Fatigue, static tensile strength and stress corrosion of aircraft materials and structures

Part II: figures

March 1990

J. Schijve

TU Delft
Faculty of Aerospace Engineering
Delft University of Technology
Fatigue, static tensile strength and stress corrosion of aircraft materials and structures

Part II: figures

J. Schijve
Fig. 2.1: Stress distribution in the critical section of a strip with a hole loaded in tension.

Fig. 2.2: Stress distribution in the critical section of a beam with side grooves loaded in bending.

Fig. 2.3: Beam with hole loaded in bending.
Fig. 2.4: Infinite plate with an elliptical hole loaded intension.

Fig. 2.5: Effect of shape of ellips on the stress concentration.

Fig. 2.6: Tangential stress along the edge of a circular hole.
Fig. 2.7: Superposition of a tensile case and a compression case to obtain K_t for pure shear ($K_t = 4$).

Fig. 2.8: Stress distribution along X-axis in a plate with a circular or an elliptical hole loaded in tension ($S = 1$ in y-direction).

Fig. 2.9: Lines of maximum principal stress. Circular hole loaded in tension (see also Fig. 2.26).
Fig. 2.10: The effect of finite width on K_t.
Fig. 2.11: Howland's calculated results for a strip with a central hole.

Fig. 2.12: Geometrically similar shape (same d/W, same H/W): same K_t.
Fig. 2.13: The effect of the root radius r on K_t (fillets and side notches).

Fig. 2.14: The effect of the root radius r on K_t (axles, change of diameter).
Fig. 2.15: Main principle stress trajectories bending around a notch.

Fig. 2.16: Stress relieving groove for increasing the root radius and decreasing K_t.

Fig. 2.17: Stress relieving holes to reduce K_t (ref. 6).
Fig. 2.18: K_t-values for T-heads as compared with a fillet. Load application close to the root notch.

Fig. 2.19: K_t-values for a lug. Results of photo-elastic experiments (Ref. 7). Comparison between a pin-loaded hole and an open hole.
Fig. 2.20: Superposition of a small notch on the edge of a hole.

\[K_t \approx K_{t1} \times K_{t2} = 3 \times 3 = 9 \]

Fig. 2.21: Holes with two edge notches. Comparison with equivalent ellipses.
Fig. 2.22: K_c for slots with semi-circular ends. Comparison with K_c for equivalent ellips (same a and ρ).

K_t 3 3.86 5.10 6.06

$1 + 2\sqrt{\frac{a}{\rho}}$ 3 3.83 5.00 5.90

Fig. 2.23: Lug with a small lubrication hole to the bolt hole. An example of superimposed notches.
Fig. 2.24: Open hole with reinforced edge. Rivet holes at location of high stress.

Fig. 2.26: Two examples of photo-elastic pictures (ref. 11).
Fig. 2.25: Example of a finite-element model (ref. 10).
Fig. 4.1. Different types of cracks starting from a hole.

Mode I: opening in tension
Mode II: shear
Mode III: transverse shear

Fig. 4.2. Three different cracking modes.

Fig. 4.3. Infinite sheet under tension with a mode I crack.
Definition of coordinates.
Fig. 4.4. Comparison between infinite sheet with co-linear cracks and finite width specimen with central crack.

Fig. 4.5. Compact tension specimen (CTST). Comparison with center cracked specimen (CCS).
Fig. 4.6. The geometry factor for edge cracks at a hole in an infinite sheet (Refs. 4 and 5)

Fig. 4.7a
Edge crack at window

Fig. 4.7b
Crack in groove of a pressurized cylinder.

Figure 4.7. Larger effective crack length by a contribution of a notch.
\[C = \frac{K}{SV\pi a} \]

Fig. 4.8. Effect of finite width on C for a hole edge crack. Comparison with a central crack (lit. 4).

Figure 4.9. Edge crack in a semi-infinite sheet.

Fig. 4.10. Small edge crack at notch root.
Fig. 4.11. Crack edge loading.

