

Delft University of Technology

Compositional soundness proofs of abstract interpreters

Keidel, Sven; Poulsen, Casper; Erdweg, Sebastian

DOI
10.1145/3236767
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the ACM on Programming Languages

Citation (APA)
Keidel, S., Poulsen, C., & Erdweg, S. (2018). Compositional soundness proofs of abstract interpreters. In
Proceedings of the ACM on Programming Languages (ICFP ed., Vol. 2). Article 72 Association for
Computing Machinery (ACM). https://doi.org/10.1145/3236767

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3236767
https://doi.org/10.1145/3236767

72

Compositional Soundness Proofs of Abstract Interpreters

SVEN KEIDEL, CASPER BACH POULSEN, and SEBASTIAN ERDWEG, Delft University of

Technology, The Netherlands

Abstract interpretation is a technique for developing static analyses. Yet, proving abstract interpreters sound is
challenging for interesting analyses, because of the high proof complexity and proof effort. To reduce complexity
and effort, we propose a framework for abstract interpreters that makes their soundness proof compositional.
Key to our approach is to capture the similarities between concrete and abstract interpreters in a single shared
interpreter, parameterized over an arrow-based interface. In our framework, a soundness proof is reduced to
proving reusable soundness lemmas over the concrete and abstract instances of this interface; the soundness
of the overall interpreters follows from a generic theorem.

To further reduce proof effort, we explore the relationship between soundness and parametricity. Para-
metricity not only provides us with useful guidelines for how to design non-leaky interfaces for shared
interpreters, but also provides us soundness of shared pure functions as free theorems. We implemented our
framework in Haskell and developed a k-CFA analysis for PCF and a tree-shape analysis for Stratego. We
were able to prove both analyses sound compositionally with manageable complexity and effort, compared to
a conventional soundness proof.

CCS Concepts: • Software and its engineering→Automated static analysis; • Theory of computation

→ Proof theory;

Additional Key Words and Phrases: Abstract Interpretation, Soundness

ACM Reference Format:

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compositional Soundness Proofs of Abstract
Interpreters. Proc. ACM Program. Lang. 2, ICFP, Article 72 (September 2018), 26 pages. https://doi.org/10.1145/
3236767

1 INTRODUCTION

Abstract interpretation [Cousot and Cousot 1979] is an approach to static analysis with soundness at
its heart: An abstract interpreter must approximate the behavior of a program as prescribed by a con-
crete interpreter. This soundness proposition can guide the design of abstract interpreters [Cousot
1999] and prescribes what needs to be proven about the analysis. Unfortunately, it is far less clear
how to prove an abstract interpreter sound and, in particular, how to decompose the soundness
proof into proof obligations of manageable size. Yet, compositional soundness proofs are crucial
when developing verified abstract interpreters for real-world languages to reduce proof complexity

and proof effort.

AbstractConcrete

What makes the decomposition of the soundness proof difficult
is that concrete and abstract interpreters are often misaligned, such
that a case of one interpreter relates to multiple cases of the other
interpreter (see figure). For example, a language construct IfZero
that checks if a given number is zero has two outcomes in the

Authors’ address: Sven Keidel; Casper Bach Poulsen; Sebastian Erdweg, Delft University of Technology, The Netherlands.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART72
https://doi.org/10.1145/3236767

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236767
https://doi.org/10.1145/3236767
https://doi.org/10.1145/3236767

72:2 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

concrete interpreter (is zero, is not zero) but three outcomes in an interval analysis (is zero, contains
zero, does not contain zero). Such misalignment between concrete and abstract interpreter prevents
a piece-wise decomposition of the soundness proof. Conversely, when concrete and abstract
interpreter functions share the same structure we could decompose the proof along that structure.

We present a novel framework for defining abstract interpreters such that their soundness proofs
become compositional. Our key contributions are that (i) we can abstract from the difference
between concrete and abstract interpreters such that (ii) the soundness proof for the shared parts
is fully compositional and (iii) follows automatically from the soundness of the non-shared parts.
Indeed, most concrete and abstract interpreter are very similar and only differ in a few places
where the interpreters operate on the concrete or abstract domain (e.g., addition of numbers vs
intervals). We propose to make these similarities explicit in a shared parameterized interpreter

function, abstracting from the interpretations of primitive operations on the respective domain.
We realize this abstraction using Haskell’s arrows [Hughes 2000], a generalization of monads.
Instantiating the shared interpreter with arrow instances for the concrete and abstract domain fixes
the respective language semantics. For an abstract interpreter factorized in this way, we obtain the
following benefits when proving soundness:

(1) We can decompose the soundness proof into soundness lemmas about the operations of the
concrete and abstract arrow instances. Each soundness lemma is context free, i.e., independent
from where the operation is used in the shared interpreter. This narrows the scope of the
lemmas and makes them reusable.

(2) Arrows restrict the meta-language of shared interpreters, which solely consists of arrow
expressions. Because arrows are a first-order language, we can use structural induction over
arrow expressions to obtain a generic soundness proof for any shared interpreter composed
of sound arrow operations.

For example, consider the following abstract syntax tree of a shared arrow expression. On the
right, we list the soundness lemmas required to prove concrete and abstract instances of the shared
expression sound. We write e Û⊑ ê to mean that e is soundly approximated by ê:

>>>

ifZero

insert 4 arr succ

insert 7 arr pred

second

arr abs

f Û⊑ f̂ ∧ д Û⊑ д̂ =⇒ (f ***д) Û⊑ (f̂ *̂**д̂)

f Û⊑ f̂ ∧ д Û⊑ д̂ =⇒ (f >>>д) Û⊑ (f̂ >̂>>д̂)

f Û⊑ f̂ =⇒ second f Û⊑�second f̂
f Û⊑ f̂ ∧ д Û⊑ д̂ =⇒ ifZero f д Û⊑�ifZero f̂ д̂

insert n Û⊑�insert n arr succ Û⊑ ârr succ

arr pred Û⊑ ârr pred arr abs Û⊑ ârr abs

Functions >>>, ***, and second are language-independent arrow operations, arr is language-
independent and embeds pure functions into arrow computations, and ifZero and insert are
language-specific operations. The concrete and abstract arrow instances define implementations
for all arrow operations; we denote abstract implementations with a hat *̂** to distinguish them
from concrete definitions ***. With that, we formulate a context-free soundness lemma for each
arrow operation. For example, the lemma of *** is context-free in that it proves soundness of the
operation for all sound subexpressions f , f̂ and д, д̂. This allows us to reuse the same lemma for
every occurrence of *** in the shared expression. Soundness of the shared expression now follows
by structural induction on arrow expressions: Given all leaves are sound and all intermediate nodes
preserve soundness, the composed expression is sound. This way, we have effectively decomposed

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:3

the soundness proof into smaller lemmas that can be proved independently and that can be com-
posed to reason about full abstract interpreters. We assert this result as a generic meta-theorem,
stating that any arrow expression is sound if the arrow operations it uses are sound.
We also show that in meta-languages with parametricity [Reynolds 1983], the soundness of

shared code follows as a free theorem [Wadler 1989], given the interface does not leak details of
the abstract interpreter into shared code. Based on this observation, we extract guidelines for the
interface design to be used in the shared interpreter. In particular, following our guidelines, we get
soundness of pure functions embedded with arr for free, which reduces the number of lemmas
required for our example from 8 to 5. Lastly, parametricity allows us to generalize our framework
to abstract interpreters that share code over interfaces other than arrows.

To evaluate our approach, we implemented a k-CFA analysis for PCF and developed a tree-shape
analysis for Stratego [Visser et al. 1998], a dynamic language for program transformations used in
practice and featuring dynamic scoping of pattern-bound variables, higher-order functions, and
generic tree traversals. For both analyses, we extract a shared parameterized interpreter and prove
it sound compositionally, thus demonstrating the applicability of our approach. We show that,
for the k-CFA analysis, the soundness proof can be decomposed into 16 independently provable
lemmas and for the tree-shape analysis into 27 lemmas. We reflect on our soundness proofs and
explain why it has a reduced complexity and effort compared to conventional soundness proofs.
In summary, we make the following contributions:

• We describe a new approach for organizing abstract interpreters by sharing code with the
concrete interpreter over an interface based on arrows.

• We show that the soundness proof of such abstract interpreters can be conducted composi-
tionally, based on soundness lemmas of the arrow operations.

• We prove a generic meta-theorem showing that any shared interpreter is sound if it is
composed of sound arrow operations. Thus, the soundness proofs of our abstract interpreters
are not only compositional, but proofs about the shared parts actually follow for free.

• We apply parametricity to develop guidelines for the interface design, to obtain soundness of
embedded pure functions for free, and to generalize our approach to interfaces other than
arrows.

• We demonstrate the applicability of our approach through two case studies and show that
our approach reduces the effort and complexity of soundness proofs.

2 WHY AND HOW TO MAKE SOUNDNESS PROOFS COMPOSITIONAL

In this section, we first discuss the complexity and effort of soundness proofs of conventional abstract
interpreters. Then, we describe informally how we can make soundness proofs compositional and
how this reduces proof complexity and effort.

2.1 Conventional Abstract Interpreters

To illustrate the difficulties of soundness proofs of conventional abstract interpreters, we construct
an abstract interpreter for a small example language in Haskell. Expressions in our example language
are either variables, integer literals, additions, or conditionals:

data Expr = Var String | Lit Int | Add Expr Expr

| IfZero Expr Expr Expr

We would like to implement an abstract interpreter for this language that predicts the numbers a
program evaluates to as an interval. For example, consider the following program:

IfZero (Var "x") (Lit 2) (Lit 5),

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:4 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

type Val = Int

type Env = Map String Val

eval :: Expr -> Env -> Maybe Val

eval e env = case e of

Var x -> lookup x env

Lit n -> return n

Add e1 e2 -> do

v1 <- eval e1 env

v2 <- eval e2 env

return (v1 + v2)

IfZero e1 e2 e3 -> do

v <- eval e1 env

if v == 0

then eval e2 env

else eval e3 env

type V̂al = (Int ,Int)

type Ênv = Map String V̂al

�eval :: Expr -> Ênv -> �Maybe V̂al

�eval e env = case e of

Var x -> �lookup x env

Lit n -> return (n,n)

Add e1 e2 -> do

(i1,j1) <- �eval e1 env

(i2,j2) <- �eval e2 env

return (i1+i2, j1+j2)

IfZero e1 e2 e3 -> do

(i1,j1) <- �eval e1 env

if i1 == 0 && j1 == 0

then �eval e2 env

else if j1 < 0 || 0 < i1

then �eval e3 env

else �eval e2 env ⊔ �eval e3 env

Fig. 1. Conventional design of a concrete (left) and abstract interpreter (right) for our example language.

