Literatuur.
1) E. Pohland, W. Harloe, Z. Anorg. Chem. 207 242 (1932)
2) O. Ruff, Z. Anorg. Chem. 206 69 (1932)
4) E. Tiede en A. Bagoss, Ber. 56 638 (1923)
5) Patent U.S. 2.155.480 Nov. 1938
8) O. Ruff, H. J. Braun, Ber. 47 646 (1914)

Inleiding.

Boriumtrifluoride wordt gebruikt als katalysator voor polymerisatiesprocessen.

Ik denk hier aan de bereiding van "opanol", het poly-isobutylen, waarbij zeer kleine hoeveelheden BF₃ als katalysator dienst doen (Cios XXVI 76).

Ook bij nitroin- en sulfonings reacties kan men BF₃ als katalysator of dehydratator gebruiken, en bij vele andere organische reacties.

Het is best mogelijk, dat het boriumfluoride in de toekomst nog een belangrijkere plaats in gaat nemen, vandaar dat een studie voor de bereiding van BF₃ op semitechnische schaal zeker nuttig kan zijn.

Boriumtrifluoride.

BF₃ is zeer giftig. Borium staat in de 3e groep van het periodiek systeem.

BF₃ heeft sterke vrije valentiekrachten en neigt tot vorming van complexe verbindingen en tot aanleggen van andere stoffen. Het is geschikt als katalysator in organische syntheseis. Het BCl₃ staat wat dit betreft ver ten achter bij het BF₃. Bij Al is dit juist omgekeerd, het AlCl₃ is een belangrijke katalysator en AlF₃ is een reactie trage verbinding.

Het BF₃ kan aanleggen aan bijna geheel versadigde heteropolare verbindingen als Na₂SO₄ en K₂SO₄, zelfs met Ar geeft het 2 BF₃ Ar.

In het Fiat rapport No. 1114, W. Krausnik, P. Scherer "Recent German research work on fluorne and fluorine compounds" vindt men een aantal van deze verbiningen.
dingen als: BF₃·3 HF, BF₃·NH₃, BF₃·KF, BF₃·3 H₂O enz.

Enige physieke constanten van het BF₃.

Pohland en Harlos ¹) geven de volgende physieke constanten op:

smelt punt: - 128°C
kook punt (геээапоролед): -99,9°C

log p_vast = \(-\frac{1176,6}{T} + 1,75 \log T - 0,003203 T + 6,6293\)

log p_vap = \(-\frac{1174,4}{T} + 1,75 \log T - 0,013350 T + 8,0556\)

O. Ruff ²) geeft hiervoor op:

smelt punt: -128°C
kook punt (760 mm): -101°C
Trip.druk: 57 mm

\[\log p_v = 3,823 - \frac{1023,5}{T}\]

\[d = 2,6999 - \frac{0,50642}{T}\]

\[d_{vast} = 1,87\]

mol. vol. = 38,3

Bespreeking van de diverse bereidingsmethoden uit de literatuur.

A. Volgens methode (1) kan men BF₃ bereiden door matige verhitting van boorsuur-anhydride, kaliumboriumfluoride en geëxtractor der warme reactie vergelijking:

\[6 KBF₄ + B₂O₃ + 6 H₂SO₄ \rightarrow 8 BF₃ + 6 KM₃O₄ + 3 H₂O\]

Als verontreinigingen kunnen zich ij het gas BF₃ bevinden: SiF₄, CO₂ en HF, waarvan HF gemakkelijk te verwijderen is, nl. in een loden apparaat met NaF, het CO₂ moeilijker door gefractioneerde destillatie en het SiF₄ (kpt. -93°C) is niet te verwijderen.

Deze methode wordt wel toegepast als bereidingsmethode van BF₃ in het laboratorium en hier kan men dan het SiF₄ tot 1,7% verwijderen door het gas enige malen te leiden door een roodgloeiende Pt-buis gevuld met B₂O₃:

\[2 B₂O₃ + 3 SiF₄ \rightarrow 4 BF₃ + 3 SiO₂ \quad (\pm 800° C)\]

Echter vormt het B₂O₃ ook vluchtig BF₃-B₂O₃ en dit geeft aanleiding tot verstopping van de buis, door ontleding op koudere plaatsen.

Zuiverheidsbepaling van het gas: SiF₄ reageert niet, BF₃ wel met HCN tot een witte vluchtige stof, die bij -123°C geen dampdruk heeft.

B. O. Ruff (2) bereidt het BF₃ uit B₂O₃, H₂SO₄ en vloeispaat:

\[3 CaF₂ + B₂O₃ + 5 H₂SO₄ \rightarrow 2 BF₃ + 3 CaSO₄ + 3 H₂O\]
Het gas kan nu door het in vloeisstaat aanwezige Si tot 15% SiF₄ bevatten, dat door destillatie niet te scheiden is van het BF₃.

Ruff gebruikt hier dan de zuiveringsmethode onder (1) genoemd.