Case I: $K = \frac{P}{\sqrt{\pi a}}$

Case II: $K = \frac{P}{\sqrt{\pi a}} \left(\frac{\pi \frac{2a}{W}}{\sin \left(\frac{\pi}{2a} \right)} \right)^{1/2}$

Case III: $K = \frac{P}{\sqrt{\pi a}} \left(1.297 - 0.297 \cos \left(\frac{\pi a}{W} \right) \right) \left(\frac{\pi \frac{2a}{W}}{\sin \left(\frac{\pi}{2a} \right)} \right)^{1/2}$

Figure 4.12. Finite width effect on crack edge loading.
Fig. 4.13. The stress intensity factor for a crack under internal pressure (case 3).

\[K_1 = K_2 + K_3 \]

\[K_3' = K_3 \]

\[K = 2K_3 = K_4 + K_5 \]

\[K_1 = K_2 + \frac{1}{2} (K_4 + K_5) \]

Fig. 4.14. Stress intensity factor for plate with terminating stiffener, as obtained by superposition.
Fig. 4.15. Prevention of lateral contraction (ε_2) along crack front.

Fig. 4.16. Work done is stored as strain energy.
Fig. 4.17. Crack closed by a pressure $p = S$ on the crack edges. Work done by p is stored as strain energy ΔU.

Circular crack radius a

$$K = \frac{2}{\pi} S \sqrt{\frac{\pi a}{c}}$$

Fig. 4.18. Penny shaped crack.
Fig. 4.19. Variation of K along the crack front of an elliptical crack in an infinite solid loaded in tension.

Fig. 4.20. Photo-elastic picture of specimen with three cracks (central crack, hole edge crack, edge crack).
Fig. 4.21. Crack tip area (K dominant) with small plastic zone.

Fig. 4.22. First estimate of r_p for plane stress.
Fig. 5.1. Engineering σ-ε curve and true stress-strain curve (S-ε).

Fig. 5.2. The point of the S-ε curve where necking starts depends on the shape of the S-ε curve.

Fig. 5.3. Necking in a thick and in a thin specimen.
Fig. 5.4. Successive steps of fracture in the necked area.

Fig. 5.5. Successive stress distributions during increasing load.

Fig. 5.6. The notch effect on static strength.
Fig. 5.7. Differences between strain-hardening of two Al-alloys.
Fig. 5.8. Static strength of strip with holes.
Effect of K_t for two Al-alloys (NLR results, Ref. 5).
Fig. 5.9. Load-displacement records of fracture toughness tests.
Fig. 5.10. "Dimples" characteristic for a ductile fracture. Material 7075-T6. Fractograph made in the transmission electron-microscope.

Fig. 5.11. Different orientations for fracture toughness test specimen (CTS, fig. 4.5).
Fig. 5.12. Fracture toughness as a function of yield stress for aircraft materials.

Fig. 5.13. Effect of thickness on K_C.
Fig. 5.14. Stable crack extension during a static test on a thin sheet specimen.

Figure 5.15. Static strength of an unstiffened sheet.
Fig. 5.16. Stable crack growth initiation stress as a function of crack length. Effect of test panel width W (NLR test data).
Fig. 5.17. Stress at failure, same panels as in figure 5.16.
Fig. 5.18. Feddersen diagram.
Fig. 6.1a: Stress corrosion crack in lug end of stabilizer spar. Forging of 7079-T6. Dye penetrant indication.

Fig. 6.1b: Cross section. Crack growth in fiber direction.

Fig. 6.1c: Crack tip in the optical microscope (900x). Intergranular crack growth.

Fig. 6.1d: Fracture surface in the electron microscope (14000x). Grain boundary facets.

Figure 6.1: Various aspects of a stress corrosion failure in an aircraft component (pictures of Dr. H.P. van Leeuwen, Nat. Aerospace Lab., NLR, Amsterdam).
Figure 6.2: Stress corrosion life. Test results. Threshold stress level S_o.

Figure 6.3: Stress corrosion crack growth. Test results. Threshold K-value K_{ISCC}.
Figure 6.4: Examples of methods for constant-load or constant-deformation application in stress corrosion tests.
Figure 6.5: The so-called Mostovoi specimen for a constant K-value.

Figure 6.6: Double cantilever beam specimen for a decreasing K.
Figure 6.7: Fibrous material structure as a result of forging.

Fig. 6.8a: Cross section showing fibrous structure due to forging (2.7x).

Fig. 5.8b: Partially recrystallized fibrous structure (220x). End grain structure due to machining.