This program evaluates to 2 if x is bound to 0 and to 5 otherwise. In order to be sound, the abstract
interpreter must approximate all possible results of this program. That is, if the interval for xmay
contain 0, the most precise approximation of this program in the domain of intervals is [2, 5].

We define a conventional concrete interpreter eval and a conventional abstract interpreter �eval
for this language in Figure 1. The definition of the concrete interpreter is standard, hence, we only
explain how the abstract interpreter differs. In case of an addition, the abstract interpreter adds
the interval bounds. In case of IfZero, as described in the introduction, the abstract interpreter
distinguishes three cases for the interval resulting from evaluating e1: the interval contains zero
only, does not contain zero, or contains zero and other values. If the interval contains zero only, we
evaluate e2; if the interval does not contain zero, we evaluate e3. But if the interval contains zero
and other values, we evaluate both e2 and e3 and join their results using the least upper bound
operation ⊔.
The abstract interpreter appears to correctly approximate the concrete interpreter’s behavior.

But what exactly do we have to prove to verify the soundness of �eval? We prove the following
soundness proposition for the collecting semantics [Cousot 1999] of eval:

∀ e ∈ Expr. ∀ X ⊆ Env. αV ({eval e ρ | ρ ∈ X }) ⊑ �eval e αE (X)

Here, αV and αE are abstraction functions of Galois connections [Cousot and Cousot 1979] for
values and environments of the interpreters:

αV : P(Val)⇆ V̂al : γV αE : P(Env)⇆ Ênv : γE

αV (X) = (minX ,maxX) αE (X) =
⊔

ρ ∈X

[x 7→ αV (ρ(x)) | x ∈ dom(ρ)]

The soundness proposition quantifies over sets of environments X , which represent properties of
the program’s free variables. For example, X = {ρ | ρ ∈ Env∧ ∀ (x 7→ v) ∈ ρ. even(v)} describes
environments that map variables to even numbers. The soundness proposition states that, for any

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:5

e , all concrete evaluations of e under environments ρ satisfying X must be predicted by a single
abstract evaluation of e under the single abstract environment αE (X) representing property X .
To prove this soundness proposition for our example, we proceed by structural induction over

the expressions of our language. The soundness proof for Var, Lit and Add is easy, because the inter-
preters align and we only need to reason about the Galois connection αV . The case IfZero e1 e2 e3
is slightly more involved: We perform a case distinction on the result of �eval e1 αE (X), because
the result prescribes which branch of IfZerowill be analyzed.

• In case �eval e1 αE (X) = Just (0, 0), the first branch e2 will be analyzed. From the induction
hypothesis for e1, we learn that αV { eval e1 ρ | ρ ∈ X } ⊆ �eval e1 αE (X) = Just (0, 0). Since
γV (Just (0, 0)) = {0}, the concrete interpretation eval e1 must also result in 0 and the concrete
interpreter evaluates the the first branch e2. This lets us conclude:

α({ eval (IfZero e1 e2 e3) ρ | ρ ∈ X }) ⊑ α({ eval e2 ρ | ρ ∈ X })

⊑ �eval e2 αE (X) ⊑ �eval (IfZero e1 e2 e3) αE (X).

• The case for intervals without 0 is analogous to the previous case.
• The last case is more involved because �eval e1 αE (X) contains zero and other numbers. In
this case, we have to reason about multiple outcomes of behavior of the concrete interpreter.
Independent of the result of e1, the concrete interpreter will either evaluate the first or second
branch of IfZero and hence:

{eval (IfZero e1 e2 e3) ρ | ρ ∈ X }) ⊆ {eval e2 ρ | ρ ∈ X } ∪ {eval e3 ρ | ρ ∈ X }

This lets us conclude:

αV ({eval (IfZero e1 e2 e3) ρ | ρ ∈ X })

⊑ αV ({eval e2 ρ | ρ ∈ X } ∪ {eval e3 ρ | ρ ∈ X })

⊑ αV ({eval e2 ρ | ρ ∈ X }) ⊔ αV ({eval e3 ρ | ρ ∈ X })

⊑ �eval e2 αE (X) ⊔ �eval e3 αE (X) =�eval (IfZero e1 e2 e3) αE (X).

With this, we have proved soundness for a very simple static analysis of a very simple programming
language. And already the proof was not trivial: For every case in the abstract interpreter, we
had to establish which cases of the concrete interpreter are relevant and then establish that the
abstract interpreter subsumes them all. The complexity and effort of such proofs quickly grows
as language features become more complex. For example, consider another language construct
TryZero e1 e2 e3 of our example language whose concrete semantics is like IfZero e1 e2 e3

except the evaluation defaults to e3 if the evaluation of e1 fails:

eval e env = case e of

TryZero e1 e2 e3 -> case eval e1 env of

Just v | v == 0 -> 1 eval e2 env

| otherwise -> 2 eval e3 env

Nothing -> 3 eval e3 env

When defining an abstract interpreter for TryZero, we need to be careful about how we handle
failed executions. In particular, we often do not know whether a computation definitely succeeds
or fails. To be precise, we use type �Maybe to represent potential failure (JustNothing) alongside
definite success (Just) and definite failure (Nothing). Based on this type, we can implement TryZero
in the abstract interpreter as shown in Figure 2.

In the soundness proof for TryZero, we have to relate 7 cases of the abstract interpreter to 3 cases
of the concrete interpreter as indicated by the diagram on the right. Compared to IfZero, the
soundness proof for TryZero is worse in two ways:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:6 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

�eval :: Ênv -> Expr -> �Maybe V̂al

�eval env e = case e of

TryZero e1 e2 e3 -> case �eval env e1 of

Just (i1,j1)

| i1 == 0 && j1 == 0 -> A �eval e2 env

| j1 < 0 || 0 < i1 -> B �eval e3 env

| otherwise -> C �eval e2 env ⊔ �eval e3 env

Nothing -> D �eval e3 env

JustNothing (i1,j1)

| i1 == 0 && j1 == 0 -> E �eval e2 env ⊔ �eval e3 env

| j1 < 0 || 0 < i1 -> F �eval e3 env

| otherwise -> G �eval e2 env ⊔ �eval e3 env

2

1

3

D

C

B

A

E

F

G

Fig. 2. Abstract interpretation of TryZero and how its cases relate to the concrete interpreter.

• We have to relate a single case of the abstract interpreter to up to 3 cases of the concrete
interpreter at once. The more cases we need to relate, the higher the proof complexity.

• We have to prove 7 cases of the abstract interpreter sound. The more cases we need to prove,
the higher the proof effort.

These problems are already apparent in the soundness proof for our example language. For precise
abstract interpreters of real-world languages, proof complexity and proof effort quickly make a
soundness proof infeasible. However, it is exactly for analyses of such languages that we need
soundness proofs to ensure all corner cases are covered. Therefore, the question this paper aims to
answer is: How can we make soundness proofs of abstract interpreters simpler and more systematic,
such that soundness proofs of abstract interpreters for real-world languages become feasible?

2.2 Concrete and Abstract Interpreters using Arrows

This paper presents techniques that make soundness proofs of abstract interpreters compositional,
thereby reducing proof complexity and proof effort. A key idea is to factorize the implementation of
a concrete and abstract interpreter into a shared implementation based on Haskell arrows [Hughes
2000]. This factoring aligns the cases of the interpreters and exposes the structure along which
a proof can be decomposed, namely the arrow operations used to define the shared interpreter.
Because arrows are a first-order language and their code is not interleaved with computations
of the meta-language, they induce an induction principle in the meta-language. By proving that
every arrow operation preserves soundness of its arguments, the soundness of the entire shared
interpreter directly follows from this induction principle. With this technique, we can decompose
monolithic soundness proofs into smaller, reusable, and context free soundness lemmas about the
arrow operations of the shared interpreter.

Note, that our technique requires to implement a concrete interpreter in the same meta-language
as the abstract interpreter. This causes extra work if a reference semantics already exists and
is implemented in a different meta-language. However, it simplifies the soundness proof as we
do not have to conduct proofs across different meta-languages. In this subsection, we provide a
brief introduction to arrows, and demonstrate how to use arrows to define a shared interpreter
that corresponds to the concrete and abstract interpreters in the previous subsection. In the next
subsection, we show how this shared interpreter enables a compositional soundness proof.

Arrows, like monads, support effectful computations that, for example, manipulate state, trigger
exceptional control flow, or rely on non-determinism. Arrows generalize monads by internalizing
the input type for a computation. For example, an arrow computation of type (c x y) expects a

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:7

value of type x as input and yields a value of type y; c is the higher-order type constructor defining
the arrow. In contrast, monadic computations have type m y and rely on meta-level bindings to
implicitly provide inputs x through the lexical context in which the computation was defined.
The pretty notation [Paterson 2001] for arrows reads similarly to do-notation for monads. The
keyword proc x starts a new arrow computation with input x. The notation y <- f -< x repre-
sents an arrow computation f, which receives its input from the variable x and binds the result to
the variable y. This notation desugars to operations of the Arrow, ArrowChoice, and user-defined
type classes with language-specific operations. This desugaring translates sequential statements
y <- f -< x; g -< y into the sequential composition operator f >>> g. For arrow expressions
where variables span multiple statements as in y1 <- f -< x1; y2 <- g -< x2; h -< (y1,y2) the
notation desugars into the parallel composition operator *** as in (f *** g) >>> h. Case expres-
sions are translated to a pure function that destructs a sum type into an Either type, embedded into
arrows with arr :: (x -> y) -> c x y, followed by the choice operator ||| of the ArrowChoice
type class that encodes the bodies of each case. For example, here is an example desugaring (⇝) of
an arrow expression:

proc e -> case e of { Var x -> f -< x; Lit y -> g -< y }

⇝ arr (\e -> case e of { Var x -> Left x; Lit y -> Right y }) >>> (f ||| g)

