Geotechnical installation design of suction buckets in non-cohesive soils
A reliability-based approach

Remmers, J.; Reale, Cormac; Pisanò, Federico; Raymackers, Sylvie; Gavin, Kenneth

DOI
10.1016/j.oceaneng.2019.106242

Publication date
2019

Document Version
Final published version

Published in
Ocean Engineering

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Geotechnical installation design of suction buckets in non-cohesive soils: A reliability-based approach

Joost Remmers a,b,c,∗, Cormac Reale a,d, Federico Pisanò a, Sylvie Raymackers b, Kenneth Gavin a

A R T I C L E I N F O

Keywords:
Suction buckets
Geotechnical installation
Uncertainty analysis
Spatial variability

A B S T R A C T

This study presents a probabilistic analyses of suction bucket installation in cohesionless soils. The spatial variability of soil properties is quantified using a representative survey dataset from practice. Vertical random field modelling is used to model cone resistance variability and probability density functions are fitted using drained parameter estimates. Conventional installation analysis methods are adapted for layered soil deposits. The effect of varying permeability is included through the incorporation of a finite element seepage model. Parametric uncertainties are considered through a Monte Carlo analysis and the results are interrogated through a variety of feasibility and sensitivity studies. Performing such an analysis allows a designer to gain insights into governing failure mechanisms and objectively quantify the impact of uncertainty regarding parameter estimates.

1. Introduction

Offshore wind developments are moving to deeper waters, as suitable near-shore sites become increasingly difficult to find. In addition environmental regulations regarding installation noise are becoming more strict. Suction buckets provide a quieter, rapid installation alternative to piled foundations and are comparatively simple to decommission (Tjelta, 2015). They can be used as a foundation or anchoring system for either bottom-founded or floating wind turbines (Arany and Bhattacharya, 2018). According to the latest WindEurope report (Wind Europe), suction buckets comprise a very small percentage of offshore wind foundations in European developments at this moment, with piling still the preferred option. Unfortunately, this means there is little practical guidance or precedence on suction bucket installation. Assessment of the feasibility of suction bucket installation is hindered as a consequence.

A suction bucket foundation consists of an upside down bucket which is installed through the generation of reduced pressure within the buckets enclosed area (Foglia and Ibsen, 2014). Characterising in-situ soil properties and how they vary across a site is of critical importance when assessing the feasibility of suction buckets (Tjelta, 2015). Parameter variability is of particular importance when assessing in-situ soil strength and permeability. Unfortunately, permeability is notoriously difficult to measure accurately but of paramount importance to the successful installation of suction buckets (Tran et al., 2007). This paper provides insight into the impact of uncertainties on the installation design.

Engineers have a number of competing strategies for considering uncertainty: (1) ignoring it altogether - a surprisingly common but dangerous practice, (2) being conservative - a practice which generally results in a safe but overly expensive design. The primary drawback being that without explicitly considering variability it is impossible to determine how conservative one is being. (3) the observational method, which involves changing the design during construction or operation to accommodate observed behaviour and correct for it. While this approach is quite successful in its own right it has a number of drawbacks, mainly changing costs and construction times. (4) Quantify uncertainties, using reliability-based design methods (Christian, 2004). While the first three can only give an impression of certainty the latter can explicitly account for uncertainties and give a true measure of conservatism (Lacasse and Nadim, 2007). Reliability-based design methods were originally developed to model low rate of occurrence and high risk problems such as those encountered in nuclear design (Christian, 2004). To accurately apply these methods in the geotechnical domain, realistic descriptions of measurement errors, model errors and the spatial variability of soil properties are required (Christian et al., 1994). Unfortunately, these are difficult to obtain due to the limited availability of measurements and the large inherent uncertainty in
geotechnical parameter estimation approaches (Phoon and Kulhawy, 1999). Nevertheless, these methods have been successfully applied in the fields of levee design, slope stability, bearing- and lateral pile capacity among others (Christian et al., 1994; Fenton and Griffiths, 2003; Malkawi et al., 2000; Phoon and Kulhawy, 2005; Reale et al., 2016). To date however, there are few practical examples of reliability-based design being applied to quantify uncertainty in the installation of offshore foundations (Wu et al., 1989). Reliability-based approaches are ideal for the consideration of installation studies given the costs and risks involved.

This study demonstrates how reliability methods can be used to investigate the impact material uncertainty has on the installation of suction buckets in cohesionless soils. Qualitative reliability analyses, that focus on events and failure mechanisms which could arise during installation, are performed. Two design methods for suction bucket installation are analysed and adapted for layered soils with varying permeabilities. Spatial variability of parameters is objectively quantified in order to apply reliability-based design to suction bucket installation design methods. A representative geotechnical survey from an offshore wind farm is used to obtain the variability estimates. Quantified parametric uncertainties are implemented in the adapted design methods using a Monte Carlo simulation. The results are used to assess the impact of parametric variability in a series of feasibility and sensitivity studies.

2. Analysing suction bucket installation

Before performing a quantitative reliability assessment, qualitative reliability methods are considered to account for and relate failure events (that are not directly accounted for) to traditional design methods. Fig. 1 displays the followed procedure during the analysis.

