. Discussion

The multiscale implementation used in this work can be further
improved upon to obtain an even higher computational efficiency si-
milar to the results reported in (Krogstad et al., 2011). The speedup in
the computational efficiency reported in (Krogstad et al., 2011) was
obtained with coarse-scale representations for the both the flow and
transport equations. In this paper the flow problem is solved at the
coarse scale while the transport equation has been solved on the fine
scale which improves the accuracy of our results.

Even though no basis function reconstructions were performed in
our experiments, and the i-MSFV fine-scale smoothing performed re-
markably well, that might not be the case when more complex physics
are involved in the simulation model (e.g. gravity effects, capillarity,
higher mobility ratios). However, even under more complex scenarios,
MS strategies should still deliver considerable speedups given that basis
functions need only be built adaptively and infrequently. Also, the
employment of different velocity field reconstruction techniques could
be necessary in the case that i-MSFV becomes expensive. But again,
techniques like those presented by (Jenny et al., 2005; Hajibeygi and
Jenny, 2011) benefit from adaptivity. Furthermore, the implementation
of our MS reservoir simulator does not yet capitalize on all potential
advantages of MS methods. MS methods are well suited to take full
advantage of modern high performance-computing architectures. For
instance, the solution of basis functions are embarrassingly paralleliz-
able (Kozlova et al., 2016; Manea et al., 2016), an advantage with re-
spect to global-based ROM approaches. Moreover, we expect that the
computational advantage will increase for larger-sized reservoir
models, relying on the model-size-dependent computational perfor-
mance of MS methods, as discussed, e.g., in (Jenny et al., 2003).

When working with coarse scale models for optimization it is im-
perative to validate the optimized strategy using the fine scale model to
understand and quantify the impact of optimization. Reduced-order or
upscaled models, though computationally very efficient, do not always
produce similar production responses compared to the fine scale model.
In our approach, because the transport problem is always solved on the
fine scale, the optimal strategies need not be validated as is confirmed
by the results in this paper. This is an additional attractive feature of the
workflow proposed in this paper. When working with ROM methods
such as POD (van Doren et al., 2006) or TPWL (Cardoso Durlofskyet al.,
2010), multiple high-fidelity simulations need to be performed a-priori
(akin to an offline stage) to develop the ROM and afterwards to verify
the accuracy of the results. In our workflow we alleviate the need for
these expensive pre- and re-computations. In our MS-StoSAG workflow
the offline stage i.e., computation of the basis functions in the MS
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method is extremely cheap compared to the overall cost of the opti-
mization process.

6. Conclusions

In this paper we presented a computationally efficient multiscale
based stochastic optimization (MS-StoSAG) workflow, and applied it to
two synthetic test cases. Deterministic and robust optimization ex-
periments were performed to illustrate that significant improvements in
objective function values (10-15% relative to the reactive control
strategy) are attainable in a computationally efficient manner. The
validation of our results highlights the accuracy of the multiscale for-
ward simulation models. The results from our experiments show that an
approximately five-times speedup can be achieved with scope for even
higher speedups with our proposed workflow. We have illustrated that
our MS-StoSAG workflow can achieve computationally efficient results,
which improves the applicability of robust life-cycle optimization.
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