Appendix A contains an illustrative example that the reader may find helpful for understanding
how the pretty notation for arrows desugars into arrow expressions. For the full details on how
arrows desugar, we refer the reader to the work of Paterson [2001].
In Figure 3, we use arrows to describe a shared interpreter eval' that generalizes both eval

and �eval from the previous subsection. To do so, we extract the operations that differ between
the concrete and abstract interpreter into a type class IsVal. Each type class member of IsVal in
Figure 3 represents a language-specific operation. lookup defines a variable lookup operation as an
arrow from a string to the value type v that the type class is parameterized by. The ifZero operation
is parameterized by two arrows as continuations and takes as argument a triple of a value and
arguments x and y for the continuations. If the value in the triple is zero, the first continuation
is invoked using x; otherwise, the second continuation is invoked using y. The try operation is
parameterized by three arrows: one for computing a value (or raising an error); one for dispatching
on the value resulting from invoking the first arrow if no error was raised; and one for the case
where an error was raised. The fix operator of the type class ArrowFix (also Figure 3) computes the
fixpoint of the shared interpreter. This allows concrete and abstract interpreter to employ different
fixpoint strategies.
To define the concrete and abstract language semantics, we instantiate the shared interpreter

with two different arrow instances. We do this in by defining two arrow types Interp and �Interp
that define instances for the Arrow, ArrowChoice, ArrowFix, and IsValue type classes. In Figure 4,
we show the arrow types, their instances for IsValue, and the top-level interpreters eval and
�eval that instantiated the shared interpreter eval'. The shared interpreter completely desugars
into operations of the arrow type classes implemented by Interp and �Interp. Ultimately, the two
instantiated interpreters have the same semantics as the interpreters of Section 2.1. Note that since
the shared interpreter describes a parameterized semantics, we can define new alternative abstract
domains by instantiating the shared interpreter with another arrow instance.

2.3 Compositional Soundness Proofs of Abstract Interpreters

The previous section described how to define concrete and abstract interpreters in a way that
common code is shared between the two. This organization of concrete and abstract interpreter
allows us to prove soundness of interpreters like eval and �eval in Figure 4 compositionally based

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:8 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

data Expr = Var String

| Lit Int

| Add Expr Expr

| IfZero Expr Expr Expr

| TryZero Expr Expr Expr

class ArrowFix x y c where

fix :: (c x y -> c x y) -> c x y

class ArrowChoice c => IsVal v c where

lookup :: c String v

lit :: c Int v

add :: c (v, v) v

ifZero :: c x v -> c y v -> c (v,(x,y)) v

try :: c x y -> c y v -> c x v -> c x v

eval ' :: IsVal v c => c Expr v -> c Expr v

eval ' ev = proc e -> case e of

Var x -> lookup -< x

Lit n -> lit -< n

Add e1 e2 -> do

v1 <- ev -< e1; v2 <- ev -< e2

add -< (v1,v2)

IfZero e1 e2 e3 -> do

v <- ev -< e1

ifZero ev ev -< (v,(e2,e3))

TryZero e1 e2 e3 ->

try (proc (e1,x) -> do

v <- ev -< e1

returnA -< (v,x))

(ifZero ev ev)

(proc (_,(_,e3)) -> ev -< e3)

-< (e1 ,(e2,e3))

Fig. 3. Shared interpreter based on arrows.

type Interp a b = Env -> a -> Maybe b

instance IsVal Val Interp where

lookup = \e x -> Map.lookup x e

lit = arr id

add = arr (\(x,y) -> x + y)

ifZero f g = proc (v,(x,y)) ->

if v == 0

then f -< x

else g -< y

try f g h = \e x -> case f e x of

Just y -> g e y

Nothing -> h e x

eval :: Interp Expr Val

eval = fix eval '

type �Interp a b = Ênv -> a -> �Maybe b

instance IsVal V̂al �Interp where

�lookup = \e x -> to�Maybe (Map.lookup e x)

l̂it = arr (\n -> (n,n))

âdd = arr (\((i1,j1),(i2,j2)) ->

(i1+i2,j1+j2))

�ifZero f g = proc ((i,j),(x,y)) ->

if i == 0 && j == 0

then f -< x

else if j < 0 || 0 < i

then g -< y

else (f -< x) ⊔ (g -< y)

t̂ry f g h = \e x -> case f e x of

Just y -> g e y

Nothing -> h e x

JustNothing y -> g e y ⊔ h e x

�eval :: �Interp Expr V̂al

�eval = fix eval '

Fig. 4. Arrow instances for the concrete interpreter (left) and the abstract interpreter (right).

on separate soundness preservation lemmas for each arrow operation. For our example, we prove the
following soundness preservation lemmas, one for each operation of the IsVal, Arrow, ArrowChoice,
and ArrowFix type classes. We use f Û⊑ f̂ as a compact notation for the soundness proposition.

• arr f Û⊑ ârr f for each pure function f in the shared interpreter,
• lit Û⊑ l̂it, add Û⊑ âdd, lookup Û⊑�lookup,
• if f Û⊑ f̂ and д Û⊑ д̂ then ifZero f д Û⊑�ifZero f̂ д̂

• if f Û⊑ f̂ and д Û⊑ д̂ and h Û⊑ ĥ then try f д h Û⊑ t̂ry f̂ д̂ ĥ

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:9

1

2 B

A

C

3

4 E

D

F

Fig. 5. Soundness lemmas for the try operation (left) and for the ifZero operation (right).

• if f Û⊑ f̂ and д Û⊑ д̂ then f >>> д Û⊑ f̂ >̂>> д̂

• if f Û⊑ f̂ and д Û⊑ д̂ then f *** д Û⊑ f̂ *̂** д̂

• if f Û⊑ f̂ and д Û⊑ д̂ then f ||| д Û⊑ f̂ |̂|| д̂

• if
[
∀x , x̂ . x Û⊑ x̂ ⇒ f (x) Û⊑ f (x̂)

]
then fix f Û⊑ f̂ix f

The fixpoint combinator fix required a different soundness lemma, because it is the only higher-
order construct compared to the otherwise first-order arrow language. To keep the rest of the
shared arrow code first-order, we only allow one occurrence of fix at the very top-level of the
interpreters.
For soundness of the interpreters eval Û⊑�eval, we first unfold the definition of eval and �eval

which gives us fix eval′ Û⊑ f̂ix eval′. We then use the lemma for fix, which leaves us to prove
eval′ x Û⊑eval′ x̂ given x Û⊑ x̂ . Because eval′ x and eval′ x̂ refer to an arrow expression with the
same structure, except for occurrences of x and x̂ , we can use structural induction over the arrow
expressions. The cases of this induction are always instances of the soundness lemmas for the
arrow operations from above and the assumption x Û⊑ x̂ . This proves that the top-level interpreters
are sound.
But what impact does compositional soundness proofs have on proof complexity and proof

effort? Let us compare the proof of TryZero to the non-compositional proof from the previous
subsection. Before, we had to prove 7 cases of the abstract interpreter and relate them to up to
3 cases of the concrete interpreter. Now, TryZero is composed of try and ifZero. Their soundness
lemmas are simpler and can be proved independently as illustrated in Figure 5. Moreover, the
soundness lemmas are independent of their specific usage in the shared interpreter and can be
reused whenever the shared interpreter makes use of try or ifZero. In particular, we reused the
lemma for ifZero twice: Once for interpreting IfZero and once for interpreting TryZero.

To summarize, compared to conventional soundness proofs, in compositional soundness proofs
we have to prove smaller lemmas that are context-free, which reduces the proof complexity.
Furthermore, we have to prove less cases and lemmas are reused, which reduces the proof effort. In
the next two sections we describe our framework more formally.

3 SOUNDNESS PROPOSITION FOR ARROWS

To construct compositional soundness proofs, we first need a soundness proposition Û⊑ that is
applicable for all intermediate expressions of the interpreters. For example, the shared interpreter of
Figure 3 uses the ifZero operator with return type c (v,(Expr,Expr)) v. This type is instantiated
in the concrete interpreter with arrow type

Interp (Val,(Expr,Expr)) Val

and in the abstract interpreter with arrow type

�Interp (V̂al,(Expr,Expr)) V̂al.
To relate values of these two types in our soundness proposition, we need to define a Galois
connection [Cousot and Cousot 1979] between these arrow types. However, in general, our shared
interpreter makes use of arrows of many different types, many which of which only become

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:10 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

apparent after arrow desugaring. For example, the composition operator >>> is used by the shared
interpreter with various types ranging from Val and Expr to tuples, Maybe, Either, and combinations
thereof. To relate all types with a Galois connections, we require a systematic way for constructing
Galois connections and, based on that, soundness propositions.

3.1 Systematic Way for Constructing Galois Connections

A well-known technique for constructing Galois connections is described by Nielson et al. [1999,
Lemma 4.23]. A Galois connection α : PA ⇄ Â : γ can be defined by an embedding function
ι : A → Â, such that the abstraction function is given by α(X) =

⊔
{ι(x) | x ∈ X }. Then the

concretization function exists and is uniquely determined by γ (x̂) = {x | α(x) ⊑ x̂}. In other words,
we only need to define an embedding function and we obtain the Galois connection for free.

First, we define embedding functions for abstracted base types. For example, for an interval anal-
ysis, we can define an embedding function for numeric values ι : Int→ Interval by ι(n) = [n,n].
Then the abstraction function sends the set {1, 3, 5} to

⊔
{ι(1), ι(3), ι(5)} =

⊔
{[1, 1], [3, 3], [5, 5]} =

[1, 5]. Second, for compound types, we define the embedding function component-wise. For example,
for products we define the embedding function ι(A,B) : (A,B) → (Â, B̂) by ι(A,B)(a,b) = (ιA(a), ιB (b)),
given embeddings ιA : A → Â and ιB : B → B̂. This approach naturally extends to other compound
data types we face in Haskell, such as lists [a], Maybe a, Either a b, and so on. Note that data types
in Haskell also have a coinductive interpretation, e.g., lists can be infinite. However, in this work
we only consider inductive interpretations of datatypes.

