Print Email Facebook Twitter Fast and robust low-rank approximation for five-dimensional seismic data reconstruction Title Fast and robust low-rank approximation for five-dimensional seismic data reconstruction Author Wu, Juan (Yangtze University, Wuhan) Bai, Min (Yangtze University, Wuhan) Zhang, D. (TU Delft ImPhys/Medical Imaging; TU Delft ImPhys/Computational Imaging) Wang, Hang (Zhejiang University) Huang, Guangtan (Zhejiang University) Chen, Yangkang (Zhejiang University) Date 2020 Abstract Five-dimensional (5D) seismic data reconstruction becomes more appealing in recent years because it takes advantage of five physical dimensions of the seismic data and can reconstruct data with large gap. The low-rank approximation approach is one of the most effective methods for reconstructing 5D dataset. However, the main disadvantage of the low-rank approximation method is its low computational efficiency because of many singular value decompositions (SVD) of the block Hankel/Toeplitz matrix in the frequency domain. In this paper, we develop an SVD-free low-rank approximation method for efficient and effective reconstruction and denoising of the seismic data that contain four spatial dimensions. Our SVD-free rank constraint model is based on an alternating minimization strategy, which updates one variable each time while fixing the other two. For each update, we only need to solve a linear least-squares problem with much less expensive QR factorization. The SVD-based and SVD-free low-rank approximation methods in the singular spectrum analysis (SSA) framework are compared in detail, regarding the reconstruction performance and computational cost. The comparison shows that the SVD-free low-rank approximation method can obtain similar reconstruction performance as the SVD-based method but with a large computational speedup. Subject Low-rank approximationMatrix completionMultidimensional seismic dataSeismic data processingSeismic reconstruction To reference this document use: http://resolver.tudelft.nl/uuid:635d7a4d-7fc0-45b4-9802-51924d7a64e9 DOI https://doi.org/10.1109/ACCESS.2020.3026020 ISSN 2169-3536 Source IEEE Access, 8, 175501-175512 Part of collection Institutional Repository Document type journal article Rights © 2020 Juan Wu, Min Bai, D. Zhang, Hang Wang, Guangtan Huang, Yangkang Chen Files PDF Fast_and_Robust_Low_Rank_ ... uction.pdf 2.18 MB Close viewer /islandora/object/uuid:635d7a4d-7fc0-45b4-9802-51924d7a64e9/datastream/OBJ/view