2.1. Overview of suction bucket installation

The installation of suction buckets has a number of phases. In the initial phase the suction bucket penetrates into the seabed under its own weight. Before breaching further into the seabed the bucket must first penetrate through the scour protection layer previously placed at the site (Sturm, 2017; Houlsby and Byrne, 2005). When the soil resistance equals with the submerged weight on the bucket, water is pumped out of the bucket cavity. This generates a pressure differential (s) within the bucket cavity relative to the surrounding water pressure (Fig. 5). This underpressure results in a net downward driving force (in addition to the self weight) and causes seepage flow into the bucket as water pressure attempts to equilibrate. The seepage flow reduces the soil’s effective stress profile along the inside and under the bottom annulus of the bucket. Thereby reducing the soil’s resistance to suction bucket installation (Foglia and Ibsen, 2014; van Dijk, 2018). Installation is considered to be successful if the bucket reaches its target depth without refusal or structural damage.

Between placing the suction bucket on the filter layer and reaching target depth, different events can occur which can lead to installation failure. Some of the phenomena causing failure can be mitigated through the application of contingency measures. Prior to examining quantitative design methods, the whole installation process is qualitatively inspected by means of event tree (Section 2.2) and fault tree analyses (Section 2.3).

2.2. Event tree analysis

An event tree is a method of mapping all possible scenarios between the initiating event (placement of the bucket on the filter layer) and all possible outcomes (installation success/failure) using Boolean logic to determine subsequent consequences (Christian, 2004; Whitman, 1984). An objective analysis of the impact of hazards and the effectiveness of contingency measures is possible with an event tree, provided that all probabilities inside the tree are unconditional and mutually exclusive (Lacasse and Nadim, 2007). Fig. 2 presents a general event tree of suction bucket installation.

Specific causes of premature refusal can be (partially) mitigated by the application of contingency measures. For example, if the suction bucket does not achieve sufficient initial penetration, local piping may occur and jeopardise the attainment of the target penetration depth. In such a case one can consider the application of ballast to increase the downward force. If successful, this measure can lead to penetration to a depth where the suction process can begin. If not, premature refusal is the consequence. Including all individual contingencies leads to a very large event tree. Contingencies can be organised into sub-event trees per installation phase to prevent this.

However, many contingencies (e.g. jetting, crane actions and cyclic pumping) cannot yet be quantified as their likelihood of occurrence is low and accurate design methods are absent. Two contingencies are included in this study. Ballast material can be applied if insufficient initial self weight penetration occurs. Back-fill material (grout) can be used at refusal to fill the gap between the target and final penetration depth (Sturm, 2017). If a contingency can be applied successfully, it will lead to a reduction in the probability of failure of installation.

2.3. Fault tree analysis

Fault trees can be used to map conditions that need to be met for failure to occur (Christian, 2004). If the probability of occurrence of each mechanism is known the probability of failure of the entire system can be analysed. The fault tree presented in Fig. 3 was developed for application in this study. Unfortunately, mutual exclusivity of failure mechanisms is hard to realise since several mechanisms can occur simultaneously, while the correlation of failure mechanisms is difficult to determine due to the non-alignment of design methods.

Installation of the suction bucket fails when penetration to target depth becomes impossible due to structural failure (buckling), pumping system failure (cavitation) or the exceedance of some geotechnical limit state (e.g. piping or soil plug heave) (Ibsen and Thilsted, 2010). These limitations are combined into a critical suction profile which can be regarded as the maximum allowable under pressure inside the bucket cavity at each penetration depth. A range of possible failure mechanisms have been identified in previous case studies (Foglia and Ibsen, 2014; Sturm, 2017). Although many failure mechanisms can already be predicted, it remains hard to take phenomena caused by the filter layer or laminar layers into account accurately.

2.4. Deterministic installation design methods

Understanding how soil resistance develops during penetration forms the basis of suction bucket installation design (Foglia and Ibsen, 2014). Two main methods are available to perform such a study: the empirical CPT-based method (Cone Penetration Test) (Andersen et al., 2008; Senders and Randolph, 2009) and the theoretical approach by Houlsby and Byrne (2005). Both methods are based on open-ended pile design and compute the soil resistance as the sum of skirt friction
and the end-bearing capacity (Houlsby and Byrne, 2005) (Fig. 4). Both design methods consist of an assessment of two installation phases: self weight and suction-assisted penetration. The self weight penetration depth is computed by balancing the sum of end-bearing resistance (\(R_s\)) and skirt friction (\(R_{sk}\)) with the submerged weight on the bucket (\(W'\)). In the second phase, the combined effects of the submerged bucket weight and the applied differential pressure (\(s\)) is equilibrated with the total soil resistance accounting for any reduction caused by the applied underpressure. This vertical balance is solved for the required suction (\(s\)) at each penetration depth (\(h\)).

2.4.1. CPT-based method

Conventional CPT-based design correlates the cone resistance obtained in a cone penetration test (\(q_c\)) to the skirt friction and end-bearing via two empirical factors. A shaft friction factor (\(k_f\)) between 0.001 and 0.003 and an end-bearing factor (\(k_e\)) between 0.3 and 0.6 is recommended in the literature (Andersen et al., 2008; Senders and Randolph, 2009). Specific methods correlating these empirical factors to soil properties are absent. The initial self weight penetration phase is modelled using Eq. (1). The effect of underpressure (\(s\)) during phase 2 is then incorporated in the following manner. The effect of under pressure on the outer skirt is ignored. A linear reduction in value of inner skirt weight and suction-assisted penetration. The self weight penetration

\[
V' = \pi D k_2 \int_0^h q_c(z)dz + \pi D k_f \int_0^h q_c(z)dz + (\pi Dr)k_2(h)q_c(h) \quad (1)
\]

\[
V' + s\left(\frac{\pi D^2}{4}\right) = \pi D k_f \int_0^h q_c(z)dz + (\pi Dr)k_2(h)q_c(h) \quad (2)
\]

\[
\gamma' + s(\gamma' - a(h))s N_q + \gamma' N_q \quad (3)
\]