However, the construction of Galois connections with embedding functions ι : A → Â places
requirements on the concrete domain A and the abstract domain Â. First, it assumes that both
domains have a preorder ⊏A respectively ⊏Â. Second, it assumes that the abstract domain Â is
finitely complete, that is, all elements x and y have a least upper bound x ⊔Â y. While it is easy
to define preorders for the types occurring in our interpreter, these orders often are not finitely
complete. For example, type Either Int String has no least upper bound for Left 5 and Right "x".
Fortunately, we can lift a non-completely ordered type X to a finitely complete ordered type X⊤.
The lifting X⊤ adds a greatest element ⊤ to the type X , such that all incomparable elements now
have a least upper bound:

x1 ⊑X⊤ x2 iff x2 = ⊤ ∨ x1 ⊑X x2

For example, the lifted type (Either Int String)⊤ has all least upper bounds, such as
(Left 5) ⊔ (Right "x") = ⊤.
Based on embedding functions ιX , partial orders ⊏X , and the lifting X⊤, we can systematically

construct Galois connections for all types that occurring in our interpreters. What is left, is to
define the soundness proposition for arrow types Interp and �Interp.

3.2 Soundness Proposition for Arrows

It is not possible to give a general definition of a soundness proposition for arbitrary arrows, because
arrows and their soundness propositions are analysis-specific. However, we can define a soundness
proposition for specific classes of arrows. In this section, we define a soundness proposition for
Kleisli arrows [Hughes 2000]. Kleisli arrows are functions A → M(B) parameterized by a monad
M . It is well-known that monads are expressive enough to describe a wide range of effects in
programming languages [Liang et al. 1995; Moggi 1991; Wadler 1995]. For example, we can describe
the two interpreter arrows of section Section 2.2 as Kleisli arrows:

Interp(A,B) = A → M(B) �Interp(A,B) = A → M̂(B)

M(B) = Env→ Maybe B M̂(B) = Ênv → �Maybe B

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:11

This way, Kleisli arrows and their soundness proposition serve as a good starting point to define
analysis-specific soundness propositions.
We define the soundness proposition for Kleisli arrows for the forward collecting semantics

[Cousot and Cousot 1992] of the concrete interpreter. The forward collecting semantics of a
function f : A → B describes the strongest post-condition { f (x) | x ∈ X } of f under a pre-
conditionX ⊆ A over the inputs of f . For example, the strongest post-condition for f (x) = x +x for
the pre-condition N is the set of even numbers. In our scenario, we describe the forward collecting
semantics of f : A → B as a single function λX .{ f (x) | x ∈ X } of type P(A) → P(B). Before we
can define the soundness proposition for Kleisli arrows, we first need to define a Galois connection
between the forward collecting semantics of the concrete Kleisli arrow and the ⊤-lifted abstract
Kleisli arrow on the underlying function space [Nielson et al. 1999, page 253]:

αA,M (B) : (PA → P(M(B)))⇄
(
Â⊤ → M̂(B̂)⊤

)
: γA,M (B)

αA,M (B)(f) = αM (B) ◦ f ◦ γÂ γA,M (B)(f̂) = γM̂ (B̂) ◦ f̂ ◦ αA

The Galois connection for Kleisli arrows uses Galois connections αA : PA ⇆ Â⊤ : γÂ and
αM (B) : P(M(B))⇆ M̂(B̂)⊤ : γM̂ (B̂) constructed with the techniques described in Section 3.1. With
the Galois connection between the concrete and abstract Kleisli arrows, we are ready to state
soundness proposition for Kleisli arrows.

Definition 1 (Soundness proposition for Kleisli arrows). Let Interp and �Interp be Kleisli arrows.
Then, a computation f ∈ Interp(A,B) is sound with respect to a computation f̂ ∈ �Interp(A,B)

f Û⊑ f̂ iff αA,M (B)(λX . { f (x) | x ∈ X })) ⊑ f̂ ⊤

In this definition, f̂ ⊤ is the ⊤-lifting of function f̂ :

f̂ ⊤(x) =

{
⊤, x = ⊤

f̂ (x), x , ⊤

This definition is well-defined for Kleisli arrows over any typesA and B for which Galois connec-
tions αA and αM (B) exist. Given these Galois connections, we can use this soundness proposition for
all parts of the interpreters, making it a key ingredient for constructing compositional soundness
proofs.

4 COMPOSITIONAL SOUNDNESS FOR ARROW-BASED ABSTRACT INTERPRETERS

In this section, we present how our framework enables compositional soundness proofs and we
prove that the composition always succeeds. Our framework is language-agnostic and can be used
for any abstract interpreter satisfying the following two requirements:

• The concrete interpreter and abstract interpreter must share their implementation. That is,
eval = fix eval′ and �eval = f̂ix eval′ for some eval'.

• The shared interpreter eval'must be an arrow computation.

The first requirement enables compositional soundness proofs, because the proof can be decomposed
along the structure of the shared code. The second requirement ensures that the recomposition of
subproofs must succeed. Together, they provide a powerful framework where all shared code is
sound by construction and users only have to prove soundness for the differing code: the concrete
and abstract implementations of arrow operations.

Arrows induce an induction principle because arrow notation [Paterson 2001] (used throughout
the examples in this paper) fully desugars to operations of the arrow type classes and the residual
code does not contain any non-arrow constructs of the meta-language anymore. Furthermore,
the arrow type classes can be described by an endofunctor F [Hamana and Fiore 2011] and the

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:12 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

arrow instances as algebras of this endofunctor. The initial F -algebra induces the desired induction
principle. For example, the initial F -algebra for the shared interpreter of Figure 3 is described by
the following generalized algebraic datatype (GADT) that enumerates all arrow expressions that
can be described over the IsVal type class:

data AExp :: C -> C -> Set where

Lit :: AExp Int v

Add :: AExp (v,v) v

Lookup :: AExp String v

IfZero :: AExp x v -> AExp y v -> AExp (v,(x,y)) v

Try :: AExp x y -> AExp y v -> AExp x v -> AExp x v

(>>>) :: AExp x y -> AExp y z -> AExp x z

(***) :: AExp x y -> AExp u v -> AExp (x,u) (y,v)

(|||) :: AExp x z -> AExp y z -> AExp (Either x y) z

Arr1 :: AExp A1 B1 . . . Arrn :: AExp An Bn

The datatype contains one constructor for each operation of the IsVal type class and its super-
classes Arrow and ArrowChoice. It does not contain an operation for the fixpoint combinator, which
requires special treatment as we discuss later. Besides these arrow operations, the desugaring arrow
computations also generates pure functions that are embedded into arrow computations using the
arr operation. To avoid a higher-order constructor Arr :: (a -> b) -> AExp a b, we enumerate
each of the pure functions as individual constructors Arri . The initial F-algebra AExp then induces
the following induction principle for predicates P .

P(Lit) P(Add) P(Lookup)

P(f1) ∧ P(f2) =⇒ P(IfZero f1 f2)

P(f1) ∧ P(f2) ∧ P(f3) =⇒ P(Try f1 f2 f3)

P(f1) ∧ P(f2) =⇒ P(f1>>>f2)

P(f1) ∧ P(f2) =⇒ P(f1***f2)

P(f1) ∧ P(f2) =⇒ P(f1+++f2)

P(Arr1) . . . P(Arrn)

∀A,B ∈ C. ∀e ∈ AExp A B. P(e)

This induction principle allows us to decompose soundness proofs because of the shared imple-
mentation. Specifically, we set

P(e) iff e Û⊑ ê,

where e refers to the concrete instance of the arrow code and ê to the abstract instance, i.e., the
respective F -algebra. With this predicate, the premises of the induction principle exactly correspond
to the soundness preservation lemmas discussed in Section 2.3. For example:

f1 Û⊑ f̂1 ∧ f2 Û⊑ f̂2 =⇒ (f1>>>f2) Û⊑(f̂1>̂>> f̂2)

Thus, the induction principle shows that all shared arrow code is sound if the soundness preservation
lemmas hold. This is the essence of decomposing the soundness proof of an arrow-based abstract
interpreter.

However, before we can state our main soundness theorem, we need to add support for fixpoint
combinators. In Section 2.3, we applied concrete and abstract fixpoint combinators fix and f̂ix to
the shared interpreter. Since fixpoint combinators are higher-order functions of the form

Fix : (AExp A B → AExp A B) → AExp A B,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:13

adding them to our GADT would break the induction principle, because the datatype would not be
strictly positive [Coquand and Paulin-Mohring 1990]. Instead, we adapt the soundness proposition
for fixpoint combinators by Cousot and Cousot [1992, Proposition 4.3]:

Definition 2. A fixpoint combinator fix is sound with respect to f̂ix iff fix f Û⊑ f̂ix f for all
soundness preserving functions fC : C(A,B) → C(A,B), that is:

[
∀x , x̂ . x Û⊑ x̂ ⇒ f (x) Û⊑ f (x̂)

]
=⇒ fix f Û⊑ f̂ix f .

Now we are ready to state our main soundness theorem:

Theorem 3 (Soundness of Abstract Interpreters based on Arrows). For a given concrete

interpreter eval : Interp(A,B) and abstract interpreter �eval : �Interp(A,B) defined by eval =

fix eval′ and �eval = f̂ix eval′ with a shared implementation eval′C : C(A,B) → C(A,B) (natural

in C [Mac Lane 1978])1 over a functor F with an initial algebra, soundness eval Û⊑�eval follows from
(i) soundness of the fixpoint combinators fix and f̂ix and (ii) the soundness preservation lemmas of F .

Proof. From the soundness proposition of the fixpoint combinators, we know that eval Û⊑�eval
if eval′(x) Û⊑eval′(x̂) for all x ∈ Interp(A,B), x̂ ∈ �Interp(A,B)with x Û⊑ x̂ . Because eval' is natural
in the arrow type C , the arrow expressions eval′(x) and eval′(x̂) have the same structure except
for occurrences of x and x̂ . Thus eval′(x) Û⊑eval′(x̂) follows by structural induction, the soundness
preservation lemmas, and the assumption x Û⊑ x̂ . □

Thus, to prove an abstract interpreter based on arrows sound, it suffices to use a sound fixpoint
combinator and to verify the soundness preservation lemmas. Since each soundness preservation
lemma is concerned with a single arrow operation only, the soundness proof of the abstract
interpreter decomposes into small, manageable proof obligations.

