Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports

PORT INFRASTRUCTURE SEMINAR
Delft, June 2010

Marc VANTORRE
Maritime Technology Division, Ghent University, Belgium

Katrien ELOOT, Guillaume DELEFORTRIE
Flanders Hydraulics Research, Antwerp, Belgium
Overview

Introduction

Principles of estuary navigation

Present regulations: RD of 8 March 2007

Practical approach

Important parameters

Further research

Concluding remark
Introduction

Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports

Port Infrastructure Seminar, Delft, June 2010
Introduction

Table 1.
Port of Zeebrugge (2008): modal split in 10³ ton.

<table>
<thead>
<tr>
<th>Cargo Type</th>
<th>Transhipment Feeder</th>
<th>Estuary Traffic</th>
<th>Inland Navigation</th>
<th>Rail</th>
<th>Road</th>
<th>Pipeline</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roro</td>
<td>744</td>
<td>75</td>
<td>0</td>
<td>377</td>
<td>10,618</td>
<td>0</td>
<td>11,814</td>
</tr>
<tr>
<td>Containers</td>
<td>4,908</td>
<td>453</td>
<td>32</td>
<td>6,749</td>
<td>9,061</td>
<td>0</td>
<td>21,203</td>
</tr>
<tr>
<td>General Cargo</td>
<td>5</td>
<td>0</td>
<td>260</td>
<td>422</td>
<td>165</td>
<td>0</td>
<td>852</td>
</tr>
<tr>
<td>Liquid Bulk</td>
<td>1,491</td>
<td>1,409</td>
<td>0</td>
<td>0</td>
<td>775</td>
<td>2,527</td>
<td>6,202</td>
</tr>
<tr>
<td>Dry Bulk</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>1,907</td>
<td>0</td>
<td>1,953</td>
</tr>
<tr>
<td>Total</td>
<td>7,148</td>
<td>1,937</td>
<td>338</td>
<td>7,548</td>
<td>22,526</td>
<td>2,527</td>
<td>42,024</td>
</tr>
<tr>
<td>% Total</td>
<td>17.01%</td>
<td>4.61%</td>
<td>0.80%</td>
<td>17.96%</td>
<td>53.60%</td>
<td>6.01%</td>
<td>100.00%</td>
</tr>
<tr>
<td>% Inland Traffic</td>
<td>-</td>
<td>5.55%</td>
<td>0.97%</td>
<td>21.64%</td>
<td>64.59%</td>
<td>7.25%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Introduction
Introduction

1962: Service Rule on estuary traffic (BSI)

Class: range of navigation – suitable scantlings

Additional requirements:

- Freeboard
- Strength

...

- \(H_s < 1.2 \text{ m} \) or wind < 5 Bf
- Mostly (bunkering) tankers
Introduction

Hydro Meteo System (Coastal Division):
Monitoring Network Flemish Banks

Bol van Heist:
directional wave buoy (WAVEC)
collected data 1997 – 2002
Introduction

![Graph showing significant wave height vs percentage time blocks]

- $n = 0.5$
- $n = 2$
- $n = 4$
- $n = 6$
- $n = 12$
- $n = 24$

84% corresponds to a significant wave height $H_s = 1.20$ m.
Introduction

93 - 97%

% time blocks

n = 0.5
n = 2
n = 4
n = 6
n = 12
n = 24

significant wave height Hs (m)

1.60 – 1.95 m

Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports
Port Infrastructure Seminar, Delft, June 2010
Overview

- Introduction
- **Principles of estuary navigation**
- Present regulations: RD of 8 March 2007
- Practical approach
- Important parameters
- Further research
- Concluding remark
Principles of Estuary Navigation

Inland ships at sea??