G. Br.324.016 geeft een methode aan, ontwikkeld uit de zo juist genoemde bereidingswijze van Ruff, door boorsuur of een boraat en een fluoride te behandelen met een dehydrator, bijv. SO₃ en overmaat H₂SO₄. Hij krijgt bijna de theoretische opbrengst t.o.v. borax of boraat bij verhitting tot 180 à 200⁰C.

Het voordeel van deze methode boven de onder B genoemde is, dat we hier geen H₂O₈ nodig hebben dat zeer hard en elastisch is en dus hoge maalkosten met zich meedraagt.

Hij ben ik het niet helemaal mee eens, omdat er een methode bestaat van Tiede en Ragoss (4) om poreus H₂O₈ te maken dat ideaal is voor bovengenoemde reactie, nl. uit boorsuur in vacuum bij 200⁰C.

D. Baldeschwieler (6) noemt als nadeel van de reeds genoemde natte methode de corrosie en het hoge verbruik aan zwavelzuur waardoor dit proces duur wordt.

Hij heeft nu het proces langs de droge weg van Gay Lussac, nl. 1 deel H₂O₈ en 2 delen CaF₂ tot 1400⁰ verhitten, verbeterd, door meer H₂O₈ toe te voegen, waardoor na ontwikkeling van het BF₃ de gevormde slak als vloeimiddel fungeert en de verdere BF₃ ontwikkeling vergemakkelijkt. Het product is zeer zuiver en praktisch vrij van SiF₄,HBF₄ en SO₃, die bij het natte proces ontstaan. Als reactor gebruikt hij een oven met hellende platen (zie tekening). Proces continu of discontinu uit te voeren.

Het residu bestaat uit CaO,H₂O₈ of een eutectisch mengsel met CaO-2 H₂O₈ en een beetje Ca(BF₄)₂. Dit kan men oplossen in H₂SO₄ om B terug te winnen. De slak is ook voor de glasfabricage te gebruiken.

Procesduur: 10 - 30 min. temp.: 900 - 1200⁰ C

E. In een vrij recent Amerikaans patent van Februari 1947 (No.2.416.133) geeft Young (7) een continue BF₃ bereiding met zwavelzuur als bijproduct, uit boorsuur en fluorsulfonszuur bij 95 - 100⁰C en 5-17 atm.druk.
Reactor volgens Baldeschiwieler

- A fvoer BF
- Hopper.
 \[\text{B}_2\text{O}_3 + \text{CaF}_2 \]

Afvoer BF

Afvoer slak
\[H_4BO_3 + 3 SO_3 \cdot F \cdot OH \rightarrow BF_3 + 3 H_2SO_4 \]

Hier verkrijgt men een practisch zuiver product (± 0,3% SO_3) met een opbrengst tot 90% van de theorie berekend op HSO_3F. Het nadeel is, dat er iets BF_3 oplost in het zwavelzuur, doch deze hoeveelheid is, door de omstandigheden goed te kiezen, te reduceren tot 1 à 2%.

Het geheele wordt uitgevoerd in een gesloten vat, waarin men het fluorsulfonzuur en boorszuur opgelost in zwavelzuur continu inbrengt via de reactiezone, zodat door mengen hierin direct BF_3 gas ontwikkelt en zwavelzuur gevormd wordt.

Een belangrijk voordeel van deze methode is, dat men het BF_3 onder elke gewenste druk direct kan afluweren, aangepast aan de druk van de polymerisatie, waarvoor het bijv. gebruikt wordt.

Om tot een keuze van een van bovengenoemde methoden te komen voor de technische bereiding van BF_3 op zo economisch mogelijke wijze, is het ook noodzakelijk om in sommige gevallen een goede zuiveringsmethode van het gevormde product te kennen.

Deze werd gevonden in een Amerikaans patenta van Nov. 1938, waarin Loder (5) zegt: Een Boriumhalogenaat-water stelsel kan door een metaalhalogenide van water worden bevrijd.

Men verkrijgt nu een Boormetaalhalogenaat, waaruit door verhitting het B-halogenaat in vrijheid gesteld kan worden.

Aan het gehydrolyseerde BF_3 voegt men dus CaF_2 toe en verhit op ongeveer 110°C. Het residu verhit men op ± 250°C.

\[\text{Ca(BF}_3\text{)}_2 \rightarrow \text{CaF}_2 + 2 \text{BF}_3 \uparrow \]

Het hier ontstane CaF_2 kan weer gebruikt worden. We krijgen hier natuurlijk wel enig verlies van BF_3 bij de verhitting op 110°C, daar behalve water ook een weinig BF_3 verdwijnt.

Vergelijking van de diverse methoden.

Aangenomen het BF_3 dus gebruikt wordt als katalysator is het niet de bedoe-
ling om op groottechnische schaal een fabriek te bouwen, maar zullen we kunnen volstaan met een semitechnische apparaatuur, bijv. een proeffabriek.