Figure 6.8: Aircraft component with α-fibrous structure.
Figure 6.9: Stress corrosion failure in extruded section, used for a piano wire hinge.

Fig. 6.10: Precipitate free zones at grain boundaries and around intermetallic particles in an Al-Zn forging alloy (Ref. 3). Transmission electron microscope picture, 35000x.
Figure 6.11: Hinge bracket. Simple example of designing to avoid built-in stress.

Figure 6.12: Corner fitting with several machined mating surfaces. Built-in stresses caused stress corrosion cracks.
Figure 7.1: Small cracks are present early in the life, except at low stress levels.

Figure 7.2: Survey of different crack size regimes (Ref. 1).
Figure 7.3: Model of Wood for the initiation of a micro crack in a slip band.

Pure Al.
After 5000 cycles ($2\varepsilon_a = 0.5\%$) only three slip lines were visible. A static load until $\varepsilon = 7.6\%$ opened the three slip lines (see picture) which showed the slip lines to be cracks. All other slip lines were produced by the static loading.

Figure 7.4: Nucleation of micro cracks in slip bands.

Figure 7.5: Two slip systems contribute to crack extension in a similar way as in the Wood model (fig. 7.3).
Figure 7.6: Stage I crack growth at free surface and stage II (perpendicular to loading direction) after penetration into the material.

Figure 7.7: Two models for microplasticity and striations (1 striation per cycle).
Striation spacing ~ 0.3 μm
0.3 μm = 1000 interatomic distances

Figure 7.8: Correspondence between striations and load cycles (NLR fractograph).

Figure 7.9: Fatigue failure consists of two parts.

Fig. 7.10a: Static failure. Macro plastic deformation, ovalized hole, necking at right edge.

Fig. 7.10b: Fatigue failure. No macro plastic deformation. Both parts fit well together.

Figure 7.10: Differences between a static and a fatigue failure (fatigue failure in spar of helicopter blade, NLR pictures).
Fig. 7.11a. Specimens with side notches. Material 2024-T3.

Figure 7.11b: Fracture surface with large fatigue part. Only one nucleus (arrow). Low σ_a (64 N/mm2), high endurance ($N \sim 10^6$).

Figure 7.11c: Fracture surface with smaller fatigue part. Four nuclei (arrows). Higher σ_a (103 N/mm2), lower endurance ($N = 0.2 \times 10^6$).

- ridge due to overlapping cracks

Fig. 7.11d: Fracture surface with growth bands, due to alternating low and high σ_a. (low: $\sigma_a = 64$ N/mm2, 60000 cycles; high $\sigma_a = 103$ N/mm2, 9000 cycles).

Figure 7.11: Fracture surfaces of notched specimens (NLR pictures).
Figure 7.12: Growth bands and radial steps on the fatigue fracture of a light metal compressor blade. Magnification 25x (NLR picture).

Figure 7.13: Fatigue crack growth perpendicular to the main principle stress. Cyclic torsion on a scooter driving axle (diameter 16 mm) causes a spiral crack. Crack started from surface pit (arrow).
Figure 7.15a: Macrophotographs of fatigue fractures in a flap beam. Load (take-off) in each flight (M5A pictures).

Figure 7.15b: Fractograph of fatigue crack replica, N8R.

Figure 7.14: Transition from the tensile mode (slow crack growth) to the shear mode (fast crack growth) in sheet material.
Figure 7.16: Some definitions on stress cycles.

Figure 7.17: Example of a fatigue curve (S-N curve, Wöhler curve) as a result of a number of fatigue tests.
Fig. 7.18a: Cyclic plastic σ/ε hysteresis for a high constant σ_a.

Fig. 7.18b: Cyclic plastic σ/ε hysteresis for a high constant ε_a.

Figure 7.18: A different behaviour at a high constant σ_a and a high constant ε_a.

Figure 7.19: The initiation period is more important at lower amplitudes.
Figure 7.20: The Basquin relation.

Figure 7.21: The Manson-Coffin relation.

Fig. 7.22a: Different fatigue curves for different σ_m-values.

Fig. 7.22b: Fatigue diagram with a constant-N line.

Figure 7.22: Fatigue diagram ($\sigma - \sigma_m - N$ diagram) as a cross plot of fatigue curves.