Flag state authority
- Safety of people on board
- Protection of marine environment
- e.g. stability, freeboard, fire safety

Classification society
- Safety of ship and cargo
- Requirements for ship’s structure and major systems
Principles of Estuary Navigation

Class: Rules and regulations

Lloyd’s Register of Shipping:

- Zone 3: $H_s \leq 0.5 \text{ m}$ ➔ neglect wave loads
- Zone 2: $H_s \leq 1.0 \text{ m}$ ➔ additional wave bending moment and shear force
- Zone 1: $H_s \leq 1.6 \text{ m}$

Bureau Veritas:

- NI1: $H_s \leq 1.20 \text{ m}$
- NI1 (X m): $H_s \leq X \text{ m} (1.20 \leq X \leq 2.00)$
Principles of Estuary Navigation

Waves ⇔ Still water?

- Additional wave loads
 - (bending moments / shear forces / torsional moments)

- Impact loadings:
 - Slamming
 - Water on deck (green seas)
Principles of Estuary Navigation

Estuary vessels:

- **Inland** ships – **No** sea-going vessels!
- **Strength:** adapted to
 - Wave loads
 - Accelerations
- **Structure not suited for impact loadings**
 - Avoid slamming
 - Avoid green seas
- **Additional requirements for**
 - Deck wetness – Shipping of water in cargo holds
 - Stability: based on IMO for sea-going vessels
Principles of Estuary Navigation

Estuary vessels:

2004 – 2007:
- individual studies
- $H_s \leq 1.60 – 1.75$ m

2007: Royal Decree
- Base = risk analysis
Overview

- Introduction
- Principles of estuary navigation
 - Present regulations: RD of 8 March 2007
- Practical approach
- Important parameters
- Further research
- Concluding remark
Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports

Port Infrastructure Seminar, Delft, June 2010

Present Regulations: Royal Decree

Royal Decree concerning inland waterways vessels also used for non-international sea voyages

Vu la loi du 5 juin 1972 sur la sécurité des bâtiments de navigation, notamment l’article 17ter, § 1er, inséré par la loi du 22 janvier 2007;

Vu la communication à la Commission européenne du 23 novembre 2006, en application de l’article 8, paragraphe 1er, de la Directive 2000/75/CE concernant les sites et zones naturelles d’importance communautaire;
Present Regulations: Royal Decree

Requirements:

- Full ADNR certification
- Crew: specific STCW certification
- “Restricted seaworthiness”
 - Equipment, MARPOL, COLREG
 - Fire safety, stability, freeboard, container stowage, structural strength
 - Draft scales, manoeuvrability, navigation aids, communication equipment, propulsion, bilge pumps, electrical installations, fire fighting, anchor, personal life saving, bulwarks, railings

RISK ANALYSIS

- Not required for Hs ≤ 1.20 m ➔ minimum freeboard
- Required for Hs > 1.20 m
Present Regulations: Royal Decree

Requirements:

- Full ADNR certification
- Crew: specific STCW certification
- “Restricted seaworthiness”
- Assessment procedures for captain:
 - “go – no go”
 - Based on actual measurements and predictions of weather and wave height
Present Regulations: Royal Decree

Risk Analysis: Criteria

Probability calculations:

- Ship’s lifetime: 20 years
- 300 round trips / year
Present Regulations: Royal Decree

Risk Analysis: Criteria

Green water (foredeck):
\[\leq 1 \text{ / lifetime} \]

slamming (bow emergence):
\[\leq 1 \text{ / year} \]
Present Regulations: Royal Decree

Risk Analysis: Criteria

Cargo holds/tanks:
Exceedance of reference level
≤ 1 / lifetime

Reference level fore/aft
Reference level midships

1.35 m
0.9 m
0.2 Z
0.9 m
Z

0.9 m
1.35 m
Reference level midships
Reference level fore/aft

Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports
Port Infrastructure Seminar, Delft, June 2010
Present Regulations: Royal Decree

Risk Analysis: Criteria

Exceedance of aft deck / bulwark level
≤ 1 / lifetime
Present Regulations: Royal Decree

Risk Analysis: Criteria

- Roll angle: limitations 1/lifetime
- Wave bending moment
- Wave torsional moment 1/lifetime
- Lateral acceleration

Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports
Port Infrastructure Seminar, Delft, June 2010
Overview