2.4.2. Houlsby & Byrne method

The Houlsby & Byrne method is based on the classical bearing capacity approach. The skirt friction is computed as a product of local horizontal effective stress (\(\sigma'_h\)) (calculated through the ratio of horizontal over vertical stresses, \(K\)) and the interface friction angle (\(\delta\)). End-bearing is computed through end-bearing factors \(N_q\) and \(N_e\). Eq. (3). The effective vertical stresses are enhanced by frictional forces further up the skirt and therefore develop differently on the inside (\(\sigma'^c_i\)) and the outside (\(\sigma'^c_o\)) of the skirt (Houlsby and Byrne, 2005). Linear development of underpressure between an applied suction (\(s\)) and \(a\) times the applied suction (\(as\)) at the skirt tip is assumed on the inside of the suction bucket. While outside, a linear underpressure dissipation from (\(as\)) at the skirt tip to zero at the seabed interface is assumed, see Eq (4). The factor \(a\) was determined from finite element studies in soils of uniform permeability allowing for a fixed value of loosening the inner soil plug (Houlsby and Byrne, 2005). Interested readers are referred to Houlsby and Byrne (2005) for a more thorough explanation.

\[
V' = \int_0^h [\sigma'_0(K \tan \delta)_h + \sigma'_v(K \tan \delta)]d\gamma \quad (4)
\]

\[
V' + s\left(\frac{\pi D^2}{4}\right) = \int_0^h [\sigma'_0(K \tan \delta)_h + \sigma'_v(K \tan \delta)]d\gamma + s_{(b)}(h)q_c(h)(K \tan \delta)\quad (5)
\]

2.4.3. Critical suction

After calculating the required suction, the critical suction level (the suction at which inner erosion starts to occur) is determined. Inner erosion of soil starts when the exit hydraulic gradient (\(i_e\)) (Fig. 5) adjacent to the inner skirt exceeds some critical value imposed by gravitational forces (\(i_g\)) (Ibsen and Thilsted, 2010). This is computed with the effective soil unit weight (\(\gamma'\)) and the unit weight of water (\(\gamma_w\)). The exit hydraulic gradient is a function of the seepage length (\(l_s\)). Using the results of an axisymmetric finite-element seepage model and the relationship described by Eq. (5) several empirical soil suction limit formulations (\(s_{(b)}\)) were developed (Ibsen and Thilsted, 2010). However, work by Panagoulias et al. (2017) suggests that these limits are too
conservative (Panagoulias et al., 2017). Local exceedance of the critical gradient does not necessarily lead to definitive refusal since global stability might still be preserved. This matter is further discussed, for instance in (Ibsen and Thilsted, 2010; Panagoulias et al., 2017).

\[i = \frac{s}{\gamma' \gamma''}, \quad i_c = \frac{\gamma'}{\gamma''}, \quad s_c = \frac{\gamma'}{\gamma''} \] \hspace{1cm} (5)

2.4.4. Adaptations to existing design methods

All methods discussed were developed for soils that have uniform permeability with depth. Under uniform soil conditions, the change in effective stress brought about by the developed underpressure would be consistent across the site. However, when permeability varies across a site this is no longer the case and significant variation in effective stress reduction occurs. In practice there are questions on the suitability of the original methods as permeability variation and progressive soil plug loosening are to be expected (Tran et al., 2007; Harireche et al., 2014). In this study two adaptations are made to the existing axisymmetric finite-element seepage models (Ibsen and Thilsted, 2010). Firstly, progressive soil plug loosening is applied for the cohesionless layers where seepage occurs. The inner soil plug permeability \(k_i \) is multiplied with a factor \(k_r \) with respect to the outer permeability \(k_o \). Plug loosening increases with penetration depth \(h \) according to Eq. (6) as proposed by Harireche et al. (2014). In this paper the same loosening relationship has been applied to all layers of non-cohesive material. Secondly, different layer elements are incorporated into the model thereby allowing for changes in permeability with depth.

\[k_r = \frac{k_i}{k_o} = 1 + \frac{3}{4} \frac{h}{D} \] \hspace{1cm} (6)

Fig. 5 shows the impact of these adaptations on the developed underpressures by comparing two case studies. The left-hand side plot shows a case of constant permeability with no plug loosening. While the right-hand side plot includes a thin less permeable (80% permeability reduction) soil layer at a depth of 1 to 2 m and incorporates the effects of plug loosening \((k_r = 3.2) \). The underpressures are normalised with respect to the applied underpressure in the suction bucket cavity. Fig. 5 shows the normalised underpressures for the two cases. Reducing the permeability causes a decrease in hydraulic head along the inner skirt wall and tip and consequently an increase in soil effective stress. Conventional design methods would under-estimate the encountered resistance in such a case. This could lead to premature refusal during installation. Plug loosening increases permeability along the wall and
thereby decreases soil resistance. Both effects need to be accounted for to achieve more accurate installation design.