Volgens gegevens uit het Fiatrapport 944 heeft men voor de bereiding van oppanol C uit vinylisobutyleen en propaan 0,5 kg BF₃ nodig per 100 kg, oppanol C dus 0,5 %.

De oppanol fabriek te Oppan vervaardigt volgens de gegevens uit Ciosrapport XXVI, 300 ton oppanol (polyisobutyleen) per maand, waarvoor nodig was 1 % BF₃.

We hebben ons nu tot doel gesteld om een semitechnische plant op te stellen voor de bereiding van 100 kg BF₃ per 24 h. of per dag, en willen dit zo economisch en zo zuiver mogelijk bereiden.

We hebben vervolgens voor de diverse methoden overwogen, de kosten van de grondstoffen, de transportkosten, of het voordeel heeft om de grondstoffen te zuiveren of het eindproduct, de benodigde apparaatuur in verband met afschrijving, arbeidsloon ens.

Aangezien er van enkele te gebruiken ruwe en gesuiverde grondstoffen geen officiële marktprijzen zijn, zijn deze prijzen door vergelijking met de kleinhandelsprijzen geschat.

Methode A komt niet in aanmerking voor een technische bereiding omdat we eerst KBF₄ (uit HF, H₂SO₄ en KOH) moeten bereiden, verder B₂O₃ uit boorsuur en omdat er veel H₂SO₄ verbruikt wordt. Tevens blijkt het eindproduct moeilijk te zuiveren, zoals reeds aangegeven is. Dit is een typische laboratoriummethode, waarbij dure grondstoffen gebruikt worden. Verder geven de vele reacties aanleiding tot veel apparaatuur.

Ook de methode onder B genoemd als zodanig lijkt mij niet ideaal, omdat ook de zuivering van het BF₃ hier de grote moeilijkheid is.

Methode C is een verbetering van methode B, maar blijft onzuiver BF₃ afleveren.

Methode D heeft als voordeel weinig verbruik van zwavelzuur, maar als nadeel een groot verbruik van Boriumproducten, die hier te lande duur zijn. De beschreven apparatuur leent zich het beste voor grote hoeveelheden.
We hebben tenslotte onze keuze bepaald tot methode B, daar deze een zuiver product aflevert en een hoog rendement geeft, belangrijk voor ons land, waar de grondstoffen moeten worden ingevoerd. Het gas wordt onder hoge druk afgeleverd, dus aanzienlijke kosten op compressie arbeid worden bespaard.

Bij het proces van grondstoffen tot eindproduct is weinig apparatuur vereist. De hulpstoffen worden zuiver bereid, dus behoeft BF$_3$ niet meer gesuïverd te worden.

Voor de bereiding van boorsuur en fluorsulfonsuur gaan we uit van vrij zuiver grondstoffen, om de vervoerkosten zo veel mogelijk te beperken. Deze grondstoffen zijn technisch borax, vloeispaat en oleum (60 % SO$_3$).

Berekening van de te verwerken hoeveelheden chemicaliën.

We stellen ons ten doel om 100 kg zuiver BF$_3$ per dag te bereiden.

Reactievergelijkingen:

\[
\text{H}_3\text{BO}_3 + 3 \text{ SO}_3 \cdot \text{F.OH} \rightarrow \text{BF}_3 + 3 \text{ H}_2\text{SO}_4 \quad \text{(1)}
\]

Het rendement t.o.v. HSO$_3$F is 85 %

\[
\frac{5}{2} \text{ CaF}_2 + \frac{5}{2} \text{ H}_2\text{SO}_4 + 3 \text{ SO}_3 \rightarrow \frac{5}{2} \text{ CaSO}_4 + 3 \text{ SO}_3 \cdot \text{F.OH} \quad \text{(2)}
\]

Het rendement is 90 % t.o.v. SO$_3$

\[
\frac{1}{2} \text{ Na}_2\text{B}_4\text{O}_7 + \frac{1}{2} \text{ H}_2\text{SO}_4 + 5 \text{ H}_2\text{O} \rightarrow \text{H}_3\text{BO}_3 + \frac{1}{2} \text{ Na}_2\text{SO}_4 \quad \text{(3)}
\]

Het rendement is 71 % t.o.v. borax.