The naturality of eval'C in the arrow typeC is crucial in this proof of Theorem 3. It ensures that
the shared interpreter does not produce a structurally different arrow expression when instantiated
with the concrete and abstract arrow types. Only if the structure of the interpreters is the same,
we can apply the induction principle. In general, we can ensure this if the shared interpreter is
parametric in the arrow type.

One shortcoming of our proof method, though, is the handling of the pure functions Arr1 . . .Arrn
that the arrow desugaring generates. Proving soundness for each pure function is tedious and
usually uninteresting. In the next section, we use parametricity [Reynolds 1983], a property of
parametric polymorphism, to describe interface guidelines such that all pure functions are sound
by a free theorem of parametricity.

5 INTERFACE DESIGN AND PARAMETRICITY

The main goal of this paper is to reason about soundness of the operations of the interpreters, rather
than about composed code of the shared interpreter itself. The design of the interface influences
how much reasoning about shared code is necessary, if any at all. In this section, we provide
guidelines for how to design interfaces such that soundness of pure functions follows as a free
theorem of parametricity.
To this end, let us revisit the interface for IfZero from Section 2.2:

ifZero :: c x v -> c y v -> c (v,(x,y)) v

Instead of providing two continuations that are called when the argument value is zero or not, we
could have designed an operation isZero, that returns a Boolean value that represents its outcome:

1eval'C is natural in C iff for all f : C(A, B) → D(A, B), f ◦ eval′
C
= eval′

D
◦ f

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:14 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

data �Bool = True | False | Top

isZero :: c v �Bool

eval ' ev = proc e -> case e of

IfZero e1 e2 e3 -> do

b <- isZero <<< ev -< e1

case b of

True -> ev -< e2

False -> ev -< e3

Top -> (ev -< e2) ⊔ (ev -< e3)

The value Top is solely used by the abstract interpreter to express uncertainty about whether a
value is zero. The concrete instance of isZero never returns Top because it is always certain if the
value is zero. Although this definition describes an alternative but equivalent semantics, there are
two problems:

(1) The shared interpreter now describes behavior that is specific to the abstract interpreter
but not the concrete semantics. The interface of the shared interpreter leaks details of the
abstract interpreter into shared code.

(2) Proving soundness of the instantiated shared interpreter requires reasoning about more code
than just the arrow operations it is comprised of. In particular, we have to consider the entire
case expression in the shared code to prove soundness. The interface design of isZero does
not allow us to decompose the soundness proof.

But is there a metric that helps us identify interface operations that leak details of the abstract
interpreter? The answer can be found in a property called parametricity [Reynolds 1983], a property
of parametric polymorphism. The key idea of parametricity is that types can be interpreted as
relations and terms in related environments yield related results [Wadler 1989].

To set the stage, we recall the definition of Reynolds’ parametricity [Reynolds 1983] due to Ghani
et al. [2015]. Well-typed System F programs e are identified by the typing judgment Γ,∆ ⊢ e : τ ,
where τ is a typewith type variables closed under Γ and∆ is the regular typing context. Parametricity
describes two parallel interpretations for System F contexts, types and terms, that work in lock-step:
An object interpretation JT Ko : Set |Γ | → Set that interprets types as sets and terms as functions,
and a relational interpretation JT Kr : Rel |Γ |(A,B) → Rel(JT KoA, JT KoB) that interprets types as
relations and terms as relation preserving functions. Each interpretation takes extra arguments
based on |Γ |, the number of type variables in the context Γ.

How these two interpretations interact is described by the following main theorem of parametric-
ity [Reynolds 1983]:

Theorem 4 (Abstraction Theorem). Let A,B ∈ Set
|Γ | , R ∈ Rel

|Γ |(A,B), a ∈ J∆KoA and b ∈

J∆KoB. For every term Γ,∆ ⊢ e : τ , if (a,b) ∈ J∆KrR, then (JeKoA a, JeKoB b) ∈ Jτ Kr (R). □

More informally, if a and b are instances of the typing context ∆ and are related by R, then a
term e with context ∆ applied to a and b are related by R. If we choose R to be the soundness
proposition for arrow types, the abstraction theorem provides an alternative way to prove soundness
of abstract interpreters with a shared implementation. We prove this as a theorem below. However,
since arrows are higher-order types of kind * → * → *, we in fact require the abstraction
theorem for higher-order parametricity that holds for System Fω [Atkey 2012]. The general idea
of the abstraction theorem for first-order parametricity carries over to the one for higher-order
parametricity. Therefore, we omit the definitions for higher-order parametricity for simplicity and
brevity.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:15

Theorem 5. In System Fω , soundness of abstract interpreters that share a common implementation

with the concrete interpreter follows from the soundness lemmas for operations of its interface.

Proof. First, we desugar the type class IsValue into a record that is passed in as a dictionary
[Hall et al. 1996]. This allows us to type check eval' with the following judgement:

{c : * → * → *, v : *}, {dict : IsValue c v} ⊢ eval' : c Expr v → c Expr v

We now apply the abstraction theorem for higher-order parametricity as follows. The typing
variable context has type variables for the arrow type c and value type v, hence, for A and B

we choose the tuples (Interp,Val) and (�Interp, V̂al) that instantiate the respective arrow and
value type. Furthermore, for the relation R we have to define relations on arrows and values. For
the relation on values, we choose v Û⊑Val v̂ iff αVal(v) ⊑ v̂ , where αVal : P(Val) → V̂al is the
abstraction function for values. Because arrows are higher-kinded types, the relation on arrows
is parameterized by relations R over the domain and Q over the codomain of the arrow. For the
soundness relation on arrows, we choose

f Û⊑Interp f̂ iff (a, â) ∈ R =⇒ (f (a), f̂ (â)) ∈ Q for all a ∈ A, â ∈ Â.

If we instantiate R and Q with the relation α(x) ⊑ x̂ , we obtain the original soundness proposition:

f Û⊑Interp f̂ iff αA(a) ⊑ â =⇒ αÂ(f (a)) ⊑ f̂ (â) for all a ∈ A, â ∈ Â.

If we use the abstraction theorem with these definitions, we obtain the following rule.

a ∈ JIsValue c vKo(Interp,Val)
b ∈ JIsValue c vKo(�Interp, V̂al)

(a,b) ∈ JIsValue c vKr (Û⊑Interp, Û⊑Val)

(Jeval'Ko(Interp,Val) a, Jeval'Ko(�Interp, V̂al) b) ∈ Jc Expr v → c Expr vKr (Û⊑Interp, Û⊑Val)

The rule says, given two instances a andb for the interfaceIsValue and a andb satisfy the soundness
preservation lemmas of IsValue, then the shared interpreter eval' instantiated with the instance a
is sound with respect to eval' instantiated with b. □

The main consequence of Theorem 5 is that we do not have to reason about soundness of shared
code, since it follows as a free theorem from parametricity. In particular, this relieves us from having
to prove soundness of individual pure functions in arr. Instead, we obtain a generic soundness
lemma for the arr operation itself:

(arr, ârr) ∈ J∀x,y. (x → y) → c x yKr (Û⊑Interp).

Because all pure functions f in the shared interpreter are shared code, this lemma guarantees
(arr f Û⊑ ârr f).
Theorem 5 can also help us understand how to design the interface such that the each arrow

operation is compositionally sound. When a soundness proof for an arrow operation fails, it usually
fails with the approach based on parametricity as well as with the approach from Section 4. However,
the approach based on parametricity can tell us why a proof failed. To this end, it is instructive to
compare the soundness lemmas of Theorem 5 to the corresponding soundness lemmas of Theorem 3.
For example, for the composition operator >>>, Theorem 5 requires

(>>>, >̂>>) ∈ J∀x,y,z. c x y → c y z → c x zKr (Û⊑Interp)

whereas Theorem 3 requires

f1 Û⊑ f̂1 ∧ f2 Û⊑ f̂2 =⇒ (f1>>>f2) Û⊑(f̂1>̂>> f̂2).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:16 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

The soundness lemmas have almost the same meaning, except that the orderings used in the former
lemma are fixed by the relational interpretation J−Kr rather than chosen by us. This is an important
distinction because it restricts how we can design our interface, while still being able to prove
soundness compositionally.

For example, let us revisit the flawed version of isZero introduced earlier in this section. Observe
that we cannot prove ifZero Û@�ifZero using parametricity either:

(isZero,�isZero) < Jc v �BoolKr (Û⊑Interp, Û⊑Val)

The problem is that the ordering for �Bool is determined by its relational interpretation based on
the underlying sum type:

J�BoolKr = {(True,True), (False,False), (Top,Top)}.

However, we require that Top is the greatest element to be able to prove the soundness lemma for
isZero, which is not the case for this ordering. The underlying problem is that we exposed the type
�Bool with non-standard ordering to the shared interpreter. This problem exists not only for �Bool,
but for all types with non-standard ordering, such as values, environments, etc.

These observations lead us to the following guideline for good interface design of shared inter-
preters, helping us to avoid leaking interfaces:

Guideline. An interface of a shared interpreter is good if its operations do not expose types with
non-standard orderings. Instead, non-standard ordered types in the abstract interpreter must be
hidden from the interface by using universal quantification.

To summarize, the abstraction theorem for meta-languages with parametricity provides an
alternative way to prove soundness of abstract interpreters that share code. This drastically reduces
the required effort of the soundness proof, because shared code is sound by a free theorem of
parametricity. Furthermore, the abstraction theorem provides us with a useful guideline for how to
design our interface. Finally, nothing in the proof of Theorem 5 is specific to arrows. In particular,
we are not making use of the induction principle for arrows and use the abstraction theorem instead.
This should allow us to apply Theorem 5 to abstract interpreters that share code with the concrete
interpreter using an interface other than arrows. We have not explored this further so far.

6 CASE STUDIES

This paper presents a framework for compositional soundness proofs. In this section, we report on
two case studies that we conducted to answer the following research questions:

(RQ1) Is our technique applicable to interesting languages and interesting static analyses?
(RQ2) Does our technique reduce the complexity and effort of soundness proofs?