Integrating the adapted seepage model with existing installation design methods makes them suitable for application in layered soils of varying permeability. As a consequence, model uncertainty reduces. The skirt friction and end-bearing resistance variation in both methods is carried out proportionate to the change of enhanced vertical effective stresses \(\sigma'_c\) and \(\sigma'_s\) by the applied underpressure \(s\) (Houlsby and Byrne, 2005). The hydraulic head difference over the bucket wall always scales linearly with the applied underpressure. This means that a seepage analysis needs to be performed once per penetration depth and installation design becomes an iterative procedure, see Fig. 6 and Appendix B.1.

3. Quantifying parametric uncertainties

This study uses a vertical random field model to describe cone resistance \(q_c\) variability with depth. Fitted probability density functions are used to model the variability of all other parameters. The accuracy of both of these approaches is sensitive to both soil type and layering (Uzielli et al., 2006). Therefore, several approaches are considered to ensure representative layers are identified.

3.1. Layer and soil type identification

The presence of soil layers which have different properties (strength, stiffness, permeability etc.) and exhibit different behaviour under stress can have a large impact on the installation of suction buckets. Accurate layer identification is therefore a necessity. This study employs four distinct identification methods simultaneously: borehole logs, the soil behaviour type index, the statistical moving window method and Bartlett profiling.

Borehole logs contain the subjective interpretation made during visual examination of the samples on site (e.g. sub angular coarse grained sand). Often these logs contain additional information on the geological history of the deposit (Peuchen, 2012). Borehole logs are valuable for identifying small layers or lenses which might not be captured by a cone penetration test. The soil behaviour type index \((I_s)\) is computed after normalising the cone tip resistance \((q_t)\) and the shaft friction \((f_s)\) with effective stress \((q_c, F_c)\) (Eqs. (7) and (8)). It can be used to give a first indication of the soil type based on an interpretation of the Robertson classification chart (Robertson, 2016).

\[
I_s = \left[\frac{(3.47 - \log Q_t)}{2} + \log F_c + 1.22 \right]^{1.5} \tag{7}
\]

\[
Q_t = \left(\frac{q_t - \sigma'_{so}}{\sigma'_{so}} \right) , \quad F_c = \left(\frac{f_s}{q_t - \sigma'_{so}} \right) \quad 100\% \tag{8}
\]

Both the statistical moving window method (Uzielli et al., 2005) and Bartlett profiling (Phoon et al., 2003) utilise a moving window to examine the average soil variance over the cone resistance profile. The moving window method computes the coefficient of variation (COV) of the cone resistance in each window. The objective of this method is to identify homogeneous soil units from such a profile. Bartlett profiling computes a statistical value \((B_{stat})\) per depth based on comparing the standard deviation of both halves of the sampling window \((\sigma_{s1}, \sigma_{s2})\), see Eqs. (9) and (10). Peaks within the profile indicate a change in soil behaviour. The width of the peaks and troughs in both moving window methods, depend on the standard deviation of the cone resistance, the number of measurements \((m_h)\) and the chosen window width.

\[
B_{stat} = \frac{\sigma_{s1}^2 + \sigma_{s2}^2}{2} \left[2 \log \left(\frac{\sigma_{s1}^2}{\sigma_{s2}^2} \right) - \left(\log(\sigma_{s1}^2) + \log(\sigma_{s2}^2) \right) \right] \tag{9}
\]

\[
C_b = 1 + \frac{1}{2(m_h - 1)} \tag{10}
\]

None of the four methods mentioned fully correspond to one another. The accuracy of the borehole log depends on the loggers experience. None of the moving window methods has an objective threshold to distinguish layer boundaries. As a consequence distinct peaks and troughs in the profile must be used. Furthermore, both moving window methods are sensitive to the choice of window width. Fig. 7 shows that enlarging the window results in a significant decrease of distinct peaks, while decreasing the window width will result in more peaks indicating layer boundaries, some of which may not exist. Both moving window methods are challenging to apply at shallow depths, since the magnitude and variation of the cone resistance are typically low. While the soil behaviour type index \((I_s)\) does have objective identification thresholds, it can fail to capture a change in the gradient of the cone resistance trendline. This can result in an overestimation of the of cone resistance variation when constructing a random field model (Section 3.2).

3.2. Random field modelling of cone resistance

A random field model can be constructed for any stochastic process which can be described by a trend and a variation with zero mean about that trend (Rackwitz, 2000). The vertical variability of the cone resistance within each layer is described by its own random field, see Fig. 9. Two prerequisites should be satisfied in order to ensure applicability (Uzielli et al., 2006):

1. Soil layers used should be physically homogeneous in their behaviour;
2. The variations of soil properties about their respective trendlines should be weakly stationary.

Proper layer identification as elaborated on in Section 3.1 can assure meeting the prerequisite on physical homogeneity. Weakly stationary
variation along the trendline indicates that there is no trendline incorporated in the variation profile which therefore means variation is independent of its location within the layer. Besides checking that the variability oscillates about a zero mean when detrended, no generally applicable objective methods are currently available for the assessment of weak stationarity (Phoon et al., 2003).

