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Chapter 1

Introduction

The overall purpose of an electric power system is to supply electric energy to the loads,
i.e. the customers, in a safe, economic and reliable way. The generation, transmission
and distribution of electrical power are the three main tasks, or primary functions of a
power system.

Power systems operate under the restriction that derives from the non-storability of
electrical energy: the electrical energy produced and consumed throughout the system
should be equal at each moment in time. Consequently, the system operation relies on
the control of the system power generation and its adaptation to the fluctuations of the
uncertain system load, according to the restrictions set by the power transport networks.

1.1 ’Vertical’ power system

Power systems traditionally evolved based on a ’vertical’ structure, in which power is
generated by a relatively small number of large power plants. These large power plants
are mainly constructed at remote sites, close to the energy resources or supply routes and
relatively far from the load centers. The electrical energy is transported from these sources
to the dispersed end-users by a hierarchical structure of high-voltage (HV) transmission
networks and medium-voltage (MV) and low-voltage (LV) distribution networks, as shown
in Fig. 1.1. To ensure both high security and availability, the transmission networks are
meshed, to provide alternative routing in case of faults. The distribution networks are
passive systems∗ with a radial structure that enables the operation of selective protection.
In this system structure, the electrical power flows from the higher to the lower voltage
levels.

The power generation in a ’vertical’ power system structure is mainly based on con-
trollable primary energy sources such as fossil fuels in the case of large thermo-electric
power plants or dammed water in the case of hydro-electric power plants. There are two
basic types of thermo-electric power plants: the fossil-fuel-fired power plants, where fossil
fuels such as oil, gas and coal are burnt and the resulting thermal energy is converted into
electrical power by means of a steam cycle, and the nuclear power plants, where nuclear

∗Passive systems are parts of the power system where only loads and no generation is connected as
passive.
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Figure 1.1: A Vertically-Operated power system [17].
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Table 1.1: Worldwide installed capacity (GW) on January 1,2000 [74].
Region Thermal Hydro Nuclear Other/Renew Total

North America 642 176 109 18 945

Central/South America 64 112 2 3 181

Western Europe 353 142 128 10 633

Eastern Europe/Former USSR 298 80 48 0 426

Middle East 94 4 0 0 98

Africa 73 20 2 0 95

Asia/Oceania 651 160 69 4 884

Total 2175 694 358 35 3362

Percentage 66.6 21.3 11.0 1.1 100

fission is used to release the energy contained in atom nuclei. This energy is then used to
create high pressure steam that drives a turbine and a generator.

The use of controllable energy sources permits the robust control of the system power
generation and therefore the reliable system operation. In nearly all large power plants
synchronous generators are used for the conversion of mechanical energy into electrical
energy. These power plants form the so-called conventional generation (CG), with three
main characteristics: large-scale, controllability and unified generation technology. In
Table 1.1, the worldwide installed capacity for the several types of power generation
technologies are presented. We can see that, in the year 2000, CG provided 99% of the
total power, of which two thirds originated from thermal (fossil-fuel-fired) power plants.

This vertical structure of the power system brings considerable advantages, such as
economies of scale in power generation, reduction of the required generator reserve mar-
gins for the individual plants, minimization of the cost of electrical power by shifting
generation between units with different prime movers, flattening of the load curve due to
the aggregation of loads in the higher system levels that enables a more effective use of
the generation equipment, higher energy efficiency in large generating units and operation
with a relatively small crew, reduction of the risk of common cause failures due to the
use of equipment of various manufacturers and ages, etc. [88].

In spite of these advantages, conventional power generation bears inherent drawbacks.
These drawbacks, in relation to special socioeconomic and political reasons that prevailed
during recent years, motivated the development of a new, non-conventional power gener-
ation scheme, based on the utilization of new and distributed energy resources.

1.2 Problems with CG

1.2.1 Depletion of fossil fuels

As presented in Table 1.1, thermo-electric power generation corresponded to 67% of the
worldwide installed capacity in the year 2000, while nuclear power generation provided
another 11%. The prime mover for these power plants, i.e. fossil fuels, is extracted from
the available natural reserves. However, these reserves are not infinite and will be depleted
in the long term. This dictates the gradual incorporation of sustainable energy sources
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in the power system generation mix, i.e. energy sources which are not expected to be
depleted in a time-frame relevant to the human race.

1.2.2 Greenhouse gases emissions

On the other hand, the adverse environmental impacts of the operation of fossil-fuel-fired
power plants, such as the global climate change and the greenhouse effect caused by the
increase of the CO2 concentration in the earth’s atmosphere, brought further initiatives
for the decoupling of the economic activity from fossil primary energy consumption. The
Kyoto Protocol to the United Nations Framework Convention on Climate Change was
adopted to achieve the ’de-carbonization’ of the energy systems of the future based on the
use of new and renewable energy sources (RES) as primary movers of electrical generation
[96].

1.2.3 Nuclear energy

Nuclear energy, although energetically efficient and carbon-free, meets a negative public
opinion due to the problem of disposal of the nuclear waste and the fear of the adverse
effects of a nuclear accident. Except for a few economically emerging regions of the
world, it is safe to observe that nuclear power production, using existing technologies, will
decrease in the coming decades as old plants are retired and are not being replaced. Several
European countries, such as Germany and Sweden, have enacted laws to accelerate the
decommissioning of existing nuclear power plants. However, emerging technologies such as
the pebble bed reactor technology, which allow for a highly standardized manufacturing of
the power plants with modular installed capacities, may revive the nuclear power industry
as they will most probably be required within any carbon-free generation mix [74].

1.2.4 Hydro power

Large-scale hydro power plants comprise a valuable renewable energy source alternative.
Although large-scale hydro power represents very significant opportunities in several de-
veloping regions in the world, in the developed countries the available hydro potential has
already been utilized for a large part. Furthermore, the construction of dams and basins
for hydro power generation causes the flooding of large areas and affects the flow of rivers,
which brings significant environmental consequences and often societal upheaval that go
far beyond the national boundaries of the home countries [74].

1.3 Renewable energy sources (RES)

The move towards a non-conventional generation mix in the power system is firstly re-
lated to the incorporation of sustainable energy sources. The most prominent subset of
sustainable energy is renewable energy, that is commonly defined as ’the energy from an
energy resource that is replaced by a natural process at a rate that is equal to or faster
than the rate at which that resource is being consumed’. RES capture their energy from
existing flows of energy, from on-going natural processes, such as sunshine, wind, wave
power, flowing water (hydropower), biological processes such as biomass and anaerobic
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digestion, and geothermal heat flow. Most renewable forms of energy, other than geother-
mal and tidal power, ultimately derive from solar energy. Energy from biomass derives
from plant material produced by photosynthesis using the power of the sun. Wind en-
ergy derives from wind activity, which is generated by the sun’s uneven heating of the
atmosphere. Hydropower depends on rain, which again depends on the sunlight’s power
to evaporate water.

Renewable power generation possesses two characteristics that distinguish it from CG:
the distributed nature and uncontrollability. Although renewable energy is found in huge
quantities in nature, it is geographically distributed, presenting a low energy density on
each generation site. In order to capture this energy and convert it to electricity, small-
scale converters should be spread in many sites in the power system. Their actual power
contribution to the system comes from the aggregation of the output of a large number
of such generating units. Depending on the level of aggregation, these small-scale power
plants may be connected in different voltage levels in the system, including the distribution
networks. The use of RES also introduces non-regulated prime energy movers in the power
system generation mix, such as wind-, solar-, wave-, and run-of-river-hydro-energy. The
power output of such power plants is mainly defined by the prime mover activity and not
by the system management. This introduces power generation uncertainty in the system.

1.4 Deregulation & liberalization of the energy mar-
kets

Historically, the growth in electricity consumption was anticipated by adding new large
central power plants, building new transmission lines and extending the traditional distri-
bution systems. However, solving the transmission system capacity problem by erecting
new HV lines becomes increasingly difficult, due to the investment cost, the lack of avail-
able physical space for expansion and the rejection from the public [74]. This problem,
combined with the world-wide trend towards deregulation of the electricity markets and
the introduction of new, more effective forms of small-scale generation like combined heat-
power plants, micro-turbines, hydrogen and fuel cells [15], created a boost towards the
use of distributed energy resources in the system.

An alternative solution to the transmission system capacity problem may come from
the connection of generation in the distribution systems. Also, a deregulated environment
with open access to the distribution networks provides better opportunities for small-scale
units, which require lower capital costs and shorter construction times [47]. Benefits of
generating power close to the loads include the use of waste heat for heating or cooling
(combined heat and power (CHP), co-generation) and the availability of standby power for
critical loads during periods when electricity from the utility is unavailable. Furthermore,
a number of small-scale power generation technologies have reached a development stage
which allows for large-scale implementation within the existing electric utility systems [74].
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1.5 non-Conventional Generation (non-CG)

1.5.1 Types of non-CG

The content of this section is largely based on the Ph.D thesis of M. Reza [76], Depart-
ment of Electrical Engineering, Mathematics and Computer Science, Delft University of
Technology, which is one of the Ph.D students working in the same research project.

As discussed in the previous section, the development and implementation of non-CG
units is encouraged by environmental, social and political forces. This has stimulated re-
search, promotion, development and increased use of new, renewable, and environmentally-
friendly forms of energy. Non-CG comprises alternative energy sources like wind, biomass,
sunlight, tidal-, wave- and geothermal energy, and new generation technologies as the fuel
cell, combined heat and power (CHP) cogeneration, the microturbine generator, and also
small-scale fossil-fuel-fired CG. The rise of non-CG is supported by the advancements in
supporting technologies like power-electronic converters and controllers. The basic types
of non-CG are briefly presented in the following sections.

Small-scale fossil-fuel-fired power plants

This type of non-CG refers to fossil-fueled power plants within a range of kWs up to 100
MW [15,21,47]. The reciprocating engines and combustion turbines are the most common
technologies used in this category.

Reciprocating engines are characterized by low capital cost, possible thermal and elec-
trical cogeneration, good modularity and flexibility, and a high reliability. However, such
utilization of engine generators creates location-specific environmental issues associated
with the equipment’s operational characteristics [74]. The emissions can be reduced to
some extent by using natural gas. Also, the large number of moving parts leads to noise
pollution (which is hard to control) and increases the maintenance cost.

Combustion turbines (gas turbines) are commonly used in industry [21]. In oil in-
dustry for example, the associated gas from the oilfield is frequently put into use to
generate electricity. The use of natural gas for the combustion turbines results in lower
emissions when compared to reciprocating engines. The use of combustion turbines is
mostly encouraged by the development of microturbines, that are highlighted in the next
paragraph.

Microturbines

A ’micro’ gas combustion turbine (microturbine) produces electric power in the range of
25-500 kW. An electrical generator is integrated within the microturbine, that operates
at a high rotational speed (50,000 to 120,000 RPM). The electric power is produced with
a frequency (in the order) of 10,000 Hz. Therefore, a power-electronic converter is used
to interface the generator to the grid. Within the power-electronic interface, the high-
frequency electrical power is converted to DC before it is inverted back to low-frequency
AC.

Most microturbines make use of natural gas. As a consequence, microturbines are
typically characterized by low emission levels. The use of RES such as ethanol is also
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possible, and makes the microturbine even more environmentally friendly. In addition,
the low capital cost, high efficiency, durability and low noise encourage the use of micro-
turbines [30].

Combined heat and power (CHP) plants

Combined heat and power (CHP), also known as cogeneration, is the simultaneous produc-
tion of electrical power and useful heat [47]. Reciprocating engines, combustion turbines,
and microturbines can be used in CHP schemes. CHP generation on a large scale is
usually based on fossil fuel. The ’waste heat’ resulting from the production of electricity
is then used for other applications. With this simultaneous process, the overall efficiency
of a CHP plant can be around 85%. In small-scale CHP units, the heat production is
dominating the process and electricity is the by-product [21,47].

Fuel cells

Just like a battery, a fuel cell produces an electric current directly from a chemical re-
action. However it is designed for continuous replenishment of the reactants consumed;
it produces electricity from an external supply of fuel to the anode (usually hydrogen)
and oxygen to the cathode as opposed to the limited internal energy-storage capacity of
a battery.

One fuel cell only produces a small amount of electricity, and larger amounts can be
obtained from a stack of fuel cells [15]. Fuel cells are very efficient, up to 80%. Because the
emission is only pure water (in case of hydrogen as the fuel), they are also environmentally
friendly. They are modular, portable and produce low noise pollution, because there
are no moving parts. In the future, electrical networks can be combined with gas and
hydrogen infrastructures. Such a development will further increase the implementation
of fuel cells [39].

Geothermal power plants

Geothermal power plants convert the energy contained in hot rock into electricity by using
water or an other fluid to absorb the heat from the rock and transport it to the surface
of the earth.

It is estimated that the capacity of geothermal energy is nine times its existing installed
capacity of about 8 GW. Geothermal energy is often referred to as a form of renewable
energy, but because the heat at any location can eventually be depleted, technically it is
not strictly renewable. In general, depending on the extraction rate, a field may remain
productive over a period of 10 to 100 years. A geothermal power plant usually requires
minimal land, as no excavation, transportation and storage are needed. It also produces
no pollutant because any unwanted product, if any, can be disposed underground [85].

Biomass power plants

The term ’biomass’ refers to living and recently living biological material that can be
used as fuel or for industrial production. It includes all water- and land-based vegetation
and trees, municipal solid waste, municipal biosolids (sewage), animal wastes (manures),
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forestry and agricultural residues, and certain types of industrial wastes. Biomass is
considered a substitute for fossil fuels. Practically, biomass is converted to thermal energy,
liquid, solid or gaseous fuels and other chemical products through a variety of conversion
processes. These latter forms will then be converted into electricity. In general, biomass
is abundantly available and can be considered as a renewable energy source [89].

Small hydro-power plants

A hydro-power plant generates electricity from the movement of a mass of water from a
high level to a lower end, where a power house is installed. This water movement can
be obtained, for example, from a run-of river or a river with a small impoundment. A
small hydro-power plant produces electric power up to 10 MW. Nowadays, hydro power
plant technology has reached maturity. A small hydro-power plant has less impact on
the environment and ecosystem, when compared to a large hydro-power plant, and is
easy to build within a short construction schedule. Once built, its maintenance cost is
minimal [83].

Because of the non-availability of large power impounding (dam), the power output of
a hydro turbine is practically driven by a direct-captured water flow (the prime mover in
the small hydro-power plant). Thus, a simple expression of the power output for a small
hydro-plant is [47]:

P = QHηρg (1.1)

with P the output power [W ], Q the flow rate [m3s−1], H the effective head [m], η
the overall efficiency, ρ the density of water [kgm−3], and g the gravitational constant
[ms−2]. For small hydro-power plants, H, η, ρ and g are deterministic and constant.
Without significant storage capacity, a small hydro-power plant may experience a very
large variation in available water flow (Q) and therefore in the output power (P ). Thus,
a small hydro-power unit is non-dispatchable.

Wind turbines

A wind turbine generates electricity by extracting kinetic energy from the wind passing
through its blades. Wind energy is one of the most promising energy sources to be used for
renewable electricity generation. The increasing interest for implementing wind turbines
is mostly driven by the infinite availability of wind energy, limited environmental impacts
and competitive electricity generation costs [88].

The power generated by a wind turbine (provided that the upstream wind velocity, u,
is between the minimal and the maximal values, e.g. 4 < u < 25 [ms−1]) can be expressed
as [47], [88]:

P =
1
2
Cpρu3A (1.2)

with

Cp =
1
2
(1 +

u0

u
)[1− (

u0

u
)2] (1.3)
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In 1.2 and 1.3, P denotes the output power [W ], Cp the power coefficient, u0 the down-
stream wind velocity at the exit of the rotor blades [ms−1], ρ the air density [kgm−3],
and A the swept area of the rotor disc [m2].

In practice, ρ, A, and to some extent Cp, are deterministic and constant values. Thus,
the power produced by a wind turbine is mainly characterized by the wind velocity. The
wind velocity itself has a stochastic behavior; any wind speed can occur at any time.
Moreover, when the upstream wind velocity (u) is either below the minimal or above the
maximal operating values of the wind plant, e.g. u < 4 or u > 25 [ms−1], the output
power equals zero. As a result, a stochastic output power will be generated.

Photovoltaics

Photovoltaic (PV) power generation systems convert sunlight directly into electricity [72].
A PV cell consists of two or more semiconductor layers of specific physical properties.
These layers are arranged in such a way that when the PV cell is exposed to sunlight, the
photons cause the electrons to move in one direction (crossing the junctions of the layers)
and a direct current (DC) is generated.

Currently, PV energy cost is still high. However, the capital cost of PV modules
per Watt of power capacity have declined in the past decades. PV implementation is
encouraged by the infinite availability of solar energy, long life cycle and simple mainte-
nance (since there are no moving parts), high modularity and mobility, and short design,
installation and start-up time of a new plant.

The power generated by a PV module is given by [72]:

P = η × (Eed ×APVtotal
+ Ees ×APVwithsun

) (1.4)

where
APVwithsun

= (~S × ~P )×APVtotal
(1.5)

and
~S = [SxSySz], |~S| = 1 (1.6)

~P = [PxPyPz], |~P | = 1 (1.7)

~Sx = cos(θ)× cos(αsun) (1.8)

~Sy = cos(θ)× sin(αsun) (1.9)

~Sz = sin(θ) (1.10)

~Px = cos(β)× cos(αpanel) (1.11)

~Py = cos(β)× sin(αpanel) (1.12)

~Pz = sin(β) (1.13)

In the above equations P denotes the power extracted from the sunlight [W ], η the
efficiency of the solar panel, Eed and Ees the diffuse- and the direct-horizontal irradiance
[Wm−2], ~S and ~P the solar- and panel-orientation, θ and αsun the altitude- and azimuth-
angle of the sun [rad], and β and αpanel the altitude- and the azimuth-angle of the panel
[rad].
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In practice, APVtotal
, η, β and αpanel are deterministic and constant. Therefore, the

generated electricity is characterized by Eed, Ees, θ and αsun. The altitude- and the
azimuth-angle of the sun (θ and αsun) have daily and seasonal patterns, whereas the
characteristics of Eed and Ees are intermittent. Weather changes and cloud movement,
for example, strongly influence the values of Eed and Ees and consequently the generated
electricity. The power generation of PV power plants is therefore stochastic.

Tidal power plants

Tidal energy is derived from the gravitational forces of attraction that operate between
the earth and the moon and between the earth and the sun. Energy is extracted either
directly by harnessing the kinetic energy of currents due to the tides or by using a basin
to capture potential energy from the difference in height of a rising and falling mass of
water. To generate electricity, tidal flow is extracted by means of propellers with large
diameters. In the latter technique, a huge dam, called a ’barrage’ is built across a river
estuary. When the tide goes in and out, the water flows through tunnels in the dam. The
ebb and flow of the tides can be used to turn a turbine. When the tides comes into the
shore, they can be trapped in reservoirs behind dams. Later, when the tide drops, the
water dam can be used like in a regular operation of a hydroelectric power plant [86].

Tidal power is a renewable energy source. Tidal power plants produce no pollutant.
They also cause no fundamental change of the natural rhythm of the tidal cycle and no in-
undation of the adjacent area. These factors encourage the implementation of tidal power
plants. However, building a tidal power plant has to be planned carefully, considering the
potential ecological impacts.

The power output of a turbine operating in flowing water is given by [93]:

P =
1
2
ρACpu

3 (1.14)

In 1.14, P denotes the output power [W ], ρ the density of the fluid [kgm−3], A the area
of the flow interrupted by the device [m2], Cp the power coefficient of the device (the
percentage of power that the turbine can extract from the water flowing through the
turbine), and u the velocity of the water [ms−1].

For a tidal power plant, ρ, A, and Cp are deterministic and constant. Therefore, the
output power P depends on the velocity of the water u. Thus, the tide, which is not
continuous, is the only factor that affects the generating activity of a tidal power plant.
This makes the tidal power generation non-dispatchable.

Wave power plants

Waves are generated on the surface of oceans by wind effects which in turn result from the
differential heating of the earth’s surface. Wave energy is complementary to tidal power,
it uses the essentially up-and-down motion of the sea surface (wave power), instead of
using the energy of the sea rushing back- wards and forwards (tidal power). A wave power
plant extracts wave energy and converts it into electricity.

The wave power plant is promoted as electricity generation that is available in abun-
dance throughout the world; it is clean and non-polluting, renewable, and suited to elec-
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Table 1.2: Basic characteristics of CG and non-CG.
CG non-CG

Size large small, medium
Dispatchability dispatchable non-dispatchable
Generation technology synchronous generator different types

trify remote communities. However, just like a tidal plant, the erection of a wave power
plant should be planned carefully, so that the ecological impacts are minimized.

The power production of a wave power plant can be assessed using [64]:

Pabs = αAwH1.5
s (1.15)

In 1.15, Pabs denotes the average absorbed power [W ], Aw the float water plain area [m2],
Hs the significant wave height [m], and α is a coefficient that equals 0.166 [kgm−1.5s−3]
in an ideal condition. For a wave power plant, α and Aw are deterministic. The output
power depends practically on the wave height (Hs), that is not constant nor dispatchable.
Hence, a wave power plant is non-dispatchable.

1.5.2 Characteristics of non-CG

Based on the analysis of the different non-CG technologies, we may epitomize its basic
characteristics, that distinguishes it from traditional CG, as follows:

1. Size: whereas CG comprises mainly large central power plants that are connected
to the HV networks, non-CG units are small- to medium- scale generators that, due
to their size, are connected to different voltage levels in the system.

2. Dispatchability : CG power plants have controllable prime energy movers and they
are centrally dispatched by the system operator or generation company. The non-
CG units are either locally dispatched or non-dispatchable, in the case they make
use of non-controllable primary energy sources.

3. Generation technology : in nearly all CG power plants, synchronous generators are
used for the conversion of mechanical energy into electrical energy. In the case
of non-CG, new technologies are introduced for the generation of electrical power,
including other types of electrical generators and grid coupling via power-electronic
converters.

These characteristics are summarized in Table 1.2. Each type of power generation that
holds at least one of the characteristics of non-CG may be defined as non-CG.

1.5.3 Distributed Generation (DG)

In the literature, it is a usual practice to use the first characteristic of Table 1.2 (size),
in order to identify non-CG units. In this case, the term Distributed Generation (DG) is
used. This characteristic determines subsequently the point of connection to the system
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(MV-LV networks), leading to the following definition: ’DG is an electric power source
connected directly to the distribution network, or on the customer site of the meter ’ [1].
CIGRE Working Group 37.23 has defined DG as electrical generation that is not centrally
planned, not centrally dispatched and connected to the distribution network [21]. A DG
unit usually produces electric power well below 100 MW [47]. However, this definition
excludes non-CG units that are directly connected to the HV network, such as for example
large wind parks. A large wind park cannot be considered as DG; but, on the other hand,
it is non-CG, due to its non-dispatchability.

In essence, DG is a subset of non-CG. In this thesis, the terminology DG is used when
referring to non-CG units that are connected to the distribution networks.

1.5.4 Stochastic Generation (SG)

Based on their dispatchability, two types of non-CG units can be distinguished:

• Dispatchable non-CG : several non-CG technologies enable the power units to be
locally dispatched, i.e. the unit operator can regulate the power output of the unit
by controlling the supplied primary energy sources (or fuels). Small fossil-fuel power
plants, biomass power plants, geothermal power plants, fuel cells and CHP plants
belong to this category.

• Non-dispatchable (stochastic) non-CG : power plants that make use of non-dispatchable
prime energy sources for the electricity production. In this case, the operator cannot
dispatch the units because the primary energy source can not be controlled (sto-
chastic). The power output of the unit is defined by the availability of the prime
mover†. The following types of generation can be considered as Stochastic Genera-
tion (SG): small (run-of-the-river) hydro, wind turbines, photovoltaics, tidal power
plants, wave power plants and CHP plants.

A note should be made with regard to geothermal and CHP power plants. The
geothermal primary energy source is not as flexible as fossil fuels for dispatching the
generator units [85]. Also CHP units may be not that flexible on their electricity output
[21]. A CHP unit can be classified as either dispatchable or non-dispatchable depending
on its operation scheme. As a dispatchable unit, a CHP is dispatched according to
the electrical load while the heat production is non-dispatched. On the other hand, a
CHP can be operated to meet the heat load with the electrical power output as the ’by-
product’. In this case, the electrical power output is practically non-dispatchable [47]. The
choice of the CHP operation scheme depends on commercial/economic considerations [76].
As a summary, Table 1.3 lists the various types of non-CG and their classification as
dispatchable and stochastic generation.

We refer to SG as power generation driven by an uncontrolled prime mover. Although
it mainly refers to RES, several types of renewable generation are not SG, such as large
hydro, biomass and geothermal power plants. On the other hand, heat-load-driven CHP
plants belong to SG. The definition of SG stresses the non-controllability of the prime
mover and this is a fundamental difference when compared to CG; SG implies power
generation uncertainty.

†Reducing the power production is, to some extent, possible. However, normally most of the stochastic
generation is operated in such a way that the electricity production is maximized.
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Table 1.3: Classification of non-CG based on dispatchability.
Generation Technology Dispatchable Stochastic

Small-scale Fossil-Fuel-Fired Power Plants
√

Microturbines
√

Combined Heat and Power (CHP) Plants
√ √

Fuel cells
√

Geothermal power plants
√

Biomass power plants
√

Small hydro-power plants
√

Wind turbines
√

Photovoltaics
√

Tidal power plants
√

Wave power plants
√

1.6 Horizontally-Operated Power System

The large-scale implementation of non-CG units leads to a transition towards a new,
’horizontal’ power system structure. In this system structure, in addition to the large
CGs connected at the HV networks, medium- to small-scale units are also connected at
the MV and LV networks (distribution systems). These units are either locally dispatched
or stochastic. This uncontrolled power infeed from the lower voltage levels of the system
leads to a radical change of the former vertical structure of the system. The power for
example can flow not only ’vertically’, i.e. from the higher to the lower voltage levels, but
also ’horizontally’, i.e. from one MV or LV network to another or from a generator to a
load within the same MV or LV network. A power system that follows these operational
principles is called a horizontally-operated power system (HOPS).

In a HOPS, the distribution systems are active networks; besides distributed loads,
they also have generation installed. Fig. 1.2 shows the transition from a passive to an
active distribution network structure. The power flow between the transmission network
and the active distribution network is no longer uni-directional (down) but can be bi-
directional.

The transmission system acts as an energy bus that interconnects the different active
distribution systems and the remaining large CG units. When the penetration level of
non-CG increases to such an extent that a major part of the system load can be supplied
by those units, the number of CG units in the system will decline. This ’Vertical-to-
Horizontal’ transformation of the power system is presented in Fig. 1.3.

1.7 Objectives and limitations

The analysis of the system operation under the ’vertical-to-horizontal’ transformation of
the power system, caused by a large-scale implementation of non-CG/SG units in the
system necessitates the incorporation of generation uncertainty into the power system
modeling. This thesis focuses on the development of new methods for the power system
uncertainty analysis and the investigation of the operation of a horizontal power system.
In particular, the following objectives are set:
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 Figure 1.2: A conventional (passive) distribution network (upper graph - a) and an active
distribution network (lower graph - b) [76].
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Figure 1.3: ’Vertical-to-Horizontal’ transformation of a power system [76].

• The development of methods for the modeling of stochastic generation in the power
system.

• The investigation of the impact of large-scale penetration of stochastic generation
in the power system, in two parts:

1. Active distribution networks: analysis of the impact of the large-scale incorpo-
ration of DG in MV and LV networks, investigation of the transformation to
an active network and the impact on the voltage in the system.

2. Transmission system as energy bus: analysis of the power flows in a horizontally-
operated power system.

These issues will be addressed in this thesis. This research is unique, since it is the
first time that the solution of the problem of modeling of correlated stochastic resources
in the power system is addressed. The focus is on the steady-state system operation;
dynamic system studies are beyond the scope of this thesis. For the steady-state analysis,
a memory-less power system is considered, i.e. the state of the system on each moment
does not depend on the previous state of the system. This corresponds to a power system
without large-scale storage.
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Figure 1.4: The four parts of intelligent power systems research project.

1.8 Research Framework: ’Intelligent Power Systems’

The research presented in this thesis has been performed within the framework of the
’Intelligent Power Systems’ project [31]. The project is part of the IOP-EMVT program
(Innovation Oriented research Program - Electro-Magnetic Power Technology), which is
financially supported by SenterNovem, an agency of the Dutch Ministry of Economical
Affairs. The ’Intelligent Power Systems’ project is initiated by the Electrical Power Sys-
tems and Electrical Power Processing groups of the Delft University of Technology and
the Electrical Power Systems and Control Systems groups of the Eindhoven University
of Technology. In total 10 Ph.D. students, who work closely together, are involved in the
project.

The research focuses on the effects of the structural changes in power system genera-
tion and consumption that are taking place, like for instance the large-scale introduction
of distributed (renewable) generators [77]. Such a large-scale implementation of distrib-
uted generators leads to a gradual transition from the current ’vertically-operated power
system’, which is supported mainly by several big centralized generators, into a future
’horizontally-operated power system’, having also a large number of small to medium-
sized distributed (renewable) generators. The project consists of four parts (as illustrated
in Fig. 1.4).

The first part investigates the influence of uncontrolled decentralized generation on
the stability and dynamic behavior of the transmission network. As a consequence of the
transition in the generation, less centralized plants will be connected to the transmission
network as more generation takes place in the distribution networks, whereas the rest is
possibly generated further away in neighboring systems. Solutions that are investigated
include the control of centralized and decentralized generation, the application of power-
electronic interfaces and monitoring of the stability of the system.

The second part focuses on the distribution network, which becomes ’active’. Tech-
nologies and strategies have to be developed that can operate the distribution network in
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different modes and support the operation and robustness of the network. The project
investigates how the power-electronic interfaces of decentralized generators, or between
network parts, can be used to support the grid. Also, the stability of the distribution net-
work and the effect of the stochastic behavior of decentralized generators on the voltage
level are investigated.

In the third part autonomous networks are considered. When the amount of power
generated in a part of the distribution network is sufficient to supply the local loads, the
network can be operated autonomously, but as a matter of fact remains connected to the
rest of the grid for security reasons. The project investigates the control functions needed
to operate the autonomous networks optimal and secure.

The interaction between the grid and the connected appliances has a large influence on
the power quality. The last part of the project analyzes all aspects of the power quality.
The goal is to support the discussion between the polluter and the grid operator who has
to take measures to comply with the standards. The realization of a power quality test
lab is an integral part of the project.