The case studies involved constructing shared interpreters for Stratego and PCF, developing concrete
and abstract arrow instances, and proving the instantiated interpreters sound. For Stratego, we
developed a tree-shape analysis as abstract arrow instance; for PCF, we implemented an advanced
control-flow analysis (k-CFA) as abstract arrow instance.2

6.1 Tree-Shape Analysis for Stratego

We developed a sound abstract interpreter for Stratego [Visser et al. 1998], a real-world language
for the implementation of program transformations that operate on abstract syntax trees akin to
s-expressions. Stratego is being used in various projects to define interpreters [Dolstra and Visser

2 All code of the case studies is open source and can be found at https://github.com/svenkeidel/sturdy/. The proofs can be
found in the extended version of this paper at https://arxiv.org/.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

https://github.com/svenkeidel/sturdy/
https://arxiv.org/

Compositional Soundness Proofs of Abstract Interpreters 72:17

2002], refactorings [de Jonge and Visser 2012], desugarings [Erdweg et al. 2011], and compilers
[Avgustinov et al. 2007; Bagge and Kalleberg 2006; Economopoulos and Fischer 2011]. Further-
more, Stratego is used to compile programs of WebDSL [Visser 2007], a domain-specific web-
programming language in which, for example, the website conf.researchr.org of ICFP and others is
implemented [van Chastelet et al. 2015].
Stratego transformations operate on untyped terms using rewrite rules and strategies as illus-

trated by the following simple evaluator for arithmetic expressions:

rules

reduce: Add(Succ(m), n) -> Succ(Add(m,n))

reduce: Add(Zero(), n) -> n

strategies

main = downup(try(reduce))

The strategy mainwalks the expression tree down and up again, and tries to reduce each visited
node using the rewriting rule reduce. Rule reduce consists of two alternatives reduce: pat -> gen

that try to match pat and, if successful, generate gen. Stratego has many language features that
make it a challenging language to statically analyze, including dynamic scoping of pattern-bound
variables, higher-order functions, and generic tree traversals.

Stratego provides a rich set of abstractions for program transformations. These abstractions
desugar into a core language for Stratego with just 12 constructs [Bravenboer et al. 2006; Visser et al.
1998]. We developed a shared interpreter based on arrows for this core language. For the interface of
the shared interpreter, we identified 27 operations, of which 9 operations are language-independent
and 18 operations are specific to Stratego. The language-specific operations consist of 10 operations
for terms, 6 for term environments, and 2 for strategy environments.

We instantiated the shared interpreter with Kleisli arrows for the concrete and abstract domain.
The concrete domain uses the usual interpretation of terms and environments. In the abstract
domain, we approximate terms as a set of term patterns containing wildcards ∗. For example, the
abstract term {Zero(),Add(∗, ∗)} represents the set of concrete terms containing Zero() and all
terms with root Add. This way, our abstract arrow instance realizes a tree-shape analysis [Keidel
and Erdweg 2017] that Stratego developers can use to predict the shape of trees a transformation
will produce when run.

For the concrete instance of ArrowFix, we compute the usual least fixpoint. However, since the
abstract domain of sets of term patterns is infinite, the least fixpoint is not computable for the abstract
domain. Therefore, for the abstract instance of ArrowFix, we approximate the greatest fixpoint
instead. Specifically, our fixpoint combinator keeps track of the recursive depth of the interpreter
and yields ⊤ for recursive calls whose depth exceeds a certain threshold. This produces a finite
approximation of the infinite set of terms that can be produced by a given program transformation.
The precision of the abstract interpreter increases with more iterations.

We have verified the soundness of our tree-shape analysis by proving that abstract instantiations
of the shared interpreter approximates the concrete instantiation. The soundness proof is completely
compositional. We decomposed the proof into 27 soundness lemmas, one for each operation in
the interface of the shared interpreter. All operations in the interface conform to the guidelines
of interface design of Section 5, and hence soundness of all pure arr expressions follows as a free
theorem due to the parametricity of our meta-language Haskell. The soundness of the instantiated
interpreters then follows from Theorem 3 and the 27 soundness lemmas.
To reflect on the complexity and effort of the soundness proof (RQ2), we want to highlight the

soundness proof of the implementation of strategy calls. We show the code of the shared interpreter

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

conf.researchr.org

72:18 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

call :: ... => StratVar -> [Strat] -> [TermVar] -> (Strat -> c t t) -> c t t

call f actualStratArgs actualTermArgs ev = proc a -> do

senv <- readStratEnv -< ()

case Map.lookup f senv of

Just (Closure formalStratArgs formalTermArgs body senv ') -> do

tenv <- getTermEnv -< ()

mapA bindTermArg -< zip actualTermArgs formalTermArgs

let senv '' = foldl bindStratArgs (if Map.null senv ' then senv else senv ')

(zip formalStratArgs actualStratArgs)

b <- localStratEnv senv '' (ev body) -<< a

tenv ' <- getTermEnv -< ()

putTermEnv <<< unionTermEnvs -< (formalTermArgs ,tenv ,tenv ')

returnA -< b

Nothing -> fail -< ()

where

bindTermArg = proc (actual ,formal) ->

lookupTerm (proc t -> insertTerm -< (formal ,t)) fail -<< actual

bindStratArgs senv (v,Call v' [] []) senv =

case Map.lookup v' senv of

Just s -> Map.insert v s senv

_ -> error $ "unknown␣strategy:␣" ++ show v'

bindStratArgs senv (v,s) = Map.insert v (Closure [] [] s senv) senv

Fig. 6. Shared implementation of calls of strategies.

in Figure 6. A strategy in Stratego accepts two kinds of arguments, strategy arguments and term
arguments. Hence, the interpreter has to bind these two kinds of arguments in the respective
environment and then invoke the interpreter recursively on the body of the called strategy.
Traditionally, proving soundness of the concrete and abstract instantiations of this code is a

severe challenge: The complexity of the code would be reflected in the proof. With our technique,
we can decompose the proof into 2 soundness lemmas about strategy environments (readStratEnv,
localStratEnv), 6 lemmas about term environments (lookupTerm, insertTerm, unionTermEnvs,
getTermEnv, putTermEnv), a few lemmas about language-independent arrow operations, and various
lemmas about embedded pure functions. Each of these lemmas is manageable and can be proved
in isolation, thus reducing the proof complexity. Our approach also reduces the proof effort. First,
some lemmas can be reused in other cases of the interpreter, such as the ones for term environments,
which are needed for pattern matching as well. Second, we obtain the soundness lemmas for appli-
cations of embedded pure functions Map.lookup, zip, and foldl as free theorems of parametricity.
And third, the soundness of the shared interpreter follows for free from the induction principle of
Theorem 3.

In summary, we developed an arrow-based shared interpreter for Stratego together with a
concrete and an abstract arrow instance. The abstract arrow instance realizes a tree-shape analysis
for Stratego. We compositionally proved this analysis sound by verifying 27 smaller and individually
provable lemmas. Thus, our technique was applicable to this scenario (RQ1) and, as we argued, the
resulting proof is less complex and required less effort than a traditional proof (RQ2).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:19

data Val

= ClosureVal (Expr ,Env)

| NumVal Int

type Env = Map String Val

data V̂al = Top

| �ClosureVal (Set (Expr ,Ênv))

| �NumVal Interval

type Ênv = Map String Addr

type �Store = Map Addr V̂al

Fig. 7. Concrete (left) and abstract domain (right) for k-CFA analysis of PCF.

6.2 Control-Flow Analysis for PCF

We implemented an abstract interpreter for an analysis that has been widely studied in the litera-
ture [Midtgaard 2012]: control-flow analysis (CFA). We implemented this analysis for PCF [Plotkin
1977], a language with first-class functions, numbers, an ifZero construct, and fixpoint combinator
Y. The analysis we implemented is a k-CFA analysis [Shivers 1991] and the fixpoint algorithm we
used is due to Darais et al. [2017].

We briefly summarize how our analysis works. The analysis approximates functions (closures) as
sets of expression and environment pairs, while natural numbers are approximated using bounded
intervals. We ensure termination by employing Darais et al.’s fixpoint algorithm for big-step
semantics [2017]. Darais et al.’s fixpoint algorithm memoizes the results of all interpreter calls in a
cache. When the interpreter is called with the same expression and environment recursively or
repeatedly, it returns the cached result instead of recursing. This guarantees termination since
there are only finitely many environments to consider and the interpreter repeats itself eventually.
To finitely approximate environments, we adopt a common approach for (k-)CFA [Horn and Might
2010; Shivers 1991]: We allocate the values of an environment in an abstract store that has only
finitely many addresses available. There are only finitely many stores if all abstract values are finite
domains. For closures this is the case, because there only finitely many expressions that can be
evaluated for a given program. And our abstract domain for numbers is finite, because we restrict
the maximum bounds of intervals. If an interval exceeds theses bounds, it is approximated with
infinity. We summarize the concrete and abstract domain of the k-CFA interpreter in Figure 7.

Figure 8 shows the shared PCF interpreter and the interface that we developed for it. The interface
has a total of 16 operations: 4 value operations (class IsVal), 2 closure operations (IsClosure),
4 environment operations (ArrowEnv), a fixpoint operation (ArrowFix from Section 2.2), a failure
operation (ArrowFail), and 4 language independent arrow operations (Arrow, ArrowChoice). We
developed two instances of the interface: A concrete instance and a k-CFA instance. The code of
these instances can be found in the artifact of our paper and its accompanying documentation.
We compositionally proved the soundness of k-CFA instantiated interpreter relative to the

concrete instantiation of the interpreter. We decomposed the soundness proof into 16 lemmas, one
for each operation of the arrow type classes referenced by the shared interpreter. Soundness of all
pure arr expressions followed by parametricity of the meta-language Haskell (Theorem 5). As is
common in proofs by induction, often the induction hypothesis has to be strengthened such that
all cases of the induction are provable. We encountered this situation when proving soundness
of the environment operations in the ArrowEnv type class. We had to strengthen the soundness
proposition to guarantee that all environments passed in and out of the abstract arrow operation
are consistent with the abstract store, i.e., all environment-bound addresses exist in the store. Note
that this strengthened requirement of store consistency is not an artifact of using our techniques:
It is necessary for non-compositional soundness proof as well.