Introduction

Principles of estuary navigation

Present regulations: RD of 8 March 2007

Practical approach

Important parameters

Further research

Concluding remark
Practical Approach

Directional spectra for representative period (1 year)
Practice Approach

- Directional spectra for representative period (1 year)
- RAO's: response as a function of wave frequency and direction for given ship speed
- Response spectrum of ship to each individual spectrum
- Probability of exceedance of a critical value during round trip
 - Zeebrugge → West Scheldt → Zeebrugge
 - Zeebrugge → Nieuwpoort → Zeebrugge
- Sort spectra by significant wave height
Practical Approach

Graph:
- **Title:** Average probability of exceedance if $H_s = 1.60$ m
- **Legend:**
 - Conditional minimum
 - Conditional maximum
 - Conditional average
 - Cumulative average

Axes:
- 'significant wave height (m)'
- 'number of exceedances per trajectory (-)'

Note:
- **Estuarine Tanker - Ballast Condition**
- **Scheldt - Zeebrugge**
- **Motion Point 1 - Bow Slamming**
- **Directional Spectra Bol Van Heist 1998**

Text:
- Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports
- Port Infrastructure Seminar, Delft, June 2010
Practical Approach

Average probability of exceedance if $H_s = 1.60$ m

Average probability of exceedance if $H_s \leq 1.60$ m

Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports
Port Infrastructure Seminar, Delft, June 2010
Practical Approach

![Graph showing significant wave height (m) vs. number of exceedances per trajectory with various lines indicating conditional minimum, conditional maximum, conditional average, and cumulative average.]

ESTUARINE TANKER - BALLAST CONDITION
SCHELDT - ZEEBRUGGE
MOTION POINT 1 - BOW SLAMMING
DIRECTIONAL SPECTRA BOL VAN HEIST 1998

1 / 300 = 1 / year

1 / 6000 = 1 / lifetime
Overview

- Introduction
- Principles of estuary navigation
- Present regulations: RD of 8 March 2007
- Practical approach
- Important parameters
- Further research
- Concluding remark
Important Parameters

Loading Condition

Draft

GM

![Graph showing loading condition for Draft and GM, with key points and labels for different conditions.]

Draft = Tref
Draft = Tref + 0.2 m

GM = 1.75 m
GM = 3.00 m
Important Parameters

Loading Condition

- Draft
- GM
- Inertia radius

[Graphs showing the relationship between roll amplitude, wave amplitude, and pulsation for different draft and GM values.]

Estuary Traffic: an Alternative Hinterland Connection for Coastal Ports
Port Infrastructure Seminar, Delft, June 2010
Important Parameters

Bilge keels

- Reduction of roll resonance peak (25 – 75%)
- Typical increase of allowable Hs: 0.10 m
- Typical draft increase / required freeboard decrease: 0.13 m
Important Parameters

- Trajectory
- Direction
- Spatial variation
Important Parameters

- Trajectory
- Direction
- Spatial variation

Diagram showing trajectories and percentages:
- Zeebrugge
- Bol van Heist
- Western Scheldt
- Breskens
- Percentages: 100%, 95%, 87%, 80%, 77%, 72%, 67%
Overview

- Introduction
- Principles of estuary navigation
- Present regulations: RD of 8 March 2007
- Practical approach
- Important parameters
- Further research
- Concluding remark
Further Research

Topics

Flexible admittance policy
- “stepped” approach: e.g.
 - draft 4.40 m for $H_s \leq 1.30$ m
 - draft 3.80 m for $H_s \leq 1.80$ m

Continuous relationship H_s – draft

Wind induced loads (steady + gustiness):
 adequate margins?

Local wave climate

Ship response: RAOs, bow wave, margins
Further Research

Methods

- Model testing
- Simulator
- Full scale monitoring
Overview

- Introduction
- Principles of estuary navigation
- Present regulations: RD of 8 March 2007
- Practical approach
- Important parameters
- Further research
- Concluding remark
Further Research
Estuary Traffic:
an Alternative Hinterland Connection for Coastal Ports

Marc VANTORRE
Maritime Technology Division, Ghent University, Belgium

Katrien ELOOT, Guillaume DELEFORTRIE
Flanders Hydraulics Research, Antwerp, Belgium