1.9 Outline of the Thesis

The thesis is organized as follows:

• The 2nd chapter presents the modeling principles for the developed approach, i.e.
the steady-state uncertainty analysis. The different approaches presented so far in
literature for the solution of this problem are presented and compared. It is shown
that the most suitable methodology for the system modeling is the use of stochastic
simulations (Monte-Carlo simulation), due to the existence of complex interdepen-
dencies between the system inputs. The problem definition leads to a multivariate
uncertainty analysis problem. The modeling procedure is decomposed into two ba-
sic components, the modeling of the marginal distributions and of the stochastic
dependence structure. The impact of each of these components is discussed: the
marginal distributions define the power output of each unit, while the stochastic de-
pendence structure defines the sum of all units, acting as the stochastic generation
dispatch.

• In the 3rd chapter the modeling principles for bivariate dependence are presented.
The chapter is organized in terms of examples from the modeling of system loads
(normal distributions) and stochastic generation. Through these examples, the
fallacies concerning the extension of the ’traditional’ methods used for load modeling
to the modeling of stochastic generation are discussed. New concepts are presented,
namely the copula theory for the bivariate modeling of dependent r.v.

• The 4th chapter presents the techniques for multidimensional dependence modeling.
The Joint Normal Transform Methodology is presented as the main technique for
the modeling of correlated inputs when related measurements are available. The ap-
plication of the methodology is presented through a comprehensive example, namely
the penetration of wind power in the power system of The Netherlands.
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• In Chapter 5, the concept of stochastic plants is presented as a means of model
reduction. Stochastic plants are clusters of stochastic generators/loads that behave
in a similar manner. A simple methodology may be used for the modeling of such
clusters, namely the concept of perfect correlation or comonotonicity. This case
corresponds to the worst-case scenario for the aggregate power output of the cluster.
The use of the concept of stochastic plants leads to a risk-averse model reduction.

• In Chapter 6, two basic power system planning problems are investigated: the inte-
gration of stochastic generation in a distribution system with emphasis to the impact
to the voltage profile of the system and the integration of stochastic generation in
a bulk power system. In the distribution system planning, the voltage control by
stochastic generators is analyzed and different control strategies are investigated
for the case of wind power generation. In the bulk power system planning, the
horizontal operation of the power system is investigated for the case of wind power
generation, namely the bi-directional power flows in the system.

• The conclusions and recommendations for future work are in Chapter 7.



Chapter 2

Power System Steady-State
Uncertainty Analysis

As presented in chapter 1, the horizontal operation of the power system derives from the
incorporation of non-CG power generators in the system. An appropriate methodology
should be adopted for the unified modeling of the power generation uncertainty in the
system. The modeling principles for such an approach are presented in this chapter, under
the terminology ’power system steady-state uncertainty analysis’.

2.1 Power system steady-state: a ’snapshot’ approach

A power system is predominantly in steady-state operation or in a state that can be
regarded with sufficient accuracy as steady-state. In practice, there are always small
load/generation changes, switching actions and other transients occurring, so that in a
strict mathematical sense most of the variables are varying in time. However, these
variations are most of the time so small, that the use of an algebraic (non time-varying)
model of the power system is justified. The system steady-state operation may therefore
be regarded as the transition between consecutive steady-state ’snapshots’; each of these
snapshots corresponds to a different set of inputs (load, generation).

The system analysis corresponds to the investigation of all respective snapshots, which
is equivalent to the analysis of the system steady-state for the set of all possible inputs.
Two modeling steps can be distinguished:

1. Deterministic System Model (DSM): the DSM represents the way in which the sys-
tem variables are combined to produce the system outputs, referring to all physical
constraints and control actions that take place during the system operation. This
model is the steady-state system model.

2. Stochastic System Model (SSM): the SSM describes how the uncertain system inputs
behave and interact; this relates to how mechanisms outside the system affect the
system behavior (weather conditions, customer behavior, etc.).
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Figure 2.1: Schematic diagram of the system analysis.

In Fig. 2.1, a schematic diagram for the system analysis is presented. As may be
seen, the data for the uncertain system inputs (loads and non-CG) are fed into the SSM,
providing the set of stochastic system inputs, i.e. the different snapshots of operation.
These are passed on to the DSM, together with the system configuration data and the non-
stochastic system inputs (CG setpoints obtained by an optimal power flow algorithm), so
that the respective output is obtained.

2.2 Deterministic System Model (DSM)

2.2.1 Steady-State System Model

The steady-state or load flow analysis is the fundamental study for power systems analysis.
The exact formulation of this problem concerns the determination of real and reactive
power flows in each line (branch) of the power system [46]. The data used are the active
and reactive power consumed by each load, as well as the real power generation and
voltage magnitudes at the CG buses. The non-CG units are generally modeled as negative
loads, except when they are engaged to perform voltage control. The detailed load-flow
formulation is presented in Appendix A.

Using this model, the power system is represented as a system of non-linear static
equations. In particular, the system states X (nodal voltage angles and magnitudes) and
outputs Z (active and reactive power flow in each system branch), can be calculated by
a specific set of inputs Y (active and reactive power injections at each system node, i.e.
load L minus generation G : Y = L−G) [46]:{

Y = g(X)
Z = h(X) (2.1)

As mentioned, the steady-state system model (DSM) gives a ‘snapshot’ of the system
operation, that corresponds to either a specific instant in time or, equivalently, to a
potential outcome due to the stochasticity of the system inputs.
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2.2.2 Deterministic analysis and vertical power system

Traditionally, the power system steady-state analysis is treated as a deterministic problem.
In particular, instead of investigating all possible system states, the system design is based
on specific worst-case scenarios. Since in the vertical power system the power flows in one
direction (from the transmission towards the distribution level) and the uncertainty of
the system inputs is due to the load, the worst-case operational scenario corresponds to
the maximum system loading. The usual practice has been to investigate these situations
and omit the SSM.

However, in the case of a horizontally-operated power system, such an approach may
prove insufficient. The connection of stochastic power generation in different voltage levels
in the system results in bidirectional power flows in the system lines; this complicates the
system analysis. It is evident that the definition of the worst-case operational scenario
for the system becomes a non-intuitive process, due to the additional power generation
uncertainty. Furthermore, the stochasticity of both consumption and generation has an
enormous impact on the system, that can be analyzed only by incorporating the SSM in
the analysis.

2.3 Stochastic System Model (SSM)

With the SSM we try to quantify the uncertainty related to the system inputs. In general
this requires a prohibitive amount of calculations; for a network of N loads and SG-units,
each taking k different values, a total of kN deterministic load flow calculations should
be performed∗. Therefore, an appropriate uncertainty analysis methodology should be
employed.

2.3.1 Uncertainty analysis methodologies: general

The goal of an uncertainty analysis methodology is the quantitative representation of
uncertainty. In general, the following steps may be recognized in such methodologies:

1. Data collection: respective data are collected corresponding to each uncertain sys-
tem input.

2. Representation/quantification of uncertainty : an appropriate mathematical method-
ology is used for the representation and quantification of the inputs’ uncertainty.

3. Communication of uncertainty to DSM : the uncertainty in the system inputs is
propagated through the DSM and results are obtained.

2.3.2 Uncertainty in power system analysis

In power system analysis, two main sources of uncertainty may be recognized:

∗For example, for a small system with a total of N = 10 loads and SG-units whose output takes k = 5
possible values, the number of load flow calculations rises to 510 = 9765625!!!
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1. Inputs uncertainty : this is the uncertainty in the system load and generation. The
generation uncertainty corresponds to both the output uncertainty due to the prime-
mover stochasticity and the loss of a generator due to a random failure.

2. Configuration uncertainty : this uncertainty is related to the loss of one (or more) of
the major transmission system components due to a random failure. This contin-
gency leads to a new system topology and the problem degenerates to the modeling
of the inputs uncertainty [25].

Starting from the early seventies, different computational methodologies were intro-
duced for power system uncertainty analysis and a large number of research papers was
published [67].

2.4 Literature review

The main approaches found in the related literature, are the Probabilistic Uncertainty
Analysis [11] and the Fuzzy Arithmetic Analysis (Possibilistic Uncertainty Analysis)
[97, 59]. These methods are used respectively for the modeling of the two basic types
of uncertainty related to power system studies, the quantitative uncertainty† and the
qualitative uncertainty‡ [10].

2.4.1 Fuzzy arithmetic analysis

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate
rather than precisely deduced from classical predicate logic. Fuzzy arithmetic analysis is
used for modeling qualitative uncertainty. In particular, using the concept of degree of
membership of a value to a set, it is possible to establish the notion of fuzzy sets and fuzzy
arithmetic as a representation of vagueness or uncertainty of a non-random nature [97].

The notion of fuzzy methods originates from an extension of the notion of a set,
where membership in a set is permitted to be something other than a binary variable
(member/non-member). A set membership function (smf) p(x) is defined so that a value
0 < p(x) < 1 denotes the belief in the possibility (degree of belief ) that x belongs to the
set. The extreme values 1 and 0 are used to denote that x belongs to the set or not.
Many applications of this methodology can be found in the literature on power systems
planning based on a fuzzy solution of the load flow problem [58,94].

2.4.2 Possibilistic vs Probabilistic Analysis

The co-existence of these two methodologies has been the source of confusion in uncer-
tainty analysis. Degrees of belief are often confused with probabilities. However, they
are conceptually distinct; fuzzy truth represents membership in vaguely defined sets, not
likelihood of some event or condition.

†Quantitative uncertainty is the uncertainty that is quantifiable in numerical terms by a mathematical
function with deterministic parameters.

‡Qualitative uncertainty is uncertainty that is initially expressed in vague, non-numeric (usually ver-
bal) terms such as ’approximately equal to’ or ’a small percentage’.
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To illustrate the difference, consider this example [95]: Bob is in a house with two
adjacent rooms: the kitchen and the dining room. In many cases, Bob’s status within the
set of things ’in the kitchen’ is completely plain: he’s either ’in the kitchen’ or ’not in the
kitchen’. What about when Bob stands in the doorway? He may be considered ’partially
in the kitchen’. Quantifying this partial state yields a fuzzy set membership. With only
his big toe in the dining room, we might say Bob is 99% ’in the kitchen’ and 1% ’in the
dining room’, for instance. No event (like a coin toss) will resolve Bob to being completely
’in the kitchen’ or ’not in the kitchen’, as long as he’s standing in that doorway. Fuzzy
sets are based on vague definitions of sets, not randomness.

In power system analysis, we may interpret this difference by an example of a planning
problem that involves the analysis of the impact of the incorporation of two types of SG
in the system, namely wind and solar power. The uncertainty concerning the system
planning in this case is twofold:

1. Qualitative: this uncertainty refers to the vagueness concerning the type of SG in
each generation site (solar or wind). The system designer may have a degree of
belief concerning the possible type that is going to be installed and this type of
uncertainty may be modeled using the possibilistic approach.

2. Quantitative: this uncertainty refers to the output of a certain stochastic generator
on a specific generation site. This uncertainty may be quantified in numerical terms
by the statistical analysis of respective data, or by expert judgement.

Although there is a distinctive line between these two types of uncertainty, it is a
usual fallacy to interpret quantitative uncertainty using a possibilistic approach. A recent
example may be found in [80], where a fuzzy approach is presented for the modeling of
correlated stochastic inputs, referring to output of small hydro power plants, solar systems,
wind parks and loads. In this case, a qualitative representation is used to quantitatively
assess the power flows in the system, leading to fallacies concerning the interpretation of
the results.

The confusion concerning the borderline between the two methodologies derives from
the absence of sound operational definitions concerning possibility and fuzziness [22]. In
the problem definition, it should be made clear what type of uncertainty is concerned.
The uncertainty of the output of SG or load in a specific system is quantitative and
probabilistic analysis is the appropriate modeling approach.

2.5 Probabilistic steady-state uncertainty analysis

According to the probabilistic uncertainty analysis, each uncertain system input is repre-
sented as a random variable (r.v.) with a specific probability density function (pdf) [71].
In the related literature, two main probabilistic approaches can be found, namely the
Analytical methods and the Stochastic Simulations (Monte-Carlo Simulation - MCS).

2.5.1 Analytical methods

Computational efficiency is the basic advantage offered by an analytical solution of the
steady-state problem, compared to MCS. The lack of sufficient computational power
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provided the impetus from the early 1970s for numerous research papers dealing with an
analytical formulation of the probabilistic steady-state analysis [82]. However, in order to
reach an analytical formulation of the problem, a number of simplifications are necessary:

1. Linearization of the system model : the linearization of the steady-state system
model (equation 2.1) permits the representation of the system outputs as a linear
combination (weighted sum) of the system inputs. The linearization is performed
around an operating point that corresponds to the mean value of the system inputs:
Yµ = g(µ(X)) and Zµ = h(µ(X)). This approximation is accurate for cases where
the dispersion of the system inputs is limited around the mean value. When this
is not the case, the input data will be transformed less accurately by this linear
model, particularly in the tail regions as they are the furthest away from the point
of linearization.

2. Independence: the system inputs are assumed to be statistically independent. This
assumption, in combination with the previous one, permits the computation of the
system outputs by the use of a series of convolutions or by the application of the
Gram-Charlier expansion method and the computation of the cumulants of the
system outputs by the ones of the system inputs, based on their invariance to linear
transformations.

3. Normality : the system inputs are assumed to be normally distributed. This assump-
tion permits the use of linear correlation for the representation of the dependence
structure between the respective r.v. In this case, linearly dependent r.v. may
be incorporated in the analysis and, in combination with the first assumption, the
output distributions may be obtained analytically by convolution or using orthogo-
nalization techniques (Gram-Schmidt orthogonalization).

The choice of assumptions determines the analytical solution. Hereunder, the basic
literature on the problem is presented, together with the basic assumptions, while in the
following chapter, the impact of these assumptions (especially normality and indepen-
dence) is discussed in detail.

The initial probabilistic analytical formulation of the power system steady-state analy-
sis was introduced in the early seventies [16,5], under the terminology ’Probabilistic Load
Flow (PLF)’. The two main assumptions for this approach are linearization and indepen-
dence. Due to the linearization of the system model, the system states (nodal voltages)
and outputs (line power flows) can be expressed as a weighted sum of the system inputs
(nodal power injections). Since the r.v. representing the load at each system bus are
assumed to be independent, the pdf of the circuit flows can be computed with a series of
convolutions, using appropriate numerical techniques, basically Fast Fourier Transform
(FFT) algorithms [8]. The initial DC formulation of the problem was followed by a series
of papers dealing with the more detailed AC formulation [4, 9, 3, 7]. Some typical exten-
sions and improvements of the approach can be found in [25,28,26]. In [6], a multi-linear
approximation for the system model is presented, in order to increase the accuracy of the
algorithm.

The assumption of independence of the nodal loads is, however, quite unrealistic. In [9]
and [2], a linear dependence between normally distributed nodal power injections in PLF
is suggested, which was further investigated in [7] and [27]. According to this approach,
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the dependence between demands in the system is assumed to be close to perfect lin-
ear. Therefore, each normal load can be split in two components, one that corresponds
to mutual linear correlation between loads and one that represents a superimposed in-
dependent normal noise. All linearly correlated components are summed to one normal
r.v. and convolution techniques can be further employed for the derivation of the output
distributions.

Another formulation treating the same problem appeared in 1975 under the terminol-
ogy ’Stochastic Load Flow (SLF)’ [37]. In SLF analysis, the load and generation at an
instant of time are treated as r.v. The deterministic equations were modified by adding a
random normally distributed noise vector whose covariance defines the variations of the
power injections around their base values. Assuming applicability of the Central Limit
Theorem (CLT)§, the state and output distributions are considered to follow normal dis-
tributions; therefore, only their variance should be computed. This approach exhibits the
advantage of using the detailed system model and also modeling the correlation between
the loads at any two buses. However, Monte-Carlo simulations indicate that normality of
the system states and outputs is an unreliable hypothesis [27,7,6]. For this reason, Sauer
and Heydt [81] have proposed the use of higher moments (third and fourth) for a more
accurate representation of the pdfs.

Another method for treating the correlation among bus loads and the generation
dispatch procedure is proposed in [54]. The model assumes normal distribution of bus
loads and a linearized economic dispatch model. The circuit flows and bus voltages are
expressed as a linear combination of the bus loads only, and are assumed to be normally
distributed. In [55] the approach was extended to address the issue of the nonlinearities of
the power system model, the economic dispatch and availability of the generating units.
In [56] a quadratic approximation of the steady-state system model was introduced. This
approach was further developed in [90] and [91], where the concept of the nonconforming
stochastic electric load is developed. According to the authors, a typical probabilistic load
model is a conforming electric load model, i.e. a specific bus load is a fixed percentage
of the total system load. Statistically, this means that the bus loads are correlated one
hundred percent¶. For a more realistic representation of the electric load, it is necessary
to represent the bus electric load as a non-conforming load. A non-conforming load
model assumes variable correlation between various bus loads and is obtained as a linear
combination of conforming loads. The basic assumption for the applicability of this
approach is the normality of the power injections in the system nodes.

Another approach for the probabilistic solution of the steady-state problem has been
presented based on the use of the concept of cumulants and Gram-Charlier expansion
theory [98]. According to this approach, the output distribution may be approximated as
a weighted sum of standard normal distributions; the weighting coefficients in this sum
may be expressed as a function of the cumulants of the distribution. The method pro-
poses further the linearization of the system model and independence between the system
inputs. In this case, the output distributions are defined as a linear combination of the
independent system inputs and based on the basic properties of cumulants, the cumulants
of the output distribution may be calculated as a linear combination of the respective in-

§According to the CLT, under general conditions the distribution of the sum of n r.v. approaches a
normal distribution as n increases [71].

¶This ’one hundred percent ’ correlation actually corresponds to the case of linear dependence.
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put ones. These cumulants are further used to derive the weighting coefficients for the
Gram-Charlier expansion of the output distribution.

An alternative approach for the treatment of linearly correlated system inputs has been
presented in [18] and further developed in [14]. Here, the Gram-Schmidt orthogonalization
is used in order to transform the linearly correlated system inputs into a weighted sum
of independent r.v. By linearizing the system model, these transformations of the system
inputs may be used to express the system outputs as a weighted sum of independent
(orthogonal) r.v. Further, the above methods may be used for the derivation of the
system output distributions. The assumption of linearly correlated inputs is equivalent
to the case of normality. This issue will be further discussed in the following chapter.

2.5.2 Stochastic Simulations (MCS)

The Monte-Carlo Simulation (MCS) method is the general designation for stochastic
simulations using random numbers [11, 79]. MCS is a simulation procedure applied to
problems involving r.v. The simulation process consists of producing pseudo-random
samples from the SSM’s underlying probability distributions and propagating these sam-
ples through the DSM, forming sets of samples for output quantities of interest, which
can then be subjected to descriptive statistical analysis. This method offers significant
advantages compared to the analytical methods, since the basic computational part is
deterministic and there is no need to simplify the mathematical models to ensure ap-
plicability of the method. The main problem in the analysis is how to encode information
about the joint probability distribution of the system inputs for the sampling of the system
inputs. We deal with this problem extensively in chapter 4.

The main disadvantage of the method is the fact that in order to obtain proper results,
the DSM has to be calculated a large number of times, leading to increased computation
time. It should however be noted that the obtained information depends only on the
sample size and not on the DSM size. This means that the same information is obtained
from a 1000-sample MCS for the power flows either in a 10-bus system or in a 1000-bus
system. On the other hand, with the present computational power, the DSM calculation
time is limited to the order of seconds for large systems, making MCS an appropriate
technique for system analysis.

2.5.3 Snapshot Approach and MCS: Memory-less system

MCS offers a natural representation of the snapshot approach: the sampling of the system
inputs provides the different snapshots of system operation, that corresponds to different
points in time.

A note should be made concerning the applicability of the method in the case that
the system contains energy storage devices. Implementation of energy storage devices in
the system leads to a transition from a memory-less system to one with memory: the
output power of the energy storage devices is determined by the amount of stored energy
(integral over a previous operational period) and the operational control. Therefore, in
order to define the state of the system now, we need to know the system operation in
the past. The issues concerning the modeling of such systems are discussed in [50]. The
impact of large-scale storage in the system is out of the scope of this thesis. However,
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the modeling principles presented here form the basis for the treatment of this problem.
For a thorough analysis of the impact of stochastic storage in energy systems, one should
refer to [49].

2.5.4 Literature review: conclusions

As a conclusion, we may infer that the applicability of the analytical methods is restricted
by the linear approximation of the system model, the assumption of independence be-
tween the system inputs and the consideration of linear correlation for cases of normally
correlated system inputs. These have been reasonable approximations for the modeling
of the uncertainty of the system loads.

However, with SG in the system, the validity of these assumptions is endangered. The
problem formulation leads to a multivariate uncertainty analysis problem that involves
a large number of different types of non-standard distributions which present complex
interdependencies. The indicated method to treat such problems is MCS.

The main differences between load uncertainty and SG uncertainty are illustrated in
the following section.

2.6 Load Uncertainty vs SG Uncertainty

2.6.1 Load Uncertainty: time-dependent stochasticity

In Fig. 2.2, the daily load profile of a distribution network based on 15-minute load
measurements for the period of one month is presented. As we may see, all measurements
fall in a small region around the time-conditional mean (white line in the figure). This is
due to the dependence of the human activities on a cyclic-deterministic phenomenon (time
of day, day of week, season); the power consumption is not so stochastic, but presents a
high time-dependence.

In Fig. 2.3, the daily system load for the year 2003 in The Netherlands is presented (15-
minute averages for the period between January 1 and December 31, 2003)‖. The cyclic
dependence on the time of day is apparent in the graph. In order to isolate the effect
of the dependence on the season and the day of the week, in Fig. 2.4 the daily system
load is presented for one month in this year. Three different daily load patterns may
be distinguished: high loading level corresponding to workingdays (weekdays), medium
corresponding to Saturday and low one corresponding to Sunday (Fig. 2.4a). In the
second graph (Fig. 2.4b), the workingdays are isolated. As we may see, the uncertainty
is limited around the time-conditional mean.

In Fig. 2.5, the same procedure is adopted for the different seasons of the year and
the same results concerning the load stochasticity are obtained.

Such interdependencies appear in the stochastic behavior of the system loads, but also
with several types of SG, e.g. solar energy. These interdependencies can be removed by
performing the calculation separately for groups of hours with similar statistical charac-
teristics (Time-Frames Analysis [18]). This procedure corresponds to a conditioning of

‖These measurements actually correspond to the aggregate of the power produced by the system CG
units, which offer an adequate representation of the power consumed at the system loads.
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Figure 2.2: Daily load for a distribution system for one month.

the calculation in time. The load in each time-frame (TF) can be modeled by superim-
posing a random noise variable to the conditional mean. This has been the basic load
modeling platform in power systems analysis. An aggregation procedure may be further
applied in order to obtain the distribution for the whole period of concern∗∗. The TFs
chosen for the system analysis depend on the statistical properties of the random inputs.
The usual practice is to use a normal distribution for modeling the stochasticity in each
TF.

Load stochasticity is the main source of uncertainty in vertical power systems. In this
case, the assumptions of independence and normality offer a good modeling platform,
corresponding to the conditional load distributions. This is the main reason for the so
extensive use of these assumptions in the analytical formulations. In the case of SG how-
ever, this approach may prove insufficient, since non-time-dependent uncertainty appears
in the system modeling. In the following section we present this type of uncertainty by a
basic example: the wind power uncertainty.

2.6.2 SG Uncertainty

In Fig. 2.6, the aggregate wind power output for the Irish power system is presented,
for a period of one month (Fig. 2.6a) and for some typical days during that month (Fig.
2.6b) [12].

∗∗In this case, the obtained r.v. are no longer normally distributed. In section 2.9.2, we elaborate on
the modeling issues of this aggregation procedure.
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Figure 2.3: Daily system load in 2003 in The Netherlands.
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Figure 2.4: Daily system load in September 2003 in The Netherlands.
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0 5 10 15 20 25
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Time of day

S
y
s
te

m
 L

o
a
d
 (

M
W

)
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Figure 2.5: Seasonal daily system load in 2003 in The Netherlands.
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We can see that the power output can be completely different from day to day; between
0 and 5% for a typical non-windy day (e.g. day 5), between 70% and 90% for a typical
windy day (e.g. day 26), being low for the first half of the day and high for the second
one (e.g. day 15), or the opposite (e.g. day 14). The variability of the output is so high,
that the information obtained from the mean value during the day is insufficient to depict
the stochasticity; the power output may vary between zero and maximum for every time
of the day. In this case, the time-dependent modeling based on normal distributions fails
to represent the system stochasticity.

In the literature, a time-conditional modeling of SG is presented in the case of the
modeling of the operational uncertainty of a system with SG units. We will elaborate
further on this issue in the following section.

2.7 Planning uncertainty vs operational uncertainty

The basic difference between planning and operational uncertainty lies in the degree
of knowledge of the system analyst concerning the uncertainty of the system inputs. In
particular, the stochastic prime mover uncertainty for a certain point in time in the future
may present a small deviation around the forecasted value; this type of uncertainty may be
modeled in a time-conditional manner, as presented in the previous section, by introducing
a noise term around the forecasted value. In this case, the uncertainty corresponds to
the forecast error and the concepts of normality and independence may provide a good
approximation of reality [43,20].

This problem is conceptually different from the planning problem. The planning
uncertainty corresponds to the analysis of all possible combinations of the system inputs.
In this case, a time-conditional modeling may lead to severe fallacies, especially due to the
assumption of independence. We will elaborate further on this issue in the next chapter.

2.8 Problem Formulation

2.8.1 Types of r.v.

The types of input r.v. involved in the steady-state uncertainty analysis are the load r.v.
{L}, the generation capacity availability r.v. {X} and the energy availability r.v. {G}.
In general, the active power is considered as a r.v.; the reactive power can be omitted
from the uncertainty analysis, since in most cases the load power factor can be considered
to be constant, while the generated reactive power is either regulated for voltage control,
or supplied under a constant power factor. In these cases, the reactive power is obtained
from the active power based on a deterministic functional relationship.

Omitting the reactive power in the uncertainty analysis is a common assumption that
is made in many cases, including actual utility practices and studies, and leads to a
reduction of the problem dimension. In cases when this is not valid, reactive r.v. should
be introduced. The approach presented remains valid.
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(a) Windpower output in the Irish power system for one month
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Figure 2.6: Windpower uncertainty.
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Load r.v.

The load r.v.’s {L} model the active power consumed by each load. The time-dependence
of the load stochasticity is removed by performing the calculation for groups of hours
with similar statistical characteristics (time-conditioning of the stochastic model - Time-
Frames Analysis [18]). Although the usual practice is to use a normal distribution for
the modeling of a time-conditioned load [28, 42], this strongly depends on the respective
choice of the time-frame. When a larger time-frame is chosen, the accuracy of such an
approximation is limited.

Energy Availability r.v.

The energy availability r.v.’s {G} model the power output of the SG units due to the
stochastic prime mover stochasticity. The power distribution is obtained by a transforma-
tion of the prime mover distribution. In the case of CG (or dispatchable non-CG), these
distributions {C} correspond to the output of the unit and are fixed-point distributions;
their value is defined by energy trading mechanisms, economical operation of the system
based on optimal power flow algorithms, fixed contracts, etc.

Generation Capacity Availability r.v.

The generation capacity availability r.v.’s {X} model the random unavailability of gener-
ating units (CG, SG) due to forced outages caused by unpredictable equipment failures
or maintenance. They are binary state r.v. or, when more detail is needed, multi-state
r.v. using multiple block representation [13]. These r.v. are multiplied with the energy
availability r.v. for each unit.

Thus, in general the following groups of r.v. are involved in the system uncertainty
analysis:
Energy Availability r.v.:

• cT CG units C1, C2, . . . , CcT
,

• gT SG units G1, G2, . . . , GgT
,

• lT loads L1, L2, . . . , LlT ,

Generation Capacity Availability r.v.:

• CG units: XC1 , XC2 , . . . , XCcT
,

• SG units XG1 , XG2 , . . . , XGgT
.

2.8.2 Problem Decomposition

For the stochastic modeling of the system, the joint distribution FGLX over all the in-
put r.v. should be defined††. The r.v. XCc, XGg, representing the generation capacity

††By FS , the cumulative distribution function (cdf) of a r.v. S is denoted.
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availability, are considered to be mutually independent, as well as independent from the
stochastic inputs Gg and Ll [13]. Thus, the problem can be decomposed as follows:

FGLX =

Inputs Uncertainty︷︸︸︷
FGL ·

Generation Reliability︷ ︸︸ ︷
cT∏
c=1

FXCc
·

gT∏
g=1

FXGg
(2.2)

into two distinct parts, the definition of the joint distribution FGL over the non-dispatchable
system entities i.e. loads and SG (system inputs uncertainty), and the system generation
reliability.

The system generation reliability can be performed based on the well-known concepts
developed for the study of the reliability of CG units in vertical power systems [13]. In
this case, the failure and maintenance rates of the SG units should be incorporated in
the analysis (second term in equation 2.2). Since this modeling part has been extensively
investigated in the literature, we will further concentrate on the definition of the other
term in equation 2.2, the system inputs uncertainty.

This is the core of the power system uncertainty analysis and is the most cumber-
some part of the stochastic modeling of the system. Generally, in such a problem the
one-dimensional marginal distributions FGg

and FLl
are the most easy to assess through

data analysis or expert judgement. It is a common fallacy to consider this information
to be enough for the determination of FGL. This information is sufficient if one assumes
independence between Gg and Ll. Obtaining the joint distribution FGL given the mar-
ginals FGg

and FLl
is however a non-trivial problem, since there exist infinite number

of joint distributions FGL with the same marginals FGg
and FLl

, corresponding to an
infinite number of stochastic dependence structures between the r.v. Gg, Ll.

The arbitrary assumption of independence produces a systematic tendency to disre-
gard the effect of the dependence structure. This generally is an underestimation of the
system variability and can lead to serious pitfalls. The modeling of stochastic dependence
has been a cornerstone in the research on multivariate uncertainty analysis in recent years.
In [48,63,53,62,51] one may find some basic references on the treatment of this problem.
The related research lead to a main approach, namely the splitting of the modeling effort
in two separate tasks:

• Marginals: model the one-dimensional marginal distributions.

• Stochastic dependence: model the stochastic dependence structure between the in-
puts.

This approach is adopted in this thesis for the determination of the inputs uncertainty
FGL.

2.9 Marginal distributions

2.9.1 Sampling of a r.v. in MCS

By definition, for a r.v. X with an invertible cdf FX(x) = P (X ≤ x), the r.v. FX(X)
follows a uniform distribution on the interval [0, 1]. This relationship forms the basis for
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Figure 2.7: Sampling of a r.v. in MCS.

the sampling of any r.v. in MCS studies. The proof of this statement is as follows:

For r ∈ [0, 1] : P (FX(X) ≤ r) = P (X ≤ F−1
X (r)) = FX [F−1

X (r)] = r (2.3)

Thus, if U is the uniform distribution, FX(X) = U ⇔ X = F−1
X (U). Therefore, F−1

X (U)
follows the distribution of X.