Each layer in a random field model requires a trendline describing the mean (μ) and a standard deviation (σ), a scale of fluctuation (δ) combined with a corresponding theoretical autocorrelation function, $R(\tau)$ describing the variation (Phoon et al., 2003). The latter describes the spatial correlation of variation within the profile (Rackwitz, 2000). To obtain this for a given layer at a location the following procedure is applied (Lloret-Cabot et al., 2014). First, empirical autocorrelation functions are determined for all variability profiles obtained from different CPTs within the same soil layer according to Eq. (11). The mean empirical autocorrelation is then calculated and theoretical autocorrelation models are fitted to it using a least squares approach (Table 1). The best fitting theoretical model is selected with its corresponding scale of fluctuation (δv) and is used for all further simulations, see Fig. 10 and Appendix B.2.
Three criteria are considered to match soil layers from different CPTs in order to ensure that the correct data is used for determining the mean empirical auto-correlation. The layers should have:

1. A similar soil behaviour type index ($\Delta I_r < 5\%$);
2. Belong to the same geological deposit;
3. Overlap in depth.

Applying these criteria allows for the generation of theoretical auto-correlation functions which are based on the empirically fitted curves representative for the site at large, see Fig. 10.

\[
\rho(r) = \frac{1}{\sigma^2(n-j)} \sum_{i=1}^{n-j} (X_i - \mu)(X_{i+j} - \mu)
\]

\[\text{(11)}\]

Many current vertical random field studies consider few soil layers and model large outliers as cone resistance variance (Doherty and Gavin, 2010; Prendergast et al., 2018). This is feasible for very homogeneous soils over depth and closely spaced cone penetration tests. Offshore cone penetration tests are typically positioned further apart. Additionally, the presence of thin laminar layers can severely impact layer permeabilities and can have serious consequence on the installation design of suction buckets and therefore should not be ignored. These arguments emphasise the need for one random field per soil layer with corresponding trendlines and variance description (as in Fig. 9).

Negative cone resistances are a physical impossibility and therefore must not be simulated (Doherty and Griffiths, 2003). To prevent this, simulated Gaussian processes are transformed into the log-normal domain. Caution should be exercised at locations where the fitted linear trendline values are close to zero or negative. This can happen if the trendline for the uppermost layer is not constrained to the positive domain. In such cases it will be difficult to avoid simulating negative cone resistances. The trendline should always be corrected to only contain small near-zero positive values to avoid this.

Table 1

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
<th>Scale of fluct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single exponential</td>
<td>$R(r) = \exp(-\frac{</td>
<td>r</td>
</tr>
<tr>
<td>Binary noise</td>
<td>$R(r) = 1-\exp(-</td>
<td>r</td>
</tr>
<tr>
<td>Cosine exponential</td>
<td>$R(r) = \exp(-\pi</td>
<td>r</td>
</tr>
<tr>
<td>Second-order Markov</td>
<td>$R(r) = (1 + \frac{d}{\delta_2}) \exp(-\frac{d}{\delta_2}</td>
<td>r</td>
</tr>
<tr>
<td>Squared exponential</td>
<td>$R(r) = \exp(-\frac{a}{\delta}r^2)$</td>
<td>$\delta_i = \sqrt{\delta} / a$</td>
</tr>
</tbody>
</table>

3.3. Continuous probability density functions (PDF)

Parameter estimates are obtained from the results of laboratory or field tests via direct measurement or correlation (Table 2). The required parameters are treated as random variables as they can have different values under different conditions which have a different probability of occurrence (Dekking et al., 2005). The probability of occurrence is described by a continuous PDF. Different soil types form under different conditions and can have a difference in geotechnical properties as a consequence. Therefore parameter estimates are grouped per soil type. Histograms are plotted for different parameter groupings and soil types to ensure that the resulting continuous distributions are uni-modal. Discrete variability is then quantified using both histograms and fitted empirical Cumulative Density Functions (CDFs). Fig. 11 shows the calculated permeability CDF for the different soil types. The result is as expected since finer soils have a lower permeability. As previously discussed, Gaussian distributions are not suitable for modelling parameters which cannot have values in the negative domain. Several PDFs are fitted and assessed for each parameter (see Table 3).

All probable distributions are fitted using the maximum likelihood estimator to determine shape and location factors. Two ‘goodness of fit tests’ are applied to objectively assess the accuracy of the fit. The Pearson x^2 test compares the shape of the continuous PDF to its normalised histogram. The weighted error is checked against a predetermined threshold based on the number of estimates and the x^2 distribution (Plackett, 1983). The Kolmogorov–Smirnov test determines the maximum error between the empirical and continuous CDF. It compares this to a threshold which depends on the number
of parameter estimates (Lilliefors, 1967). The score of both tests is normalised by their respective threshold and averaged afterwards. The fitted continuous distribution which scores best on average is used to describe the variability of a parameter in a given soil type. A minimum of 30 samples is set as the lowest threshold for Pearson’s χ² ‘goodness of fit’ test. Otherwise the mean value is used as a deterministic estimate. Fig. 12 shows the procedure for modelling the variability of the permeability of medium to fine sands based on 51 estimates. The log-normal distribution showed the best fit.

4. Quantitative reliability analysis

In this section, the quantified parametric uncertainties from Section 3 will be implemented into the developed design methods for different failure mechanisms and contingencies (Section 2). The results provide insight into the impact of uncertainties on installation design.