Figure 7.24: Smith diagram.
Figure 7.23: Fatigue diagrams for unnotched material. Three Al-alloys, one Ti-alloy and one low-alloy high strength steel, heat treated to three different strength levels (Ref. 2).
Figure 7.25a: Corrosion pits after 2 days.

Figure 7.25b: Corrosion pits after 6 weeks.

\[\frac{p}{a} = 0.1 \]
\[K_t \approx 8 \]

Figure 7.25: End grain structure with corrosion pits due to alternate immersion in salt water (Ref. 3).

Figure 7.27: Effect of corrosion fatigue at high and low frequencies.
Figure 7.26: Fatigue curves in air and in salt water
\((\sigma_m = 0, \text{axial loading, 2200 cpm})\). Results of Gough and Sopwith.
Figure 7.28: Loading rate is significant for corrosion fatigue.

Figure 7.29: Effect of water-vapor pressure on fatigue crack growth rate. Results of Bradshaw and Wheeler.

Figure 7.30: Corrosion fatigue problems at cross section A leading to accident.
Figure 7.31: The effect of surface finish on the crack initiation period and the crack propagation period. Results of DeForest.

Figure 7.32: The effect of a cladding layer on the fatigue curve of Al-alloys.
Figure 7.33: A bar under tension will move out of the clamping at AA over a microscopical distance, sufficient for fretting.

Fig. 7.34a: Local contacts on a micro level.
Fig. 7.34b: Crack initiation.

Figure 7.34: Surface damage by cyclic fretting.

<table>
<thead>
<tr>
<th>Test</th>
<th>N (cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>without blocks</td>
<td>8000000</td>
</tr>
<tr>
<td>with blocks</td>
<td>100000</td>
</tr>
<tr>
<td>blocks removed after 12000 cycles</td>
<td>1300000</td>
</tr>
<tr>
<td>removed after 30000 cycles</td>
<td>100000</td>
</tr>
</tbody>
</table>

Figure 7.35: Fretting corrosion tests on an Al-Cu alloy. Results of Fenner and Field.

Figure 7.36: Effect of fretting on the fatigue curve.
Figure 7.37: The material of the lug head is stretched around the material of the bolt. A cyclic load will cause fretting inside the hole between lug and bolt.

Figure 7.38: Joint with insignificant load transmission. Potential source for fretting.
Figure 8.1: Strain gage records of the wing bending moment of 2 aircraft flying in turbulent air.

Figure 8.3: Comparison of stress distributions in an unnotched and a notched specimen.

Figure 8.4: Empirical trend: $K_f < K_t$.

Figure 8.2: The fatigue limit of unnotched material as a function of the static tensile strength (Ref. 1).
Figure 8.5: Notch root plasticity:
\(\sigma_{\text{peak}} < K_t \sigma_{\text{f}k} \).

Figure 8.6: Same \(d/W \) \(\rightarrow \) same \(K_t \), but different volumes of highly stressed material.

Figure 8.7: Size effect on \(\sigma_{\text{f}k} \) for two steels with a low and a high \(\sigma_U \). Data of Phillips and Heywood.
Figure 8.8: Fatigue diagram including negative mean stress.

Figure 8.9: Two relations for the effect of σ_m on σ_a.
Figure 8.10: Elastic behaviour: all stresses at notch root K_t times higher.

Fig. 8.11a: K_t applied to σ_a and σ_m.

Fig. 8.11b: K_t applied to σ_a only.

Figure 8.11: Two different ways to obtain σ_{fk} line from σ_{f1} line.
Figure 8.12: Plastic deformation at σ_{max} followed by elastic unloading.
Figure 8.13a: The fatigue limit for $K_t = 1$ and $K_t = 2$. Low ductility Al-alloy.

Fig. 8.13b: The fatigue limit for $K_t = 1$ and $K_t = 2$. More ductile steel.

Figure 8.13: The effect of G_m on the G_{f_k}-line for a low ductility material and a more ductile material (NACA reports TN 2324 and TN 2389).
Figure 8.14: Approximation of fatigue curve by two horizontal asymptotes and the Basquin relation.

Figure 8.15: The fatigue strength reduction factor for finite life.
Figure 8.16: Specimen with central crack starter notch for the determination of material fatigue crack growth data.

Figure 8.17a: Crack growth curves as a result of crack propagation tests on specimens as shown in figure 8.16.