For the sampling of a single r.v. X with invertible cdf FX , first a random realization
u from a uniform r.v. U in [0, 1] is generated and then the transformation x = F−1

X (u) is
applied. In this case, the samples x follow the distribution FX [51]. The above-mentioned
procedure is presented in Fig. 2.7.

This method may also be applied for the sampling from measured data, using the
empirical cdf F e

X . In this case, the sampling between adjacent values may be performed
by interpolation (the case of linear interpolation is presented in Fig. 2.8) or by choosing
one of the border values. This feature offers significant advantages for the system modeling
based on real data; instead of trying to fit some parametrical distribution, one may use
the exact data distribution for the simulation.

2.9.2 Load

As mentioned, a normal distribution may be used for the modeling of time-conditioned
r.v. in each TF. When the time period that is studied coincides with multiple TFs, an
aggregation procedure can be applied to find the resulting distribution as a mixture of
these normals. This mixture can be sampled by the use of an independent uniform r.v.
UTF as TF-indicator. In particular, based on the relative duration of each TF, each
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Figure 2.8: Sampling of a r.v. in MCS based on measured data.

Table 2.1: Time-frames settings
Time Ratio Mean Load St. Deviation

(% max Load) (% Mean Load)

2TF 3TF 2TF 3TF 2TF 3TF

TF1 0.8 0.45 0.5 0.5 0.25 0.15

TF2 0.2 0.35 1 0.75 0.02 0.1

TF3 − 0.2 − 1 − 0.02

sample drawn from UTF is matched to a specific TF and a sample is drawn from the
normal distribution belonging to the respective TF. In table 2.1 example TF settings for
a 2-TF and a 3-TF segmentation are presented. According to the time ratio of this table,
in the case of 2-TF all samples lower than 0.8 correspond to TF1 and the rest to TF2.

In Fig. 2.9, the density and cumulative distributions for a 10000-sample MCS of a
2-TF and a 3-TF approximation are presented. We can see that by increasing the number
of TFs, the cdf provides a better approximation of the load duration curve.

When the time-dependence is of no interest for the study and data are available, the
method presented in the previous paragraph may be used for sampling based on the
empirical distribution. We demonstrate the applicability of the methodology by sampling
based on the load data presented in Fig. 2.3, representing the system load for The
Netherlands for the year 2003 (35040 measurements). In Fig. 2.10 the pdf based on
the measurements is presented, together with the respective simulated one. We can see
that by using this method a high accordance between the distributions is achieved. More
examples on the application of this method may be found in section 4.2.
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Figure 2.9: Normalized load distribution as mixture of TF-distributions (10000-sample
MCS).
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Figure 2.10: pdf for the system load in 2003 in The Netherlands.
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Figure 2.11: WTG wind speed/power characteristic and distributions.

2.9.3 Stochastic Generation

A stochastic generator is an energy conversion system that converts an uncontrollable
primary energy source (wind-, solar-, hydro-, wave- energy, waste heat, etc.) into electrical
power and feeds it into the power system. The power output of a stochastic generator is
defined by two factors:

1. Stochastic Prime Mover : the type of primary energy source used for electrical power
generation.

2. Energy Conversion System: according to the converter technology, the power out-
put of the generator for each input value of the prime mover can be defined by a
deterministic (functional) relationship.

Thus, the power output distribution is obtained as a transformation of the prime
mover distribution. Due to this transformation, non-standard SG power distributions
may be obtained. We will illustrate this issue by presenting the case of a wind turbine
generator (WTG). In this case, the prime mover, i.e. the wind activity in a specific
location, follows a Weibull distribution [92]. The energy conversion system is modeled
by the wind speed/power output characteristic; a pitch-controlled WTG is considered
here, with cut-in, nominal and cut-out wind speeds of 3.5, 14 and 25 m/s respectively.
In Fig. 2.11, the results from a 10000-sample MCS for the WTG wind speed and the
corresponding power output distribution are presented. The obtained power distribution
presents a concentration of probability masses at the zero and nominal output power.
This is due to the effect of the non-monotonic WTG characteristic [69]: for wind speeds
lower than the cut-in and higher than the cut-out value, the power output is zero, while
for wind speeds in between nominal and cut-out, nominal power is generated.



40 Chapter 2. Power System Steady-State Uncertainty Analysis

2.10 Stochastic Dependence Structure

The modeling of the stochastic dependence structure between the system inputs is the
second task for the stochastic modeling of the system. Whereas the marginal distributions
refer to the power output spectrum of single units, the dependence structure refers to the
joint behavior of these inputs and has important implications for the properties of their
sum. The following example will help to clarify this statement.

Consider the case of two loads L1 and L2. Their consumption is a fixed integer
between 1 and 5 MW. Three cases of operation are considered; their consumptions are co-
fluctuating, thus they take the same values at the same time (case 1), their consumptions
are fluctuating independently (case 2), and their consumptions fluctuate in the opposite
way (case 3). In all cases, the total load in the system L1 + L2 is calculated:

Case1 : L1(MW ) 1 2 3 4 5
L2(MW ) 1 2 3 4 5

L1 + L2(MW ) 2 4 6 8 10
Case2 : L1(MW ) 1 2 3 4 5

L2(MW ) 2 5 4 3 1
L1 + L2(MW ) 3 7 7 7 6

Case3 : L1(MW ) 1 2 3 4 5
L2(MW ) 5 4 3 2 1

L1 + L2(MW ) 6 6 6 6 6

Although nothing changes in the single behavior of each load, their aggregated con-
sumption is totally different. What we actually do is adding the outputs with a different
order, which has a direct impact to the variability of the sum; in the first case a large fluc-
tuation from 2 to 10MW is observed, in the second case a smaller one, while in the third
case the aggregated consumption is fixed at 6MW. The variability of the sum determines
the stochastic stress in the system and is different between the cases; case 1 is the worst
operational scenario (highest variability), and case 3 is the best (minimum variability),
with the maximum system loading reaching only 60% of the one in case 1. Although the
distribution of the output is different, the mean value for all cases is the same (6MW),
since the single behavior of the inputs is the same.

In the case of SG, the stochastic dependence refers to the coupling between the re-
spective prime movers. In particular, the power output of stochastic generators situated
in a small geographic area show similar fluctuations due to their mutual dependence on
the same prime mover, which is not the case for stochastic generators situated in remote
areas.

Modeling the dependence structure is the more cumbersome problem in the power sys-
tem uncertainty analysis. The methods developed until now are limited to the treatment
of correlated normal loads. However, new methods have to be employed for the modeling
of the complex interdependencies introduced by the SG in the power system.
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2.11 Conclusions

The incorporation of stochastic generation in the power system necessitates the use of
a unified approach for the modeling of the inputs uncertainty. Traditionally, stochastic
models based on independence and normality are used for modeling the time-dependent
stochasticity of the loads in the system. Stochastic generation however introduces non-
time-dependent stochasticity, which cannot be modeled based on this approach. The
modeling of the stochastic dependence between the correlated resources is the corner-
stone in the system analysis, since it has a direct impact to the determination of the
sum of the stochastic inputs. The approach presented here proposes the splitting of the
modeling effort in the modeling of the one-dimensional marginal distributions and the
multidimensional stochastic dependence structure. We devote the next chapter in the
presentation of the theory related to the modeling of stochastic dependence and investi-
gate the fallacies deriving from the use of the assumptions of normality and independence
for the modeling of stochastic generation.
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Chapter 3

Models of Stochastic
Dependence

As discussed in the previous chapter, modeling the stochastic dependence between the
system inputs is a task of utmost importance, since it defines the aggregate power output
from multiple stochastic inputs. The modeling of stochastic dependence has constantly
been underestimated in the related literature. In this chapter we show the modeling
principles for the stochastic dependence, based on the confrontation of two examples: the
case of two normal loads and the case of two SG units. In particular, we investigate the
role of dependence to the definition of the properties of the sum of r.v. (loads or SG
units). We show that, the assumptions used sofar i.e. normality and independence, when
applied to the modeling of SG units, can lead to severe fallacies.

3.1 Mean value of the sum of r.v.

The sum of n r.v. X1, X2, . . . , Xn is a r.v. with a mean that equals the sum of the means
of the respective r.v. [71]:

µ

(
n∑

i=1

Xi

)
=

n∑
i=1

[µ(Xi)] (3.1)

Thus, the mean value of the distribution of the sum of r.v. always equals the sum of the
mean values of the respective r.v. This however doesnot hold for other moments of the
distributions. In particular, different dependence structures yield different distributions
around the same central point. In the course of this chapter, we present the theory
concerning the clarification of these issues.

3.2 Independence

The concept of independence is fundamental in probability theory and has been widely
used in the stochastic modeling of power systems. We can say that two events A and B
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Figure 3.1: Independent normal load distributions.

are independent when the occurrence of one of them has no influence on the probability
of the other. More precisely,

Definition 3.2.1 (Independence) Random variables X1, . . . , Xn are independent if
for any intervals I1, . . . , In,

P{X1 ∈ I1, and . . . Xn ∈ In} =
n∏

i=1

P{Xi ∈ Ii} (3.2)

The sum of n independent r.v. X1, X2, . . . , Xn is a r.v. of which the mean is given by
the equation 3.1 and the variance/standard deviation is [71]:

V ar

(
n∑

i=1

Xi

)
=

n∑
i=1

[V ar (Xi)] ⇒ σ

(
n∑

i=1

Xi

)
=

√√√√( n∑
i=1

[σ2 (Xi)]

)
(3.3)

3.2.1 Independent normal loads

The sum of n independent normal loads L1, L2, . . . , Ln can be calculated analytically; it is
a normal distribution with a mean and standard deviation given by the equations 3.1 and
3.3. In Fig. 3.1, the marginal distributions and the scatter diagram for two independent
loads with mean values µ1 = 10MW and µ2 = 15MW and standard deviations σ1 =
1MW and σ2 = 2MW respectively, are presented, together with the distribution of the
sum.

3.2.2 Independent stochastic generators: Central Limit Theorem

In the case of stochastic generators, independence refers to the decoupling of the prime
movers. For WTGs, this refers to a mutual independence between the wind speed dis-
tributions at the different sites. This type of relationship can refer to remote sites in
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Figure 3.2: Independent Weibull wind speed distributions.

the system, but not to WTGs situated in a small geographic area. In general, the wind
resources present significant correlation∗. In the following, we will consider two pitch-
controlled WTGs, according to the modeling principles presented in section 2.9.3. The
respective Weibull parameters η and β for the wind speed distributions at the two sites
are β1 = 2.6, β2 = 1.9 and η1 = 10, η2 = 7†.

In Fig. 3.2, the marginal distributions and scatter diagrams of 10000 MCS samples
for independent wind in two sites are presented. Obviously, in order to comply with the
Weibull marginals, a different scatter diagram than in the case of normal loads (Fig. 3.1b)
results.

Due to the effect of the wind speed-power output characteristic of the WTG, the
power output follows a non-standard distribution as the one presented in in section 2.9.3,
with a concentration of probability masses at the zero and maximum values. Although
the output of each WTG follows this distribution, their sum is different. In Fig. 3.3,
the power output in the case of a single WTG is presented, next to the aggregate power
output of 2, 5 and 10 independent WTGs. As can be seen, this summation leads to
a ’smoothing ’ of the aggregate power output distribution; the spikes diminish and the
probability distribution of the sum approaches a normal distribution (Fig. 3.3d) when
the number of r.v. in the sum increases. This is due to the applicability of the Central
Limit Theorem (CLT)‡.

Thus, in the case of independence, irrespective from their type, a number of r.v. will
always sum up to a normal distribution. The stochastic behavior of the sum is therefore
determined by the assumption of independence, rather than the type of the marginal
distributions. This is a general result: irrespectively from type, the aggregate of a large

∗In section 4.2, the statistical analysis of the wind regime in The Netherlands is presented; the lowest
measured correlations between wind speed distributions throughout the country is 0.47.

†A Weibull pdf with scale parameter η and shape parameter β is: f(v|η, β) = β
η

�
v
η

�β−1
exp(−( v

η
)β).

‡According to the CLT, under general conditions the distribution of the sum of n independent r.v.
approaches a normal distribution as n increases [71].
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Figure 3.3: Independent wind turbine power output distributions.



3.3. Measure of Dependence: Product Moment Correlation 47

number of independent inputs approximates a normal distribution.

Probabilistic load flow (PLF) analysis

The sum of n independent r.v. can be calculated analytically by using the convolution
integral. As discussed in section 2.5.1, convolution forms the computational core of the
probabilistic load flow (PLF) analysis. The cornerstone of the method is the linearization
of the load flow equations around an operating point§. As a result of this linearization,
the system states (nodal voltages) and outputs (line power flows) can be expressed as
a weighted sum of the independent system inputs (nodal power injections). The output
distributions can be obtained as the convolution of the system inputs, using appropri-
ate numerical techniques, basically Fast Fourier Transform (FFT) algorithms. The ap-
plicability of such numerical methods is restricted to system inputs that are mutually
independent.

Independence however is just one case. When the system inputs are not independent,
then they are dependent. In this case, we need to evaluate the degree of dependence and
employ new techniques for the system analysis.

3.3 Measure of Dependence: Product Moment Corre-
lation

The first question to be answered is how do we measure the dependence between r.v.
The most widely used measure is the product moment correlation, also called linear or
Pearson correlation. For the bivariate case it is defined as:

Definition 3.3.1 (Product Moment Correlation) The product moment correla-
tion of r.v. X, Y with finite expectations E(X), E(Y ) and finite variances σ2(X), σ2(Y ),
is

ρ(X, Y ) =
E(XY )− E(X)E(Y )

σ(X)σ(Y )
=

E[(X − µ(X))(Y − µ(Y ))]
σ(X)σ(Y )

=
Cov(X, Y )
σ(X)σ(Y )

(3.4)

If we are given N pairs of samples (xi, yi) from the random vector (X, Y ), we calculate
the sample, or population product moment correlation ρ̂xy as follows:

ρ̂xy =
ΣN

i=1(xi −X)(yi − Y )√
ΣN

i=1(xi −X)2
√

ΣN
i=1(yi − Y )2

(3.5)

where X = 1
N ΣN

i=1xi and Y = 1
N ΣN

i=1yi.
The product moment correlation is specified only for r.v. with finite expectations and

variances. For every r.v. X and Y that fulfill these preconditions the basic properties of
product moment correlation are the following:

1. Range: −1 ≤ ρ(X, Y ) ≤ 1

§The solution of the deterministic load flow problem for the mean values of the system inputs is
generally chosen as the point of linearization.
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2. Independence: if X,Y are independent, then ρ(X, Y ) = 0

3. Invariance under linear transformations:
for a, c ∈ R\{0}, b, d ∈ R, ρ(a ·X + b, c · Y + d) = sgn(a · c)ρ(X, Y )

4. Linear dependence: if ρ(X, Y ) = 1 then for a > 0, b ∈ R, X = aY + b

Product moment correlation is a measure of stochastic dependence among many, albeit
the most popular one. It measures the linear dependence between the r.v., in other words
it is the geometric mean of the best linear predictor of X (Y ) given Y (X). However,
it has often been a source of confusion by being used as representation of dependence.
Some of the confusion may arise from the literary use of the word to cover any notion
of dependence. To a mathematician (product moment) correlation is only one particular
measure of stochastic dependence. It is the canonical measure in the world of multivari-
ate normal distributions, and more generally for spherical and elliptical distributions [38].
Thus, for normal distributions, it provides the complete representation of stochastic de-
pendence. However, when we leave the world of normals, it becomes just a measure of
linear dependence, that may be misleading as representation of dependence, especially in
cases of complex, non-linear dependencies. In the following we will discuss these issues in
more detail.

The sum of n dependent r.v. X1, X2, . . . , Xn is a r.v. with a mean that is given by the
same equation as for the case of independence (3.1). The variance and the shape of the
distribution, however, depends on the dependence structure between them. This impact
of dependence is presented in a comprehensive example in the following section.

3.4 Correlated normal loads: Joint Normal Distribu-
tion

3.4.1 Bivariate case

In Fig. 3.4, the scatter diagrams for the two normal loads of the previous section are
presented, corresponding to different product moment correlations ranging from −1 to 1.
As can be seen, while the correlation increases from zero to one, the r.v. become more
linearly dependent. Negative correlation means that the best linear predictor of L1 (L2)
given L2 (L1) has a negative gradient while in the case of positive correlation the best
linear predictor has a positive gradient.

Although the marginal distributions remain the same, the distribution of the sum
of the r.v. is radically affected by the dependence between them. In Fig. 3.5, the
distributions for the sum of the two r.v. for the correlations in Fig. 3.4 are presented.
Different correlations result to normal distributions with different variances around the
same central point. Minimum variance is obtained for maximum negative correlation
(ρ = −1) and maximum variance in case of maximum positive correlation (ρ = 1). Thus,
depending on the correlation, the sum may vary between 23 and 25MW (ρ = −1) or
between 15 and 35MW (ρ = 1). This result may be understood by the scatter diagrams
of Fig. 3.4, especially the extreme ones for ρ = −1 (Fig. 3.4a) and ρ = 1 (Fig. 3.4f).
Negative correlation means that high values of the one r.v. are matched with low values
of the other, while positive correlation means that high values of the one r.v. are always
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(a) ρ = −1 (b) ρ = −0.5 (c) ρ = −0.2

(d) ρ = 0.7 (e) ρ = 0.9 (f) ρ = 1

Figure 3.4: Scatter diagrams for correlated normal loads.

matched with high values of the other. This matching has a direct impact on the behavior
of the sum: negative correlation prevents extreme values from happening at the same time,
while positive correlation urges coincidence of extreme events.

As can be seen from Fig. 3.4a and 3.4f, ρ = ±1 results in a perfect linear relationship
between the loads. This feature has been used for the extension of the PLF analysis
in the case of correlated inputs. In [9], Allan et al. proposed a new formulation of
the method in order to include correlated demands, that was extensively used [2, 27].
According to this approach, the dependence between demands in the system is assumed
to be close to perfect linear. Therefore, each normal load can be split in two components,
one that corresponds to mutual linear correlation between loads and one that represents a
superimposed independent normal noise. All linearly correlated components are summed
to one normal r.v. and convolution techniques can be further employed for the derivation
of the output distributions.

The applicability of the technique is however restricted by the assumption of perfect
linear dependence. When this assumption is not valid, simulation techniques that make
use of the theory of the multivariate (joint) normal distribution should be adopted. The
respective theory is presented in the following section.

3.4.2 Multivariate case

This case corresponds to the modeling of n correlated normal loads (more than two). The
multivariate normal distribution can be used as the joint distribution of these r.v. In this
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Figure 3.5: Aggregate distribution of correlated normal loads.

case, all mutual correlations are grouped in the form of a matrix, the product moment
correlation matrix R. In the case of normal loads L = [L1, . . . , Ln] with mean values
µL = [µ1, . . . , µn] and standard deviations σL = [σ1, . . . , σn] , the simulation algorithm
3.1 may be used. The application of this algorithm is straightforward: starting from an
n-vector of independent standard normals Z we can construct an n-vector of normals L,
correlated according to the product moment correlation matrix R.

Algorithm 3.1 Joint Normal simulation algorithm for modeling of correlated normals.

1. Simulate an n-vector of independent standard normals Z = [Z1, . . . , Zn]

2. Calculate the matrix product y = T× z, where T is a lower triangular matrix such
that R = T×TT (Cholesky decomposition). The n-vector y forms a sample drawn
from a random vector Y that follows a standard multivariate normal distribution
with correlation matrix R: Y = T× Z

3. Transform the correlated standard normals Y to normals L with mean µL and
standard deviation σL: L = σL

T ·Y + µL

The results presented for the bivariate case, concerning the impact of correlation to
the aggregate of the r.v. may be extended to the multivariate case. Thus, for different
dependence structures, the aggregate of a number of correlated normals is a normal
distribution with different spreading around the same central point.
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3.4.3 Positive-semidefiniteness

A necessary condition in order to carry out the factorization R = T×TT used in algorithm
3.1 is that R has to be positive-semidefinite; that is, for all x ∈ R\{0}, xT Rx > 0¶. The
construction of the positive-semidefinite product moment correlation matrix is the most
difficult part in the modeling procedure. In section 4.3, we elaborate further on this
important issue.

Up to this point, we discussed about how we can model n normal loads, either inde-
pendent or dependent, and m independent stochastic generators. What remains is to deal
with the case of m dependent stochastic generators, i.e. the modeling of non-dependent,
non-normal r.v. This is the most difficult problem to be faced, yet extremely relevant in
power system modeling. Here, the measures of dependence applied in the world of normal
distributions fail and new methods have to be employed.

3.5 Correlated stochastic generators: where product
moment correlation fails

3.5.1 Bivariate case

In order to illustrate the problems arising from the modeling of correlated non-normal
inputs, we will start the discussion with the bivariate case. In particular, we investigate
the power output from two WTGs when their prime movers (wind speed modeled as
Weibull distributions) are correlated.

According to the previous section, the product moment correlation can be used for the
representation of dependence between normal loads. In the case of non-normals however,
it fails to offer a good representation of the dependence. In order to illustrate the pitfalls
concerning the use of product moment correlation, we will use a simple example, i.e.
the case of perfect dependence. Perfect dependence between two r.v. corresponds to
the case when the one follows perfectly the fluctuations of the other. In Fig. 3.6 the
scatter diagrams and the generated sample sequences are presented, for the cases of (a)
perfectly dependent normal loads, (b) Weibull wind speeds and (c) the case of a normal
load perfectly dependent to a Weibull wind speed. As can be seen in Fig. 3.6a, 3.6b and
3.6c, perfect dependence corresponds to a co-fluctuation of the generated samples.

As shown in Fig. 3.6d, normals correlated with ρ = 1 are linearly dependent; thus
they may be written as L1 = aL2 + b, where b ∈ R and a > 0. This linear dependence
corresponds to the case of perfect dependence. The same type of perfect dependence
between two Weibull wind speed distributions W1 and W2 however does not correspond
to linear dependence, since a linear relationship of the form W1 = aW2 + b between
W1 and W2 is impossible due to the formula of the Weibull distribution. As may be
seen in Fig. 3.6e and 3.6f, this co-fluctuation is the result of a non-linear dependence.
This non-linear dependence leads to product moment correlation values less than 1; in
our example ρL−L = 1, but ρW−W = 0.9950 and ρW−L = 0.9954. Thus, two r.v.
may be perfectly dependent, but only for some types of r.v. (i.e. normals) this perfect
dependence corresponds to a linear relationship between them. In this case the product

¶Equivalently, a matrix is positive-semidefinite if all its eigenvalues are non-negative.
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Figure 3.6: Time-series and scatter diagrams for perfect correlation between loads and
wind speeds.
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(a) X − X2 (b) X − X3

(c) X − X4 (d) X − X5

Figure 3.7: Scatter diagrams between X and powers of X.

moment correlation reaches the extreme values ρ = 1 and ρ = −1; in all other cases it
lies in a closed interval [ρmin, ρmax] and ρmin < 0 < ρmax (Hoeffding theorem, [44]).

Although in the previous example ρ gives an estimate close to 1, in many cases this
difference may be significant. For example, let X be a standard normal variable with
support Ω = [0,+∞]. In Fig. 3.7, the scatter diagrams between X and the powers of X
(from the second until the fifth) are presented. As may be seen, the linear relationship
between the r.v. is reduced as we move to higher powers of X, although they continue to
be perfectly dependent. The product moment correlation matrix for the random vector
(X, X2, X3, X4, X5) is:

Rρ =


1 0.939 0.828 0.713 0.606

0.939 1 0.965 0.890 0.801
0.828 0.965 1 0.976 0.920
0.713 0.890 0.976 1 0.982
0.606 0.801 0.920 0.982 1


In this case, the insufficiency of ρ to depict dependence is evident: since the r.v. are
perfectly dependent, one would expect a correlation close to 1.

Thus, when we leave the world of normal distributions, the product moment corre-
lation fails as a measure of dependence and may lead to counter-intuitive results. The
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mechanism of perfect correlation actually corresponds to all monotonic (and not necessar-
ily linear) relationships between r.v.: ’two r.v. are perfectly correlated if the one follows
the fluctuations of the other’. This is depicted in the scatter diagrams in Fig. 3.6 and Fig.
3.7. An adequate measure should be able to capture the monotonic relationship between
the r.v. This leads to the introduction of the Spearman- or rank- correlation.

3.6 Rank correlation: transformation of marginals into
ranks

3.6.1 Rank correlation

The idea behind rank correlation is simple: instead of measuring the correlation between
the real values of the r.v., we first rank the samples from lowest to highest, and then
measure the product moment correlation for the respective ranks. This captures the
monotonic relationship between the r.v. In this case, the marginal distributions have no
effect on the value of the measure.

Based on this idea, the calculation of the rank correlation from a population of N
pairs of samples (xi, yi) for the random vector (X, Y ) is straightforward. First we replace
the value for each xi by the value of its rank among the other xi’s in the sample, that is
1, 2, . . . , N . If the xi’s are all distinct then each integer will occur precisely once. If some
of the xi’s have identical values, then we assign to these ’ties’ the mean of the ranks that
they would have had if their values were slightly different (for more information about
how to deal with ties, see Press et al. [73]). We apply the same procedure for the yi’s. Let
Ri be the rank of xi and Si the rank of yi among the other y’s. Then the rank correlation
can be calculated as the product moment correlation of the N pairs of samples Si and
Ri, using the population product moment correlation of eq. 3.5.

The transformation of the marginal distributions into ranks is achieved by the appli-
cation of the cumulative density function F (·) to the r.v. This transformation yields a
uniform distribution. In particular, by definition FX(X) follows a uniform distribution U
on the interval [0, 1]. For r ∈ [0, 1] : P (FX(X) ≤ r) = P (X ≤ F−1

X (r)) = FX [F−1
X (r)] =

r ⇔ FX(X) = U‖.
When applying this transformation in the case of two correlated r.v. X and Y , the

uniform distributions UX = FX(X) and UY = FY (Y ) correspond to ranks that retain
the dependence structure between X and Y . Based on this transformation, the rank
correlation may be defined as:

Definition 3.6.1 (Rank Correlation) The rank correlation of r.v. X, Y with cdf
FX and FY , is

ρr(X, Y ) = ρ(FX(X), FY (Y )) (3.6)

Thus, the rank correlation is the product moment correlation of the ranks of the
respective r.v. or a correlation of r.v. transformed to uniforms. For every r.v. X and Y ,
the basic properties of rank correlation are the following:

‖We already presented this basic transformation in the section 2.9.1, for the sampling of a r.v. X. As
mentioned, F−1

X (U) follows the distribution of X, where U is a uniform distribution in the interval [0, 1].
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1. Range: −1 ≤ ρr(X, Y ) ≤ 1

2. Independence: if X,Y are independent, then ρr(X, Y ) = 0

3. Invariance under non-linear monotonic transformations:
if G : R → R a strictly increasing function, then ρr(X, Y ) = ρr(G(X), Y )
if G : R → R a strictly decreasing function, then ρr(X, Y ) = −ρr(G(X), Y )

4. Monotonic dependence: if ρr(X, Y ) = 1 then there exists a strictly increasing func-
tion G : R → R, X = G(Y )

In contrast to the product moment correlation, the rank correlation always exists. For
uniform variables, product moment and rank correlations are the same (ρ = ρr), but in
general they are different. For the joint normal distribution, the relationship between ρ
and ρr is known:

Proposition 3.6.2 Let (X,Y) be random vectors with joint normal distribution, then
ρ(X, Y ) = 2 sin

(
π
6 ρr(X, Y )

)
Thus, the rank correlation is a suitable measure of dependence that is not affected by

the marginal distributions. We may see it by measuring the rank correlation for the the
random vector (X, X2, X3, X4, X5) of the previous example; in all cases the same value
ρr = 1 is obtained, corresponding to the case of perfect dependence.

3.6.2 Decoupling of dependence structure and marginals: to-
wards copulas

The basic principle for the transition from the product moment correlation to the rank
correlation is the decoupling of the dependence structure from the marginals. This is
achieved by the transformation of the marginals into respective ranks by the application
of the cumulative density function transformation; these ranks maintain the information
concerning the dependence structure between the r.v. This dependence may be depicted
by the scatter diagrams of the ranks, i.e. the transformed uniforms. In Fig. 3.8 we present
these scatter diagrams for the case of independence (Fig. 3.8c) and perfect dependence
(Fig. 3.8f), as they are obtained for the case of two normal distributions (loads) and
two Weibull distributions (winds). In both cases, although the scatter diagrams of the
non-transformed marginals are different, they yield the same bivariate distribution for the
ranks. This bivariate distribution corresponds to the dependence structure. In the case
of independence, the samples are distributed uniformly in the unit square, corresponding
to the definition of independence between the r.v.: ’the occurrence of one of them has no
influence on the probability of the other’. Indeed, for any rank of the one r.v., all ranks
between 0 and 1 for the other may occur. In the case of perfect dependence, the samples
are ordered and are distributed in the diagonal of the unit square, from the points [0, 0]
to [1, 1]. In this case, the occurrence of one rank for the one r.v. commits the occurrence
of the same rank for the other r.v.

These two cases correspond to the extremes of total randomness (independence) and
total order (perfect dependence). Reality however in most cases falls somewhere in be-
tween those extremes; this motivated the development of other distributions with uniform
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(a) Normals - Indep. (b) Weibulls - Indep. (c) Ranks - Indep.

(d) Normals - Perf. dep. (e) Weibulls - Perf. dep. (f) Ranks - Perf. dep.

Figure 3.8: Scatter diagrams for independence and perfect dependence between normal
and Weibull distributions and their respective ranks.
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marginals for the modeling of these dependencies. These are the distributions of the ranks
of the r.v. and offer the modeling platform for dependence analysis, by separating the
dependence structure from the one-dimensional marginal distributions. In particular, the
stochastic analysis may be decomposed in two basic components:

• the one-dimensional marginal distributions

• the stochastic dependence structure between the input r.v.

By applying the transformation FX(X) and FY (Y ), we no longer have to deal with the
exact numbers, but with ranks of the respective distributions. Then we may use these
distributions on ranks and model the functional dependence between X and Y . The
investigation of the properties of these distributions led to the introduction of the notion
of copulas for the modeling of stochastic dependence in uncertainty analysis.

3.7 Copulas

Copulas are functions that join or ’couple’ multivariate distribution functions to their
one-dimensional marginals. Alternatively, copulas are multivariate distribution functions
whose one-dimensional marginals are uniform on the interval [0, 1] [63].

3.7.1 Sklar’s Theorem

The word copula was first employed in a mathematical or statistical sense by Abe Sklar
in 1959 [87] in the theorem (which now bears his name) describing the functions which
’join together one-dimensional distribution functions to form multivariate distribution
functions’. The theorem that bears his name offers the bridge between copula and joint
distribution of a number of r.v.:

Definition 3.7.1 (Copula (Sklar’s Theorem [87])) The r.v. X and Y with cdf FX

and FY , are joint by copula C if their joint distribution can be written:

FXY (x, y) = C(FX(x), FY (y)) (3.7)

If FX and FY are continuous, then C is unique; otherwise, C is uniquely determined on
[Ran(FX)×Ran(FY )]. Conversely, if C is a copula and FX and FY are distribution func-
tions, then the function FXY defined by 3.7 is a joint distribution function with margins
FX and FY .

