Print Email Facebook Twitter Quantitative Boltzmann–Gibbs Principles via Orthogonal Polynomial Duality Title Quantitative Boltzmann–Gibbs Principles via Orthogonal Polynomial Duality Author Ayala Valenzuela, M.A. (TU Delft Applied Probability) Carinci, G. (TU Delft Applied Probability) Redig, F.H.J. (TU Delft Applied Probability) Date 2018 Abstract We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann–Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics. Subject Boltzmann–Gibbs principleDualityFluctuation fieldOrthogonal polynomials To reference this document use: http://resolver.tudelft.nl/uuid:60963c9a-3af5-4ce0-beeb-259e30a7b629 DOI https://doi.org/10.1007/s10955-018-2060-7 ISSN 0022-4715 Source Journal of Statistical Physics, 171 (6), 980-999 Part of collection Institutional Repository Document type journal article Rights © 2018 M.A. Ayala Valenzuela, G. Carinci, F.H.J. Redig Files PDF 10.1007_s10955_018_2060_7.pdf 630.25 KB Close viewer /islandora/object/uuid:60963c9a-3af5-4ce0-beeb-259e30a7b629/datastream/OBJ/view