Figure 8.17b: Crack growth rates derived from the curves in figure 8.17a.

Figure 8.17: A first evaluation of test results obtained in crack propagation tests.

Figure 8.18a: Stress cycle.

Figure 8.18b: Corresponding K-cycle for crack tip area.

Figure 8.18: Stress cycle and corresponding K-cycle.
Fig. 8.19: The similarity concept.

Fig. 8.20: Crack growth rates in tests with different stress cycles, but the same R-value give the same $da/dn-\Delta K$ relation. Material 2024-T3 Alclad.
Figure 8.21: Limitations to the da/dn-ΔK relation for very low and very high crack rates.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>σ₀.2 (N/mm²)</th>
<th>σₚ (N/mm²)</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2024-T3 Alclad</td>
<td>364</td>
<td>474</td>
<td>19%</td>
</tr>
<tr>
<td>7075-T6 clad</td>
<td>464</td>
<td>520</td>
<td>9%</td>
</tr>
</tbody>
</table>

Figure 8.22: Crack growth data da/dn-ΔK, comparison between two Al-alloys and between two heat treatments of the same alloy.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>σ₀.2 (N/mm²)</th>
<th>σₚ (N/mm²)</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2024-T3 Alclad</td>
<td>365</td>
<td>468</td>
<td>21%</td>
</tr>
<tr>
<td>2024-T8 Alclad</td>
<td>456</td>
<td>478</td>
<td>6.5%</td>
</tr>
</tbody>
</table>
Figure 8.23: Comparison between the crack growth resistance of different alloy systems in relation to the yield stress (Ref. 7).

Figure 8.24: The effect of environment on fatigue crack growth as shown by the da/dn-ΔK relation (Ref. 8).
Figure 8.25: Prediction of crack growth rates in a lug (Ref. 9).
Figure 8.26: Prediction of crack growth in a stiffened panel.

Figure 8.27: Comparison between prediction and test results for fatigue crack growth in a stiffened panel (Ref. 10).
Fig. 8.28a: Increasing crack rate for one specimen and a decreasing crack rate for another one.

Fig. 8.28b: Increasing K for one specimen and decreasing K for another one.

Fig. 8.28c: Crack rates from two different specimens in a single scatter band. Material 7075-T6. 2b = 300 mm.

Figure 8.28: Comparison between crack growth in a specimen with end loading and in another specimen with crack edge loading (Ref. 11, Note: K calculated as CSVa, factor π dropped).
Figure 8.29 Plastic deformation left in the wake of a growing fatigue crack.

Figure 8.30 Crack Opening Displacement measurements indicate the occurrence of crack closure.

Figure 8.31 The non-linear σ-COD to indicate the crack closure stress level (σ_{cl})
Fig. 8.32 Definition of the effective stress range.

Fig. 8.33 ΔK_{eff} accounts for the R effect.
Figure 9.1a: Stress amplitude changed only once.

Figure 9.1b: Assumption: crack growth follows original growth curves for CA-loading.

Figure 9.1c: Same figure as fig. 9.1b, but now plotted as a function of relative life \(n/N \).

Figure 9.1: Fatigue damage accumulation as a simple additive process.

\(D = \text{damage} = \frac{\text{consumed energy}}{n/N} \)

9.2a

Miner: same linear relation for all \(\sigma_a \)

\[\sum n/N = 1 \]

9.2b

Shanley: same non-linear relation for all \(\sigma_a \)

Figure 9.2: Two different damage assumptions.
Figure 9.3: Two simple load histories for the discussion of shortcomings of the Palmgren-Miner rule.

Figure 9.4: Different $\sum n/N$ values due to different residual stresses at notch root (FFA-data, Stockholm).

Figure 9.5: A fatigue curve does not represent a line of constant damage.
Figure 9.6: Extrapolated fatigue curves for $\sigma_a < \sigma_f$ in order to assign damage to low-amplitude cycles.

Figure 9.7: Sequence effects as observed for unnotched and notched 2024-T3 specimens (Ref. 4).
Figure 9.8: Positive mean stresses enhance the possibility of favourable residual stress.

Figure 9.9: Effect of a single preload on fatigue life. Data compiled by Heywood (Ref. 5).
Figure 9.10: Load-amplitude variation in a program-fatigue test.