As Sklar notes however, the functions themselves predate the use of the term copula.
They appear in the work of Fréchet, Dall’ Aglio, Féron and many others in the study
of multivariate distributions with fixed univariate marginals. Indeed, many of the basic
results about copulas can be traced to the early work of Wassily Hoeffding. In [44], one
finds bivariate ’standardized distributions’ whose support is contained in the unit square
[− 1

2 , 1
2 ]2 and whose margins are uniform on the interval [− 1

2 , 1
2 ]. It seems that if Hoeffding

had chosen the unit square [0, 1]2 instead of [− 1
2 , 1

2 ]2 for his normalization, he would have
discovered copulas.
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(a) Fréchet Copula CL (b) Independent Copula (c) Fréchet Copula CU

Figure 3.9: Scatter diagrams for the Independent and Fréchet copulas.

3.7.2 Fréchet-Hoeffding bounds

Hoeffding also obtained the basic best possible bounds inequality for these functions,
characterized the distributions corresponding to those bounds and studied measures of
dependence which are ’scale-invariant’, i.e. invariant under strictly increasing transfor-
mations. Until recently, Hoeffding’s work didn’t receive the attention it deserved, due
primarily to the fact that his papers were published in relatively obscure German jour-
nals at the outbreak of the Second World War. Unaware of Hoeffding’s work, Fréchet in
1951 [40] independently obtained many of the same results, which has led to terms such
as ’Fréchet-Hoeffding bounds’.

In particular, it can be shown that for any copula C the following inequality holds [40]:

CL ≤ C ≤ CU (3.8)

where CL and CU are bivariate distributions such that the mass is spread uniformly on the
main anti-diagonal and diagonal respectively. The copulas CL and CU describe perfect
negative and positive dependence respectively:

Proposition 3.7.2 If X, Y are joined by copula CU (CL), then ρr(X, Y ) = 1(−1).

Thus, the copula inequality (3.8) may be interpreted in the following way: ”all possible
dependence structures between two r.v. are bounded between the cases of perfect negative
(lower bound) and perfect positive dependence (upper bound)”. These bounds may be
used as worst-case scenarios for the power system stochastic modeling and the clustering
of the random system inputs. The thorough investigation of the properties of these bounds
and the application of the Fréchet inequality to power system stochastic modeling is the
subject of chapter 5, where the concept of stochastic plants is introduced. In Fig. 3.9
the scatter plots for the Fréchet copulas CL and CU are presented next to another basic
copula, the independent copula.

3.7.3 Families of Copulas

After Hoeffding, Fréchet and Sklar, the functions now known as copulas were rediscovered
by several other authors, referring to them with different names, as uniform representa-
tions or dependence functions. The research in this field yielded important results about
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several families of copula functions. In Fig. 3.9, three basic copulas were presented: the
independent copula and the Fréchet copulas CL and CU . In the following we present
an overview of some other basic families of copulas. For details on the properties of the
different families of copulas, one may refer to [48,63,53,51].

Normal (Gaussian) Copula

The Normal or Gaussian copula is obtained from the bivariate Normal distribution, by
the transformation of the standard normal marginals into uniforms (ranks)∗∗. In Fig.
3.10a, the scatter diagram for this copula is presented for rank correlation ρr = 0.6.

Its multidimensional extension is obtained in the same way, by transforming the stan-
dard normal marginals into uniforms, starting from the multivariate normal distribution.
The normal copula is one of the most widely used copulas. It is uniquely determined by
the product moment correlation matrix and it forms the basis for techniques for multi-
dimensional dependence modeling, e.g. the Joint Normal Transform methodology. We
elaborate further on this copula in section 4.1, where this methodology is presented.

The main disadvantage of the normal copula is that it fails to represent asymptotic
tail dependence, i.e. dependence between the extreme values of the r.v. In particular,
as shown by Embrechts et al. in [38], the Normal copula gives asymptotic independence,
provided that ρ < 1. Regardless of how high a correlation we choose, if we go far enough
into the tail, extreme events appear to occur independently in each margin. In order to
represent tail dependence, adequate extensions of the Normal distribution should be used.
These extensions form the family of elliptical distributions.

Elliptical Copulas

The elliptical distributions constitute generalizations of the multivariate normal distrib-
ution, which allow for the presence of heavy tails and asymptotic tail dependence. Math-
ematically they are the affine maps of spherical distributions in R [38,52]. As in the case
of the Normal copula, the bivariate (and multivariate) elliptical copula is obtained by the
transformation of the marginals of the respective elliptical distribution into uniforms and
is uniquely determined by the correlation matrix. The advantage offered by the ellipti-
cal distributions is that some of the members of this family permit the modeling of tail
dependence.

The t copula is one of the most widely used members of this family. It derives from
the multivariate t distribution and, in contrast to the normal copula, the t copula is
asymptotically dependent, provided ρ > −1 [38]. As presented in [33], this copula forms
the basis for the construction of t-related copulas, that present different types of tail
dependencies.

Archimedian Copulas

Another very popular family of copulas are the Archimedian copulas. Properties of this
family have been studied extensively [63, 48]. They find a wide range of applications
for three main reasons: (1) the ease with which they can be constructed; (2) the great

∗∗This transformation is performed by the application of the standard normal cdf Φ(·).
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(a) Normal copula ρr = 0.6 (b) Frank’s copula ρr = 0.6

(c) Diagonal band copula ρr = 0.6 (d) Min. information copula ρr = 0.6

Figure 3.10: Scatter diagrams for four types of copulas under the same rank correlation.

variety of families of copulas which belong to this class; and (3) the many nice properties
possessed by members of this class.

Two of the most widely used members of this family is the Gumbel copula and the
Frank’s copula. For a detailed presentation of the Archimedian copulas one may refer
to [63]. In Fig. 3.10b the scatter diagram for the Frank’s copula is presented, for rank
correlation ρr = 0.6.

Diagonal Band Copula

The diagonal band copula is a natural generalization of the Fréchet copula [51]. In contrast
to the Fréchet copula, for positive correlation the mass is concentrated on the diagonal
band with vertical bandwidth β = 1− α. Mass is distributed uniformly on the inscribed
rectangle and is uniform but ’twice as thick’ in the triangular corners. For negative
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correlation the band is drawn between the other corners. In Fig. 3.10c the scatter
diagram for the diagonal band copula is presented, for rank correlation ρr = 0.6.

The construction of the diagonal band copula can be seen as putting the uniform
density on [−β, β] and translating this along the diagonal, always folding the mass that
lies outside the unit square inwards. This procedure can be generalized by putting a non-
uniform density G(z) along lines perpendicular to the U axis such that G(0) lies on the
diagonal. In this way, a band of densities G(z) will be constructed. This is the procedure
for obtaining the generalized diagonal band copula. For further details, one may refer
to [51].

Minimum Information Copula

The development of the minimum information copula came from the application side:
for the simulation of two arbitrary continuous marginal distributions FX , FY correlated
with ρr ∈ (−1, 1), when no further information on their joint distribution is available,
we need to use a joint distribution that has minimal information with respect to the
independent distribution with FX and FY . This joint distribution is proved to be unique
and is calculated as the solution of an optimization problem. For the case of uniform
marginals this unique solution corresponds to the minimum information copula.

This copula is attractive because it realizes a specified rak correlation by adding ’as
little information as possible’ to the product of the margins, i.e. to the joint distribution
corresponding to independence. Its main disadvantage is that it doesn’t have a closed
functional form. All calculations with this copula must involve numerical approximations.
Further details on the minimum information copula are presented in [51]. In Fig. 3.10d,
the scatter diagram for the minimum information copula is presented, for rank correlation
ρr = 0.6.

3.7.4 Copulas and rank correlation

In Fig. 3.10 the scatter diagrams of four different copulas are presented for the same rank
correlation. Although we keep the same rank correlation, the scatter diagrams present
basic differences, corresponding to different dependence structures. As may be seen, rank
correlation is not enough for the representation of dependence; this representation comes
from the use of copulas.

As the rank correlation changes from -1 to 1, the copulas provide different represen-
tations of the dependence. In Fig. 3.11 we show how this representation changes, by
presenting the scatter diagrams for the diagonal band copula for different values of ρr.
For ρr = 1 and ρr = −1, they correspond to the Fréchet bounds CL and CU , as mentioned
in proposition 3.7.2. While shifting towards ρr = 0, the dispersion of samples around the
main diagonals increases. The case of ρr = 0 however does not always correspond to
independence, as it was presented by the independent copula in Fig. 3.9b. As mentioned
in the basic properties of rank correlation, independence corresponds to ρr = 0, but not
vice-versa.

Coming back to our specific application, in Fig. 3.12, the power output from two
WTGs is presented for two cases, where the wind at the respective sites presents the
same rank correlation but is subject to different copula. Despite the same rank correlation,
different power output distributions are obtained.
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(a) ρr = −1 (b) ρr = −0.8 (c) ρr = −0.4

(d) ρr = −0.2 (e) ρr = 0 (f) ρr = 0.2

(g) ρr = 0.4 (h) ρr = 0.8 (i) ρr = 1

Figure 3.11: Scatter diagrams for the diagonal band copula for different rank correlations.
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(a) Diagonal band copula ρr = 0.6 (b) Minimum information copula ρr = 0.6
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(d) Power output - two WTG

Figure 3.12: Wind scatter diagrams and power output distributions for two WTGs under
the same rank correlation but with different dependence structures.

One may argue that this difference is quite small for using such complex models. This
is true. The basic advantage of using copulas comes from their application in stochastic
simulations; in particular, the use of copulas enables the simulation of correlated r.v.

3.7.5 Sampling of two correlated r.v. using copula

Summarizing the preceding analysis, we may see that for the modeling of two correlated
r.v. X1, X2, three basic elements are necessary: the one-dimensional marginal distribu-
tions F1 and F2, the rank correlation ρr12 and the copula C12|ρr12 . The sampling algorithm
for the modeling of two r.v. is presented in algorithm 3.2. The core in the modeling is
the generation of two uniform (rank) distributions U1 and U2 correlated according to a
given dependence structure defined by C12|ρr12 . These rank distributions are later trans-
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Figure 3.13: Sampling procedure for the diagonal band copula.

formed to the respective marginals. For the generation of these correlated uniforms we
start by sampling two uniform r.v. Ur1 and Ur2 independently. In order to impose the
dependence structure, we sample U2 conditional to U1 = Ur1 by using the conditional
copula u2 = C−1

12|u1,ρr12
(ur2).

Algorithm 3.2 Simulation algorithm for modeling two correlated r.v.

1. Sample two independent uniform r.v. Ur1 and Ur2 . Denote realizations ur1 and ur2 .

2. u1 = ur1 : the sampling of the rank distribution U1.

3. Find C12|u1,ρr12 . This is the conditional distribution of U2 given u1 for rank corre-
lation ρr12.

4. By the inverse conditional copula we sample the rank distribution U2: u2 =
C−1

12|u1,ρr12
(ur2).

5. Transform the rank distributions according to the marginals: x1 = F−1
1 (u1) and

x2 = F−1
2 (u2).

In Fig. 3.13, the sampling procedure for a diagonal band copula C12 based on this
algorithm 3.2 is presented. As may be seen, the conditional diagonal band copula corre-
sponds to a distribution C2|1 that is constant for the cross section of C2|1 and the ordinate
u1 = ur1 , and zero outside. The ’dependent’ samples u2 are obtained by sampling the
conditional copula u2 = C−1

2|1(ur2). Therefore, the outcome in this case is either 0 or
constant, depending on the value of the independent sample ur2 .
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3.8 Conclusions

Studying the impact of stochastic generation in power systems requires the modeling of
correlated non-normal distributions. Modeling the stochastic dependence is a main part
in this procedure. Although the product moment correlation ρ is generally considered as a
good representation of dependence, when we leave the world of normal distributions it fails
as a measure of dependence, since it cannot capture non-linear, monotonic relationships,
which is exactly what one usually expects to know about a relationship between variables.
In order to capture such relationships, we should transform the one-dimensional marginal
distributions into ranks. The product moment correlation of ranks of the respective vari-
ables, i.e. the rank correlation ρr, corresponds to an adequate measure of dependence,
since it captures monotonic relationships between variables. This transformation of the
marginals into ranks is the cornerstone in the proposed stochastic modeling, offering a
decoupling between the modeling of the marginal distributions and the stochastic depen-
dence structure. Based on this decoupling, specific functions are used for the modeling
of the functional relationship between these ranks, offering significant advantages for the
stochastic simulation. These are the copula functions. The properties of different copula
families were presented, together with the basic simulation algorithm for the use of these
functions for the stochastic modeling of two correlated random variables.

Hence, the simulation of bivariate relationships between dependent r.v. is performed
using the marginal distributions, the rank correlation and the respective copula functions.
What remains is the extension of these principles to the multidimensional case. The
solution to this problem is presented in the following chapter.
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Chapter 4

Multidimensional Dependence
Modeling

In this chapter we present the extension of the bivariate stochastic dependence models
to the multidimensional case, in particular the representation of the joint distribution of
these r.v. based on the information of their mutual (bidimensional) stochastic behavior.

The approach presented in the previous chapter, i.e. the splitting of the modeling
effort in the two tasks of modeling the marginals and the bivariate dependence structure
may also be applied to the multivariate case. In general, the one-dimensional marginal
distributions are the easiest to assess from data or expert judgement. The definition of
the dependence structure is however a much more complex problem. In the case of N
r.v., there are 2N − 1 distinct non-empty subsets of variables, each of which could have a
distinct dependence structure. In this chapter, appropriate methodologies are employed
for the stochastic modeling of such problems.

Data availability and adequacy is a basic problem faced in real applications. Driven
from this perspective, we can distinguish two basic types of problems:

1. problems where adequate data are available, and

2. problems that are poorly or not supported by data.

In the first type of problems, one can calculate the product moment/rank correlation
matrix by the time-series data describing the stochastic inputs in the system and use
a multidimensional copula for the dependence modeling. The Joint Normal Transform
method is presented as the basic methodology for the treatment of such problems. The
second type of problems involves high uncertainty, where it is not possible to define all
mutual correlations between the system stochastic inputs. In such problems, we typically
try to capture the most important dependence relations and leave others unspecified. For
this, we present graphical methods for specifying dependence structures which can deal
with incomplete specifications and sampling routines that give exactly what we specify,
up to sampling error, with minimal additional information. These are the Copula-Tree
and Copula-Vine methods.



68 Chapter 4. Multidimensional Dependence Modeling

4.1 Joint Normal Transform methodology

For most statisticians, the starting point for dependence modeling is the joint normal
distribution. The Joint Normal Transform (JNT) methodology is a natural extension of
the method for the modeling of correlated normals presented in section 3.4. This method
involves two main tasks for the modeling of an n-vector of r.v. X, correlated according
to a rank correlation matrix Rr:

1. Dependence structure: generate an n-vector of correlated uniform rank distributions
UC using a multivariate normal copula, according to the theory presented in section
3.7.3.

2. Marginals: transform the correlated ranks UC into the desired marginals Xi, by
applying the inverse cdf transformation Xi = F−1

i (UC).

A note should be made concerning the use of a multivariate normal copula for the
generation of the n-vector of correlated ranks UC. According to the theory of the joint
normal distribution (section 3.4), we may construct a n-dimensional vector of standard
normals Y that realize a given product moment correlation matrix R. Since product
moment and rank correlations for the joint normal distribution are not equal, the rank
correlation of the output samples will be different. In order to obtain the desired rank
correlation matrix Rr, we should start from an appropriate matrix R. This matrix can
be calculated from the relationship between product moment and rank correlation for the
normal distribution (proposition 3.6.2):

R = 2 sin
(π

6
Rr

)
(4.1)

In this case, sampling the joint normal based on R that fulfills this relationship, yields
the desired Rr at the output. According to these points, we may summarize the JNT
simulation algorithm as follows [41,19]:

As mentioned in section 3.4.3, a necessary condition in order to carry out the factor-
ization R = T×TT used in this algorithm is that R has to be positive semi-definite. By
definition, a correlation matrix fulfills this precondition. However, in real applications it
often happens that correlations are estimated by noisy procedures. It may thus arise that
a ’measured ’ correlation matrix is non-positive semi-definite. This hinders the applicabil-
ity of the method. In this case, the method may be applied if we repair the violations of
positive semi-definiteness.

In the following we demonstrate the applicability of the JNT methodology and elabo-
rate further on these issues by the presentation of a comprehensive example: the impact
of large-scale integration of wind power in the power system of The Netherlands. In
this example we present how measurement data from different data systems can be com-
bined with expert data for the system uncertainty analysis and how violations of positive
semi-definiteness appear in the analysis and are being repaired.

4.2 Wind power integration in The Netherlands

The study case involves the evaluation of the impact of the integration of a total capacity
of 1.5GW onshore and 5GW offshore wind power in the power system of The Netherlands
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Algorithm 4.1 Joint Normal Transform simulation algorithm.

1. Dependence structure: Normal Copula

• Calculate the transformed correlation matrix R based on equation 4.1.

• Simulate an n-vector of independent standard normals Z = [Z1, . . . , Zn].

• Calculate the matrix product y = T · z, where T is a lower triangular matrix
such that R = T·TT (Cholesky decomposition). The n-vector y forms a sample
drawn from a random vector Y that follows a standard multivariate normal
distribution with product moment correlation matrix R: Y = T · Z.

• Transform the correlated standard normals Y to correlated ranks using the
normal cdf transformation Φ(·): UC = Φ(Y ).

2. Marginals:

• Transform the correlated ranks UC into the given marginals F = F−1
i (UC).

in 2020, according to the basic scenarios presented in [84]. The r.v. involved in the
analysis are the wind speeds at each wind generation site and the system load.

For the analysis, four different data sets are used: measurements for onshore locations,
measurements for offshore locations, data from experts concerning one offshore location
and load data. The availability and adequacy of the respective data may be categorized
as follows:

1. Well-documented data: in the specific study case, we consider 10 locations for the
onshore wind parks (sites 1-9 and 13 in Fig. 4.1); for each location, hourly wind
speed values are available for a period of 20 years from January 1, 1984 until De-
cember 31, 2003 [78]. This data set forms a well documented entity, with a small
number of missing values. The planned capacities for each onshore wind park are
the following:

Wind Park 1 2 3 4 5 6 7 8 9 13

Capacity (MW) 100 100 100 100 100 300 100 100 200 300

The total planned onshore capacity is 1500MW.

2. Not well documented data: measurements for 5 offshore sites are available, namely
for the sites 11, 12, 14 (near-shore wind parks) and 10 and 15 (offshore wind parks)
in Fig. 4.1. The available data set corresponds again to hourly measurements
for the same period as for the onshore wind parks. This data set however is not
so well documented, presenting a relatively large number of missing values. The
total planned offshore capacity is 3500MW. In the following matrix, the planned
capacities for each of these locations are presented together with the percentage of
missing values for each data set:

Wind Park 10 11 12 14 15

Capacity (MW) 1000 500 500 500 1000

Missing values (%) 8.3 13.8 5.8 6.4 8.8
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Figure 4.1: Wind park locations in The Netherlands
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3. Expert data: the second stage in the project planning involves the expansion of the
installed capacity by the installation of 1000MW in the shaded area (site 16) in Fig.
4.1. However, no measurements are yet available for this region. For this, experts
can be asked to assess the wind in this area. In the following we present how such
data can be incorporated in the analysis.

4. Different data system: the load data set corresponds to a different recording period
and sampling frequency, in particular 15-minute averages for a period of one year,
i.e. between January 1 and December 31, 2003. In order to simulate the load for
the year 2020, we extrapolate the recorded values based on an annual load growth
rate of 2%.

As may be seen, the data sets involved in the analysis are not uniform; they come
from different data systems and span different periods with different sampling frequencies.
Such a non-uniformity of the data sets is usual for real applications, due to the use of
different databases and measuring systems. In such cases, the analysis should be based
on extraction and utilization of maximum information from the available data set.

The application of the JNT methodology requires the computation of the following
statistics:

1. Marginal distributions: the wind speed distributions at each generation site and the
system load distribution.

2. Dependence structure: the rank correlation matrix between the wind speed r.v. and
the system load.

4.2.1 Marginal distributions

Wind speed distributions

The wind speed distributions for the sites where data are available are obtained after
adapting the measurement height (10m) to the wind turbine hub height. This adaptation
is performed by the use of the wind shear formula presented in [29]. Typical pitch-
controlled wind turbine generators (WTG) are considered for this project, with a hub
height of 80m, a nominal power of 2MW and cut-in, nominal and cut-out wind speed
values of 3.5, 12 and 25 [ms−1].

We assume that the elicitation of experts yielded a wind speed distribution in area 16
that is best described as a Weibull distribution with scale parameter η=11.8 and shape
parameter β=2.1.

In Fig. 4.2, the cumulative distributions for the different sites are presented. Such a
graph permits a direct comparison of the wind potentials between different locations; in
particular, the more to the right a cdf appears in the graph, the larger the wind potential
at the respective location. In the graph, discontinuous lines are used for the onshore sites,
continuous lines for the offshore sites and circular markers to denote the expert data cdf.
The cdf’s for the onshore locations are ordered according to their numbering from left to
right (location 1 corresponds to the discontinuous cdf at the left, while location 13 to the
one at the far right). As may be seen, the onshore wind potential is in general lower than
the offshore and increases the closer the location is to the coast. The coastal location 13
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Figure 4.2: Wind speed cdfs for the wind park locations.

presents a wind potential similar to the near-shore locations 14, 12 and 11 (the respective
order of the first three continuous cdfs). The offshore locations 10 and 15 correspond to
the far-right continuous cdfs, while the wind potential at location 16 appears to be the
highest, at the far-right of the graph.

The sampling of the wind speed distributions has been performed based on the empir-
ical distribution obtained from the data analysis, according to the methodology presented
in section 2.9.1. In Fig. 4.3, the measured wind speed distributions for two characteristic
sites, the onshore site 1 (Fig. 4.3a) and the offshore site 14 (Fig. 4.3b) are compared to
the simulated ones obtained from a 20000-sample MCS. In Fig. 4.3e and 4.3f, the respec-
tive cdfs are presented. We can see that the simulated distributions are very accurate
approximations of the measured ones.

System load distribution

In Fig. 4.4, the pdf and cdf for the extrapolated system load for 2020 are presented. The
extrapolation is performed based on a yearly load growth rate of 2%. This results in an
expected system load variation for 2020 ranging approximately from 9GW to 19GW. As
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(a) Measurements site 1
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(b) Measurements site 14
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(c) Simulation site 1
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(d) Simulation site 14
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Figure 4.3: Measured and simulated wind speed distributions at site 1 (onshore) and 14
(offshore).
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Figure 4.4: System load distributions for the year 2020 obtained by extrapolation of the
15-min recordings of year 2003.

may be seen, the planned wind power capacity corresponds to a significant part of the
system demand.

4.2.2 Dependence structure: correlation matrices

For the application of the method, the transformed correlation matrix R should be calcu-
lated from the rank correlation matrix Rr, based on equation 4.1. Since different datasets
are involved in the analysis, the matrix Rr is calculated in parts, based on the maximum
time-intersection of the respective datasets. In particular, the data for the period of 20
years are used for the derivation of the mutual wind speed rank correlations whereas a
period of 1 year is used for the wind-load rank correlations.

Wind-load rank correlations

The rank correlations between the wind speeds and system load are calculated for the
common year of measurements, according to the lower measurement frequency, i.e. hourly
mean values. The obtained rank correlations are presented in the Appendix C.1.

The analysis shows a low correlation between the wind activity and the system load,
ranging from zero to 0.24. The onshore wind presents a low rank correlation to the system
load; the offshore wind is practically independent from the system load.

Mutual wind speed rank correlations

The rank correlations between the wind speeds at the 15 different onshore and offshore
sites are calculated based on the whole data set, consisting of 20 years of hourly measure-
ments. The obtained rank correlations are presented in the Appendix C.1. The results
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show that the rank correlations are in between 0.47 and 0.91. Hence, the wind resources
are correlated even for distant locations throughout the country.

By merging these submatrices, we obtain the 16 × 16 wind speed/system load rank
correlation matrix RWL

r
∗.

Rank correlations assessed by experts

The assessment of experts for the rank correlations between the wind activity at location
16 of Fig. 4.1 and the rest of the r.v. involved in the analysis is assumed to yield the rank
correlations presented in the Appendix C.1. †. According to the expert data, the wind
resource in area 16 appears to be independent from the system load. The correlation
with the wind resources at the other locations ranges from 0.4 to 0.9. The incorporation
of the rank correlations obtained by experts in the matrix RWL

r , yields the 17× 17 rank
correlation matrix RWLe

r .
Two stages in the project planning are investigated separately:

1. 5GW-integration scenario: the incorporation of a total wind power capacity of
5GW, i.e. without the extra capacity of area 16, and

2. 6GW-integration scenario: the installation of 1GW of wind power in area 16 is
included as well.

In the first scenario, the matrix RWL
r is used to model the system dependence structure,

while in the second one the matrix RWLe
r is used.

4.2.3 5GW-integration scenario: positive semi-definite matrix

According to the simulation procedure presented in algorithm 4.1, first the transformed
correlation matrix RWL is calculated from the rank correlation matrix RWL

r according
to equation 4.1. Both matrices are positive semi-definite, so the method can be applied
directly.

In Fig. 4.5, the aggregate onshore and offshore wind power for this scenario are
presented. As may be seen, the different resources and dependence structures of onshore
and offshore wind power lead to completely different distributions for the aggregate wind
power. An accumulation of probability mass in the nominal power output of the offshore
wind parks is observed, due to the operation in the nominal wind power area. In Table
4.1, the capacity factor ηW for the wind parks is presented. As may be seen, the onshore
wind parks present a lower capacity factor than the offshore ones. The maximum capacity
factor of 0.54 is obtained in wind park location 15.

In Fig. 4.6, the aggregate wind power for the system is presented, together with the
net load distribution. The onshore and offshore wind power distributions add up to a
distribution that has a uniform shape. The system net load distribution (Fig. 4.6b)
alters drastically compared to the situation before the incorporation of 5GW of wind
power (Fig. 4.6a).

∗The notation {WL} here refers to the correlation matrix containing the correlations between wind
speeds (mutual) and system load.

†For details on expert elicitation and expert judgement, one may refer to [23] and [51].
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Figure 4.5: Onshore and offshore wind power distributions for the 5GW-integration sce-
nario.

Table 4.1: Capacity factor for the wind parks in The Netherlands.
Windpark W1 W2 W3 W4 W5 W6 W7 W8

ηW 17.8 18.1 18.3 24.7 25.9 29.1 29.1 31
Windpark W9 W10 W11 W12 W13 W14 W15

ηW 34.4 51.8 50.2 51.8 47.1 47.7 54.2
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Figure 4.6: Total system wind power and system net load distributions for the 5GW-
integration scenario.
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4.2.4 6GW-integration scenario: non-positive semidefinite ma-
trix

The second stage in the project planning involves the incorporation of an extra 1GW of
wind power, resulting in a total of 6GW wind power in the system. In this case, the
rank correlations obtained by experts are incorporated and the 17 × 17 matrix RWLe

r .
According to the methodology, this matrix should be transformed to the matrix RWLe

that is used for the sampling of the normal copula.
However, both these actions, namely the incorporation of the experts data and the

transformation of the matrix RWLe
r , yield non-positive semi-definite matrices. In order

to proceed, we should repair these violations of positive semi-definiteness. Repairing
such violations comes down to the transformation of the initial non-positive semi-definite
matrix RWLe

r to a positive semi-definite one, namely RWLe−psd, that is as close as
possible to the original. This is the most delicate part in the modeling based on the JNT
methodology. A thorough analysis on the problems and repairing methods concerning
positive semi-definiteness follows in the next section 4.3.

After the application of the repairing methods, the positive semi-definite matrix
RWLe−psd is obtained and used for the system analysis. In Fig. 4.7, the deviation
between the non-positive semi-definite rank correlation matrix RWLe

r and the one ob-
tained after the application of the repairing method (RWLe−psd) is presented. We can
see that, in general, the new matrix presents only a small deviation from the original one.

In Fig. 4.8, the aggregate onshore and offshore wind power for the second stage
in the project planning is presented. In Fig. 4.9, the aggregate wind power for the
system is presented, together with the net load distribution. The installation of the new
offshore wind park leads to a more uniform distribution of the aggregate wind power in
the system. The lower tail in the system net load distribution starts from smaller values
when compared to the net load distribution of the first part of the project planning (Fig.
4.4).

4.3 Positive semi-definiteness: Problems and repair-
ing methods

As mentioned, a necessary condition for the application of the JNT methodology is that
the matrix R is positive semi-definite, in order to be able to carry out the Cholesky
decomposition R = T ·TT in the simulation procedure (algorithm 4.1).

According to the general definition presented in section 3.4.3, the matrix R is positive
semi-definite when for all x ∈ R\{0}, xT Rx > 0, or equivalently, when all its eigenvalues
are non-negative. A real symmetric matrix R is positive semi-definite if and only if there
exists a real nonsingular matrix T such that R = T ·TT .

4.3.1 Problems with positive semi-definiteness

A sample correlation matrix, calculated directly from (adequate) data, is by definition
positive semi-definite. However, there are cases that a non-positive semi-definite correla-
tion matrix is constructed:
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Figure 4.7: Deviation between the non-positive semi-definite rank correlation matrix
RWLe

r and the one obtained after the application of the repairing method, RWLe−psd.
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Figure 4.8: Onshore and offshore wind power distributions for the 6GW-integration sce-
nario.



4.3. Positive semi-definiteness: Problems and repairing methods 79

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

System Wind Power (MW)

N
u
m

b
e
r 

o
f 
s
a
m

p
le

s

(a) System Wind Power

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

50

100

150

200

250

300

350

400

System Load (MW)

N
um

be
r o

f s
am

pl
es

(b) System Net Load

Figure 4.9: Total system wind power and system net load distributions for the 6GW-
integration scenario.

1. Data from different data systems: the analysis presented above involved the extrac-
tion of a correlation matrix out of two different data sets. In practical cases, more
data systems may be involved in the analysis, i.e. load measurements from different
operators, different SG types etc. The non-uniformity of these data sets, due to
different measurement frequencies, different measurement equipment and/or period
of observations, may lead to a non-positive semi-definite correlation matrix.