Mol. gew.:

- H$_3$BO$_3$ = 62
- H$_2$SO$_4$ = 98
- CaSO$_4$ = 126
- HSO$_3$F = 100
- CaF$_2$ = 78
- Na$_2$B$_4$O$_7$.10aq = 382
- BF$_3$ = 68
- SO$_3$ = 80

Bij reactie (1) gew. HSO$_3$F : gew. H$_3$BO$_3$ = 5 : 1

Om 100 kg BF$_3$ te maken is theoretisch nodig: \(\frac{100}{68} \times 62 \text{ kg} = 91,3 \text{ kg zuiver H}_3\text{BO}_3\)

en \(\frac{100}{68} \times 500 = 441 \text{ kg HSO}_3\text{F} (100\%)\) terwijl ontstaat: \(\frac{100}{68} \times 294 = 452 \text{ kg H}_2\text{SO}_4\) (100 %)

Het rendement is 85 %, dus nodig: 518 kg HSO$_3$F en \(\frac{1}{2} \times 518 = 104 \text{ kg H}_3\text{BO}_3\)

Reactie (2): Volgens de reactievergelijking (2) hebben we theoretisch nodig:

\[
\frac{520}{300} \times 2 \times 78 \text{ kg} = 203 \text{ kg zuiver CaF}_2 \quad \text{en} \quad \frac{520}{100} \times \frac{1}{2} \times 98 \text{ kg} = 254 \text{ kg 100 %ig H}_2\text{SO}_4,
\]

tenslotte \(\frac{520}{100} \times 30 \text{ kg SO}_3 = 16 \text{ kg SO}_3\), terwijl ontstaat: \(\frac{520}{100} \times \frac{1}{2} \times 156 \text{ kg CaSO}_4\).
= 383 kg CuSO₄.

Het rendement is 90 %, dus nodig \(\frac{10}{9} \times 416 \text{ kg SO}_3 = 462 \text{ kg SO}_3 \) en dit komt overeen met \(\frac{462}{60} \times 100 \text{ kg oleum (60 %)} = 770 \text{ kg oleum (60 %)} \).

Hierin sit dan \(\frac{4}{10} \times 770 \text{ kg} = 308 \text{ kg zuiver H}_2\text{SO}_4 \).

Verder nodig \(\frac{10}{9} \times 203 \text{ kg zuiver CaF}_2 = 226 \text{ kg} \).

Veronderstel de hoeveelheid verontreiniging in vloeispaat is 20 %, dan is er dus nodig + 300 kg vloeispaat.

Reactie (3): We hebben nodig 104 kg H₂SO₃.

Hiertoe moeten we uitgaan van \(\frac{10}{9} \times \frac{1}{4} \times \frac{104}{62} \times 382 \text{ kg borax (10 eq)} = 229 \text{ kg borax} \) en \(\frac{10}{9} \times \frac{1}{4} \times \frac{104}{62} \times 98 \text{ kg H}_2\text{SO}_4 \) (100 %) = 59 kg H₂SO₄ (100 %)

Zwaalsuur balans (theoretisch)

Per dag: Bij reactie (1) ontstaat 432 kg H₂SO₄

Bij reactie (2) wordt verbruikt 254 kg H₂SO₄

Bij reactie (3) wordt verbruikt 59 kg H₂SO₄

Totaal verbruik 313 kg H₂SO₄

Dus per dag hebben we een overschot van 119 kg H₂SO₄.

Uit economische overwegingen zou deze semitechnische plant het beste in de buurt van een contact zwaalsuurfabriek gebouwd moeten worden.

Immers volgens reactie (2) hebben we nodig 308 kg oleum (60 %). Hiervan wordt al het SO₃ verbruikt, maar houden we een overschot van 54 kg H₂SO₄. Wanneer we nu van de 432 kg H₂SO₄, die bij reactie (1) ontstaan, 308 kg naar de contact zwaalsuurfabriek sturen om oleum (60 %) te maken, houden we over 124 kg H₂SO₄

Van de 308 H₂SO₄ houden we over

54 kg H₂SO₄

Totaal overschot 178 kg H₂SO₄

Verbruik voor reactie (3) 59 kg H₂SO₄

Dus het produceren per dag 119 kg H₂SO₄

Opmerking: We hebben overwogen om als P-houdende grondstof voor de bereiding van fluorosulfonsuur, natriumsilicofluoride te nemen, dat hier te lande als bij-product ontstaat bij de bereiding van superfosfaat en een afscheiding vindt in de emailleregeneratie.
Door verhitting ontleept het in 2 NaF en SiF₄, het ontwikkelde SiF₄ kan weer naar de absorptieinrichting teruggestuurd worden, terwijl het NaF met oleum omgezet zou kunnen worden in fluorulfonszuur en NaHSO₄ volgens de vergelijking:

\[2 \text{NaF} + 2 \text{H}_2\text{SO}_4 + 2 \text{SO}_2 \rightarrow 2 \text{NaHSO}_4 + 2 \text{SO}_3 \cdot \text{F} \cdot \text{OH} \]

Vergelijking met reactie (2) laat ons zien, dat we in dit geval de dubbele hoeveelheid zwavelzuur verbruiken.
Op blz. 9 is medegedeeld, dat na toevoegen van de berekende hoeveelheid zwavelzuur een mengsel ontstaat, dat 27,6% H3BO3 bevat. Dit ontstaat volgens de vgl.:

\[
\text{Na2B4O7} + \text{H2SO4} + 5 \text{H2O} \rightarrow 4 \text{H3BO3} + \text{Na2SO4}.
\]

Er is dus \(\frac{142,06 \times 10,6}{4 \times 61,84} \) of 15,84% Na2SO4 aanwezig.