To assess the complexity of our proof, we compare it to another proof of a k-CFA for a PCF-like
language that can be found in the PhD thesis of Darais [2017]. The proof in Darais’ PhD thesis

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:20 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

data Expr

= Var String | Lam String Expr

| App Expr Expr | Y Expr

| Zero | Succ Expr | Pred Expr

| IfZero Expr Expr Expr

class IsVal v c where

succ :: c v v

pred :: c v v

zero :: c () v

ifZero :: c x v -> c y v -> c (v,(x,y)) v

class IsClosure v env c where

closure :: c (Expr ,env) v

apply :: c ((Expr ,env),v) v -> c (v,v) v

class ArrowEnv var val env c where

lookup :: c var (Maybe val)

getEnv :: c () env

extendEnv :: c (var ,val ,env) env

localEnv :: c x y -> c (env ,x) y

class ArrowFail c where

fail :: c () x

apply ' ev = apply $

proc ((e,env),arg) -> case e of

Lam x body -> do

env ' <- extendEnv -< (x,arg ,env)

localEnv ev -< (env ', body)

Y e' -> do

fun ' <- localEnv ev -< (env , Y e')

apply ' ev -< (fun ',arg)

_ -> fail -< ()

eval ' :: (IsVal v c, IsClosure v env c,

ArrowChoice c, ArrowFix Expr v c,

ArrowEnv Text v env c, ArrowFail c)

=> c Expr v

eval ' = fix $ \ev -> proc e -> case e of

Var x -> do

m <- lookup -< x

case m of

Just v -> returnA -< v

Nothing -> fail -< ()

Lam x e -> do

env <- getEnv -< ()

closure -< (Lam x e, env)

App e1 e2 -> do

fun <- ev -< e1

arg <- ev -< e2

apply ' ev -< (fun , arg)

Zero -> zero -< ()

Succ e -> do

v <- ev -< e

succ -< v

Pred e -> do

v <- ev -< e

pred -< v

IfZero e1 e2 e3 -> do

v1 <- ev -< e1

ifZero ev ev -< (v1, (e2, e3))

Y e -> do

fun <- ev -< e

env <- getEnv -< ()

arg <- closure -< (Y e, env)

apply ' ev -< (fun , arg)

Fig. 8. Interface and shared interpreter for PCF.

relates in three theorems four different semantics, each proven by induction over derivations. It is
not obvious how the cases of the induction can be decomposed further systematically, because of
the differences between the concrete and abstract semantics. In comparison, our proof consists of
16 soundness lemmas that relate the concrete and abstract instances directly. The lemmas prove
smaller pieces of functionality than the induction cases in Darais’ proof. For example, the shared
interpreter in Figure 8 uses a helper function apply' to apply a closure value to an argument value.
Since we had proven the soundness of the language-independent arrow operations, the soundness
proof for the shared code in apply' decomposed into just 3 soundness lemmas about interface
operations: one for apply, the operation that unpacks a closure; one for extendEnv, the operation
that extends the environment with an argument value; and one for localEnv, the operation that
interprets under the extended environment. The functionality of apply' requires a manual proof
in Darais’ thesis, but in our setting, we get soundness of apply' for free because it is shared code

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:21

and is sound by Theorem 5. There are of course also commonalities between the proofs, most
significantly, we borrow the soundness lemma for fixpoints from Darais.
In summary, we developed a k-CFA analysis for PCF in our framework. We compositionally

proved this analysis sound by verifying 16 smaller and individually provable lemmas. Thus, our
techniques can be used to prove soundness of k-CFA, an interesting and widely studied static
analysis (RQ1). As we argued, the resulting proof is less complex and required less effort than a
traditional proof (RQ2).

7 RELATED WORK

Our work is a continuation of a long line of research on constructing and proving the soundness
of abstract interpreters. We have already related to many relevant sources throughout this paper.
Here, we discuss related work in more detail.

One of the main ideas of abstract interpretation is to systematically derive a sound static analysis
from a concrete semantics, by using the soundness proposition and proof as the guiding principle.
Cousot and Cousot [1979] pioneered the approach, which has since been extended to a wide range
of domains and semantic styles [Cousot 1999]. Such derivations enable soundness proofs that
follow a systematic sequence of derivation and proof steps. But these proof steps can be involved,
especially for interesting languages where one case of the abstract interpreter relates to many cases
of the concrete interpreter. The focus of our work is to minimize the effort and complexity involved
in proving soundness. We achieve this by factoring the concrete and abstract interpreter into a
shared implementation that is parameterized over an arrow-based interface. The abstract instance
of that interface can still be derived using techniques described by Cousot [1999]. However, in
our experience, a soundness proof after the definition is easier because the proof goal is clear and
progress can be made from either concrete and abstract side.

The idea of defining a language by implementing an interpreter in a meta-language (definitional
interpreters) was famously described by Reynolds [1998]. In the context of abstract interpreta-
tion, the idea was explored even earlier by Jones and Nielson [1994], who describe an approach
that translates expressions of the object language into expressions of a suitable meta-language.
Constructs of the meta-language then have two different interpretations, one that recovers to
the concrete semantics and one that recovers the abstract semantics of the object language. As
a reasoning principle for soundness, the authors define a logical relation [Plotkin 1980] over the
meta-language. The main benefit from using a logical relation is, soundness of all programs in the
meta-language follows from soundness lemmas for each meta-language construct. The logical rela-
tion has to be proven when the meta-language is created and maintained when the meta-language
changes. Compared to this paper, we use arrows as a meta-language and their induction principle
as reasoning tool for soundness. This induction principle is very similar to a logical relation as
it allows us to prove soundness of any arrow expression from soundness lemmas for each arrow
operation. However, the main benefit of this induction principle is that we do not need to prove or
maintain the induction principle itself. The induction principle follows for free from the fact that
we use arrows, which are a first order language and can be expressed by an algebraic datatype.

The topic of definitional abstract interpreters was also recently revisited by Darais et al. [2017].
They show that an abstract definitional interpreter inherits properties of the meta-language, such
as push-down control-flow precision. Similarly to our work, the concrete and abstract interpreter
that Darais et al. present share code, but over a monadic interface instead of one based on arrows.
Another similarity is that the abstract interpreters that we present can be regarded as definitional
abstract interpreters, since we are using a meta-language to define our interpreters. The main
difference between the work of Darais et al. is that we use a restricted meta-language (arrows), not
necessarily as a means to inherit functional properties, but as a means to making soundness proofs

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:22 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

compositional, which was not the focus of Darais et al.. We provide a generic theorem that ensures
the soundness of an arrow-based abstract interpreter based on the soundness lemmas of the arrow
operations, and we use parametricity to obtain soundness of embedded pure functions for free.

Monadic abstract interpreters by Sergey et al. [2013] show that concepts in static analysis such as
context-sensitivity, poly-variance, flow-sensitivity, etc. are independent of any particular language
semantics and can be captured by an appropriate monad. These results carry over to our abstract
interpreters based on arrows, because every monad gives rise to a Kleisli arrow. Sergey et al.
describe their semantics using a shared monadic small-step abstract machine, but do not address
the question of how to prove soundness of monadic abstract interpreters. We address soundness in
this paper by factoring concrete and abstract interpreter into a shared big-step interpreter, which
enables compositional soundness proofs. The usage of arrows provides an induction principle,
which allowed us to ensure the soundness of the abstract interpreter by construction of sound
arrow operations. We expect that it is possible to define a small-step abstract machine in the style
of Sergey et al., but using arrows instead of monads in a way that our generic theorems apply.

Galois transformers and modular abstract interpreters by Darais et al. [2015] represent a system-
atic way to construct monadic abstract interpreters. Galois transformers are monad transformers,
whose monadic operations can be proven sound with respect to each other. While our technique
decomposes a soundness proof along operations of an interface, Galois transformers decompose a
soundness proof along a monad transformer stack. For example, the operations get for fetching and
put for writing state can be proven sound with respect to the concrete and abstract state monad
transformer, independent of the rest of the monad transformer stack. The technique described in
our paper and Galois transformers complement each other: Galois transformers still require a way
to compose the lemmas of operations to a proof of the interpreters, which we provide. And our
technique can benefit from decomposing the proof of soundness lemmas even further. In the future
we want to combine these two approaches by using arrow transformers to achieve an even larger
degree of proof decomposition.

Abstracting abstract machines (AAM) by Horn andMight [2010] is a technique for deriving sound
abstract interpreters from concrete language semantics described as abstract machines. The concrete
semantics is transformed in multiple steps to an abstract machine that is suitable to be approximated
by an abstract interpreter. Each step of the transformation is systematic and preserves soundness
with respect to the original concrete semantics. A consequence of this approach is that there must
be a one-to-one correspondence between transitions in the concrete and abstract semantics. As
we have discussed in Section 2, this is often not the case, for example, for ifZero over the interval
domain. In contrast, our approach only requires a one-to-one correspondence between concrete
and abstract arrow operations, but allows for a mismatch within these operations: An abstract
operation can distinguishm cases even if the corresponding concrete operation distinguishes n
cases.
Cousot et al. [2006] describe a different technique of soundness proof composition which is

orthogonal to ours: The technique is for composing separate abstract analyses by organizing them
in a hierarchy, such that analyses further down in the hierarchy can be influenced by the output
from analyses further up, but not the other way around. The focus of our paper is not on composing
different analyses, but rather on composing a soundness proof for a shared abstract interpreter from
reusable lemmas about the operations of the language being abstracted.

8 CONCLUSION

We have presented a novel technique for defining concrete and abstract interpreters by sharing
code over an interface based on arrows. Such interpreters can be proven sound compositionally:
Our Theorem 3 tells us how to compose such a proof, and reduces the effort of proving soundness

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:23

to the effort of proving a context-free soundness lemma for each interface operation and each
embedded pure function in the shared interpreter. Our Theorem 5 applies parametricity to obtain
the soundness of the embedded pure functions for free, which further reduces the proof effort. We
demonstrated the applicability of our technique by implementing two case study analyses and
proving them sound: a tree-shape analysis for Stratego and a k-CFA analysis for PCF. Compared
to traditional soundness proofs abstract interpreters, our soundness proofs are less complex and
require less effort because we were able to decompose large proof obligations into independent
soundness lemmas, from which the soundness of the abstract interpreters follows by construction.
In the future, we want to investigate how our technique scales to even more complicated languages
and analyses.