Figure 9.12: The effect of a high load on crack growth during CA-loading.
Figure 9.11: The effect of repeating high loads and of high load cycles in pos/neg and neg/pos sequence. Tests on riveted single lap joints with two rows of rivets (Ref. 6).
Figure 9.13: Effect of thickness on crack growth delays (Ref. 7). Tests at constant ΔK.

Figure 9.14: Crack growth rates for a constant $\Delta K (R = 0.1)$ in an alloy steel (Ref. 8). Effect of periodic peak loads for three different strength levels.
Figure 9.15 The variation of crack closure after a high load.
Fig. 10.1a: Loads on bolt and nut (washer).

Fig. 10.1b: Inhomogeneous load transfer from nut to bolt.

Figure 10.1: Bolt loaded in tension.

Fig. 10.2a: Bolt head with increased radius to shank.

Fig. 10.2b: Nut with stiffness variation for improved load transfer.

Figure 10.2: Examples of specially designed bolt head and nut (Ref. 1).
Fig. 10.3: Effect of misfit angle between nut and supporting surface on the fatigue strength of a high quality bolt (Ref. 2).

Fig. 10.4a: Spotfacing on a forging produced a sharp corner. Magnification 4x.

Fig. 10.4b: Cross section showing the sharp corner and the fatigue crack. Magnification 9x.

Figure 10.4: Fatigue crack starting at sharp machined corner.
Figure 10.5: Effect of pretension on the fatigue curve of a bolt (Ref. 3).

Fig. 10.6a

Fig. 10.6b:
Schematic model with springs.

Fig. 10.6c:
Pretension of a bolt reduces the load variation in the bolt.
Figure 10.7: Effect of low or high pretension.

Figure 10.8: K_t values for a lug are high.
Fig. 10.9a: S-N curve for 2024-T3 lug.

Fig. 10.9b: S-N curve for 7075-T6 lug.

Figure 10.9: Fatigue curves for lugs of two Al-alloys (Ref. 5). Comparison with prediction.
Figure 10.10: Low fatigue limit of a steel lug (Ref. 6).

Figure 10.11: Size effect on the fatigue strength of an Al-alloy lug (Ref. 8).
Fig. 10.12: Reversion of load does not reverse the stress at the notch root (Ref. 11).

Figure 10.13: Discontinuous effect of σ_m on the fatigue limit of a lug (results of Heyer).
Figure 10.14: A slotted hole avoids contact between pin and hole. Large increase of σ_f (Ref. 8).

Figure 10.15: The effect of an interference fit on the S-N curve of a lug (Ref. 13).
thickness of steel bush $\geq 0.1d$

steel bush with interference fit in Al-alloy lay

Fig. 10.16: Lug with bush.

undersized hole
diameter too large
tapered pin

Fig. 10.17a:
Before pulling.

plastic zone with high residual compressive stresses

Fig. 10.17b:
After pulling operation.

CYLINDRICAL PART
TAPER ANGLE

COLD EXPANSION MANDREL
PULLER
PULLER NOSE PIECE
LUBRICATED SLEEVE
FOR THE MANDREL OF THE PRESENT TEST SERIES:
CYLINDRICAL PART 4.5 mm
TAPER ANGLE 1:45

Fig. 10.17c: Commercial development with thin sleeve in the hole during the pulling operation.

Fig. 10.17: Plastic hole expansion by a split sleeve cold expansion system. Introduction of residual stresses around the hole.
Figure 10.18: Effect of 3% hole expansion on S-N curve of Al-alloy lugs (Ref. 14).
Fig. 10.19a: Most severe fretting corrosion damage in a lug with an expanded hole after 66×10^6 cycles at $\sigma_a = 78$ N/mm2.

Fig. 10.19b: Microscopical section of small fatigue cracks in the plastic zone around an expanded hole.

Figure 10.19: Fretting corrosion damage in a 7075-T6 lug with an expanded hole (Ref. 12).
Figure 10.20: Double strap joint with 2 rows of bolts (or rivets) at both sides.

Figure 10.21a

Figure 10.21b

Figure 10.21: Two double strap joints with a constant and a staggered strap thickness.

Figure 10.22: End rivet of stringer terminating on skin panel.
Figure 10.23: As a result of clamping load transmission also occurs by friction forces. Shift of crack location is possible.