Dus per 100 gr water is \(\frac{100}{56,6} \times \% \) of 48,8 gr H3BO3 en 28,0 gr Na2SO4 aanwezig.

Teeple heeft bij enkele temp dit systeem onderzocht. Hij vond:

<table>
<thead>
<tr>
<th>Temp</th>
<th>H3BO3</th>
<th>Na2SO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>23,5°C</td>
<td>8,9 gr</td>
<td>31,2 gr</td>
</tr>
<tr>
<td>28,5°C</td>
<td>10,6</td>
<td>47,3</td>
</tr>
</tbody>
</table>

We zien dus, dat bij 23,5° de oplossing onverzadigd blijft aan Na2SO4 (bevat 28,0 gr kan bevatten 31,2 gr.) en dat 39,9 gr H3BO3 uitkristalliseert. We hebben dus een opbrengst van 39,9/48,8 = 82%. Bij deze werkwijze zit men echter zeer dicht bij de temp, waarbij de oplossing verzadigd is aan Na2SO4. Men kan dus beter bij een hogere temp. werken, wooral daar de oplosbaarheid van H3BO3 slechts zeer weinig met de temp toeneemt.

Litteratuur: Teeple- Industrial development of Searles Lake brines. A.C.S.

Monograph no. 19 (1929).
Beschrijving der fabricagemethode.

a) Bereiding boorzuur uit borax. (9)

Om zuiver boorzuur te bereiden met een zo hoog mogelijke opbrengst, werkt men in zo geconcentreerd mogelijke oplossingen. Het boorzuur is namelijk nog tot een niet te verwaarlozen bedrag oplosbaar (7%),

Toch moet, om verontreiniging te vermijden, het Na-zout van het boorzuur eerst worden opgelost.

Natuurlijk, dat Na-octoboraat bijzonder goed oplost.

Men voegt dus zoveel zwavelzuur toe, dat dit zout ontstaat. Evenals een hoeveelheid water met filters er af om verontreinigingen te verwijderen.

Dan wordt de rest van het zwavelzuur toegevoegd. Het boorzuur slaat neer.

Bij deze reacties ontstaat tevens een aequivalente hoeveelheid Natriumsulfaat. Dit mag uit de aard der zaak niet precipiteren. De hoeveelheid toegevoegd water wordt dan ook zo berekend, dat bij de ongunstigste temperatuur de oplossing nog onverzadigd is aan Natriumsulfaat. Bij verlaging der temperatuur, om de oplosbaarheid van het boorzuur te verminderen, neemt de oplosbaarheid van glauberzout echter toe, waardoor dit het boorzuur zeker niet verontreinigt.

De concentratie van de oplossing van het octoboraat is 20% t.o.v. boroxide. Voeft men hier de berekende h.h. zwavelzuur aan toe, dan ontstaat er 27,62%boorzuuroplossing.

De kristalisatie is gunstiger, indien deze oplossing verdunder is. Uit bereikt men door waterloog toe te voegen tot de oplossing 16-17% boorzuur bevat.

Men kan zo 95-100% boorzuur verkrijgen.
Boven reactor 1 is een weegbak, waarin een bepaalde h.h. borax wordt gestort, afhankelijk van de zuiverheid der borax, P.V. 229 kg. Via een sluis komt dit borax in een kruisslagmolentje en dan in een voorraadsvat. Via een sluis komt het poeder in reactor 1, tezamen met de afgemeten hoeveelheden gec. zwavelzuur en water (2 meetvaten) De omzetting voltrekt zich en het octoboraat lost op, eventueel geholpen door een verwarmingsspiraal.

Door een ventiel aan de onderzijde van de reactor wordt de oplossing afgelaten en met behulp van een pomp door een filter (3) geperst. Het filtraat komt in reactor (2). Hier voegt men zwavelzuur en wederloog toe, dat in meetvaten is afgemeten. Het is gunstig om de wederloog voor ze in de reactor komt, te gebruiken om de filterkoek uit te wassen.

Nadat het boorzuur door kooling zo veel mogelijk is uitgekristalliseerd, wordt de oplossing afgelaten door een ventiel in de bodem der reactor naar een centrifuge (4)

Het wederloog stroomt in een vat. De kristalbrij wordt in een droogkast (5) van de laatste resten vocht bevrijd.

Het zwavelzuur en de wederloog worden door middel van perslucht in de meetvaten gebracht.

De prijs van natriumsulfaat is zo laag, dat het niet economisch verantwoord zal zijn, om dit zout, bij de hoeveelheden die hier ontstaan, uit de wederloog te winnen.

Daar de wederloog nog 7% boorzuur bevat, en de oplossing in reactor 1: 27,62% boorzuur bevatte, is
de opbrengst 71%.