2. Transformation of rank correlation matrix : as discussed, the matrix R used in the
simulation core of the JNT methodology is obtained by a transformation of the data
rank correlation matrix Rr, according to the relation between product moment and
rank correlation for the normal distribution. This transformation however does not
guarantee that the product matrix R is positive semi-definite, even if the initial
matrix Rr is. In particular, the probability that a randomly chosen correlation
matrix stays positive semi-definite after the transformation in equation 4.1 goes
rapidly to zero with the matrix dimension [51].

3. Data reliability : it happens often that, due to measurement problems, data sets
of reduced reliability are utilized. This low reliability may lead to a non-positive
semi-definite correlation matrix.

4. Experts data: in cases when data are not available, we wish to rely on experts opinion
for the definition of these missing values. In such cases, there is no guarantee that
the resulting correlation matrix will be positive semi-definite.

5. Paradigm shift : statistical estimation techniques based on the analysis of historical
data are intrinsically ill-suited to provide predictions of future quantities when a
paradigm shift has taken place. Such a paradigm shift could be, for instance, the
change in system load or weather conditions, especially in cases when our data
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base consists of a relatively short time-period. In such cases, it is to some extent
possible to make, based on the available data, forward-looking estimates for the
respective r.v.; this procedure involves the definition of estimates of the volatility
of the r.v. and also of the mutual dependencies. This procedure leads to a partial
(or complete) alteration of the correlation matrix, which may result in non-positive
semi-definiteness [75].

In all these cases, a non-positive semi-definite correlation matrix is obtained from the
data analysis. In order to apply the JNT method, specific procedures should be employed
in order to repair the violations of positive semi-definiteness.

4.3.2 Repairing methods

Repairing the violations of positive semi-definiteness comes down to the transformation
of the initial non-positive semi-definite matrix to a positive semi-definite matrix, that is
as close as possible to the original one. In particular, a method has to be used that:

1. is guaranteed to produce a positive-definite matrix;

2. does not require a pre-existing acceptable (positive-definite) matrix to begin with;

3. is fast to implement even for large matrices;

4. allows the determination of a feasible matrix that most closely approximates a target
real symmetric (but non positive-definite) matrix in a well-defined and quantifiable
sense.

In Appendix B, two main methods for repairing violations of positive semi-definiteness
are presented, according to [75]; the Hypersphere Decomposition, which satisfies all above
properties and a second, faster method, the Spectral Decomposition, which shares the
first three properties but is not guaranteed to satisfy the fourth property. However, as
mentioned in [75], empirical studies show that the results obtained using this second
approach are extremely close, albeit not identical, to the ones obtained using the first
technique.

4.4 Problems with JNT methodology

As presented in the previous section, violations of positive semi-definiteness can be re-
paired by the transformation of the initial matrix to another, positive semi-definite one.
The deviation of the transformed matrix from the initial one depends on the divergence
from positive definiteness. In the study case in section 4.2, this divergence is not high
(one of the eigenvalues of the initial matrix equals to -0.0172). The deviation between
the two matrices is presented in Fig. 4.7. We can see that just few of the entries of the
initial matrix remain unchanged; the largest deviations are observed for the entries in
the 17th row and column of the matrix, corresponding to the data that is obtained by
experts. Hence, in order to proceed with the application of the method, we should change
the values obtained by the elicitation of experts. This is however equivalent to distortion
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of the expert opinion. In such cases, a method should be used that ensures that such
distortions are minimal.

In analyses involving a large number of r.v. such problems are magnified, mainly due
to the fact that the method requires the specification of all the entries of the correlation
matrix. For example, in a problem involving 100 r.v., in total 4950 distinct correlations
should be assessed. It is highly unlike that in such problems the correlations obtained by
different data systems (or experts) will form a positive semi-definite matrix. In other cases,
we may want to leave some entries of the matrix unspecified, due to lack of data. Working
with a partially-specified correlation matrix, leads to the so-called matrix completion
problem: can a partially-specified matrix be extended to a positive semi-definite one? A
basic matrix completion procedure is presented in [45], by taking the unspecified entries as
close to zero as possible. This, however, corresponds to the assumption of independence
between the respective inputs and may not lead to the best solution of this problem [51].

In general, when the uncertainty in the system model is increased, either due to high
dimensionality or lack of adequate data, the deviations from positive semi-definiteness
may be significant. In this case, we should use methods that permit the stochastic mod-
eling of the system without requiring the specification of the correlation matrix. Two
graphical methods are presented in the next two sections for the treatment of this prob-
lem: dependence models trees and vines with copulas. The main difference with the JNT
methodology is that these methods do not require the full correlation matrix for the sto-
chastic modeling of the system. Instead of using a multidimensional copula, the sampling
routines derive directly from the bivariate dependencies. In this way, the system modeling
can be performed even in cases of poor knowledge of the correlation matrix.

The dependence trees with copulas constitute a straightforward extension of the bi-
dimensional dependence modeling using copulas. The limitations imposed by the concept
of trees leads further to the definition of vines.

4.5 Dependence Trees with Copulas

4.5.1 General

In the previous chapter, the two-step algorithm 3.2 has been presented for the sampling
of two correlated r.v. X1 and X2. In particular, first the correlated uniform rank distri-
butions U1 and U2 are simulated using the joining copula and then they are transformed
into the desired marginals by the application of the inverse cdf transformation F−1

Xi
(Ui).

The main point here is that by sampling U1, we obtain not only the value u1, but also
the conditional distribution of U2 for the specific value u1, according to the functional
relationship defined by the bivariate copula C12|u1 . The conditional sampling of the sec-
ond variable is then performed by the independent sampling of a uniform r.v. Ur2 and by
the application of the transformation C−1

12|u1
(ur2). Thus, the mechanism for the bivariate

sampling is to sample the first r.v. and then propagate this value through the copula in
order to sample the other r.v. conditionally. This idea may be directly extended to higher
dimensions.

In Algorithm 4.2, the extension of this principle for the case of three dependent r.v.
X1, X2, X3 is presented, with marginals F1, F2 and F3, joined by the bivariate copulas C12

and C13 with rank correlations ρr12 and ρr13 respectively. As may be seen, starting from
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Algorithm 4.2 Simulation algorithm 1 for the modeling of three correlated r.v.

1. Sample Ur1 , Ur2 , Ur3 . Denote realizations ur1 , ur2 and ur3 .

2. u1 = ur1 : the sampling of the rank distribution U1 = Ur1 .

3. Find C12|u1 and C13|u1 . These are the conditional distributions of U2, U3 given u1.

4. Calculate the rank distributions U2 and U3: u2 = C−1
12|u1

(ur2) u3 = C−1
13|u1

(ur3).

5. Transform the rank distributions according to the marginals: x1 = F−1
1 (u1), x2 =

F−1
2 (u2), x3 = F−1

3 (u3).

the independent sampling of three r.v. Ur1 , Ur2 , Ur3 , we obtain their respective correlated
ranks U1, U2 and U3 by sampling their joining copulas conditionally u2 = C−1

12|u1
(ur2) and

u3 = C−1
13|u1

(ur3). Hence, for the application of this technique, the r.v. X2 and X3 should
be conditionally independent given X1. This is the basic restriction on the applicability
of the method. Of course, the Algorithm 4.2 may also be applied as follows:

Algorithm 4.3 Simulation algorithm 2 for the modeling of three correlated r.v.

1. Sample Ur1 , Ur2 , Ur3 . Denote realizations ur1 , ur2 and ur3 .

2. u2 = ur2 : the sampling of the rank distribution U2 = Ur2 .

3. Find C12|u2 .

4. Calculate the rank distribution U1: u1 = C−1
12|u2

(ur1).

5. Find C13|u1 .

6. Sample the rank distribution U3: u3 = C−1
13|u1

(ur3).

7. Transform the rank distributions according to the marginals: x1 = F−1
1 (u1), x2 =

F−1
2 (u2), x3 = F−1

3 (u3).

The two realizations presented in Algorithms 4.2 and 4.3) show how the use of copulas
may enable the propagation of random numbers through a specific dependence structure.
This principle can be extended for the modeling of more than 3 r.v. This led to the
method of dependence trees with copulas [24].

4.5.2 Definitions

According to this method, the dependence structure in the system is depicted as an undi-
rected acyclic graph, i.e. a tree. The nodes of the tree are used to specify the marginal
distributions, while the edges of the tree are used to specify bivariate dependencies. In
particular, a univariate distribution Fi is assigned to each node of the tree and the bi-
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Figure 4.10: Sampling procedure for a tree of 3 r.v.

variate copula Cij for Xi, Xj is assigned to each edge (i, j). In Fig. 4.10, a tree on 3 r.v.
is presented, together with the sampling procedure for the case that the r.v. are joined
by a diagonal band copula. The sampling procedure corresponds to the realisation of
Algorithm 4.2 For a more detailed definition of dependence trees with copulas, one may
refer to [51].

By generalizing the algorithms presented above, the sampling of all types of trees is
possible. Two basic restrictions should be fulfilled: no cycles should be present in the
graph and all r.v. that share a common adjacent node should be conditionally independent
(as discussed in the analysis of algorithm 4.2). Thus, non-adjacent variables on a path are
conditionally independent given any set of variables separating them on the path. These
restrictions correspond to the Markov tree dependence property of the trees. When this
property is fulfilled, the joint probability density function of the r.v. can be obtained as
a product of the one-dimensional marginal pdfs fi and the bivariate copulas Cij [51].

Summarizing, the copula-tree method represents high dimensional distributions by
specifying the following elements:

1. continuous invertible marginal distributions assigned to the nodes of the tree;

2. a set of copulas assigned to the edges of the tree.

In Fig. 4.11 two graphs are presented. The graph on the left is a tree on 6 variables
and the graph on the right is undirected graph with a cycle. For the Markov realization of
this tree, variables 1 and 5 would be sampled independently. Variables 2 and 3 would then
be sampled independently but conditional on the value of variable 1. Variable 6 would
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Figure 4.11: A tree with 6 nodes (left) and an undirected graph with a cycle (right). The
notation rij refers to the rank correlation ρrij .

be sampled conditional on the value of variable 5. Finally, variable 4 would be sampled
conditional on the value of variable 2. According to the Markov realization, variables 2 and
3 are conditionally independent given 1, variables 1 and 4 are conditionally independent
given 2 and variables 3 and 4 are conditionally independent given 1,2.

These specifications of conditional independence in the copula-trees pose the main
restrictions on the applicability of the method; in order to overcome these restrictions,
the dependence vines concept should be employed.

4.6 Dependence Vines with Copulas

4.6.1 General

The development of dependence vines came from the restrictions of the Markov realization
of the copula trees. Coming back to the tree in Fig. 4.11 with 6 r.v., we see that only the
correlations ρr12, ρr13, ρr24 and ρr56 are specified. The other correlations are determined
by the realization and the choice of the copula. The rank correlation matrix obtained
for the 4-r.v. tree of the first 4 r.v. in Fig. 4.11, assuming the normal copula and
the correlations ρr12 = 0.7, ρr13 = 0.8, ρr24 = 0.6, the specific tree realization is the
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Figure 4.12: A D-vine on 4 variables.

following‡:

Rr =


r.v. 4 2 1 3
4 1 0.6 0.4265 0.346
2 0.6 1 0.7 0.565
1 0.4265 0.7 1 0.8
3 0.346 0.565 0.8 1


Due to the tree realization, specific values for the correlations ρr14 = 0.4265, ρr43 = 0.346,
ρr23 = 0.565 are obtained. This is a basic restriction in the applicability of trees; in
particular, in a tree on n variables, only n− 1 correlations out of

(
n
2

)
can be specified. It

would be possible however to enrich the copula tree with additional information on the
conditional dependence between 2 and 3 given 1, between 1 and 4 given 2 and between 3
and 4 given 1 and 2. This is the basic idea behind the graphical models vines introduced
in [24].

4.6.2 Definitions

A vine on n variables is a nested set of trees Tj where the edges of the jth tree become
the nodes of the (j − 1)st tree for j = 1, . . . , n. A regular vine on n variables is a vine
in which two edges in tree j are joined by an edge in tree j − 1 only if these edges share
a common node. A D-vine is a special case of a regular vine in which each node in T1

has degree of at most 2§, hence each node in the first tree has at most two neighbors. In
Fig. 4.12, a D-vine on 4 variables is presented, corresponding to the tree on the four first
variables in Fig. 4.11.

Each edge in the regular vine may be associated with a conditional rank correlation
and a copula, and each node with a marginal distribution. All assignments of rank
correlations to edges of a vine are consistent and each one of these correlations may
be realized by a copula. Based on the bivariate and conditional bivariate distributions,
the joint distribution may be constructed. Distributions specified by (conditional) rank

‡The sequence of the r.v. in the correlation matrix is 4-2-1-3.
§The degree of a node of a tree is the number of edges attached to the specific node.
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correlations on a vine with copula can be sampled easily. Details on the construction of
the joint distribution and the sampling algorithms may be found in [51]. These sampling
algorithms provide a valuable alternative for multivariate stochastic modeling. For this,
one may use the dedicated software package UNICORN [32].

When we revert to the example on the definition of the rank correlations for the 4-r.v.
tree in Fig. 4.11, we may enrich the copula tree by specifying the conditional correlations
ρr41|2 = 0.5, ρr23|1 = 0.9 and ρr43|12 = 0.4. In this case, the following rank correlation
matrix is obtained:

Rr =


r.v. 4 2 1 3
4 1 0.6 0.7102 0.7166
2 0.6 1 0.7 0.9467
1 0.7102 0.7 1 0.8
3 0.7166 0.9467 0.8 1


The vine realization permits all sets of values for the correlations ρr14, ρr43, ρr23. All
different conditional rank correlations ρr41|2, ρr23|1 and ρr43|12 can be assigned, without
problems with the consistency of the model. In this way, always a positive definite ma-
trix Rr is obtained. Vines offer an alternative method for the definition of consistent
correlation matrices from partial specifications and an alternative repairing method for
problems with positive semi-definiteness [51].

These graphical methods offer alternative and always consistent algorithms for the
system stochastic modeling. Instead of requiring the complete correlation matrix, as
with the JNT methodology, the stochastic model is defined based on the specification of
conditional correlations. However, obtaining these conditional correlations from data or
experts is a cumbersome procedure. A way out of this problem is by assuming a normal
copula; in this case, the conditional correlation equals the partial correlation, which is
much easier to measure by data [51]. This assumption is actually the same as what is
used in JNT methodology. For the elicitation procedures for obtaining these correlations
from experts one may refer to [60].

4.7 Conclusions

The cornerstone in the multivariate uncertainty analysis is the splitting of the stochastic
model in the modeling of the marginal distributions and the modeling of the dependence
structure. Modeling the dependence structure is the most cumbersome part; a multi-
dimensional dependence model has to be employed, based on the available information.
When adequate information is available, one may use a multidimensional copula (JNT
methodology) for the system modeling. In this case, the system model is build on the
system correlation matrix. The main problems with this method derive from the re-
quirement that this matrix should be positive semi-definite. Although by definition every
correlation matrix fulfills this property, in most cases correlation matrices are obtained
by noisy procedures that may lead to non-consistency. In this case, we should repair the
problems with positive semi-definiteness and convert the matrix into a consistent one.
When the deviation from the original matrix is small, this procedure may provide a good
answer to the problem. When the dimension and the uncertainty of the model increases,
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this deviation may be high. In this case, we need methods that may help us to model,
based on the available information only. These methods are the graphical models trees
and vines. In this case, the system model is based on the specification of conditional
correlations and the obtained model is always consistent. Obtaining these conditional
correlations however may prove a cumbersome procedure.

An alternative approach for the modeling of high-dimensional distributions is pre-
sented in the next chapter. In particular, we try to simplify the multidimensional depen-
dence model by a specific risk-averse model-reduction technique. In this case, instead of
trying to build the dependence model between all the r.v., we divide the set of r.v. in
groups and define a reduced multidimensional dependence model of these groups. These
groups are called stochastic plants.
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Chapter 5

Stochastic Plants

In the previous chapter, the basic methodologies for the sampling of the joint distribu-
tion of a vector of correlated r.v. were presented. The sampling routines are based on
the splitting of the modeling of marginal distributions from the dependence modeling
and the representation of the dependence structure by a multidimensional dependence
model using multivariate copulas (JNT methodology) or appropriate graphical models
(trees/vines). For the construction of these models, overall or partial information on
the bivariate dependencies is needed. For models involving a large number of r.v., the
difficulty in representing uncertainty is increased, either due to a lack of data or model
complexity. In this chapter we discuss alternative methods for dealing with the prob-
lem of high-dimensionality. In particular, model reduction techniques are proposed, i.e.
simplifying approximations of parts of the stochastic model. We present the theory for
the derivation of such approximations that are consistent with two prerequisites: they
are simpler and they bound the uncertainty of the SSM. These model approximations are
called stochastic plants (SP’s).

In section 5.1, we present a basic observation that is used for the formulation of
these model approximations, namely the existence of clusters of system inputs that co-
fluctuate in time. Perfect positive dependence may be used for the modeling of this type
of stochasticity. In section 5.2, the theory and properties of such models are presented
(Stochastic Bounds Methodology). It is shown that these stochastic models correspond
to the Fréchet-Hoeffding bounds CL and CU and that they offer the natural bounds to
the aggregate stochasticity of the cluster. Perfect positive dependence (comonotonicity -
upper bound CU ) corresponds to the highest-risk case, while perfect negative dependence
(countermonotonicity - lower bound CL), or under some assumptions independence, cor-
responds to the lowest-risk case. It is concluded that comonotonicity offers a prudent but
yet accurate approach for the modeling of such clusters of r.v. This basic idea is used in
section 5.3 for the definition of the stochastic plant concept. In section 5.4, the properties
of this concept for the case of a wind stochastic plant are investigated, by looking at the
sensitivity of the aggregate power output to the stochastic dependence structure and the
marginal wind speed distributions. In section 5.5, the conclusions for the use of stochastic
plants in power system stochastic modeling are presented.
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5.1 The co-fluctuation of stochastic inputs

In Fig. 5.1, measurement data of the power output from a windpark in The Netherlands
are presented∗. The WTGs are grid-connected by means of four feeders and a single
distribution transformer at the point of common coupling. The measurements consist of
5-min average active power values, supplied by each feeder to the transformer. We can see
that the power output at the feeders co-fluctuate in time, due to the uniform wind activity
in the area of the wind park. In Fig. 5.1b, the scatter diagram for the measurements
in two of the feeders is presented. The co-fluctuation corresponds to a strong positive
dependence.

This co-fluctuation is explicitly observed within clusters of stochastic inputs in the
power system. Two types of such clusters may be identified:

• Load clusters comprising loads of the same type. They are positively correlated due
to their subjection to a common customer behavior.

• Stochastic generation clusters comprising SG units of the same type, situated in
a relatively small geographic area. They are positively correlated due to mutual
coupling to a uniform prime-energy mover.

Hence, the r.v. that belong to such a cluster are strongly positively dependent. There-
fore, models of perfect positive dependence may be used to approximate the dependence
structure within the cluster. In the following, we present the theory concerning the deriva-
tion of these models and investigate their properties: they offer the natural bounds to
the stochasticity of the cluster, corresponding to the worst-case scenario for the cluster’s
aggregate power output, i.e. the case of maximum variability.

5.2 Stochastic Bounds Methodology (SBM)

In section 3.7.2, the basic bounds inequality for copula functions has been presented
(equation 3.8), which states that the Fréchet-Hoeffding bounds CL and CU offer the
natural bounds to all possible copulas. According to proposition 3.7.2, these two copulas
correspond to the cases of perfect negative and positive dependence respectively. Thus, the
copula inequality (3.8) may be interpreted in the following way: ”all possible dependence
structures between two r.v. are bounded between the cases of perfect negative (lower
bound) and perfect positive dependence (upper bound)”. An alternative terminology for
the copulas CU and CL, broadly used in risk management literature, is comonotonicity
and countermonotonicity respectively [38,35,36].

In order to obtain an insight to this inequality, one can refer to the example in section
3.4, where the case of correlated normals was presented. Different distributions of the
sum of r.v. around the same central point are obtained by varying the correlation between
−1 and 1 (Fig. 3.5). For maximum negative correlation (ρ = −1 - countermonotonicity),
the variance of the sum is minimal, while for maximum positive correlation (ρ = 1 -
comonotonicity) the respective variance is maximal. In the following, we present the
generalization of the above results for all types of r.v.

∗The windpark is located in Zeewolde, The Netherlands. The data are provided by NUON.
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(b) Scatter diagram - 2 weeks

Figure 5.1: Time-series and scatter diagram of 5-minute measurements of active power
output of a windpark.
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5.2.1 Upper bound: comonotonicity

Comonotonicity is a dependence concept that represents a form of extreme positive de-
pendence between r.v. Comonotonic r.v. always vary in the same way, meaning that if
one increases, then all the others increase too. Such dependence can occur if all variables
are increasing functions of the same underlying random factor. If the r.v. Y1, Y2, . . . , YM

are comonotonic, they can be expressed as [36]:

Comonotonicity : Ym = F−1
Ym

(U), m = 1 . . .M, (5.1)

where U is a r.v. that is uniformly distributed on the unit interval. This functional
relationship may be observed for the bi-dimensional case in Fig. 3.9, where the copula
CU is presented. In this case, the same random generator U is used for the system
modeling. Comonotonicity is a more general concept than the perfect (linear) correlation,
as it includes all cases of perfect positive non-linear dependence.

By (Y C
1 , Y C

2 , . . . , Y C
M ) we denote the comonotonic version of the random vector (Y1, Y2,

. . . , YM ), i.e. a random vector with the same marginal distributions, but with a comono-
tonic dependence structure between the Y C

m ’s. The sums
∑

m Ym and
∑

m Y C
m have the

same expected value, but different overall probability distributions. As shown in [36], the
comonotonic case provides always the extreme distribution for this sum.

A way to characterize the effect of dependence is via the concept of stochastic orders.
It can be shown that for all convex functions g, the following relation holds [62]:

E

[
g

(
M∑

m=1

Ym

)]
≤ E

[
g

(
M∑

m=1

Y C
m

)]
(5.2)

where E[·] denotes the expectation operator. This is equivalent to saying that ’the sum∑
m Ym is smaller than

∑
m Y C

m , with respect to the convex order on sets of r.v.’. Sto-
chastic orderings, such as the one implied by equation (5.2), provide sophisticated means
of comparing random quantities in terms of their variability. To see this, consider the
function g(x) = x2. Given that the sums have the same expectations, equation (5.2)
immediately results into an ordering of the respective variances:

V ar

(
M∑

m=1

Ym

)
≤ V ar

(
M∑

m=1

Y C
m

)
(5.3)

Thus, in terms of risk assessment, comonotonicity provides the higher risk case corre-
sponding to a worst-case scenario (extreme distribution of the sum of the r.v.). By
allowing any convex function in equation (5.2), a more comprehensive comparison of the
distributions is achieved, than by just considering the variance as in equation (5.3). Just
as comonotonicity provides a more general dependence concept than perfect correlation,
the resulting convex order of equation (5.2) provides a more general comparison of risk
than the variance.

5.2.2 Lower bounds: countermonotonicity - independence

Although comonotonicity always corresponds of the upper bound of the system stochas-
ticity, the lower bound is more difficult to obtain, since the Fréchet-Hoefding lower bound
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CL may be applied only in the case of two r.v. However, under the assumption of a weak
positive dependence between a number of r.v., a lower bound can be obtained for the
multidimensional case as well.

In the case of two r.v., the lower bound corresponds to the case of perfect negative
correlation between them, i.e. the case of countermonotonicity [38]. Counter-monotonic
pairs of r.v. constitute an extreme form of negative dependence, whereby the one variable
is a decreasing function of the other. In the case that the r.v. Y1 and Y2 are counter-
monotonic, they can be expressed as:

Countermonotonicity : Y1 = F−1
Y1

(U), Y2 = F−1
Y2

(1− U). (5.4)

By (Y CM
1 , Y CM

2 ) we denote the countermonotonic version of the bidimensional random
vector (Y1, Y2). It can be shown that for all convex functions g, the following convex order
holds [38]:

E
[
g
(
Y CM

1 + Y CM
2

)]
≤ E [g (Y1 + Y2)] . (5.5)

Hence, countermonotonicity offers always the lower stochastic bound to the aggregate
stochasticity of two r.v. However, in the case of more than two r.v., the application of
this concept is not possible, since by definition more than two r.v. cannot be mutually
perfectly negatively dependent†.

However, in most cases, stochastic generators present non-negative dependence. Char-
acteristic case is the correlations obtained for the wind speed measurements for The
Netherlands, presented in section 4.2. As discussed, the minimum value in the correlation
matrix is 0.47. In the case that it is known that a weak positive dependence exists between
a number of r.v., the lower bound shifts to the case of independence. In particular, for
a vector of r.v. that are positive cumulative dependent‡, the case of independence offers
the lower stochastic bound to the aggregate stochasticity of the vector. When the r.v.
Y1, Y2, . . . , YM are independent, they can be expressed as:

Independence : Ym = F−1
Ym

(Um), m = 1 . . .M. (5.6)

As may be seen, different random generators Um are used for each r.v. In this case it can
be shown that for all convex functions g, the following convex order holds [38]:

E

[
g

(
M∑

m=1

Y I
m

)]
≤ E

[
g

(
M∑

m=1

Ym

)]
(5.7)

where (Y I
1 , Y I

2 , . . . , Y I
M ) is the independent version of the random vector (Y1, Y2, . . . , YM ).

Thus, in terms of risk assessment, in the presence of a weak positive dependence between
the r.v. belonging to a vector of r.v., the case of independence provides the lower-risk case,
corresponding to a best-case scenario (distribution of the sum of the r.v. with minimum
variability).

†Let Y1 and Y2 two perfectly negatively correlated r.v. If Y3 is perfectly negatively correlated to Y1,
then by definition it is perfectly positively correlated to Y2, since Y2 is also perfectly negatively correlated
to Y1.

‡As defined by Denuit et al. [34], positive cumulative dependence is a weak form of positive dependence.
The intuitive meaning is that, under this assumption, the probability that these r.v. assume ’large’ values
together is greater than if they were independent.
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Figure 5.2: Independent/comonotonic/countermonotonic sampling and generated se-
quences.
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In Fig. 5.2, the results of the modeling of a Weibull W1 and a Normal N2 r.v. according
to these dependence concepts is presented. In the upper row, the case of independence
is presented, in the second row the case of comonotonicity and in the third row the case
of countermonotonicity. In the second column, the respective copulas i.e. the scatter
diagrams for the random generators U1 and U2 are presented, while in the third column,
the scatter diagrams for the r.v. W1 and N2 are shown, generated according to the
equations (5.6), (5.1) and (5.4). In the fourth column, the generated sample sequences
are presented. We can see that the comonotonic sequences follow the same variations,
while the countermonotonic ones vary in an opposite fashion.

For power system modeling, different dependence scenarios correspond to different op-
erating conditions. Comonotonicity corresponds to operation where the stochastic power
injections co-fluctuate; independence corresponds to operation where the stochastic power
injections are combined randomly, while in the case of countermonotonicity, the injections
fluctuate in an opposite fashion. As presented in the example in section 2.10, each de-
pendence scenario corresponds to a different ‘matching’ of the system inputs, leading to a
unique distribution of their sum. By considering different dependence structures between
the system inputs, we obtain different distributions of their sum around the same mean.
The extreme dependence concepts correspond to the extreme forms of this probability
distribution.

As comonotonicity produces sums of r.v. with the highest risk, it is concluded that
in a prudent approach, when r.v. are positively dependent but information about the
dependence structure is unavailable, comonotonicity should be used rather than indepen-
dence, as the latter concept would yield a substantial understatement of the aggregate
volatility.

In the following section, we show how the stochastic bounds may be used to reduce the
high-dimensionality of power system stochastic modeling. The main idea is to approxi-
mate clusters of system inputs by their upper stochastic bounds and use these bounds in
the stochastic model.

5.3 Stochastic plants

As discussed in section 5.1, clusters of positively dependent inputs are present in the power
system stochastic modeling. The dependence structure within a cluster can be approxi-
mated by comonotonicity; according to the SBM, this will correspond to the highest-risk
case for the aggregate stochasticity of the cluster. This leads to a model reduction, since
the system dependence structure is reduced to the definition of the interdependencies
between the respective clusters, instead of the complete dependence structure between all
variables. In the following, we present how this model reduction is performed.

5.3.1 Stochastic model reduction

In the general case, the system stochastic model can be subdivided into K SG and M load
clusters of positively correlated inputs. Each SG cluster k and load cluster m contains
a total of gk SG units and lm loads respectively, as shown in Fig. 5.3. Each load r.v.
is denoted as Lml and each SG r.v. as Gkg. Thus, according to equation (5.1), the
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Figure 5.3: Model reduction by the application of the stochastic plants concept. A single
random generator U is used for the modeling of each stochastic plant.

dependence structure in each cluster is modeled as:

SG cluster k : Gkg = F−1
Gkg

(Uk), g = 1, . . . , gk (5.8)

Load cluster m : Lml = F−1
Lml

(UK+m), l = 1, . . . , lm (5.9)

for k = 1 . . .K and m = 1 . . .M .
This comonotonic approximation of the dependence structure of a cluster is defined

as a Stochastic Plant (SP). According to the SBM, the obtained aggregate distributions
ΣgGgk(Uk) and ΣmLml(Um) correspond to the extreme power output distribution of the
cluster.

This is a worst-case approach and offers a tradeoff between modeling simplicity and
accuracy. In particular, the closer the cluster dependence structure is to perfect pos-
itive dependence, the less the aggregate distribution deviates from reality. The choice
of clusters is a decision of the designer; however, when the dependence structure is far
from perfect positive correlation, such an approximation will lead to conservative mod-
eling results. The general applicability of the method permits the definition of clusters
that can comprise different types of generators (loads), i.e. different types of marginal
distributions. Thus, the stochastic plant concept provides a pragmatic solution for the
system modeling when no information concerning the dependence structure is available,
or when it is too cumbersome to work with.

The application of the stochastic plants leads to a model reduction. In particular,
instead of defining the dependence structure between all the system r.v., the system
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Figure 5.4: Clustering of stochastic plants comprising stochastic generators and loads.

stochastic model is decomposed into the definition of the dependence structure between
the comonotonic clusters. Hence, a problem involving a total number of ΣK

k=1(gk) +
ΣM

m=1(lm) r.v. (Fig. 5.3) is decomposed into the modeling of the dependencies between
K +M stochastic plants. Since for each stochastic plant one random generator U is used,
the techniques for the multidimensional dependence modeling presented in the previous
chapter may be applied directly.