Figure 10.24: Crack initiation in the plates of a joint with Huck bolts. Crack initiation outside holes due to high clamping, see arrows (Ref. 17).
Figure 10.25: Examples of asymmetric joints.

Figure 10.26: Single lap joint with one row of rivets. Large bending moment at rivet row.

Figure 10.27: Secondary bending in a lap joint with two rows of rivets.
All sheets and straps of equal thickness.
Calculations for $\sigma_{\text{tension}}/E = 0.001$, bending factors do not change very much at higher σ

Figure 10.28: Results of calculations on secondary bending (formulas from Ref. 15).

G_a at $N=10^6$ ($R=0.4$)

a
\[t=1\text{mm} \]
15 N/mm2

b
23 N/mm2

c
27 N/mm2

d
\[6\text{mm} \]
32 N/mm2

e
40 N/mm2

Figure 10.29: Increasing fatigue strength for lower secondary bending. Results from Ref. 16, material 2024-T3.
Figure 10.30: Fatigue diagrams of a lap joint of two Al-alloys (Ref. 19).
Figure 10.31: Two different failure modes in an adhesive-bonded lap joint.

Fig. 10.32a: Two reinforcing strips, symmetric.

Fig. 10.32b: Reinforcement at one side only: asymmetric.

Figure 10.32: The fatigue strength reduction due to adhesive bonding.
(Material 2024-T3 Alclad, $R \sim 1/3$, K_f for $N = 10^6$, NLR-investigator)

Figure 10.33: Comparison between adhesive bonded and riveted lap joints (Ref. 20).
Figure 11.1: Different phases for considerations on fatigue loads on the aircraft.

Fig. 11.2a: Narrow-band random loading of a resonance system.

B-747 REMOUS

Fig. 11.2b: Broad-band random loading of a wing structure in turbulent air (NLR record).

Figure 11.2: Two samples of a load-time history.
Fig. 11.3a: Sequence of peak values.

Fig. 11.3b: Histogram of number of peaks in intervals.

Fig. 11.3c: Load spectrum represented by exceedance curves.

Figure 11.3: Statistical representation of a load-time history based on peak-values.
Series of positive ΔP-values occurring in fig. 11.3a:
2 3 3 4 4 3 6 4 2 8 4 4 3 3 1 2 3 2 5 3 7 4 3 6 4 4 2 4 2

Fig. 11.4a: Histogram of number of positive ΔP-values.

Fig. 11.4b: Load spectrum represented by an exceedance curve of positive ΔP.

Fig. 11.4c: Matrix (2d-) representation of load variations from P_{min} to P_{max}.

Figure 11.4: Statistical representation of a load-time history based on load ranges.
Figure 11.5: Eliminations of small load variations by the mean-crossing peak-count method.

Figure 11.6: Elimination of small load variations by counting a level crossing after a lower load has been reached.
Figure 11.7: Measured load spectra (3 operators) compared to 2 design load spectra (Fokker data, Fatigue meter readings). TOW = Take-off weight, N.M. = nautical miles (flight distance).

Figure 11.8: Two method for "counting" a load variation ABCD.

Fig. 11.9: The range-pair count method.
Figure 11.10: Power spectrum of a stochastic Gauss process. Different shapes.

Figure 11.11: A large Fourier series as an approximation of random load.

Figure 11.12: Different types of random load with corresponding power spectral density functions and irregularity factors $K = N_1/N_0$ (Ref. 3).
Figure 11.13: Flight profile of a short flight of the F-28 split up in a number of intervals (Ref. 5).

Figure 11.15: Periods and numbers of several types of aircraft fatigue loads (Ref. 6). Orders of magnitude.
Fig. 11.14a: Deterministic loads.

Fig. 11.14b: Stochastic load superimposed on deterministic load.

Fig. 11.14c: Time-compressed flight-simulation.
10 different types of flight, A to K. A = severe storm, K = very nice weather.

\[S_{mf} = \text{mean stress in flight} \]

Fig. 11.16a: Sample of a history applied in flight-simulation tests according to the F-28 gust spectrums for the wing (Ref. 8).

Fig. 11.16b: Sample of a load history applied in flight-simulation tests according to a fighter manoeuvre spectrum for wing bending (Ref. 9).