Tot deze methode werd besloten door:

1e. De grondstof, die een tamelijk zuiver natrium-product is, dus goedkoop mede ook in verband met het transport.

2e. De grote opbrengst.

3e. Het zuivere product.

De oplossingen zijn allen practisch neutraal, dus aan het materiaal der operaties worden geen speciale eisen gesteld.

De bereiding kost weinig tijd. Het is dus zeer goed mogelijk, om de h.h. boorzuur eer week nodig, b.v. in één dag te maken, daar dit minder arbeidsloon zal kosten.

b) Bereiding boriumtrifluoride uit boorzuur en fluorsulfozuur.

De hier te volgen werkwijze is continu, regelt zichzelf en heeft dus bijna geen toezicht nodig.

In een voorraadsbak bevindt zich boorzuur. Men afgewogen hoeveelheid wordt in een vat of vat gestort, en opgelost in gec. zwavelzuur.

In deze vaten kan men b.v. de hoeveelheid die per dag nodig is brengen. Men maakt een 20-25% boorzuuroplossing. Via een pomp wordt deze oplossing in de reactor geperst. Door een andere pomp komt het fluorsulfozuur in de reactor. De twee vloeistoffen vloeien, om goede menging te verkrijgen, over twee schuine platenteller platen in het apparaat.

Voornamelijk hier vormt zich het boriumtrifluoride, dat via een koeler 8 de reactor verlaat.

Het gevormde zwavelzuur valt naar beneden en kan onderaan afgelaten worden en naar een voorraadtank of een te vullen oplosbak voor boorzuur worden gevoerd.

Door een automatische regelaar voorzien van een drijver en werkend op de afvoerleiding van het zwavelzuur, wordt het vloeistofniveau constant gehouden.

Om te voorkomen, dat HF3 teveel in het zwavelzuur oplost en om de reactie geheel te laten aflopen, wordt het zwavelzuur in de reactor met een verwarmingsspiraal op 100°C gehouden. Hiervoor is slechts weinig warmte nodig, daar bij de reactie warmte vrij komt.

Het gas, verontreinigd met zwavelzuurnevels, wordt door een koeler 9 op 40°C gekoeld. Met een eenvoudig Cottrell apparaat 9 voorzien van een transformer en een hoogspanningsgenerator, worden de nevels
De vergelijking:

\[k = k_{32} \frac{492 + C}{T + C} \left(\frac{T}{492} \right)^{3/2} \text{ B.t.u.}/\text{hr}, \text{sq.ft.}, \text{deg F}/\text{ft} \]

die binnen bepaalde temperatuurgrenzen juist is (lucht -312÷414°F).

\[T = \text{abs. temp. in gr. F.} \]
\[a = \text{constante (lucht 1,90)} \]
\[C = \text{constante (} 225 \text{)} \]
\[\mu = \text{viscositeit lb/ft, hr.} \]

De temperatuur der luchtfilm is 104°F. 20°F. 30°F. = 90°F.

We krijgen dus:

\[k_{90^\circ} = k_{32} \frac{492 + C}{T + C} \left(\frac{T}{492} \right)^{3/2} = 0,0129 \cdot \frac{492 + 225}{\left(\frac{550}{492} \right)^{3/2}} = 0,0140 \]

\[h_1 = \frac{0,0225}{0,0140} \cdot \frac{12}{0,215} (13500)^{0,8} \cdot (0,76)^{0,3} = 31,9 \]

Voor het aanslag aan de waterzijde krijgt men nog \(h_s = 600 \)

\[U = \frac{0,405}{0,405} + \frac{1,151}{0,215} \cdot \frac{0,405}{26} \cdot \frac{0,405}{\text{log}0,215} + \frac{1}{613} + \frac{1}{600} \]

\[U_f = \frac{0,0614 + 0,00375 + 0,00175 + 0,00167}{0,0614 + 0,00375 + 0,00175 + 0,00167} = 15,30 \]

Dus:

\[A = \frac{47.61}{15,3 \cdot 30 \cdot 24} = 0,431 \text{ sq ft.} \]

Totaal dus nodig: \(0,431 = 2,82 \text{ dus 3 pijpen.} \)

De fout, gemaakt in de filmtemperaturen is zeer gering,

terwijl bovendien in dit geval de invloed minimaal is.

De berekening van \(h_0 \) verandert echter:

\[D' = 1,22" \]
Berekening.

Voor de berekening van een BF₃ koeler zijn te weinig constanten van het gas bekend. Daarom is eerst onderzocht, of de ontbrekende constanten aangevuld konden worden met de gegevens van met BF₃ verwante stoffen. Hieraan zijn echter grote bezwaren verbonden. Ten slotte werd daarom besloten als gas lucht aan te nemen.

We hebben de volgende koeler:

\[t' \quad \quad \quad \quad t' \quad \quad \quad \quad t'' \quad \quad \quad t'' \]

Voor deze warmteovergang geldt: \(q = U_o \cdot A_o \cdot \Delta t \)

Hiervan is \(q \) en \(\Delta t \) direct te berekenen. \(A_o \) moet worden berekend.