4.1. Monte Carlo simulation

Almost every design problem can be simplified into a combination of a load (S) and a resistance (R). Feasibility can likewise be expressed by the limit state (G = R − S). A limit state value below zero (G < 0) corresponds to a failure scenario, while a value above zero (G > 0) represents a safe design. Christian (2004). In this study, the resistance is represented by the critical suction profile (s_c) and the load by the required suction profile (s_r). Both the empirical CPT-based method and the theoretical approach of the Houlsby & Byrne method are used to determine required suction profiles. Each quantifiable failure mechanism (e.g. buckling, cavitation or inner erosion) is expressed as the maximum allowable underpressure at that depth. This forms a limit state over depth which may not be exceeded by the applied underpressure.

The original limit state formulation is not useable for continuous processes like suction bucket installation, as failure could occur at any depth. Therefore the smallest absolute difference does not necessarily represent the point most likely to fail. The relative magnitude dictates the reliability instead. The limit state is normalised by the critical suction profile to find the point which is relatively closest to failure Eq. (12).

\[G = s_c - s_r \rightarrow G = 1 - \frac{s_r}{s_c} \] (12)

The probability of failure can be assessed in a quantitative reliability analysis. Suction bucket installation is a multi-dimensional problem due to its many input parameters. This hinders application of direct integration or first order reliability methods (Au and Beck, 2001). Regular Monte-Carlo simulation is the most suitable method for these types of problems; as it allows for the direct input of advanced probabilistic distribution types and is accurate when sampled extensively. Parameters are randomly sampled from their representative distributions to construct design profiles. The number of iterations which fail divided by the total amount of iterations carried out represents the probability of failure (Fig. 13 and Appendix B.3).
One drawback of Monte-Carlo simulation is that the time taken to assess low probability events can become significant, particularly when a high degree of accuracy is required. Optimised methods for faster computation (e.g. Markov Chain Monte Carlo, Importance Sampling etc.) do exist and are applied in literature (Zhang et al., 2010). However, when used in combination with random field models and a depth dependent limit state (e.g. composed critical suction profiles) any time savings are lost.

4.2. Feasibility assessment

The probabilities of failure due to buckling, exceeding soil suction limits and cavitation are assessed using Monte-Carlo simulations of 5000 iterations. An example for a bucket with a diameter (D) of 10 m, final penetration depth (h) of 5.5 and wall thickness (t) of 45 mm is presented in Fig. 13. In this case the CPT-based method (adapted for layers of varying permeability) is applied. The effect of contingency measures such as the application of ballast and backfill material are included where appropriate to reduce probabilities of failure accordingly (Section 2.2). The observed failure probabilities are high. The large model uncertainty contributes to this as: (1) The soil suction limits are believed to be too conservative and the impact of many contingency measures cannot be quantified (Panagoulias et al., 2017). (2) The error in CPT results can be quite high, as CPT cones sample a relatively small area compared to that of the suction bucket. Therefore, they register the significance of occluded pebbles etc. as more important than they actually are when scaled up. (3) The model error in measuring permeability and soil friction angles is significant, particularly given the scale of magnitude of the change these parameters undergo during
loading. Aside from model error, the lack of sufficient survey data to accurately model horizontal variability adds uncertainty to the analysis. Lateral variability of soil strength and permeability cannot be included, which eliminates the opportunity of including some aspects relevant to suction bucket installation (e.g. preferential flow and horizontal strength variation) (Sturm, 2017).

The importance of a quantitative reliability analysis becomes clear when one compares the results to that of conventional design methods. In current driveability practice, it is common to construct lower and upper bounds using a standard safety factor ($\gamma = 1.25$) (Alm and Hamre, 2001). Taking 95% reliability intervals, as recommended by Eurocode 7, for underpressure at each depth, the output of the Monte-Carlo simulation could be used instead of a conventional design approach. In the left plot of Fig. 14 a deterministic estimate and the outcome of all iterations in the Monte Carlo simulation are presented. These are then translated to a lower and upper bound using the conventional method ($\gamma = 1.25$) and 95% reliability intervals in the right plot Appendix B.3. As the bandwidth of the conventional method is consistently lower than that of the reliability based approach, it would appear that the selected safety factor is non-conservative with respect to the quantified uncertainties and carries a greater failure probability.

4.3. Sensitivity analyses

Failure mechanisms develop when an unfavourable load resistance envelope occurs at a location. The sampled parameters and limit state profiles of a Monte-Carlo simulation can be used to assess the origin of generated failure situations. Failure is observed when simulated soil resistances are high. When a high soil resistance is observed the angle of internal friction (ϕ) and the ratio of horizontal stress (K) are high too. The probability of failure is therefore very sensitive to any change in these parameters.

The influence of parameter estimates as well as the incorporation of variability can be determined with a quantitative reliability analysis. Fig. 15 illustrates this using the Houlsby & Byrne design method. In the left plot the median profiles of all samples with particular stress ratios (high and low) are plotted. These are extracted from the bulk of iteration results during a Monte Carlo analysis. One can see that the stress ratio (K) estimate has a large impact on the outcome profile. This is unfortunate given the great difficulty in accurately estimating this parameter in cohesionless soils (van Dijk, 2018). However, it also shows the power of reliability analyses in influencing decision makers to perform more field tests.

The right graph of Fig. 15 gives an example of the impact of parametric variability on the results. Two 95% confidence intervals are plotted showing the results of two Monte-Carlo analyses. The first Monte-Carlo analysis was executed with varying permeability estimates sampled from the previously determined distributions. The second analysis was executed using the expected values from the same distributions. One can see that incorporating the variation of permeability has significant impact on the upper bound of the confidence interval, naturally having this much uncertainty in your underpressure development will lead to a less reliable installation. Combined with the fact that it can be used to assess and simulate governing failure mechanisms one can state that incorporating permeability variation is required.