5.3.2 Stochastic plants comprising SG units and loads

A special case is when a stochastic plant comprises both stochastic generators as well as
loads. A worst-case approach in this case corresponds to a dependence scenario with a
combination of high (low) load and low (high) stochastic generation. This is equivalent
to a re-clustering (grouping) of generation and load clusters. Note that the power output
of the combined cluster corresponds to the difference (rather than the sum) of generation
and load. Thus, if the upper bound corresponds to comonotonicity between generation
and the negative of the load, then generation and load must be countermonotonic. Hence,
the sampling of the upper bound for the group is obtained by equation 5.4:

SG component k : Gkg = F−1
Gkg

(Ui), g = 1, . . . , gk (5.10)

Load component m : Lml = F−1
Lml

(1− Ui), l = 1, . . . , lm (5.11)

In Fig. 5.4, this clustering is presented. A single random generator Ui is used for the
modeling of the cluster.

Thus, the stochastic plants are model approximations that permit the reduction of
the stochastic system model to the definition of the mutual stochasticity between clusters
of system inputs. As mentioned, the closer the cluster dependence structure is to perfect
positive dependence, the better these approximations represent reality. In the following
section we investigate the accuracy of the approximations for the case of a stochastic
plant comprising wind turbine generators (WTGs).
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5.4 Wind stochastic plant: example

We consider a stochastic plant comprising 50 WTGs situated in distinct sites in the
system (wind stochastic plant - WSP). Given the set of Weibull marginal wind speed
distributions, we investigate the impact of the stochastic dependence structure on the
power output of the WSP.

The wind speed distributions describing the wind behavior at the location of each
WTG are generated randomly based on the general characteristics of the wind regime
in The Netherlands. This is achieved by the generation of the Weibull parameters β
and η for the distributions at the 50 generation sites as random numbers drawn in a
respective interval: β ∈ [1.6, 2.8] and η ∈ [6, 10]. These intervals are obtained from the
wind speed data analysis presented in the European Wind Atlas [92], and characterize the
wind regime in The Netherlands. Using this method, 50 different Weibull distributions
are generated randomly, corresponding to the general wind characteristics in the greater
geographic area. A pitch-controlled WTG of 1MW nominal power is connected to each
site, with cut-in, nominal and cut-out wind speeds of 3.5, 14 and 25 m/s respectively.

We choose these random wind speed marginals in order to investigate the impact
of the dependence structure on the aggregate power output of the WSP. We divide the
analysis in two parts:

1. Part I : we investigate the properties of the aggregate power output distributions
of the WSP for different dependence structures, varying from independence to
comonotonicity, for the same set of randomly generated wind speed marginal distri-
butions. This analysis shows the impact of the different dependence structures on
the type of the aggregate power output distribution of the WSP.

2. Part II : We repeat the simulation of part I 10000 times, each time for a different set
of randomly generated Weibull marginal distributions. We investigate the impact of
the different marginal distributions on the properties of the aggregate power output
distribution of the WSP. This analysis shows the sensitivity of the aggregate power
output distribution of the WSP to the marginal distributions.

5.4.1 Part I: Impact of the dependence structure

For this study case, the aggregate power output distribution of the WSP is investigated
for different stochastic dependence scenarios. For each scenario, all mutual correlations
between the r.v are considered to be equal to each other. In total 12 scenarios were
obtained by increasing the correlations from zero to 1, with a step of 0.1, including the
case of ρ = 0.95. In this way, consecutive dependence structures are obtained, from the
lower stochastic bound (independence) to the upper one (comonotonicity).

In Appendix C.2, the Weibull parameters β and η for the wind speed distributions at
the 50 generation sites are presented, generated by the random process presented above.
The JNT methodology has been used for the simulation of the WSP and 10000 samples
were obtained.

In Fig. 5.5, the distributions of the aggregate power output from the WSP for the
different dependence scenarios are presented. In Table 5.1, the respective mean values and
standard deviations are shown. We can see that, for all dependence scenarios, the power
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Figure 5.5: Wind stochastic plant aggregate power output distributions.
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Table 5.1: Wind stochastic plant aggregate power output mean values, standard devia-
tions and 5%-95% quantiles.

ρ 0 0.1 0.2 0.3 0.4 0.5

Mean (MW) 18.48 18.42 18.42 18.36 18.47 18.53

St.Dev. (MW) 2.44 5.30 7.14 8.61 9.88 11.10

q5 14.58 10.10 7.41 5.36 4.09 2.85

q95 22.54 27.54 30.91 33.44 36.61 38.52

ρ 0.6 0.7 0.8 0.9 0.95 1

Mean (MW) 18.29 18.77 18.42 18.38 18.35 18.33

St.Dev. (MW) 12.06 13.31 14.26 15.22 15.54 16.18

q5 1.90 1.33 0.78 0.43 0.27 0.18

q95 40.29 42.54 44.20 45.79 46.80 47.56

output distributions have the same mean. This is an expected result since, as discussed
in section 3.1, the mean value of the sum is determined by the marginal distributions and
is not affected by the dependence structure. Thus, the different dependence structures
yield different distributions around the same central point.

In particular, the transition from independence to comonotonicity results in more
extreme forms of the aggregate power distributions. The standard deviation of these
distributions is increasing with ρ, ranging from a minimum of 2.44MW in the case of
independence (ρ = 0) to a maximum of 16.18MW in the case of comonotonicity (ρ = 1),
as may be seen in Table 5.1. The 5% and 95% quantiles (q5 and q95 respectively) are
also presented in the same table; as may be seen, q5 shifts from 14.58MW in the case of
independence to 0.18MW for comonotonicity, while q95 shifts from 22.54MW to 47.56MW
respectively. Hence, the more the stochastic dependence structure approximates perfect
correlation, the more extreme the aggregate distribution becomes.

The aggregate power output in the case of independence approximates a normal distri-
bution; this is due to the applicability of the central limit theorem as discussed in section
3.2.2. In this case, the variability of the power output is minimal, in accordance to the
SBM theory: independence yields the lower stochastic bound, i.e. the lowest risk case,
the case of minimum variability of the aggregate power output. Hence, independence
corresponds to minimum variability of the stochastic power injections to the system and
a ’best-case scenario’ for the system modeling, leading to a severe underestimation of the
system risk.

On the other hand, comonotonicity (ρ = 1) corresponds to the highest risk case, i.e.
the case when the system stochastic power injections present the highest variability. As
may be seen from the distributions in Fig. 5.5, when the stochastic inputs are highly cor-
related, the assumption of comonotonicity actually yields a good approximation, ensuring
however safety, since it corresponds to the worst-case scenario. As may be seen from Fig.
5.5, starting from ρ = 0.8, the approximation offers adequate accuracy.

5.4.2 Part II: Impact of the marginal distributions

The results of part I correspond to one specific set of marginals. In order to investi-
gate the sensitivity of the obtained results to the choice of the marginal distributions,
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Table 5.2: Mean values and standard deviations of the distributions in Fig. 5.6a.
ρ 0 0.1 0.2 0.3 0.4 0.5

Mean (MW) 18.33 18.33 18.34 18.34 18.34 18.34

St.Dev. (MW) 0.03 0.08 0.11 0.12 0.14 0.16

ρ 0.6 0.7 0.8 0.9 1

Mean (MW) 18.34 18.34 18.34 18.33 18.34

St.Dev. (MW) 0.17 0.19 0.21 0.22 0.24

Table 5.3: Mean values and standard deviations of the distributions in Fig. 5.6b.
ρ 0 0.1 0.2 0.3 0.4 0.5

Mean (MW) 2.44 5.42 7.29 8.78 10.08 11.27

St.Dev. (MW) 0.02 0.05 0.06 0.07 0.08 0.09

ρ 0.6 0.7 0.8 0.9 1

Mean (MW) 12.37 13.42 14.44 15.46 16.47

St.Dev. (MW) 0.09 0.10 0.10 0.11 0.11

the experiment is repeated for 5000 cases. In each case, a different set of 50 randomly
generated Weibull distributions is used for the calculation of the aggregate power output
distribution for 11 dependence scenarios corresponding to the transition from indepen-
dence to comonotonicity. For each scenario, 5000 samples were obtained using the JNT
methodology, yielding a total of 5000 cases × 11 dependence scenarios × 5000 samples
for the system analysis.

For each of the 5000 cases and the 11 dependence scenarios, the mean value and
standard deviation of the WSP power output is computed from the 5000 samples. This
yields a total of 5000 values for each of the two statistics for each dependence scenario.
In Fig. 5.6, the distributions of the two statistics over the 5000 values are presented, for
each dependence scenario.

In Fig. 5.6a, 11 distributions for the mean value are presented, each for a different
dependence scenario. In Table 5.2, the mean values and standard deviations of the dis-
tributions in Fig. 5.6a are presented. The distributions in Fig. 5.6a have the same mean
of 18.33MW and a low standard deviation that increases during the transition from inde-
pendence to comonotonicity, from 0.03MW to 0.24MW. Although the mean value of the
aggregate power output of the WSP is defined by the marginal distributions, we can see
that its sensitivity on the specific wind regime is low. Hence, for the wind regime in The
Netherlands, the mean value of the output of the WSP may be expected to be in a small
interval around 18.33MW. This is mainly due to the fact that the power output of the
WSP is obtained as the sum of the power output of the 50 WTGs; the uncertainty is in
a way shared between each set of wind speed distributions for the 50 sites and therefore
the mean falls in the same region. The increase in the standard deviation of the mean
distribution while shifting from independence to comonotonicity is an indication of the
increase in system variability: the higher the dependence between the members of the
WSP, the higher the uncertainty of the mean value of their aggregate distribution.

Similarly, in Fig. 5.6b, 11 distributions of the standard deviation for each dependence
scenario are presented. These distributions indicate that the standard deviation of the
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Figure 5.6: Mean value and standard deviation distributions for the WSP aggregate power
output distribution for the 5000 cases of different marginals.
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power output of the WSP shows a clear transition to higher variability while shifting from
independence to comonotonicity. We can see from Table 5.3 that the mean values of the
distributions in Fig. 5.6b increase from 2.44MW in the case of independence to 16.47MW
for comonotonicity. The standard deviation of the distributions in Fig. 5.6b increases
only slightly during this transition and remains low. We may therefore infer that the
sensitivity of the variability of the aggregate output power of the WSP to the marginal
distributions is low, and is mainly determined by the choice of the dependence structure.

Therefore, a basic result may be obtained for a WSP in a certain wind regime: the
aggregate power output is mainly determined by the correct representation of the stochas-
tic dependence structure. Thus, even if the accuracy in the definition of the wind speed
marginal distributions is low, the accuracy in the definition of the aggregate power output
depends mainly on the dependence assumption. The wide-spread use of the assumption
of independence leads to a best-case scenario for the aggregate power output distribution,
i.e. a case of minimum variability. The case of comonotonicity offers a prudent and, in
many cases, adequately accurate modeling approach.

5.5 Conclusions

An alternative approach for the treatment of the high-dimensionality of the stochastic
system model has been presented in this chapter. In particular, the stochastic plants
concept has been introduced as model entities that bound the stochasticity of a cluster
of r.v. Comonotonicity is proposed for the modeling of the dependence structure in each
stochastic plant. In this case, the multidimensional dependence model is reduced to the
definition of the interdependencies between the stochastic plants. The results for a wind
stochastic plant show that this model offers a prudent yet accurate approximation of
reality. The sensitivity of the aggregate power output of the wind stochastic plant to the
marginal distributions is low. Yet, the sensitivity to the dependence structure is high.

In the following chapter, we present the application of this theory to the power system
stochastic modeling. A distribution system may be reduced to a single stochastic plant,
while the model reduction technique for the case of a bulk power system leads to the
minimization of the dimension of the stochastic model.
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Chapter 6

Applications

In this chapter, the impact of stochastic generation in power systems is investigated. Two
basic planning problems are considered: the integration of SG in a distribution system
and the integration of SG in a bulk power system.

1. Distribution System: the impact of the large-scale implementation of wind power
in a typical distribution system in The Netherlands is presented. We discuss the
appropriateness of different stochastic models and investigate the transition from the
traditional passive to an active network structure by increasing the SG penetration
level. A separate section is devoted to the voltage control problem, i.e. the analysis
of the participation of SG units in the reactive power support of the network.

2. Bulk Power System: the transition from the vertical to a horizontal power system
structure is investigated, by increasing the penetration level of wind power in a bulk
power system.

6.1 Integration of SG in Distribution Systems

6.1.1 Simulation data

The study case involves the implementation of 17 WTGs in a typical 10kV radial distri-
bution network in The Netherlands∗. The system comprises a total of 34 buses and 38
lines. The system data are presented in Appendix C.3. The single-line diagram for the
system is given in Fig. 6.1. The load data presented in Table C.1 correspond to the mean
value of the high-load state of the respective load. Node 2 is the slack bus for the system
load-flow analysis.

The mean aggregate system load for the high-load state is 3.486MW/1.851MVar. Two
loading states are investigated:

1. Current state: the current state of the system is considered, namely 3.484MW/1.845MVar
high-load state aggregate load.

∗The distribution test system is located in Lelystad, The Netherlands. The data are provided by
NUON.
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Figure 6.1: Single-line diagram for the 34-bus/38-line radial test distribution system.
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2. Future state: a load growth of 100% is considered as a future state of the system;
the high-load state aggregate load in this case is 6.972MW/3.702MVar.

Three wind power penetration levels are investigated:

1. No penetration: this scenario corresponds to the system operation without the
incorporation of wind power.

2. Medium penetration: this scenario corresponds to the implementation of 17 WTGs,
each of 0.2MW nominal power. In this case, the nominal wind power capacity in
the system equals 3.4MW, reaching the low loading state of the system.

3. High penetration: the implementation of 17 WTGs, each of 0.4MW nominal power
is considered. The nominal wind power capacity reaches 6.8MW, corresponding to
the loading in the future state of the system.

The study case is consistent to the work presented in [70] and [68].

6.1.2 Marginal distributions

Modeling of loads

The system loads are the aggregate loads at the MV/LV transformers in the system.
The methodology presented in section 2.9.2 is used for the modeling of the load active
power: the active power distribution of each load is obtained as a mixture of normals
corresponding to different time-frames (TF) of operation. A 3-TF segmentation is chosen.
The values specified in the Table C.1 correspond to the mean of the high-load TF, while
the standard deviation and the relative duration of each TF are consistent with the values
presented for the 3-TF segmentation in Table 2.1. The load reactive power samples are
obtained from the active power samples under the assumption of a constant load power
factor.

As presented in section 2.9.2, the mixture of normals can be sampled by the use of
an independent uniform r.v. UTF as TF-indicator. In particular, based on the relative
duration of each TF, each sample drawn from UTF is matched to a specific TF and a
sample is drawn from the normal distribution belonging to the respective TF. Since the
UTF corresponds to the time period of system operation, the time-dependence of all loads
is modeled using the same indicator; according to the choice of the TF, the respective
distribution is chosen for all system loads. For example, when the TF-indicator shows
that the system is in the high-load state, the normals corresponding to the high-load
state are chosen for all loads. Further they can be sampled based on a defined inter-TF
dependence structure, corresponding to the correlation of the random component of the
system load in each TF.

Modeling of wind power generation

The output of each WTG is modeled based on the principles presented in section 2.9.3.
The generation sites of the WTGs are indicated in Fig. 6.1, by the notation ’A’. The
Weibull parameters for the wind speed distributions in hub height at those sites are
presented in Table C.1. The reactive power output of the WTGs is depends on control
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strategies. The role of stochastic generators with regard to the reactive power support of
the system is discussed in section 6.2.

According to the approach presented in this thesis, for the stochastic modeling of the
system, the dependence structure between the system stochastic inputs has to be modeled.
In the following section we investigate the appropriateness of different dependence models
for the stochastic modeling of distribution systems.

6.1.3 Appropriate dependence model

For system design purposes, it is important to know the system behavior under extreme
stochastic generation/consumption patterns. In most modeling cases, appropriate data
are not available for the modeling of the dependence structure in the system, so a worst-
case scenario approximation should be used for a safe system design.

These extreme stochastic generation/consumption patterns may be obtained by the
use of the stochastic plants theory presented in chapter 5. Since the distribution system
spans a limited geographic area, comonotonicity provides a good approximation of the
dependence structure between the wind speed r.v. The same holds for the loads in each
TF, since the same type of loads are present in the distribution system. Therefore, all
SG units in the distribution network can be considered as one generation stochastic plant
and all time-conditioned loads as one load stochastic plant.

Based on the extreme dependence concepts presented in chapter 5, three extreme cases
for the modeling of the dependence structure between the two stochastic plants (intra-SP
dependence structure) can be considered:

1. Comonotonicity : the intra-SP dependence structure is modeled based on comonotonic-
ity. Since the aggregate power output of the SPs corresponds to their difference, this
case corresponds to the lower stochastic bound of the intra-SP dependence structure
and therefore the lower extreme case for the stochastic modeling of the system.

2. Independence: independence is used for the modeling of the intra-SP dependence
structure. A moderate extreme for the system modeling is obtained in this case, yet
applicable in many cases when the SG presents no correlation to the system load.

3. Countermonotonicity : this case corresponds to the upper stochastic bound of the
intra-SP dependence structure and therefore the upper extreme case for the sto-
chastic modeling of the system (maximum variability)†.

The system was simulated for the above three extreme dependence scenarios. In addi-
tion, the system lower stochastic bound was simulated, i.e. the case of total independence
between the system inputs (loads and WTGs). In Fig. 6.2, the results of a 5000-sample
MCS for the voltage distributions at a typical system node for the four different depen-
dence scenarios and two wind power penetration levels (no penetration/high penetration)
are presented. In all cases, the same marginals are used and only the dependence struc-
ture is changed. We can see that the case of total independence (labeled ’lower bound ’)
yields a minimum variability of the voltage distribution. The use of this assumption leads
to fallacy, since the minimum variability for the node voltage is obtained.

†This case corresponds to a stochastic plant comprising both SG units and loads, as presented in
section 5.3.2.
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Figure 6.2: Voltage distributions at node 42 under different extreme dependence scenarios.

We can also see that the implementation of SG leads to an increase in the variability of
the node voltage. The system upper stochastic bounds in this case yield a higher voltage
deviation. Fig. 6.2b shows that the assumption of total independence results in a voltage
that doesn’t exceed the limits of 0.95p.u. and 1.05p.u. However, the upper stochastic
bounds show that this is a fallacy. The positive dependence between the system inputs
leads to an increase in the variability of the node voltage and a severe risk of exceeding
the voltage limits.

In Fig. 6.3, the power flow distributions in the 47-43 are presented, i.e. the power
flow between the distribution network and the transmission system. It is evident that
the same results are obtained: the lower stochastic bound yields the minimum variability
for the power flow distributions. Fig. 6.3b shows that the wind power integration in the
system leads to a severe increase in the variability of the power flows. The assumption
of total independence leads to a severe underestimation of this variability and a faulty
system design. In particular, the lower stochastic bound shows that the link should be
dimensioned for about 2MW of power, while the upper stochastic bounds show that an
inverse power flow of 6MW can occur.

In Table 6.1, the mean values and standard deviations for the voltage and power flow
distributions in the different dependence concepts are presented. We can see that for
each penetration level, the distributions present the same central points (mean), while
the standard deviations are maximal for the upper stochastic bounds. The integration
of wind power in the network causes a severe increase of the variability of the voltage
distributions, which is maximal in the case of intra-SP countermonotonicity. This case
yields the worst-case scenario for the system.

The upper stochastic bound corresponds to the maximum variability of the power
injections into the system, i.e. maximum system stochastic stress, maximum power flows
and maximum voltage deviation. As this case offers a prudent system design in terms
of safety and generality, the upper stochastic bound will be further used for the system
analysis.
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Figure 6.3: Power flow distributions in branch 47-43 under different extreme dependence
scenarios.

Table 6.1: Mean values and standard deviations for the voltage and power flow distribu-
tions in the different extreme dependence concepts.

Voltage node 42 (p.u.) Power flow line 47-43 (MW)
Mean St.D. Mean St.D.

Wind Penetration: No High No High No High No High
Lower bound 0.97 0.99 0.0113 0.0119 2.30 -0.30 0.72 0.85
Comonotonicity 0.97 0.99 0.0120 0.0218 2.30 -0.27 0.77 2.00
Independence 0.97 0.99 0.0119 0.0350 2.29 -0.30 0.76 2.22
Countermnotonicity 0.97 0.99 0.0119 0.0377 2.29 -0.27 0.76 2.40
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Figure 6.4: Power flow distributions in the branch 47-43, in two system states under
different wind power penetration levels.

Table 6.2: Mean values/standard deviations of the power flow distributions in line 47-43.
Mean value (MW) Standard deviation (MW)

Penetration level: No Medium High No Medium High
Current state 2.29 0.99 -0.25 0.76 1.51 2.39
Future state 5.02 3.68 2.39 1.71 2.29 3.09

6.1.4 Active distribution network

In a horizontally-operated power system, the distribution systems become active net-
works; besides distributed loads, they also contain generation. The power flow between
the transmission system and the active distribution networks is no longer uni-directional
(down) but can be bi-directional. In this section, we investigate this transition towards
an active distribution network due to the incorporation of wind power in the distribution
system of Fig. 6.1.

In particular, the power flow distribution in the link between the HV and the MV
system (branch 47-43) is computed. In Fig. 6.4, the results of a 5000-sample MCS are
presented for the three wind power penetration levels and the two system states defined
in section 6.1.1. In the case that there is no wind power penetration, the distribution
system is a passive network and the power flow distribution is always positive (power flow
from the transmission system towards the distribution network). The increasing wind
power penetration induces negative power flows, i.e. power flows from the distribution to
the transmission system.

The distributions in Fig. 6.4 show the transition from a passive to an active network
structure due to the integration of wind power. The power flows become bi-directional
and the distributions span the negative axis.
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Figure 6.5: System power loss distributions for two system states and three wind power
penetration levels.

Table 6.3: Mean and annual system losses.
Mean system losses (MW) Annual system losses (GWh)

Penetration level: No Medium High No Medium High
Current state 0.089 0.056 0.078 0.78 0.49 0.69
Future state 0.45 0.34 0.28 3.94 2.94 2.48

6.1.5 System losses

In Fig. 6.5, the system losses are presented for the two loading states of the system and
for the different penetration levels of wind power. In Table 6.3 the mean values for the
distributions of the system losses of Fig. 6.5 are presented.

The integration of wind power has a diverse impact on the system losses, depending on
both the penetration level and the system state. In the current system state, the medium
penetration level leads to a minimization of the system losses, due to the reduction of the
system power flows, while in the high penetration level the system losses increase again,
due to the presence of high reverse power flows. For the future system state, the increase
in wind power penetration leads to a subsequent reduction of the system losses.

Thus, the anticipated loss reduction due to the incorporation of SG in the distrib-
ution systems depends on the loading level of the system. It should be noted however
that by choosing the upper stochastic bound for the system dependence modeling, the
resulting distributions correspond to the maximum system losses since the dependence
model corresponds to the maximum stochastic power flows in the system.
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6.2 Voltage control by SG units

Besides the supply of active power to the system, the DG units can perform additional
tasks that are mainly associated with system stability and the quality of power supply,
the so-called ancillary services. Those ancillary services are achieved by connecting the
DG units to the system via ’smart’ power-electronic converters (PECs)-interfaces. The
primary task of the PECs is to control the operation and optimize the real power output
of the DG unit, while their secondary task involves the following functions (ancillary
services):

• reactive power support of the system (voltage control),

• improvement of power quality (voltage sag compensation, harmonics filtering),

• fault behavior, frequency control.

For an extensive analysis on these issues, one should refer to [61]. Here we investigate the
role of SG units in a distribution system with regard to the first issue, i.e. the reactive
power support of the system.

6.2.1 Voltage control: theory

The objective of voltage control is to maintain the RMS value of the voltage within spec-
ified limits, independent of the generation and consumption [57]. Conventional voltage
control in the HV transmission network is mainly performed by the large power plants. In
distribution networks, the voltage control is done by tap changers in distribution trans-
formers. This control is relatively slow and compensates for the voltage drop along the
line, based on the assumption that only loads are connected to it. As discussed above,
the introduction of DG units changes the power flows in the distribution system. The
changes in magnitude and direction of the power result in changing voltages due to the
current-dependent voltage drop along the line, which has a relatively high impedance in
the LV and MV networks [61]. DG units connected to the grid by PECs can contribute to
the voltage control, by regulating their reactive power output. Due to their geographical
dispersion, distributed/local voltage control can be performed.

DG reactive power capacity

The reactive power output of the DG unit i can take all values in an interval ranging
between maximum inductive (−Qimax

) and maximum capacitive (+Qimax
) power, that is

limited by the maximum apparent power output of the DG unit Si, which in its turn is
limited by the maximum current rating of the PEC. If Pi(t) is the active power production
of DG unit i at time t, the maximum reactive power that can be delivered by the unit is:

Qimax
(t) = ±

√
S2

i − P 2
i (t) (6.1)

Thus, the reactive power capacity of each unit Qimax
varies in time, depending on the

active power generation Pi(t). As such, the voltage control capability of the unit varies
in time and depends on the active power output of the unit. In the case of SG, Pi(t)
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is a random variable; therefore, the reactive power capacity of each unit will also vary
stochastically.

This necessitates a stochastic approach to analyze the contribution of stochastic gen-
eration in the reactive power support of the system. By sampling the vector P, we obtain
the reactive power capacity of each unit Qimax

and the problem is decomposed from
the time-domain. Knowing the vector Qmax for the different snapshots of operation al-
lows us to proceed with the analysis of different voltage control strategies for the system
operation.

Voltage control strategies

The voltage V at the connection node defines the general rule that is applied for the
regulation of the reactive power of the unit. In general, two types of voltage control
algorithms can be recognized:

1. Threshold control : an interval [V T
min, V T

max] is defined where the voltage is considered
to be normal and no action is necessary. The thresholds V T

min, V T
max are defined for a

specific voltage deviation ∆VT from the nominal voltage Vnom: V T
min = Vnom−∆VT

and V T
max = Vnom + ∆VT . Typical values for Vnom and ∆VT are: Vnom = 1p.u. and

∆VT = 0.05p.u. When V exceeds these thresholds, the reactive power output is set
to a predefined value Qthr:

• IF V ≤ Vmin THEN inject Qthr to the system (capacitive behavior)
• IF V ≥ Vmax THEN absorb Qthr from the system (inductive behavior).

Different setpoints can be considered for the reactive power Qthr:

• Constant power factor : the reactive power is supplied by a predefined power
factor: Qithr

= ± tanφ ·Pi. A typical value for the power factor is cos φ = 0.9‡.
• Maximum reactive power : maximum reactive power is supplied: Qithr

=
Qimax

= ±
√

S2
i − P 2

i

2. Droop control : a droop characteristic is used for the regulation of the reactive
power output of the unit in the interval [V D

min, V D
max], where V D

min = Vnom − ∆VD

and V D
max = Vnom + ∆VD. Typical values for Vnom and ∆VD are: Vnom = 1p.u.

and ∆VD = 0.1p.u. For V ∈ [V D
min, V D

max], the reactive power output of the unit i is
proportional to the voltage deviation ∆Vi = Vnom − Vi:

Qi =
Qimax

∆VD
·∆Vi = ci ·∆Vi (6.2)

Outside the interval, maximum reactive power is supplied: Qi = Qimax
= ±

√
S2

i − P 2
i

In Fig. 6.6, the V −Q characteristics of the maximum reactive power threshold control
and the droop control are presented. The gradient of the droop control strategy is defined
based on Qimax

(t). Since Qimax
(t) varies stochastically in time, the V −Q characteristic

will also vary in time. An example of this variation is depicted in Fig. 6.7, where the
respective characteristics for different points in time are presented. Thus, for each sample,
a different voltage control characteristic is obtained for the operation of the unit.

‡This control strategy is used for the reactive power regulation of CHP plants.
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Figure 6.6: Voltage control characteristics of the maximum reactive power threshold con-
trol and the droop control.
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Figure 6.7: Voltage control characteristics for different points in time.
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Equilibrium point

By engaging all units in the voltage control, a distributed control is achieved: the reactive
power support of the system is distributed among the units, based on the voltage control
at the connection nodes. Each unit is assigned a local task (reactive power injection),
which induces a global system change (new voltage profile). This change in voltage can
initiate a new (distributed) control action and this procedure continues until the system
reaches an equilibrium point. This equilibrium point depends on the voltage control
strategy and the active power injections in the system.

Thus, although the voltage control is a local action, it influences a global system
variable, the system voltage. Therefore, the voltage control strategies should be evaluated
based on their impact on the system operation.

Solution algorithm

The voltage control analysis of the system should be performed in two steps:

1. Stochastic time-decomposition: the system inputs are sampled and respective snap-
shots of the operation are obtained. For each snapshot the maximum reactive power
capacity of each SG unit Qimax

(t) is calculated and subsequently the voltage control
characteristics corresponding to the specific time instant are obtained. The system
upper stochastic bound is used for the sampling of the system inputs. This leads to
the worst-case scenario for the voltage distributions in the system.

2. Iterative procedure: an iterative procedure is applied in order to reach the equilib-
rium point for each snapshot of operation obtained by the stochastic time decompo-
sition. The first iteration is calculated as the system steady-state with zero reactive
power output from the DG units. Based on the obtained voltage profile, a control
action is applied at the DG node where the maximum voltage deviation is observed
(in the case of threshold control algorithms the control action takes place only if the
voltage deviation exceeds ∆VT )§. The system steady-state after the incorporation
of this change is re-calculated and a new voltage profile is obtained. This proce-
dure continues until the equilibrium point is reached, i.e. when the voltage profile
between consecutive runs of the algorithm converges, or when there is no other
available action that can be performed by the DG units. In Fig. 6.8, the iterative
algorithms for the modeling of the voltage control in the system are presented.

The main assumption for the application of this method is that the system reaches this
equilibrium point in each instant of time. In practice, the system operation is a continuous
process, where the active power output of the SG units is constantly changing. According
to this change, the reactive power output is also changing due to the voltage control.
Since the response of the PECs to each control action is very fast, the validity of this
assumption is not endangered.

§An alternative implementation of the algorithm is to apply the control action in all DG nodes in each
iteration. This implementation showed better performance for the droop control algorithm. However, in
the case of threshold control algorithms it may lead to a solution where more units are set in voltage
control than necessary. By applying one control action on each iteration we employ the minimum amount
of units for voltage control.
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Figure 6.8: Voltage control iterative algorithms.
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Table 6.4: Mean system reactive power production for the SG units [MVAr].
Current state Future state

Penetration level: No Medium High No Medium High
No voltage control 0 0 0 0 0 0
Threshold control 0 0.0003 -0.0001 0 0.0115 0.0129
Droop control 0 0.1036 0.0732 0 0.1572 0.2421

6.2.2 Voltage control: results for the study case

The capability of WTGs to contribute to the voltage control in a distribution system is
investigated by the analysis of the distribution test system in Fig. 6.1. In particular, the
system voltage profile is simulated for the three wind power penetration levels and the
two system states, under three different voltage control strategies:

1. No voltage control : the reactive power output of the WTGs is zero, i.e. the DG
units provide no ancillary services.

2. Threshold control : the constant power factor threshold control strategy is applied.
The power factor is cos φ = 0.9 and the ∆VT = 0.05p.u. This case is consistent with
the analysis presented in [66].