Om \(U_o \) te kunnen berekenen moet men \(A_o \) kennen. We bepalen \(A_o \) nu door een geleidelijke benadering: men neemt een waarde voor \(U_o \) aan, berekent \(A_o \) corrigeert \(U_o \) enz. tot men de juiste waarden heeft gevonden.

Af te voeren warmte: Per dag produceert men 100 kg of 220,5 lbs. gas. Dit gas heeft een druk van 1800-2000 lbs./sq in druk = 1800-2000 x 0,07 kg/cm² = 126-140 kg/cm². De gemiddelde temp van het gas in de koeler is 40°. Men kan nu uit tabellen vinden, dat \(c_p \) van lucht bij 130 Atm. en 40°6 gelijk is aan 0,298.

Dus totaal af te voeren warmte is:

\[
\text{gew. gas} \times c_p \times (t_1 - t_2) = 220,5 \times 0,298 \times 72 = 4731 \text{ B.t.u/24 hr}
\]

Berekening gemiddeld temp. verschil \(\Delta t \):

Om \(t_2' \) te berekenen moet men weten, hoeveel koelwater gebruikt wordt. Om deze hoeveelheid te schatten is aangenomen:

dikte der waterlaag = 1/300'
snelheid v/h water = 1 ft./sec.

Dus hoeveelheid water = 2 \times 1 \times 1/300 = 0,0067 cu.ft/sec = 578,9 cu.ft/24 hr.

Door water opgenomen warmte = gew water \times Sw \times (t_2' - t_1') .

\[
4731 = 578,9 \times (t_2' - 54°)
\]

\[
t_2' = 62°\text{F.}
\]

Bij het bepalen van het gemiddelde temperatuursverschil in de koeler moet men bij zuivere tegenstroom het logarithmisch gemiddelde der temp. nemen. Zeer dikwijls is in een warmteuitwisselaar
niet het zuivere tegenstroomprincipe toegepast. Bawman, Müller en Nagle hebben uit de gegevens van vele onderzoekers grafieken voor de correctietermen, die voor de verschillende gevallen moeten worden ingevoerd, gemaakt.

De grootte van de correctietern voor deze vorm koeler, \(Y \) kan uit een grafiek bepaald worden met behulp van de grootheden

\[
X = \frac{t_2' - t_1'}{t_1 - t_1'} \quad \text{en} \quad Z = \frac{t_1 - t_2'}{t_2' - t_1'}
\]

We zien dus, dat \(X = \frac{62 - 54}{140 - 54} = 0,093 \)

\[
\text{en} \quad Z = \frac{140 - 68}{62 - 54} = 9
\]

Deze waarden komen echter niet in de tabel voor. \(t_2' \) moet groter zijn. Dit is te bereiken door minder koelwater te gebruiken.

Dus b.v. 1/3 der hoeveelheid koelwater. De temp. stijging in het koelwater wordt dan 3 x zo groot, dus \(t_2' = 78^\circ\text{F} \).

Nu wordt \(X = 0,28 \)

\[\text{en} \quad Z = 3. \]

We vinden nu \(Y = 0,93 \).

\[\Delta t = Y \cdot \Delta t \log \text{gem.} \]

\[\text{M.T.D.} = \frac{(t_1' - t_2') - (t_1' - t_1')}{\ln \frac{t_1 - t_2'}{t_2' - t_1'}} = \frac{(140 - 78) - (68 - 54)}{\ln \frac{140 - 78}{68 - 54}} = \frac{= 32,2^\circ\text{F}}{32,2^\circ\text{F}} \]

Dus \(\Delta t = 0,93 \cdot \frac{32,2}{32,2} = 30^\circ\text{F} \)

In Mc Adams wordt een formule gegeven voor de berekening van de hier gebezigde koeler. Deze experimentele formule van Van der Ploeg luidt:

\[h = 60,5 \cdot 0,27 \left(1 - 0,0099 \cdot t \right) \text{(Btu/(hr)(sq ft)(deg F))} \]

\[C = \text{hoeveelheid koelwater per ft. in lb/hr} \]
\[t = \text{temp in } \circ\text{F}. \]

\[D' = \text{som der diameters der pijpen in een verticale serie in inches}. \]

Per 24 uur vloeide over de koeler 578,9 cu ft water, dus per uur:

\[\frac{578.9 \cdot 28.32 \cdot 2.205}{24} = 1503,8 \text{ lb water.} \]

Om te blijven binnen de hoeveelheden, waarvoor de formule geldig is, moet dit water over 1,5 ft lengte der bovenste koelbuis vloeien. Per ft heeft men dan 1003 lb/uur.