Fig. 16 shows simulated failures and corresponding histograms of sampled permeabilities. The low sampled permeability in layer three indicates that the governing failure mechanism is seepage blocking. This low permeability layer prevents the generation of underpressures beneath it and therefore fails to reduce soil resistance which can cause premature refusal. Slight deviations towards higher permeability in lower layers are present too and indicate the occurrence of sticking. In such cases high permeability layers hinder the generation of sufficient underpressure. As a consequence the soil resistance is insufficiently reduced to allow for further penetration (Sturm, 2017). Understanding governing failure mechanisms can help in planning contingencies as well as setting the scope for future site investigations.

5. Conclusion and discussion

This study objectively quantified variability of geotechnical parameters and incorporated it into two existing design methods for suction bucket installation. The impact of considering permeability variations within layers and between layers was shown to be highly significant and should be considered in practice. The existing installation design methods were adapted to integrate a finite-element seepage model and progressive plug loosening, thus making them suitable for application in layered soils of varying permeability. As a consequence, model uncertainty reduced. Application of reliability-based design led to an improved understanding of the expected failure mechanisms through investigating model sensitivities. Additionally, it provides a basis for accurately determining conservatism, thereby reducing the chance of unexpected failure.

Suction bucket installation design research typically uses ideal data-sets with homogeneous soil conditions. This study showcases the steps necessary to adapt these methods for non-homogeneous sites such as those commonly found in practice. In such conditions, layer and soil type identification are essential in order to avoid over- or under-estimation of the soil resistance during installation. Integrating these features into installation design accounts for several unfavourable effects (e.g. seepage blocking and sticking), which would otherwise not be considered. This helps to more accurately predict the occurrence of premature refusal and increases the safety margin in installation design. Four layer identification methods were presented and contrasted in this research. It was found they were seldom in complete agreement, but were best utilised in combination with each other. It was shown that a statistical sound application of vertical random field modelling of the cone resistance requires a more extensive check on its prerequisites (homogeneity and stationarity). Due to the shallow embedment depth of suction buckets, assuming homogeneity or stationarity without checking can lead to substantial over- or under estimation of the cone resistance and hence the resistance calculated in suction bucket design. Each layer needs to be properly identified and assigned its own random field. This is challenging in practice since the accuracy of a vertical random field is hard to assess without many closely spaced CPTs. Probability density functions provide an excellent tool for modelling the variability of soil parameter estimates. Using ‘goodness of fit’ tests such as the Pearson x^2 and the Kolmogorov–Smirnov test is recommended since they objectively assess distribution fit and suitability.

Integrating Monte Carlo simulation outputs into the developed fault tree resulted in high estimates of the probability of installation failure. The high failure probability can partly be attributed to conservatism in the computation of the limit state (critical suction). Currently, soil limits are set at under-pressure values which are computed based on the onset of erosion. However, the onset of erosion is not necessarily synonymous with installation failure. Future model tests should give more insight into the geometric extent of critical gradients at failure.

The reliability study as well as the installation design method can be improved by assessing other design aspects as well. For example at this point, it is not possible to calculate the influence of a filter layer on the penetration process. Furthermore, the CPT-based method can be improved by developing an estimation method for the empirical coefficients based on back-calculation using measured field data of...
Fig. 14. Comparison of deterministic design with a safety factor to a reliability interval.

Fig. 15. Influence of stress ratio estimate and permeability variation on design outcomes.

Fig. 16. Parametric study leading to identification of governing failure mechanisms.
similarly shaped foundations. This study shows that 95% reliability intervals can be used to verify adaptations made to installation design or parameter estimates. If the bandwidth of an improved method consistently decreases towards the measured output during installation one can verify whether the adaptations made can be considered an improvement. Mutual exclusivity of failure mechanisms is hard to realise since several failure mechanisms can occur simultaneously while at present their correlation is difficult to determine due to the non-alignment of design methods. Better design method alignment would allow this to be accounted for within a risk based framework.

In practice, variability of soil properties is difficult to determine without extensive site investigation. Without knowing the horizontal variability of soil properties it is impossible to quantify preferential flow or spatially average soil strength across the diameter of a bucket. Both are likely to significantly change design outcomes and their probability of failures. In practice multiple buckets are often installed as the foundation for a jacket structure, which supports the wind turbine. There is a need to analyse interaction effects and develop more accurate models for horizontal variability, in order to assess the feasibility of installing foundations for a jacket structure as a system.