3. Droop control : the droop control strategy is implemented with ∆VD = 0.1p.u.

In this analysis, the voltage distributions at all the system nodes in the two system
states with the three wind power penetration levels are computed. In Fig. 6.9, these
distributions at node 42 in the system are presented. In Table 6.4, the mean reactive
power production by the SG units in the network for all the investigated scenarios is
presented. The results show that the droop control strategy improves the voltage quality
in the system, while the threshold control strategy has a low impact on the improvement
of the system voltage.

This low performance of the constant power factor threshold control strategy is mainly
due to the fact that for this strategy the reactive power output of the SG unit is propor-
tional to the active power. As presented in Fig. 2.11, the WTG power output distribution
presents a concentration of probability mass in the zero and nominal values. Thus, when
P is zero, the reactive power output of the unit is also set to zero. Therefore, the prob-
ability mass at the zero output in the WTG provides zero reactive power output. The
same is valid for the probability mass at the nominal power output: when the power
output is nominal, the reactive power is also set to zero due due to the current rating
limit (equation 6.1). Therefore, the only cases when voltage control is applied is when the
active power output is neither zero nor maximum and the voltage is outside the interval
[0.95 1.05]. This leads to a very low reactive power yield, as we can see in Table 6.4. The
constant power factor threshold control strategy is inappropriate for controlling WTGs;
due to the the active power output distribution of a WTG, this control strategy leads to
a low utilization of the reactive power resources, defined by equation 6.1. The use of the
maximum reactive power threshold control strategy is more appropriate for the control of
WTGs, since the power output is defined based on the available reactive power resources.
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Figure 6.9: Voltage distributions at node 42 for the different voltage control strategies
(5000-sample MCS).
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Table 6.5: Characteristics of the New England test system.
System characteristic value

Busses 39
Central generators 10

Loads 19
Transmission lines 46

Voltage level 100kV
Total generation 6140.7MW / 1264.3MVar

Total load 6097.1MW / 1408.7MVar

The droop control strategy allows a good control of the voltage in the system. In
Fig. 6.10, the box-plots of the voltage distributions at the system nodes without voltage
control and with the droop voltage control are presented¶. The four-digit node numbers
in the box-plot ’10–’ correspond to open ends of system lines (not connected to the node).
We can see that the introduction of WTGs leads to the improvement of the voltage profile
in the system, i.e. at all system nodes the variability of the voltage is decreased and the
voltage is kept within the operating limits of [0.9p.u 1.1p.u].

These results are based on the upper system stochastic bound, which is the worst-
case scenario for the system stochasticity. Since the droop control strategy keeps the
voltages in the system inside the operational limits for the worst-case scenario, we can be
sure that no voltage problems will arise in the system. In fact, the incorporation of SG
units actually leads to an improvement of the voltage quality in the network, through the
incorporation of the voltage control.

6.3 Integration of SG in a Bulk Power System

6.3.1 Simulation data

The study case involves the large-scale integration of wind power in a bulk power system.
The IEEE 39-bus New England test system is used as a system model. The system com-
prises 39 buses, 10 CG units and 46 transmission lines (100kV). The single-line diagram of
the system is given in Fig. 6.11. The basic characteristics of the test system are presented
in Table 6.5, while in Appendix C.4 the system data are presented. The wind generation
is geographically distributed throughout the system and connected to 15 system nodes as
presented in Fig. 6.11, indicated by W ·.

¶In a box-plot, the box has lines at the lower quartile, median, and upper quartile values. Lines
extending from each end of the box to show the extent of the rest of the data (whiskers). Outliers are
data with values beyond the ends of the whiskers. Each of these data is represented by the marker ′+′

and corresponds to the tails of the distributions.
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level in the future system state (5000-sample MCS).
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Figure 6.11: Single-line diagram of the 39-bus New England test system [65].
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Table 6.6: TF settings for a 4-TF load modeling of the New England test system.
Time Ratio Mean Load St. Deviation

(% high-load-TF mean) (% mean load)
TF1 0.2 0.5 0.06
TF2 0.3 0.65 0.1
TF3 0.3 0.85 0.1
TF4 0.2 1 0.03
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Figure 6.12: 4-TF load modeling for the New England test system (10000-sample MCS).

6.3.2 System loads

Marginals

A 4-TF segmentation is chosen for the modeling of the system loads, according to the
analysis presented in section 2.9.2. Accordingly, a normal distribution is used for the
modeling of the time-conditioned load in each TF and the resulting distribution is ob-
tained by an aggregation procedure as a mixture of these normals. The settings for the
4-TF modeling are presented in Table 6.6. The load data presented in Appendix C.4
correspond to the mean value of the high-load-TF of the respective load. In Fig. 6.12,
the resulting distributions for a 10000-sample MCS for the loads in buses 4 and 20 are
presented.

Dependence structure

Two different approaches can be followed for the modeling of the dependence structure
between the time-conditioned loads:

1. Intra-TF dependence: the dependence structure is defined for the aggregate distrib-
ution. So, first the marginal distribution is generated for all TFs and then the JNT
methodology is used for the modeling of the correlated r.v. In Fig. 6.13a, the scat-
ter diagram for the modeling of an intra-TF rank correlation ρr = 0.7 between the
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(a) Intra-TF ρr = 0.7 (b) Inter-TF ρr = 0

Figure 6.13: Scatter diagrams for the load modeling based on specified intra- and inter-TF
rank correlation (10000-sample MCS).

loads in buses 4 and 20 is presented for a 10000-sample MCS. The rank correlation
obtained at the output samples is 0.69.

2. Inter-TF dependence: the dependence structure is defined inside each time-frame.
In this case, the time-dependence is superimposed on the inter-TF dependence and
the correlation between the aggregate distributions is different. For this, first the
TF of operation is chosen and then the JNT methodology is used for the generation
of the correlated normals in the respective TF. Since the TF analysis corresponds
to time-conditioning, all system loads are considered to be in the same TF. This
imposes a high dependence between the loads. In Fig. 6.13b, the scatter diagram
for the modeling of an inter-TF rank correlation ρr = 0 between the loads in buses
4 and 20 is presented for a 10000-sample MCS. Although in each TF the r.v. are
independent, the resulting distributions are highly correlated. In particular, the
rank correlation obtained at the output samples is 0.89.

The modeling approach can be decided depending on the specific problem. When we
are not interested in modeling the time-dependence and we need to model based on specific
correlations between the aggregate distributions, the first approach is applied. When the
dependence structure in each TF should be modeled, the second approach should be
used. For the present study case we choose the second approach for the modeling of
time-dependent loads in the system. All loads are considered to be in the same TF for
each sample and independence is used for the modeling of the time-conditioned normals
in each TF. Based on this modeling, the obtained mutual rank correlation between the
aggregate load distributions is 0.89.
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Table 6.7: Capacity factor for the WSPs in the New England test system.
WSP W1 W2 W3 W4 W5 W6 W7 W8

ηW 39.2 39.3 38.2 37.9 35 40.4 40.2 40.7
WSP W9 W10 W11 W12 W13 W14 W15

ηW 40.3 40.5 39.5 38.5 39.1 39.8 38.9

Reactive power

The load reactive power samples are obtained from the active power samples based on
a constant load power factor. The power factor is computed for each load by the mean
values given in Table C.2 (Appendix C.4).

6.3.3 System wind power

Marginals

The wind generation indicated with W in the single-line diagram in Fig. 6.11 corresponds
to clusters of WTGs connected to the underlying distribution network. The wind power
generation of a cluster is modeled based on the wind stochastic plant (WSP) theory
presented in chapter 5. For each WSP, data corresponding to 10 sites in the underlying
system are considered. Therefore, the analysis comprises a total of 15 × 10 = 150 wind
speed r.v. The Weibull parameters β and η for the wind speed distributions at hub height
for the 150 generation sites are generated as random numbers drawn in the interval:
β ∈ [1.9, 2.6] and η ∈ [8, 10].

Four wind power penetration levels are considered for the system planning:

1. No penetration: this case corresponds to the system operation with no wind power
(vertically-operated power system).

2. 100MW capacity for each WSP : the nominal wind power capacity in the system is
in this case 15× 100MW = 1500MW , corresponding to a penetration level of 25%.

3. 200MW capacity for each WSP : the nominal wind power capacity in the system is
in this case 15× 200MW = 3000MW , corresponding to a penetration level of 50%.

4. 300MW capacity for each WSP : the nominal wind power capacity in the system is
in this case 15× 300MW = 4500MW , corresponding to a penetration level of 75%.

It should be mentioned here that increasing the penetration level up to 100% leads to
convergence problems. In particular, for 112 samples out of a total of 10000 samples, the
power flow algorithm could not converge.

In Fig. 6.14, the power output of the WSPs connected at the buses 4 and 20 for the
penetration level 2 are presented. The capacity factors for the 15 WSPs in the system
range between 35% and 40.7% (Table 6.7).
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Figure 6.14: WSP power output in the New England test system (10000-sample MCS).

Dependence structure

The wind resources between the 15 different sites in the system are considered to be
correlated. The mutual correlations between the different stochastic plants are considered
to be equal to 0.7. The JNT methodology is used for the modeling of the correlated
Weibull wind speed distributions based on the specific correlations. In Fig. 6.15a, the
scatter diagram for the wind speed r.v. at WTG 3 of the WSP at bus 4 and WTG 3 of the
WSP at bus 20 is presented for a 10000-sample MCS. The rank correlation measured at
the output wind speed samples equals ρW−W

r = 0.7021 for all sites belonging to different
WSPs and equals 1 for sites belonging to the same WSP.

In Fig. 6.15b, the scatter diagram for the wind power output of the WSPs connected at
bus 4 and 20 is presented. We can see that the impact of the non-linear wind speed/power
characteristic and the sum of the different wind power distributions lead to a transformed
scatter diagram. The rank correlation for the output wind power samples yields values
in the interval ρPW−PW

r ∈ [0.6903 0.7173]. This change in correlation is due to the
impact of the non-increasing wind speed/power characteristic of the WTG. In particular,
for the nominal and cut-out wind speeds, the transformation from wind to power is
non-monotonic. The rank correlation is thus not invariant during this transformation.
However, as may be seen, the wind power correlation values are close to the wind speed
ones because the wind speed/power characteristic is for most of the wind speed values
monotonic.

Reactive power

The wind parks are considered to be not responsible for the voltage support of the system.
Therefore, the reactive power generation of the wind generators is zero.
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(a) Wind speed (b) Wind power

Figure 6.15: Wind speed and wind power scatter diagrams (10000-sample MCS).

Table 6.8: Mean value and standard deviation for the power injections at bus 4 for the 4
wind power penetration levels.

Wind Penetration: 0 MW 1500 MW 3000 MW 4500MW
Mean [MW] 373.91 335.77 296.85 259.18
St.D.[MW] 93.23 99.40 117.75 139.77

6.3.4 System power injections

The system loads are considered to be independent from the wind power injections in the
system‖. In Fig. 6.16, the power injection distribution (net load distribution) at bus 4 of
the test system for the 4 wind power penetration levels is presented. We can see that the
connection of wind power at the bus leads to an increase in the variability of the power
injections; the lower tail of the distribution is shifted towards the negative axis. This may
be seen in Table 6.8 where the mean and the standard deviation of the power injections
are presented. In particular, the increase in wind penetration leads to a decrease of the
mean value of the distribution and a subsequent increase in the standard deviation. At
bus 4, the connection of a wind park of 300MW nominal power (penetration level 4) leads
to bidirectional power injections into the system.

6.3.5 System operation: CG units

The dispatch of the CG units in the system should be modeled for each system state,
defined by the sampling of the system loads and wind power. In Table C.2 (Appendix
C.4), the capacity CM

c of the CG units is presented. CG unit 2 connected at bus 31 is
the slack bus of the system.

In the specific study case, the CG units in the system are considered to be thermal

‖This assumption is in accordance with the results presented in section 4.2 for the Dutch power system.
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Figure 6.16: Power injection at bus 4 for the 4 wind power penetration levels (1000-sample
MCS).

units of the same type. For each sample, the power production of the CG units (except
for the slack bus) is pro-rata (see algorithm 6.1). For each CG unit, the minimum power
output is 10% of the unit capacity, due to restrictions with shutting down thermal units.
For a system comprising

• cT CG units C1, C2, . . . , CcT
,

• gT SG units G1, G2, . . . , GgT
,

• lT loads L1, L2, . . . , LlT ,

the CG unit dispatch algorithm is presented in algorithm 6.1.
In this case, the system slack bus covers the system losses and also consumes the

excess of wind power when the CG units are at their minimum production.

6.3.6 System slack bus

In Fig. 6.17, the power distributions and box-plots for the power injection by the slack bus
are presented for the different wind power penetration levels. In Table 6.9, the respective
mean values and standard deviations for the slack bus power injection distributions are
presented. We can see that the increase in wind power penetration leads to a radical
increase in the variability of the power flows from/to the slack bus. In particular, for the
penetration level of 4500MW of wind power, the slack bus has to absorb an excess power
up to 2000MW. This corresponds to the case when all thermal CG units operate at their
minimum power output (10% of the unit capacity). In reality, this will correspond to
power exports to neighboring systems.



6.3. Integration of SG in a Bulk Power System 129

-2000 -1500 -1000 -500 0 500
0

1000

2000

3000

4000

5000

6000

Power output (MW)

N
um

be
r o

f s
am

pl
es

 

 

0
1500MW
3000MW
4500MW

(a) Distributions

(b) Box-plots

Figure 6.17: Slack bus power injection distributions and boxplots (10000-sample MCS).



130 Chapter 6. Applications

Algorithm 6.1 CG unit dispatch algorithm.
For all samples i:

1. Calculate system net load LN (i) = ΣlT
l=1Ll(i)− ΣgT

g=1Gg(i)

2. Calculate aggregate CG capacity without slack generator CT = ΣcT
c=1C

M
c

3. Calculate percentage w(i) = LN (i)
CT

• if w(i) < 0.1 : Cc(i) = 0.1 · CM
c

• elseif w(i) > 1 : Cc(i) = CM
c

• else Cc(i) = w(i) · CM
c

Table 6.9: Mean value and standard deviation for the slack bus power injection distribu-
tions.

Wind Penetration: 0 MW 1500 MW 3000 MW 4500MW
Mean [MW] 126.73 55.97 35.06 -42.39
St.D. [MW] 198.12 97.80 88.61 307.06

6.3.7 System power flows

In the figures 6.18, 6.19, 6.20 and 6.21, the box-plots for the power flow distributions
in the system lines are presented. In Fig. 6.22, the respective power flow distributions
for some characteristic lines in the system are presented. These plots actually reveal the
transition from a vertical to a horizontally-operated power system. The increase in wind
power in the system leads to an increase in the variability of the system power flows; most
of them become bi-directional (the power flow distributions extend to both the positive
and negative axis).

In many cases the incorporation of wind power leads to higher reverse power flows
than the direct ones. Characteristic cases are for example line 10-13 (Fig. 6.22b), line
6-11 (Fig. 6.22d), line 4-5 (Fig. 6.22e) and line 5-6 (Fig. 6.22f). In other cases the
increase in wind power integration leads to an increase in the power flows in the line, as
is the cases for line 14-15 (Fig. 6.22a) and line 6-11 (Fig. 6.22d).

Thus, the integration of stochastic generation in the power system leads to an increase
in the variability of the power flows. Either a strong power system to facilitate a large-
scale integration of SG units or system reinforcements are necessary. In order to assess
these reinforcements, a stochastic methodology is necessary, since counterintuitive results
may be obtained due to the meshed system structure and the correlation between the
stochastic resources.

6.3.8 System losses

In Fig. 6.23, the distributions of the system losses in the 4 wind power penetration
scenarios are presented, while in Table 6.10, the respective means and standard deviations
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Figure 6.18: Box-plot for the power flows in the system lines in case of no wind power
penetration (10000-sample MCS).

Figure 6.19: Box-plot for the power flows in the system lines in case of 25% wind power
penetration (10000-sample MCS).
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Figure 6.20: Box-plot for the power flows in the system lines in case of 50% wind power
penetration (10000-sample MCS).

Figure 6.21: Box-plot for the power flows in the system lines in case of 75% wind power
penetration (10000-sample MCS).
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(c) Line 10-32
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(d) Line 6-11
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Figure 6.22: Some specific power flow distributions (10000-sample MCS).
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Figure 6.23: Distributions of system losses (10000-sample MCS).

Table 6.10: Mean value and standard deviation for the distributions of the system losses.
Wind Penetration: 0MW 1500MW 3000MW 4500MW
Mean [MW] 31.98 29.02 26.75 27.85
St.D.[MW] 11.68 13.10 12.72 12.72

are specified. We can see that the incorporation of wind power in the system leads to
a change in the system losses. In a vertical power system, the system losses follow the
time-dependent system loads, i.e. the system power flows correspond to the TF of system
operation, presenting a concentration of probability at certain values (Fig. 6.23). In
a horizontally-operated power system, these peaks are shaved due to the impact of the
SG. A high SG penetration however, leads to longer tails in the distributions, due to the
increase in the system power flows.

We can see from Table 6.10that up to a penetration level of 50%, wind power inte-
gration leads to a decrease in the system losses. With higher penetration levels of wind
power the system losses start to rise again, due to the increase in the system power flows.

6.4 Conclusions

In this chapter, the impact of stochastic generation in power systems has been investigated
for both a distribution system and a bulk power system.

The incorporation of stochastic generation transforms the distribution system to an
active network cluster, i.e. the power flows between the distribution and transmission
system become bidirectional. Simulation results show that underestimating the impact
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of dependence between the SG units and between the loads may lead to severe design
fallacies. The upper stochastic bound has been proposed for the stochastic modeling of
the system, as a prudent model that enables the inference of general results for the system
design. The system analysis shows that the incorporation of stochastic generation leads to
an increase of the variability in the system. The SG units can however be used to reduce
the variability of the node voltages by the regulation of their reactive power output. The
results show that the droop voltage control leads to a considerable improvement of the
voltage quality of the system.

In the case of a bulk power system, the integration of stochastic generation leads to
a horizontal operation of the system. The power flows become bidirectional and at high
stochastic generation penetration levels, reverse power flows may exceed the direct ones.
The methodology presented here offers a unifying approach for the modeling of the time-
dependent stochasticity of the system loads and the non-time-dependent uncertainty of
the stochastic generation. The results of such an analysis can be used for the quantification
of the risk of overloading system lines and the assessment of necessary reinforcements.
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Chapter 7

Conclusions and
recommendations

This chapter recapitulates the main results obtained in the framework of this Ph.D.
project by providing general conclusions and discussions on the key findings, followed by
suggestions for possible extensions of the work reported in the dissertation.

7.1 Conclusions

Currently, concerns on environmental issues lead to an increasing implementation of
environmentally-friendly power generation in power systems. Three main characteristics
distinguish this type of generation from the traditional conventional generation (CG):
the power plants are relatively small so that most units are connected to the distribution
systems, the utilization of non-dispatchable (stochastic) prime energy movers, and the
utilization of new technologies for power generation instead of the synchronous generator
paradigm. This ubiquitous uncontrollable power infeed (stochastic generation - SG) leads
to a radical change of the vertical structure of the system. In particular, the power does
not only flow ’vertically’, i.e. from the higher to the lower voltage levels of the system, but
also ’horizontally’, i.e. from one distribution system to another or from a generator to a
load within the same distribution system. The investigation of the power flows in such a
horizontally-operated power system is a key issue for the system operational planning and
design. For this, a new modeling approach that permits the incorporation of generation
uncertainty in the system analysis is necessary. The main goals set in this Ph.D. project
are the development of new tools for the uncertainty analysis of the power system and
the investigation of the impact of the horizontal operation of the power system due to the
large-scale integration of stochastic generation.

The methods presented in literature so far for the modeling of stochasticity in power
system studies focus mainly on the modeling of the system load uncertainty. This uncer-
tainty corresponds to a time-dependent stochasticity, i.e. by conditionalizing the analysis
in time, the load uncertainty is limited in a small region around the time-conditional
mean. The assumptions of independence and normality, used for the modeling of time-
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conditioned loads, lead to fallacies when used for the modeling of SG, due to its non time-
dependent stochasticity. In this thesis, a new approach is introduced (the power system
steady-state uncertainty analysis), that is not limited by the type of distribution and can
represent complex stochastic interdependencies between the system inputs. The problem
definition leads to a multivariate uncertainty analysis problem and a Monte-Carlo (MCS)
approach is proposed for the solution, based on the splitting of the modeling procedure
in two basic components, i.e. the modeling of the one-dimensional marginal distribu-
tions and the modeling of the multi-dimensional stochastic dependence structure. The
marginals represent the output spectrum of each stochastic input, while the stochastic
dependence structure determines the mutual interaction between the stochastic inputs.
While the modeling of stochastic dependence is underestimated in the related literature
by assuming independence, it turns out to be the main modeling issue for SG since it
determines the variability of the aggregate output of the SG units.

We devote the 3rd chapter to the discussion of models of stochastic dependence and we
clarify the problems of modeling dependent resources by comparing examples of system
loads (normal distributions) and wind turbine generator (WTG) units. We show that by
assuming independence the impact of stochasticity in the system is underestimated, since
the aggregate is approaching a normal distribution due to the applicability of the central
limit theorem. Thus, by assuming independence one predefines the outcome of the analysis
to normality. Appropriate measures and models of stochastic dependence is a source of
confusion in the related literature. Although linear (product moment) correlation is the
canonical measure in the world of multivariate normal and more generally for spherical
and elliptical distributions, when we leave the world of normals, it becomes just a measure
of linear dependence, that may be misleading for the representation of dependence. We
show that rank correlation (ρr), i.e. the product moment correlation of the ranks of the
r.v., is a more adequate measure of dependence since it captures non-linear, monotonic
relationships between r.v. The transformation of the marginal distributions into ranks is
performed by the cdf (cumulative density function) transformation. This transformation
is the cornerstone of the proposed stochastic modeling, offering a decoupling between the
marginal distributions and the stochastic dependence structure, so that the dependence
structure can be defined on these ranks by specific functions, the copula functions. By
using these functions, one can simulate two r.v. that are correlated according to rank
correlation ρr, by first simulating a copula and then transforming the obtained ranks into
the respective marginals.

The 4th chapter presents the techniques for multidimensional dependence modeling.
The Joint Normal Transform Methodology is presented as the main technique for the
modeling of correlated inputs when related measurements are available. In particular,
one can calculate the product moment/rank correlation matrix from the time-series data
describing the stochastic inputs in the system and use a multidimensional normal copula
for the dependence modeling. The main restriction to the applicability of the methodology
is that the correlation matrix has to be positive semi-definite. We show that in many
situations this is not the case and therefore present methods to repair the violations of
positive semi-definiteness. In problems that involve high uncertainty, and where it is not
possible to define all mutual correlations between the system stochastic inputs, we need
sampling routines that can deal with incomplete specifications and give exactly what
we specify, up to sampling error, with minimal additional information. These are the
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Copula-Trees and Copula-Vines methods.
The high dimensionality of power system studies may however render the applicability

of the proposed techniques, mainly due to lack of data or model complexity. Therefore, in
chapter 5, we propose model reduction techniques by simplifying parts of the stochastic
model. These approximations are called stochastic plants and are defined as the comono-
tonic versions of vectors of stochastic inputs. It is shown that these simple models bound
the uncertainty of the stochastic model, i.e. they provide the worst-case scenario for
the aggregate stochasticity of the vector. By applying these approximations, a problem
involving the definition of the dependence structure between a large number of r.v. is
decomposed into the modeling of the interdependencies between a manageable number
of stochastic plants. The investigation of the properties of a cluster of WTGs shows that
the sensitivity of the aggregate power output to the dependence structure is high in con-
trast with the sensitivity to the choice of marginal wind speed distributions. Thus, by
using comonotonicity a good approximation of reality is obtained, even in cases where
the marginals are not modeled in detail.

The developed methodologies are applied in chapter 6. We investigate the transforma-
tion of a distribution system into an active network cluster and the vertical to horizontal
transformation of a bulk power system due to the integration of SG. By the application
of the proposed techniques, we show how the time-dependent stochasticity of the system
loads and the non time-dependent stochasticity of SG can be incorporated under a unified
approach for the system analysis. The results of this study are:

• Distribution system: the upper stochastic bound is proposed as an appropriate
dependence model of a distribution system, that offers prudent system design in
terms of safety and generality. We analyze the transition from a passive to an
active distribution network structure due to the integration of wind power and
show that the anticipated reduction of system losses depends on the penetration
level, i.e. when the SG penetration level exceeds a limit, the system losses start to
increase again due to reverse power flows.

• Voltage control : we analyze the role of SG units in the reactive power support
of the system by performing voltage control. It is shown that the reactive power
capacity of each unit varies in time, in an opposite fashion with the stochastic
active power generation. In this way, a distributed voltage control is achieved.
The voltage control analysis of the system is performed by the incorporation of an
iterative procedure in a MCS. Different voltage control algorithms were tested and
the results show that the droop control strategy is the most suited for the voltage
control by WTGs.

• Bulk power system: the transition from a vertical to a horizontally-operated power
system due to a large-scale integration of wind power is analyzed. We show how the
rise in wind power penetration leads to an increase in the variability of the system
power flows. The results of the analysis quantify the risk of overloading the system
lines and can be used for the assessment of system reinforcements.
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7.2 Recommendations for future work

The work presented in this thesis sets the theoretical background for the analysis of the
impact of stochastic generation in power systems. The recommendations for future work
involve possible applications and extensions of this work.

Wind power integration in the interconnected European power system

A main application is the study of the wind power integration in a large system. As
is known, the penetration of wind power in the European system is steadily increasing,
with many countries being engaged in large-scale projects. The correlation between the
wind resources in Europe necessitates the use of the techniques developed in this thesis
for the planning and risk analysis of the interconnected European power system. Such a
large-scale project should involve analysis of load and wind data from different countries
and quantification of the risk of overloading the system lines.

Forecasting

In chapter 6, the integration of wind power in a bulk power system was investigated.
As mentioned, in the presented approach the system dispatch has been set to follow the
system net load, which corresponds to perfect forecast, i.e. zero forecast error. When the
forecast in the system is not perfect, an increase in the variability of the system power
flows should be expected, due to the engagement of units possibly other than expected
to support the imbalances. Based on real data and using the techniques presented in
the thesis, the forecast error may be sampled and incorporated in the analysis. This will
provide a more realistic modeling of the system, where the impact of the uncertainty of
the market actors is translated into the power system analysis.

Impact of large-scale storage

In this thesis, a memory-less power system is considered, i.e. the system state on each
moment does not depend on the previous state of the system. This corresponds to a power
system without large-scale storage. In order to investigate the impact of storage, a time-
series approach should be employed, that is consistent to the principles presented in this
thesis. In particular, specific algorithms should be developed that permit the generation
of spatially-correlated time-series that are consistent to given marginal distributions and
present specific autocorrelation characteristics. The transformations presented in this
thesis concerning the decoupling of marginals and dependence structure offer the basis
for the treatment of this problem.

Reactive power pricing

As presented in chapter 6, the voltage control operation of SG units may be analyzed
by the incorporation of an iterative algorithm in a stochastic simulation. This work can
be extended to the analysis of different voltage control strategies, such as exponential
control. Since this approach gives insight in the reactive power output of each SG unit,
the approach can form the basis for reactive power pricing.
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Stochastic stability studies

The focus of this thesis is on the steady-state operation of the system. A direct extension
of the work is the application of the obtained results for voltage/transient stability analysis
of systems with a high penetration of SG.
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Appendix A

Steady-State System Model

The steady-state or load flow analysis is the fundamental study for power systems analysis.
The exact formulation of this problem concerns the determination of real and reactive
power flows in each line (branch) of the power system [46]. The data used are the active
and reactive power consumed by each load, as well as the real power generation and
voltage magnitudes at the CG buses. The general steady-state model formulation can be
divided into 2 parts:

1. Determination of the State Vector of the system: the magnitude and phase angle of
the unknown bus voltages in the system are computed.

2. Determination of the power flows on each line of the system: the state vector is
used in this step for the determination of the active and reactive power flows in
every branch.

The system is modeled by a set of N buses (nodes), which are interconnected by
transmission lines (branches). The transmission links are represented by their nominal
π-equivalent circuits. Thus, for each line, numerical values for the series impedance Z and
the total line-charging admittance Y are necessary for the determination of the elements
in the N ×N bus admittance matrix whose typical element is:

Yij = |Yij |∠θij = |Yij | cos θij + j|Yij | sin θij = Gij + jBij (A.1)

The admittance matrix has the following well-known properties:

• It is symmetric,

• Yii, the ii-th element (diagonal element), is equal to the sum of all admittances
connected to the i-th node,

• Yij , the ij-th element of Y (non-diagonal element) is equal to the negative of the
admittance in between nodes i and j.

The voltage at a typical bus i is given by:

Vi = |Vi|∠δi = |Vi|(cos δi + j sin δi) = Gij + jBij (A.2)
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Thus, the net current injected into the network at bus i is given by:

Ii = Yi1V1 + Yi2V2 + · · ·+ YiNVN =
N∑

n=1

YinVn (A.3)

Let Pi and Qi denote the net real and reactive power entering the network at bus i. Then:

Pi − jQi = V ∗
i

N∑
n=1

YinVn =
N∑

n=1

|YinViVn|∠(θin − δin) (A.4)

So,
Pi =

∑N
n=1 |YinViVn| cos(θin − δin)

Qi = −
∑N

n=1 |YinViVn| sin(θin − δin)
(A.5)

or,
Pi = |Vi|

∑N
n=1 |Vn|[Gin cos δin + Bin sin δin]

Qi = |Vi|
∑N

n=1 |Vn|[Gin sin δin −Bin cos δin]
(A.6)

where δin = δi − δn.
The above equations constitute the polar form of the ac load flow equations. It can

be seen, that there are four potentially unknown quantities associated with each bus i:
Pi, Qi, δi and |Vi|. For the solution of this problem, the general formulation is to identify
three types of buses in the system. At each bus, two of the four quantities are specified
whereas the remaining two are calculated. The formulation is the following:

1. Load buses (P − Q nodes): in these buses loads are connected, so Pi and Qi are
known from historical record, load forecast or measurements; δi and |Vi| are the
unknown quantities.

2. Voltage controlled buses (generator buses, P − |V | nodes): at each bus where a
CG is connected, the active power generation can be controlled by adjusting the
prime mover, and the voltage magnitude can be controlled by adjusting the gener-
ator excitation. Therefore, Pi and |Vi| are known and δi and Qi are the unknown
quantities.