Figure 11.16: Samples of load-time histories applied in flight-simulation tests.
Figure 11.17: Gust load spectrum applied in flight-simulation tests (Ref. 10). Gust amplitudes relative to mean stress in flight (S_{mf}).

<table>
<thead>
<tr>
<th>Specimen</th>
<th>σ_{mf} [N/mm2]</th>
<th>Truncation level (fig. 11.17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open hole specimen (diameter 20 mm, $K_t=2.56$)</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Lug (hole diameter 25 mm, $K_t=2.8$)</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Riveted strap joint Snap rivets</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Riveted strap joint Counter Sunk rivets</td>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11.18: Larger fatigue lives in flight-simulation tests at higher truncation levels (Ref. 10).
Figure 11.19: Effect of truncation level on crack growth rate under flight-simulation loading. Central crack in 160 mm wide specimen, t = 2 mm (Ref. 11).

Figure 11.20: Symmetric and asymmetric wing bending spectra (civil transport aircraft and fighter aircraft).
Fig. 12.1: Problem areas, disciplines involved and significant aspects of aircraft fatigue.
Fig. 12.2c: Example of a multiple-load path structure

Fig. 12.2b: Example of a multiple-element component

stiffeners not indicated

4 planks (skin + stiffeners)

spanwise joint connecting 2 planks

Fig. 12.2c: Spanwise joints for crack arrest.

Fig. 12.2d: Fuselage with circumferential crack stopping bands attached to the skin.

Figure 12.2: Some examples of fail-safe design.
Figure 12.3: Milestones for crack detection in operational service.

Figure 12.4: Comparison between crack growth lives in solid plate and in laminated sheet material (2024-T3 Alclad) (Ref. 2).
cross section

<table>
<thead>
<tr>
<th>Al-alloy</th>
<th>fiber/adhesive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-alloy</td>
<td>fiber/adhesive</td>
</tr>
<tr>
<td>Al-alloy</td>
<td></td>
</tr>
</tbody>
</table>

0.3 or 0.4 mm

0.2 mm

typically

Al-alloy: 2024-T3, 7075-T6,
Number of thin sheets: 2, 3 or more
Fibers: Aramid (-ARALL) or R-glass (-GLARE)
Adhesive: AF163-2 (epoxy) or other types of adhesives.

Figure 12.5: Composition of ARALL.

Figure 12.6: Schematic picture of fatigue crack bridging fibers.

Figure 12.7: Fracture mechanics picture of the ARALL principle.
Figure 12.8: Fatigue crack growth in a central crack sheet specimen under TWIST flight-simulation loading. Comparison of ARALL with 2024-T3. Note the higher mean stress in flight \(S_{mf} \) for ARALL. Effect of prestraining ARALL (Ref. 5).

Figure 12.9: Unfavourable residual stress system after curing is reversed into a favourable system by plastic prestraining.
Figure 12.10 A fatigue curve (A) with two extensions (B and C) and two load spectra (H and H') used in illustrative calculations.

Figure 12.11 Three procedures for predicting fatigue lives in the design phase (Ref. 1)
Figure 12.12 Some fatigue test load sequences, main variables and testing purposes (Ref. 1).

Fig. 12.13a Diverging S-N curves.

Fig. 12.13b Intersecting S-N curves.

Figure 12.13 In conventional fatigue tests the result of comparing design A and design B depends on the choice of the fatigue load amplitude.
Figure 12.14: The effect of limit load application on crack propagation in a full-scale wing structure under random flight-simulation loading (Ref. 7)
Wing loading:
gust cycles, constant amplitude,
calculated to give some fatigue
damage as full gust spectrum

pressurization cycle
on fuselage

ground-to-air cycle

1 flight
same load history
in all flights

Figure 12.15 "Simplified" load history, applied in early flight-simulation tests on a complete aircraft structure.

load amplitude

scatter band of fatigue strength of helicopter blades

average

early failure

non failure

Figure 12.16. Safety factor on life of non-failure result is meaningless.
MIL-A-83444 initial damage

2 options: inspectable/non-inspectable
3 types of structures: SCG = Slow Crack Growth
MLP = Multiple Load Path
CAFS = Crack Arrest Fail Safe

non-inspectable → requirements on life
inspectable → requirements on crack growth period

Figure 12.17: Information of the USAF damage tolerance requirements