Uit een ruwe berekening blijkt, dat de inwendige weerstand 20 x zo groot is als de uitwendige. de gemiddelde temp. der pijp zal dus ongeveer de temp. van het koelwater zijn, plus 1/21 van
het totale temp. verschil.

\[66^\circ + 2^\circ = 68^\circ F. \text{ dus der waterfilm } = 67^\circ F. \]

Voor de koeling zullen we \(\frac{1}{8}' \) buis gebruiken: Uitw. diam. = 0,405''
Inw. diam. = 0,215''

Uit de lit. blijkt, dat U in overeenkomstige gevallen meestal ligt tussen 2 en 10. Stel nu \(U = 5. \)

Daar \(q = U \cdot Ao \cdot \Delta t \) is \(Ao = \frac{4731}{5,30,24} = 1,32 \text{ sq ft.} \)

Het Opp van één pijp is: \(\frac{1,5 \cdot 3,14 \cdot 0,405}{12} = 0,159 \text{ sq ft.} \)

Dus hebben we 8 pijpen nodig.

Dan is dus \(D' = 8 \cdot 0,405 = 3,24'' \)

en \(h_o = 60,5 \cdot 100^0F \cdot (1 + 0,0099 \cdot 67) = 613 \text{ btu/(hr)(sq ft)} \)

Voor gassen in pijpen geldt bij koeling de formule:

\(h_i = 0,0225 \frac{k}{D} (Re)^{0,8} (Pr)^{0,3} \)

Lucht 100°F en lAtm = 0,046.

Uit een nomogram is te bepalen, dat \(\mu \) voor lucht 100°F 130 Atm gelijk is aan 1,05, dus onder deze omstandigheden is \(\mu = 0,048. \)

\[\frac{\rho_2}{\rho_1} = \frac{V_1}{V_2} = \frac{P_2 \cdot T_2}{P_1 \cdot T_1} = \frac{130 \cdot 273}{373} = 95. \]

dus \(\rho_2 = \rho_1 \cdot 95 = 95 \cdot 0,0808 \text{ lb/cu ft.} \)

\[V = \frac{\text{gew./sec}}{\rho \cdot \text{opp. inw. diam.}} \quad Re = \frac{D}{V} \cdot \rho = \]

\[Re = \frac{0,215/12 \times 220,5/24 \cdot 3600 \times \rho / \rho \times (0,108/12)^2 \times 3,14}{0,048/3600} \]

\(Re = 13500. \)

\(Pr = \frac{c}{k} = 0,76. \)

Nu moet men \(k \) bepalen voor lucht bij de temp. der film:
Euken kreeg door combinatie van de vgl.

\(k = a \cdot \mu \cdot c_v \cdot \text{Btu/hr,Sq ft, deg F,}/\text{ft.} \)

met de vgl. van Sutherland voor de verandering der visc. met de temp.

\(\mu_t = \mu \cdot \frac{492 + C}{T + C} \left(\frac{T}{492} \right)^{3/2} \text{ lb/ft,hr. de vergelijking:} \)
\[k = k \frac{492 + c}{T} \left(\frac{T}{492} \right)^{3/2} \text{Btu/hr, sq ft, deg F./ft.} \]

die binnen bepaalde temp. grenzen juist is (lucht -312 tot -414°F).

\[T = \text{abs. temp in °F.} \]

\[a = \text{constante (lucht 1,90)} \]

\[C = \text{constante (lucht 225)} \]

\[\mu = \text{viscositeit lb/ft.hr.} \]

De temp der luchtfilm is 104° - \frac{30}{21} = 30° = 90°F.

We krijgen dus:

\[k = 0,0129 \cdot \frac{492 + 225}{550 + 225} \cdot \left(\frac{550}{492} \right)^{3/2} = 0,0140 \]

\[h_1 = 0,0225 \cdot 0,0140 \cdot \frac{12}{0,215} \cdot (13500)^{0,8} \cdot (0.76)^{0,3} = 31,9 \]

Voor het aanslag aan de waterzijde krijgt men nog \(h_s \).

\[h_s = 600 \text{ (uit lit.)} \]

\[U_0 = \frac{0,405}{31,9 \cdot 0,215} + \frac{1,151}{26} \cdot \frac{0,405}{0,215} \cdot \log \frac{0,405}{0,215} + \frac{1}{613} + \frac{1}{600} \]

\[U_0 = 15,30 \]

Dus nu is \(A_o = \frac{4731}{15,1 \cdot 36} = 0,431 \text{ sq. ft.} \)

Totaal zijn dus nodig \(\frac{0,431}{0,159} = 2,82 \text{ dus 3 pijpen.} \)

De fout, gemaakt in de filmtemperaturen is zeer gering, terwijl bovendien in dit geval de invloed minimaal is. De berekening van \(h_o \) verandert echter: \(D' = 1,22''. \)

\[h_o = 592 \text{ Btu/hr, sq ft. deg F.} \]

\(U_0 \) wordt dan 15,32 Dit maakt dus geen verschil.

Koeler breed 1,5 foot.

Aantal pijpen 3.