3. Slack bus: the power injection at this bus is determined by the power balance
equation of the system. In the formulation of the power flow problem, the power
injection in this bus is not pre-specified or scheduled. After the power flow problem
has been solved, the difference between the total power which is injected into the
system at all other buses and the total output plus the losses, are assigned to the
slack bus. The voltage angle of this bus serves as a reference for the angles of all
other bus voltages. The other known quantity for this bus is the voltage magnitude
|Vi|. Obviously, there is no requirement to include the power flow equations for the
slack bus in the power flow problem.

With this formulation, the problem is transformed into a system of (2N − Ng − 2)
non-linear equations with (2N − Ng − 2) state variables to be calculated, where Ng is
the number of voltage-controlled buses in the system. Due to the non-linearity of these
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equations, power-flow calculations usually employ iterative techniques such as Gauss-
Seidel and Newton-Raphson procedures.

When solving large-scale power transmission systems, an alternative strategy for im-
proving computational efficiency is the Decoupled Power-Flow Method. This approach is
based on the following two observations:

1. Change in the voltage angle δ at a bus primarily affects the flow of real power P
and leaves the flow of reactive power Q relatively unchanged.

2. Change in the voltage magnitude |V | at a bus basically affects the flow of reactive
power Q and leaves the flow of real power P relatively unchanged.

Finally, from the solution of the system of equations, the power flows in line in can
be calculated as follows:

Pin = Gin|Vi|2 − |Vi||Vn|[Gin cos δin + Bin sin δin]
Qin = −Bin|Vi|2 + |Vi||Vn|[Bin cos δin −Gin sin δin] (A.7)
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Appendix B

Repairing violations of positive
semi-definiteness

B.1 Hypersphere Decomposition

Given a non-positive semi-definite correlation matrix C, the hypersphere decomposition
method proposes the construction of a positive semi-definite correlation matrix Ĉ:

Ĉ = B ·BT (B.1)

that best matches the target matrix C.
Therefore, we have to define the matrix B. The best method for doing this is to view

the elements of the row vectors of B as coordinates lying on a unit hypersphere. For this,
the key is to obtain the n × n coordinates bij from n × (n − 1) angular coordinates θij ,
according to:

bij = cos θij ·
j−1∏
k=1

sin θik for j = 1, . . . , n− 1 and bij =
j−1∏
k=1

sin θik for j = n (B.2)

For an arbitrary set of angles {θij}, a matrix Ĉ formed from B as in equation B.1, satisfies
all given constraints required of a correlation matrix by construction. In particular, thanks
to the trigonometric relationship B.2 and to the requirement that the radius of the unit
hypersphere should be equal to one, the main diagonal elements are guaranteed to be
unity.

In general, matrix Ĉ will bear no resemblance to the target matrix C. However, after
using the above transformation and after defining a suitable error measurement ε in the
resulting approximate correlation matrix Ĉ,

ε = ||C− Ĉ|| (B.3)

one can use an optimization procedure over the angles θij to find the best possible fit given
the chosen error measure. Different choices of the measure ε may be used, according to
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the portions of the target correlation matrix C that have to be recovered with particularly
high accuracy. The fundamental benefit of this method is that when the underlying space
over which the optimization is carried out is expressed in terms of angle vectors describing
coordinates in unit hypersphere, no further constraints have to be satisfied, which can be
of substantial benefit to the numerical fitting procedure [75].

B.2 Spectral Decomposition

A matrix is positive semi-definite if all its eigenvalues are positive. According to the
spectral decomposition method, the positive semi-definite matrix Ĉ is constructed by
replacing all the negative eigenvalues of the non positive semi-definite matrix C by zero.
Given the right-hand-side eigensystem S of C and its associated set of eigenvalues {λi}
such that:

C · S = Λ · S, where Λ = diag(λi), (B.4)

we may define Λ′ as a version of Λ where all negative elements are set to zero. We
may also define the non-zero elements of a diagonal scaling matrix T with respect to the
eigensystem S by:

T : ti =

[∑
m

s2
imλ′

m

]−1

(B.5)

In this case, the following matrix B can be constructed:

B′ := S ·
√

Λ′ (B.6)

and
B :=

√
T ·B′ =

√
T · S ·

√
Λ′ (B.7)

By construction,
Ĉ := B ·BT (B.8)

is both positive semi-definite and has unit diagonal elements.
Following this procedure, we obtain an acceptable correlation matrix that is intuitively

’similar’ to the target one (the more so, the fewer eigenvalues which have to be set to
zero). As mentioned in [75], it has been empirically observed that the results obtained by
this method are very similar to the results obtained by the hypersphere decomposition.
Anyway, the result of this method may be used either as an accurate approximation to the
best solution or as the starting point for the optimization performed in the first method.
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Simulation data

C.1 Correlation matrices for the example in section
4.2

The system rank correlation matrix RWL
r obtained by the respective measurements is the

following:

RWL
r =

1.00 0.24 0.18 0.19 0.13 0.19 0.18 0.19 0.19 0.09 0.01 0.03 0.00 0.05 0.03 0.00

0.24 1.00 0.82 0.85 0.74 0.78 0.77 0.88 0.89 0.76 0.58 0.57 0.54 0.76 0.68 0.52
0.18 0.82 1.00 0.83 0.74 0.82 0.79 0.79 0.80 0.69 0.54 0.56 0.59 0.69 0.64 0.51
0.19 0.85 0.83 1.00 0.81 0.74 0.73 0.82 0.82 0.75 0.56 0.53 0.52 0.72 0.63 0.48
0.13 0.74 0.74 0.81 1.00 0.65 0.63 0.76 0.73 0.75 0.57 0.48 0.47 0.69 0.60 0.47
0.19 0.78 0.82 0.74 0.65 1.00 0.89 0.77 0.79 0.63 0.52 0.58 0.70 0.66 0.65 0.53
0.18 0.77 0.79 0.73 0.63 0.89 1.00 0.77 0.81 0.64 0.54 0.63 0.71 0.69 0.66 0.57
0.19 0.88 0.79 0.82 0.76 0.77 0.77 1.00 0.91 0.83 0.67 0.59 0.55 0.82 0.73 0.58
0.19 0.89 0.80 0.82 0.73 0.79 0.81 0.91 1.00 0.79 0.64 0.62 0.59 0.81 0.75 0.58
0.09 0.76 0.69 0.75 0.75 0.63 0.64 0.83 0.79 1.00 0.69 0.56 0.51 0.81 0.66 0.54
0.01 0.58 0.54 0.56 0.57 0.52 0.54 0.67 0.64 0.69 1.00 0.50 0.48 0.68 0.62 0.70
0.03 0.57 0.56 0.53 0.48 0.58 0.63 0.59 0.62 0.56 0.50 1.00 0.56 0.64 0.58 0.48
0.00 0.54 0.59 0.52 0.47 0.70 0.71 0.55 0.59 0.51 0.48 0.56 1.00 0.60 0.61 0.50
0.05 0.76 0.69 0.72 0.69 0.66 0.69 0.82 0.81 0.81 0.68 0.64 0.60 1.00 0.72 0.54
0.03 0.68 0.64 0.63 0.60 0.65 0.66 0.73 0.75 0.66 0.62 0.58 0.61 0.72 1.00 0.62
0.00 0.52 0.51 0.48 0.47 0.53 0.57 0.58 0.58 0.54 0.70 0.48 0.50 0.54 0.62 1.00

The first line and column of the matrix correspond to the system load, while the other
lines/columns correspond to the respective wind generation sites, in increasing order.

The rank correlations obtained by experts are presented in the following table:

r.v. L W1 W2 W3 W4 W5 W6 W7

ρr 0 0.4 0.4 0.4 0.35 0.7 0.8 0.45
r.v. W8 W9 W10 W11 W12 W13 W14 W15

ρr 0.5 0.55 0.7 0.8 0.9 0.7 0.65 0.85
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C.2 Weibull parameters for wind speed distributions
in section 5.4

The Weibull parameters β and η, used for the simulation in section 5.4.1 are:

1 2 3 4 5 6 7 8 9 10
β 1.79 2.53 2.33 1.74 2.14 2.16 2.00 2.32 2.51 1.71
η 7.40 9.54 7.54 9.64 7.07 9.03 7.70 6.63 7.18 9.83

11 12 13 14 15 16 17 18 19 20
β 2.08 2.46 2.63 2.21 2.55 1.92 1.62 1.65 1.90 2.16
η 6.67 8.90 7.95 6.24 8.31 8.42 8.98 6.74 9.65 8.86

21 22 23 24 25 26 27 28 29 30
β 2.49 2.62 2.24 2.23 2.30 2.30 2.66 1.98 2.07 1.81
η 7.32 8.47 8.32 7.86 6.63 7.41 6.98 6.50 6.21 9.04

31 32 33 34 35 36 37 38 39 40
β 1.84 1.66 2.36 2.45 2.30 1.75 2.74 2.42 1.85 2.77
η 6.33 6.73 9.92 8.36 9.55 6.31 9.81 6.53 7.79 8.60

41 42 43 44 45 46 47 48 49 50
β 2.18 2.38 2.30 1.62 2.62 2.14 2.16 1.89 2.53 2.46
η 6.06 9.47 9.39 7.61 7.30 9.51 6.86 9.13 8.57 7.33

These values are used for the derivation of the wind stochastic plant aggregate power
output distributions presented in Fig. 5.5 and were obtained randomly from the intervals
β ∈ [1.6, 2.8] and η ∈ [6, 10].
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C.3 Distribution test system data for the study case
in section 6.1

Table C.1: System data for the 34-bus/38-line radial test distribution system.

System Lines Data Load Data Wind Data
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30 31 535 0.167 0.074 0.5 23 0.098 0.074 23 8.3 2
45 36 253 0.419 0.085 0.34 24 0.259 0.126 24 7.9 1.92
32 40 400 0.167 0.074 0.5 25 0.351 0.218 25 8 1.89
42 46 260 0.167 0.074 0.5 26 0.135 0.065 26 8.3 1.94
35 25 479 0.419 0.085 0.34 28 0.142 0.069 28 8.4 1.95
47 43 1860 0.167 0.074 0.5 29 0.048 0.036 29 8.5 2
35 24 293 0.419 0.085 0.34 30 0.045 0.022 30 8.6 1.8
46 29 290 0.167 0.074 0.5 31 0.156 0.075 31 7.8 1.9
42 32 647 0.167 0.074 0.5 32 0.127 0.062 32 8 2
41 23 800 0.167 0.074 0.5 34 0.114 0.055 34 8.4 1.92
39 25 112 0.419 0.085 0.34 35 0.142 0.069
31 34 150 0.167 0.074 0.5 36 0.135 0.065 36 8 1.93
37 36 897 0.265 0.078 0.42 37 0.157 0.076 37 9 2
28 37 210 0.796 0.091 0.28 39 0.142 0.069 39 7.9 2.1
34 40 180 0.167 0.074 0.5 40 0.072 0.054 40 8 2.1
36 39 420 0.419 0.085 0.34 41 0.284 0.138 41 8.4 2.06
24 42 529 0.167 0.074 0.5 42 0.187 0.091 42 8.4 2.08
45 26 370 0.419 0.085 0.34 43 0.000 0.000 43 8.8 1.98
30 50 1600 0.167 0.074 0.5 45 0.120 0.058
43 50 1600 0.167 0.074 0.5 46 0.116 0.087
30 52 500 0.167 0.074 0.5 50 0.016 0.008
23 54 210 0.167 0.074 0.5 52 0.078 0.038
24 54 300 0.167 0.074 0.5 54 0.000 0.000
55 28 333 0.796 0.091 0.28 55 0.116 0.056
55 56 318 0.796 0.091 0.28 56 0.112 0.054
56 57 298 0.796 0.091 0.28 57 0.109 0.053
57 58 191 0.796 0.091 0.28 58 0.161 0.100
61 50 999 0.167 0.074 0.5 61 0.016 0.008
123 61 999 0.167 0.074 0.5 123 0.016 0.008
125 124 999 0.167 0.074 0.5 124 0.016 0.008
50 125 999 0.167 0.074 0.5 125 0.016 0.008

Continued on next page
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Table C.1 – continued from previous page
System Lines Data Load Data Wind Data
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44* 26 252 0.419 0.085 0.34 Generator
53* 52 710 0.167 0.074 0.5 25 0.2 0.124
59* 58 411 0.167 0.074 0.5
43 49* 10 0.167 0.074 0.5
41 42* 635 0.167 0.074 0.5
46 27* 320 0.167 0.074 0.5

Reactance coil (Ohm)
2 47 - 0.01 0.3005 -

*: Disconnected node

C.4 Bulk power system data for the study case in sec-
tion 6.3

Table C.2: Bus Data of the New England 39 Bus Test System [65]

Bus Volts Load Load Gen
(nr.) (pu) (MW) (MVAr) (MW)

1 - 0.0 0.0 -
2 - 0.0 0.0 -
3 - 322.0 2.4 -
4 - 500.0 184.0 -
5 - 0.0 0.0 -
6 - 0.0 0.0 -
7 - 233.8 84.0 -
8 - 522.0 176.0 -
9 - 0.0 0.0 -
10 - 0.0 0.0 -
11 - 0.0 0.0 -
12 - 7.5 88.0 -
13 - 0.0 0.0 -
14 - 0.0 0.0 -
15 - 320.0 153.0 -

Continued on next page
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Table C.2 – continued from previous page
Bus Volts Load Load Gen
(nr.) (pu) (MW) (MVAr) (MW)
16 - 329.0 32.3 -
17 - 0.0 0.0 -
18 - 158.0 30.0 -
19 - 0.0 0.0 -
20 - 628.0 103.0 -
21 - 274.0 115.0 -
22 - 0.0 0.0 -
23 - 247.5 84.6 -
24 - 308.6 -92.2 -
25 - 224.0 47.2 -
26 - 139.0 17.0 -
27 - 281.0 75.5 -
28 - 206.0 27.6 -
29 - 283.5 26.9 -
30 1.0475 0.0 0.0 250
31 0.982 9.2 4.6 -
32 0.9831 0.0 0.0 650
33 0.9972 0.0 0.0 632
34 1.0123 0.0 0.0 508
35 1.0493 0.0 0.0 650
36 1.0635 0.0 0.0 560
37 1.0278 0.0 0.0 540
38 1.0265 0.0 0.0 830
39 1.03 1104.0 250.0 1000

Table C.3: Line Data of the New England 39 Bus Test System [65]

Line Data Resistance Reactance Susceptance Transformer Tap
Bus Bus (p.u.) (p.u.) (p.u.) Magnitude Angle
1 2 0.0035 0.0411 0.6987 0 0
1 39 0.0010 0.0250 0.7500 0 0
2 3 0.0013 0.0151 0.2572 0 0
2 25 0.0070 0.0086 0.1460 0 0
3 4 0.0013 0.0213 0.2214 0 0
3 18 0.0011 0.0133 0.2138 0 0
4 5 0.0008 0.0128 0.1342 0 0
4 14 0.0008 0.0129 0.1382 0 0
5 6 0.0002 0.0026 0.0434 0 0
5 8 0.0008 0.0112 0.1476 0 0
6 7 0.0006 0.0092 0.1130 0 0

Continued on next page
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Table C.3 – continued from previous page
Line Data Transformer Tap
Bus Bus Resistance Reactance Susceptance Magnitude Angle
6 11 0.0007 0.0082 0.1389 0 0
7 8 0.0004 0.0046 0.0780 0 0
8 9 0.0023 0.0363 0.3804 0 0
9 39 0.0010 0.0250 1.2000 0 0
10 11 0.0004 0.0043 0.0729 0 0
10 13 0.0004 0.0043 0.0729 0 0
13 14 0.0009 0.0101 0.1723 0 0
14 15 0.0018 0.0217 0.3660 0 0
15 16 0.0009 0.0094 0.1710 0 0
16 17 0.0007 0.0089 0.1342 0 0
16 19 0.0016 0.0195 0.3040 0 0
16 21 0.0008 0.0135 0.2548 0 0
16 24 0.0003 0.0059 0.0680 0 0
17 18 0.0007 0.0082 0.1319 0 0
17 27 0.0013 0.0173 0.3216 0 0
21 22 0.0008 0.0140 0.2565 0 0
22 23 0.0006 0.0096 0.1846 0 0
23 24 0.0022 0.0350 0.3610 0 0
25 26 0.0032 0.0323 0.5130 0 0
26 27 0.0014 0.0147 0.2396 0 0
26 28 0.0043 0.0474 0.7802 0 0
26 29 0.0057 0.0625 1.0290 0 0
28 29 0.0014 0.0151 0.2490 0 0
12 11 0.0016 0.0435 0.0000 1.006 0
12 13 0.0016 0.0435 0.0000 1.006 0
6 31 0.0000 0.0250 0.0000 1.07 0
10 32 0.0000 0.0200 0.0000 1.07 0
19 33 0.0007 0.0142 0.0000 1.07 0
20 34 0.0009 0.0180 0.0000 1.009 0
22 35 0.0000 0.0143 0.0000 1.025 0
23 36 0.0005 0.0272 0.0000 1 0
25 37 0.0006 0.0232 0.0000 1.025 0
2 30 0.0000 0.0181 0.0000 1.025 0
29 38 0.0008 0.0156 0.0000 1.025 0
19 20 0.0007 0.0138 0.0000 1.06 0



Bibliography

[1] T. Ackermann, G. Andersson, and L. Söder, Distributed generation: a defin-
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List of Abbreviations

cdf : cumulative distribution function
CG : Conventional Generation
CHP : combined heat and power
DG : Distributed Generation
DSM : Deterministic System Model
HOPS : horizontally-operated power system
HV : high-voltage
JNT : joint normal transform
LV : low-voltage
MCS : Monte-Carlo simulation
MV : medium-voltage
pdf : probability density function
PECs : power electronic converters
PLF : probabilistic load flow
PV : photovoltaic
RES : Renewable Energy Sources
r.v. : random variable
SBM : Stochastic Bounds Methodology
SG : Stochastic Generation
SSM : Stochastic System Model
SP : stochastic plant
TF : time-frame
WSP : wind stochastic plant
WTG : wind turbine generator
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Summary in English

Integration of Stochastic Generation in Power Systems

Concerns on environmental issues lead to an increasing implementation of environmentally-
friendly energy sources in electrical power systems. The uncontrollability of this stochastic
generation is its main difference from the conventional power generation. This transition
leads to a transformation towards a new ’horizontal’ structure of the system, where the
transmission and distribution networks operate as energy buses that interconnect the
ubiquitous stochastic power generation and the distributed system loads. The ability of
the system to absorb the generated power, i.e. to transport it to the system loads derives
as the main issue for the incorporation of these uncontrollable energy sources. Since the
power output from power plants that make use of such energy sources cannot be con-
trolled by the system dispatcher, a new modeling approach is necessary, that permits the
incorporation of generation uncertainty to the system analysis. In this research project,
new tools for the uncertainty analysis of the power system are developed and the impacts
of the power system horizontal operation due to the large-scale integration of stochastic
generation is investigated.

In the related literature, the modeling of stochasticity in power system studies is
mainly focused on the modeling of the system load uncertainty, which corresponds to
a time-dependent stochasticity, i.e. for specific points in time, the load uncertainty is
limited to a small region around the time-conditional mean. The assumptions of inde-
pendence and normality, used in this case, lead to fallacies when used for the modeling of
stochastic generation. On the one hand, independence leads to a severe underestimation
of the system risk, corresponding to the case of minimum variability of the aggregate sto-
chastic generation. On the other hand, in the case of normals joined by the multivariate
normal distribution, the well-known linear correlation provides a sufficient representation
of dependence and based on the knowledge of the linear correlation matrix, the stochastic
modeling of correlated normals can be performed. However, when we leave the world of
normals, it becomes just a measure of linear dependence, that may be misleading as rep-
resentation of dependence. Therefore, in the case of stochastic generation, other measures
of dependence and new modeling algorithms are necessary.

A Monte-Carlo approach is proposed for the solution of this problem, based on the
splitting of the modeling procedure in two basic components, i.e. the modeling of the one-
dimensional marginal distributions and the modeling of the multi-dimensional stochastic
dependence structure. The marginals represent the output spectrum of each stochastic
input, while the stochastic dependence structure determines the mutual interaction be-
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tween the stochastic inputs and has a direct impact on their aggregate. This approach is
referred in the related literature as copula theory and proposes two steps for the generation
of a vector of r.v. correlated according to a given correlation matrix:

1. Generate correlated uniforms: these uniforms correspond to the respective ranks
and bear all the information concerning the dependence structure in the system.

2. Transform each uniform into the respective marginal : this is performed by the
inverse cdf transformation F−1(·).

The first step is the most cumbersome part in the modeling procedure, corresponding to
the multidimensional dependence modeling in the system. Two techniques are proposed:
the Joint Normal Transform Methodology, based on the theory of the multivariate normal
distribution, used in cases when related measurements are available and the Copula-Trees
and Copula-Vines methods, used in problems that involve high uncertainty.

The high dimensionality of the power system problems may however render the ap-
plicability of the proposed techniques, mainly due to lack of data or model complexity.
The thesis also proposes model reduction techniques in terms of simplifying approxima-
tions of parts of the stochastic model. These approximations are called stochastic plants
and are defined as the comonotonic versions of vectors of stochastic inputs. It is shown
that these simple models bound the uncertainty of the stochastic model, i.e. provide
the worst-case scenario for the aggregate stochasticity of the vector. By applying these
approximations, a problem involving the definition of the dependence structure between
a large number of r.v. is decomposed into the modeling of the interdependencies between
a manageable number of stochastic plants. The investigation of the properties of a cluster
of wind turbine generators shows that the sensitivity of the aggregate power output to
the dependence structure is high and relatively low to the choice of marginal wind speed
distributions. Thus, using comonotonicity a good approximation of reality is obtained,
even in cases when the marginals are not modeled with high accuracy.

Using the developed methodologies, the horizontal transformation of the power system
due to the integration of stochastic generation is investigated. Both the time-dependent
stochasticity of the system loads and the non time-dependent stochasticity of stochastic
generation are incorporated to the system analysis under a unified approach. For distrib-
ution systems, a general dependence model is proposed, offering a prudent system design.
Based on this model, an iterative algorithm is proposed for the analysis of the reactive
power support of the system by the use of stochastic generators. The results for the case
of wind turbine generators show that the droop control strategy is most suited for the
voltage control of such units. In general, the incorporation of stochastic generation leads
to an increase in the variability in the system power flows. The proposed analysis offers
the quantification of this variability and provides the basis for a system design based on
the assessment of the risk of violation of the safely limits. The results show that, up to a
limit, the incorporation of stochastic generation leads to a reduction of the system losses.
When this limit is exceeded, the reverse power flows lead to an increase in the system
losses.

The uncertainty analysis techniques presented in this thesis are necessary for the
analysis of the operation of systems with high penetration of stochastic energy sources.
This approach forms the basis for a redefinition of the basic system studies for the analysis
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of the future power systems. Generation expansion, system operational planning and
stability studies have to be redefined under the prism of uncertainty. The work presented
here sets the foundations for these next steps.
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Samenvatting in het
Nederlands

Integratie van Stochastische Opwekking in Elektriciteit-
systemen

Zorgen over milieukwesties leiden tot een toenemende invoering van milieuvriendelijk
energiebronnen in elektriciteitsvoorzieningsystemen. De onbeheersbaarheid van deze sto-
chastische opwekking is het belangrijkste verschil in vergelijking met conventionele op-
wekking. Deze transitie leidt tot een transformatie naar een nieuwe ”horizontale” struc-
tuur van het systeem, waar de transmissie- en distributienetten functioneren als en-
ergiepaden die de alomtegenwoordige stochastische opwekking en de verspreide systeem-
belastingen verbinden. De mate waarin het systeem in staat is om het gegenereerde
vermogen te accomoderen, d.w.z. om het naar de afnemers te transporteren, blijkt het
belangrijkste probleem te zijn bij het integreren van deze oncontroleerbare energiebron-
nen. Aangezien de vermogensoutput van elektriciteitscentrales die gebruik maken van
dergelijke energiebronnen niet kan worden gecontroleerd door de netwerk beheerder, is
een nieuwe aanpak op het vlak van modelleren nodig, die toelaat om de onzekerheid van
de opwekking te integreren in de analyse van het systeem. In dit onderzoeksproject worden
nieuwe hulpmiddelen ontwikkeld voor de onzekerheidsanalyse in het elektriciteitsysteem,
en wordt de impact van een horizontale bedrijfsvoering met grootschalige integratie van
stochastische opwekkers onderzocht.

In de verwante literatuur is het modelleren van stochasticiteit in systeemstudies hoofd-
zakelijk gericht op het modelleren van de onzekerheid van de systeembelasting, wat over-
eenkomt met een tijdsafhankelijke stochasticiteit. Dit betekent dat voor specifieke mo-
menten in de tijd de onzekerheid van de belasting beperkt blijft tot een klein gebied rond
het tijdsconditionele gemiddelde. De aannames van onafhankelijkheid en normaliteit,
gebruikt in dit geval, leiden tot misinterpretaties wanneer ze worden toegepast op het
modelleren van stochastische opwekking. Enerzijds leidt onafhankelijkheid tot een sterke
onderschatting van het systeemrisico, corresponderend met het geval van minimum vari-
abiliteit van de totale stochastische opwekking. Anderzijds, in het geval van normalen
verbonden door de multivariabele normale verdeling, levert de welbekende lineaire cor-
relatie een voldoende representatie van afhankelijkheid. Gebaseerd op de kennis van de
lineaire correlatiematrix kan het stochastisch modelleren van gecorreleerde normalen uit-
gevoerd worden. Echter, als we de wereld van de normalen verlaten, wordt dit slechts
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een maat voor lineaire afhankelijkheid, welke misleidend kan zijn als voorstelling van
afhankelijkheid. Bijgevolg zijn nieuwe afhankelijkheidsindicatoren en modelleringsalgo-
ritmes nodig als het gaat om stochastische opwekking.

Als oplossing voor dit probleem wordt een Monte-Carlo benadering voorgesteld, ge-
baseerd op het splitsen van het probleem in twee componenten, namelijk het modelleren
van de eendimensionale marginale verdelingen enerzijds, en anderzijds het opstellen van
de multidimensionale stochastische afhankelijkheidsstructuur. De marginale distributies
geven het outputspectrum van elke stochastische output weer, terwijl de stochastische
afhankelijkheidsstructuur de wederzijdse interactie tussen de stochastische inputs bepaalt
en een direct impact op hun som heeft. Deze aanpak, die in de verwante literatuur copula
theorie wordt genoemd, stelt twee stappen voor voor het genereren van een vector van
random variabelen die gecorreleerd zijn volgens een gegeven correlatiematrix:

1. Genereer de gecorreleerde uniforme verdelingen: deze uniforme verdelingen komen
overeen met de respectievelijke rangen en bevatten alle informatie over de afhanke-
lijkheidsstructuur in het systeem.

2. Transformeer elke uniforme verdeling naar de repectievelijke marginale verdeling :
dit wordt bekomen door de inverse cdf transformatie F−1(·).

De eerste stap is de moeilijkste in de modelleringsprocedure, aangezien dit overeenkomt
met het modelleren van de multidimensionele afhankelijkheid in het systeem. Twee tech-
nieken worden voorgesteld: de Joint Normal Transform Methodologie, gebaseerd op de
theorie van de multivariabele normale verdeling, gebruikt in gevallen waar verwante metin-
gen beschikbaar zijn en de copula-trees en copula-vines methodes, gebruikt bij problemen
met een hoge onzekerheid.

De hoge dimensionaliteit van de problemen in het elektriciteitsvoorzieningsysteem kan
echter de toepassing van de genoemde technieken bemoeilijken, hoofdzakelijk door een
gebrek aan gegevens of door de complexiteit van het model. De thesis stelt ook modelre-
ductietechnieken voor als vereenvoudigde benaderingen van delen van het stochastische
model. Deze benaderingen worden stochastic plants genoemd en worden gedefinieerd als
de comonotone versies van stochastische inputs. Er wordt aangetoond dat deze vereen-
voudigde modellen de onzekerheid van het stochastische model beperken, d.w.z. dat zij
resulteren in het worst-case scenario voor de geaggregeerde stochasticiteit van de vector.
Door het toepassen van deze benaderingen wordt een probleem aangaande het opstellen
van de afhankelijkheidsstructuur tussen een groot aantal random variabelen gereduceerd
tot het modelleren van de onderlinge afhankelijkheid tussen een hanteerbaar aantal sto-
chastic plants. Onderzoek naar de eigenschappen van een groep windturbines toont aan
dat de gevoeligheid van de geaggregeerde vermogensoutput hoog is met betrekking tot
de afhankelijkheidsstructuur, maar relatief laag met betrekking tot de keuze van de mar-
ginale windsnelheidsverdelingen. Bijgevolg wordt een goede benadering van de werke-
lijkheid verkregen door gebruik te maken van comonotoniciteit, zelfs in gevallen waar de
marginale verdelingen niet met hoge precisie worden gemodelleerd.

Gebruik makend van de ontwikkelde methodes wordt de horizontale transformatie van
het elektriciteitsvoorzieningsysteem tengevolge van de integratie van stochastische op-
wekking onderzocht. Zowel de tijdsafhankelijk stochasticiteit van de systeembelastingen
als de tijdsonafhankelijke stochasticiteit van stochastische opwekking worden gëıntegreerd
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in een globale aanpak voor systeemanalyse. Een algemeen afhankelijkheidsmodel wordt
voorgesteld voor distributiesystemen, waarmee een voorzichtig systeemontwerp kan wor-
den uitgevoerd. Gebaseerd op dit model wordt een iteratief algoritme voorgesteld voor
de analyse van blindvermogenondersteuning door middel van stochastische opwekkers.
De resultaten voor het geval van windturbines tonen dat de droop control strategie het
best geschikt is voor spanningscontrole bij dergelijke eenheden. In het algemeen leidt
de integratie van stochastische opwekking tot een toename van de variabiliteit in de ver-
mogenstromen in het systeem. De voorgestelde analyse maakt kwantificatie van deze
variabiliteit mogelijk en vormt de basis voor een systeemontwerp gebaseerd op een in-
schatting van het risico op overschrijding van de veiligheidsgrenzen. De resultaten tonen
aan dat de integratie van stochastische opwekking tot op zekere hoogte leiden tot een
afname van de systeemverliezen. Echter, vanaf een bepaald penetratieniveau doen oge-
keerde vermogenstromen de verliezen weer toenemen.

De onzekerheidsanalysetechnieken die in deze thesis worden voorgesteld zijn noodza-
kelijk voor de analyse van de bedrijfsvoering van systemen met een hoog penetratieniveau
van stochastische energiebronnen. Deze aanpak vormt de basis voor het herdefiniëren van
fundamentele systeemstudies met het oog op de analyse van toekomstige energievoorzien-
ingsystemen. Uitbreiding van opwekking, operationele planning en stabiliteitsstudies
moeten geherdefinieerd worden in het kader van onzekerheidsanalyse. Het werk wat hier
wordt voorgesteld legt de funderingen voor deze volgende stappen.
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