Appendix A. Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{st})</td>
<td>Bartlett statistical value</td>
</tr>
<tr>
<td>(D)</td>
<td>Diameter</td>
</tr>
<tr>
<td>(D_i)</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>(D_o)</td>
<td>Outer diameter</td>
</tr>
<tr>
<td>(f_s)</td>
<td>Shaft friction (CPT)</td>
</tr>
<tr>
<td>(F_r)</td>
<td>Normalised shaft friction</td>
</tr>
<tr>
<td>(G)</td>
<td>Limit state</td>
</tr>
<tr>
<td>(h)</td>
<td>Penetration depth</td>
</tr>
<tr>
<td>(i)</td>
<td>Exit hydraulic gradient</td>
</tr>
<tr>
<td>(I)</td>
<td>Soil behaviour type index</td>
</tr>
<tr>
<td>(k)</td>
<td>Permeability</td>
</tr>
<tr>
<td>(k_f)</td>
<td>Shaft friction factor</td>
</tr>
<tr>
<td>(k_p)</td>
<td>End-bearing factor</td>
</tr>
<tr>
<td>(k_w)</td>
<td>Permeability ratio</td>
</tr>
<tr>
<td>(K)</td>
<td>Stress ratio</td>
</tr>
<tr>
<td>(l)</td>
<td>Seepage length</td>
</tr>
<tr>
<td>(L)</td>
<td>Skirt length</td>
</tr>
<tr>
<td>(m)</td>
<td>Measurements per window</td>
</tr>
<tr>
<td>(N_f)</td>
<td>Bearing capacity constant</td>
</tr>
<tr>
<td>(N_r)</td>
<td>Bearing capacity constant</td>
</tr>
<tr>
<td>(q_c)</td>
<td>Cone resistance</td>
</tr>
<tr>
<td>(q_{cr})</td>
<td>Corrected cone resistance</td>
</tr>
<tr>
<td>(Q_x)</td>
<td>Normalised cone resistance</td>
</tr>
<tr>
<td>(R)</td>
<td>Resistance</td>
</tr>
<tr>
<td>(R_{so})</td>
<td>End-bearing resistance</td>
</tr>
<tr>
<td>(R_{se})</td>
<td>Outer skirt resistance</td>
</tr>
<tr>
<td>(R_{in})</td>
<td>Inner skirt resistance</td>
</tr>
<tr>
<td>(R_D)</td>
<td>Relative density</td>
</tr>
<tr>
<td>(s)</td>
<td>Pressure differential</td>
</tr>
<tr>
<td>(s_c)</td>
<td>Critical suction</td>
</tr>
<tr>
<td>(s_e)</td>
<td>Submerged weight</td>
</tr>
<tr>
<td>(t)</td>
<td>Wall thickness</td>
</tr>
<tr>
<td>(v)</td>
<td>Vertical effective stress</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Mean</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>(\rho(\tau))</td>
<td>Empirical autocorrelation function</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Safety factor</td>
</tr>
<tr>
<td>(\gamma')</td>
<td>Effective soil unit weight</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Interface friction angle</td>
</tr>
<tr>
<td>(\delta_v)</td>
<td>Vertical scale of fluctuation</td>
</tr>
<tr>
<td>(\mu_w)</td>
<td>Volumetric weight water</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Volumetric water content</td>
</tr>
<tr>
<td>(\nu')</td>
<td>Normalised shaft friction</td>
</tr>
</tbody>
</table>

Appendix B. Pseudocode

B.1. Adapted installation design method for layered soils

Algorithm 1 can be used in combination with CPT-based design (Senders and Randolph, 2009) as well as the Houlsby & Byrne method (Houlsby and Byrne, 2005) (Section 2).

Data: Soil parameters for identified layers at each depth
Result: Required underpressure and critical suction
for every penetration depth do
 Compute total soil resistance;
 If total soil resistance ≥ effective submerged weight then
 Save self weight penetration depth;
 end
 for every penetration depth ≥ self weight penetration depth do
 Perform seepage analysis;
 Determine critical suction;
 Compute change in soil resistance by applied underpressure according to effective stress reduction;
 while reduced soil resistance ≤ driving forces do
 Raise or lower applied underpressure
 end
 end
end

B.2. Parameter estimation vertical random field cone resistance

Reference is made to Prendergast et al. (2018), Rackwitz (2000) and Lloret-Cabot et al. (2014) for generating the random fields.

Data: Multiple CPTs within one survey dataset
Result: Parameters estimation for a random field model of the cone resistance for one (CPT) location in the survey data set
for every CPT in dataset do
 Compute soil behaviour type index (\(I_\nu\));
 Compute moving window methods;
 Find closest borehole log;
 Manually identify soil layers;
 Verification with second moment Robertson chart
end
for every layer at location do
 Determine trendline and standard deviation;
 Compute empirical autocorrelation function;
 for every layer in every other CPT do
 if layers overlap in depth then
 else if layers from same geological deposit then
 else if \(A I_\nu\) between layers ≤ 5% then
 Add empirical autocorrelation function;
 end
 end
 Average all added empirical autocorrelation functions;
 Fit theoretical autocorrelation models and scale of fluctuation;
end

Algorithm 2: Parameter estimation for constructing vertical random fields of the cone resistance
B.3. Monte-Carlo simulation

Data: Identified soil layers, random field parameters for cone resistance profile simulation (Appendix B.2), probability density functions soil parameters, suction bucket dimensions

Result: Probability of failure, 95% reliability intervals

Determine geometric parameters;
Determine amount of iterations (N_i);
for every iteration do
 for every identified layer at the location do
 Simulate random field of the cone resistance;
 Simulate soil parameters from probability density functions;
 end
 Perform adapted installation design method(s) (Appendix B.1);
 Save required underpressure and critical suction profile;
 Normalise limit state with respect to critical suction;
 if Limit state ≤ 0 then
 Failure observed $(N_f + 1)$;
 end
end

Compute probability of failure (N_f/N);
for every depth do
 Determine empirical cumulative density function required and underpressure and critical suction;
 Determine 95% reliability intervals from empirical cumulative density function;
end

Algorithm 3: Application of Monte-Carlo analysis on suction bucket installation design

References

South Korea, pp. 45–63.