A DESUGARING OF ARROW PRETTY NOTATION

TheHaskell standard library defines arrow operations in type classesCategory,Arrow, andArrowChoice.
We show the code of these type classes in Figure 9a.3 Arrow pretty notation [Paterson 2001] pro-
vides a simpler notation for arrows in the style of the do-notation of monads. We show the EBNF
grammar of Paterson’s arrow pretty notation in Figure 9b. Arrow pretty notation desugars to the
arrow operations of Category, Arrow, and ArrowChoice.

class Category c where

id :: c x x

(.) :: c y z -> c x y -> c x z

f >>> g = g . f

class Category c => Arrow c where

arr :: (x -> y) -> c x y

(***) :: c x y -> c u v ->

c (x,u) (y,v)

(&&&) :: c x y -> c x z ->

c x (y,z)

class ArrowChoice c where

(+++) :: c x y -> c u v ->

c (Either x u) (Either y v)

(|||) :: c x z -> c y z ->

c (Either x y) z

(a) Arrow type classes in Haskell

expr ::= . . .

| proc pat -> cmd

cmd ::= expr -< expr

| form expr cmd1 . . . cmdn

| cmd1 op cmd2

| κ pat -> cmd

| (cmd)

| do { stmt1; . . . ; stmtn; cmd }

| case expr of

pat1 -> expr1
. . .

patn -> exprn

stmt ::= cmd

| pat <- cmd

| rec {stmt1; . . . l stmtn }

(b) Arrow pretty notation

Fig. 9. Arrow type classes (left) and arrow pretty notation (right).

For example, mapAmaps an effectful arrow computation f over a list of values.

mapA :: ArrowChoice c => c x y -> c [x] [y]

3Their original definition is available here https://hackage.haskell.org/package/base/docs/Control-Arrow.html

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

https://hackage.haskell.org/package/base/docs/Control-Arrow.html

72:24 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

mapA f = proc l -> case l of

[] -> returnA -< []

(x:xs) -> do

y <- f -< x

ys <- mapA f -< xs

returnA -< y:ys

It desugars to arrow expressions as follows:

mapA :: ArrowChoice c => c x y -> c [x] [y]

mapA f = arr (\l -> case l of

[] -> Left ()

(x:xs) -> Right (x,xs))

>>>

((arr (\() -> [])) |||

(f *** mapA f >>> arr (\(y,ys) -> (y:ys)))

The first arrow expression arr embeds a pure function into an arrow computation that destructs
a list into an Either type. The result is then passed with >>> to a computation ||| that encodes
the two branches of the case distinction from before. The left branch of ||| encodes the first case
and returns the empty list. The right branch applies f and mapA f with *** to the first and second
component of the input tuple respectively, containing the first element and rest of the list. The
outputs of f and mapA f are collected in a tuple and the last arr expression constructs the output
list from its components.

ACKNOWLEDGEMENTS

This research was supported by DFG grant łEvolutež. We want to thank Robbert Krebbers and
Arjen Rouvoet who provided helpful feedback and Jente Hidskes who helped us with the artifact.

REFERENCES

Robert Atkey. 2012. Relational Parametricity for Higher Kinds. In Computer Science Logic (CSL’12) - 26th International

Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France. 46ś61.
Pavel Avgustinov, Elnar Hajiyev, Neil Ongkingco, Oege de Moor, Damien Sereni, Julian Tibble, and Mathieu Verbaere. 2007.

Semantics of static pointcuts in aspectJ. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2007, Nice, France, January 17-19, 2007. 11ś23.
Anya Helene Bagge and Karl Trygve Kalleberg. 2006. DSAL= library+ notation: Program transformation for domain-specific

aspect languages. In Proceedings of the Domain-Specific Aspect Languages Workshop.
Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. 2006. Program Transformation with Scoped Dynamic

Rewrite Rules. Fundam. Inform. 69, 1-2 (2006), 123ś178.
Thierry Coquand and Christine Paulin-Mohring. 1990. Inductively defined types. In COLOG-88, Per Martin-Löf and Grigori

Mints (Eds.). LNCS, Vol. 417. Springer, 50ś66.
P. Cousot. 1999. The Calculational Design of a Generic Abstract Interpreter. In Calculational System Design, M. Broy and R.

Steinbrüggen (Eds.). NATO ASI Series F. IOS Press, Amsterdam.
Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings of Symposium

on Principles of Programming Languages (POPL). ACM, 269ś282.
Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks. J. Log. Comput. 2, 4 (1992), 511ś547.
Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2006.

Combination of Abstractions in the ASTRÉE Static Analyzer. In Advances in Computer Science - ASIAN 2006. Secure

Software and Related Issues, 11th Asian Computing Science Conference, Tokyo, Japan, December 6-8, 2006, Revised Selected

Papers. 272ś300.
David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. 2017. Abstracting definitional interpreters (functional

pearl). PACMPL 1, ICFP (2017), 12:1ś12:25.
David Darais, Matthew Might, and David Van Horn. 2015. Galois transformers and modular abstract interpreters: reusable

metatheory for program analysis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

Compositional Soundness Proofs of Abstract Interpreters 72:25

Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October

25-30, 2015. 552ś571.
David Charles Darais. 2017. Mechanizing Abstract Interpretation. Ph.D. Dissertation. University of Maryland, College Park,

MD, USA.
Maartje de Jonge and Eelco Visser. 2012. A Language Generic Solution for Name Binding Preservation in Refactorings. In

Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and Applications (LDTA ’12). ACM, New York, NY,
USA, Article 2, 8 pages.

Eelco Dolstra and Eelco Visser. 2002. Building Interpreters with Rewriting Strategies. Electronic Notes in Theoretical Computer

Science 65, 3 (2002), 57ś76.
Giorgios Rob Economopoulos and Bernd Fischer. 2011. Higher-order transformations with nested concrete syntax. In

Language Descriptions, Tools and Applications, LDTA 2011, Saarbrücken, Germany, March 26-27, 2011. Proceeding, Claus
Brabrand and Eric Van Wyk (Eds.). ACM, 4.

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. 2011. SugarJ: Library-based Syntactic Language
Extensibility. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming Systems Languages

and Applications (OOPSLA ’11). ACM, New York, NY, USA, 391ś406.
Neil Ghani, Patricia Johann, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim Revell. 2015. Bifibrational Functorial

Semantics of Parametric Polymorphism. Electr. Notes Theor. Comput. Sci. 319 (2015), 165ś181.
Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler. 1996. Type classes in Haskell. ACM

Transactions on Programming Languages and Systems (TOPLAS) 18, 2 (1996), 109ś138.
Makoto Hamana and Marcelo P. Fiore. 2011. A foundation for GADTs and inductive families: dependent polynomial functor

approach. In Proceedings of the seventh ACM SIGPLAN workshop on Generic programming, WGP@ICFP 2011, Tokyo, Japan,

September 19-21, 2011. 59ś70.
David Van Horn and Matthew Might. 2010. Abstracting abstract machines. In Proceeding of the 15th ACM SIGPLAN

international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010. 51ś62.
John Hughes. 2000. Generalising monads to arrows. Sci. Comput. Program. 37, 1-3 (2000), 67ś111.
N Jones and Flemming Nielson. 1994. Abstract interpretation: a semantics-based tool for program analysis. Handbook of

logic in computer science 4 (1994), 527ś636.
Sven Keidel and Sebastian Erdweg. 2017. Toward Abstract Interpretation of Program Transformations. In Proc. Meta. ACM,

1ś5.
Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transformers and Modular Interpreters. In Conference Record of

POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco, California,

USA, January 23-25, 1995. 333ś343.
Saunders Mac Lane. 1978. Categories for the Working Mathematician. Springer New York.
Jan Midtgaard. 2012. Control-flow analysis of functional programs. ACM Comput. Surv. 44, 3 (2012), 10:1ś10:33.
Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55ś92.
Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer.
Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of International Conference on Functional Programming

(ICFP). ACM, 229ś240.
Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223ś255.
Gordon D Plotkin. 1980. Lambda-definability in the full type hierarchy. To HB Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism (1980), 363ś373.
John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress. 513ś523.
John C. Reynolds. 1998. Definitional Interpreters for Higher-Order Programming Languages. Higher-Order and Symbolic

Computation 11, 4 (1998), 363ś397.
Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013.

Monadic Abstract Interpreters. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’13). ACM, New York, NY, USA, 12.
Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Dissertation. Carnegie Mellon University.
Elmer van Chastelet, Eelco Visser, and Craig Anslow. 2015. Conf.Researchr.Org: towards a domain-specific content

management system for managing large conference websites. In Companion Proceedings of the 2015 ACM SIGPLAN

International Conference on Systems, Programming, Languages and Applications: Software for Humanity, SPLASH 2015,

Pittsburgh, PA, USA, October 25-30, 2015. 50ś51.
Eelco Visser. 2007. WebDSL: A Case Study in Domain-Specific Language Engineering. In Generative and Transformational

Techniques in Software Engineering II, International Summer School, GTTSE 2007 (Lecture Notes in Computer Science), Ralf
Lämmel, Joost Visser, and Jo ao Saraiva (Eds.), Vol. 5235. Springer, Braga, Portugal, 291ś373.

Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building Program Optimizers with Rewriting
Strategies. In Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98),

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

72:26 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg

Baltimore, Maryland, USA, September 27-29, 1998. 13ś26.
Philip Wadler. 1989. Theorems for Free!. In Proceedings of the fourth international conference on Functional programming

languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989. ACM, 347ś359.
Philip Wadler. 1995. Monads for Functional Programming. In Advanced Functional Programming, First International Spring

School on Advanced Functional Programming Techniques, Båstad, Sweden, May 24-30, 1995, Tutorial Text. 24ś52.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 72. Publication date: September 2018.

	Abstract
	1 Introduction
	2 Why and How to Make Soundness Proofs Compositional
	2.1 Conventional Abstract Interpreters
	2.2 Concrete and Abstract Interpreters using Arrows
	2.3 Compositional Soundness Proofs of Abstract Interpreters

	3 Soundness Proposition for Arrows
	3.1 Systematic Way for Constructing Galois Connections
	3.2 Soundness Proposition for Arrows

	4 Compositional Soundness for Arrow-Based Abstract Interpreters
	5 Interface Design and Parametricity
	6 Case Studies
	6.1 Tree-Shape Analysis for Stratego
	6.2 Control-Flow Analysis for PCF

	7 Related Work
	8 Conclusion
	A Desugaring of Arrow Pretty Notation
	References

