Laboratorium voor Chemische Technologie

Verslag behorende bij het processchema van

T. J. Heine

onderwerp:

Salpetriëren

adres:

Baroniistraat 27B
Rotterdam

datum:
14 Sept. 1960
Inhalt
A) Literatur
B) Salpetersäure,
 a) Eigenschaften,
 b) Gebrauch in Produktion.
C) Bereitung von salpetersaurer,
 a) Künstliche Bereitungen von NH₃-verbindung,
 b) Kiesele mit verschiedenen Bereitungsarten.
 c) NH₃-produkte in weitere Verwendung von HNO₃.
 d) Kiesele von Plaats de Bereitung.
 e) Konzentration von wasser-houdend salpetersaurer.
 f) Konstruktive Materialien, Pechkochung, Smelting.
D) Getrocknete Bereitung von salpetersaurer.
 a) Lucht trocken.
 b) NH₃-troche in menging.
 c) Verbanding von NH₃.
 d) Koching der verbandingsgassen.
 e) Acidität von NO₁₄ und NO₂.
 f) Absorption der niche-gass in water.
 g) Reinigung von geprefteben salpetersaurer mit lucht.
E) Bereitung der guarneder, bereitung von montage in stoff-bahne.
 a) lucht trocken.
 b) NH₃-troche in menging.
 c) Verbanding von NH₃.
 d) Koching der verbandingsgassen.
 e) Acidität von NO₁₄ und NO₂.
 f) Absorption der niche-gass in water.
 g) Reinigung von geprefteben salpetersaurer mit lucht.
F) Wurke in stoff-vertrek + schets processoaha.

A) Literatur:
 Berlin, 1955 (Konditzt karmsteb).
B Salpeterzuur:

g. Eigenschappen:

Het kookpunt van 100 gew. % HNO₃ is 33 °C, het smeltpunt -41,6 °C. Uit de meetlijn in het systeem HNO₃ - H₂O blijkt dat in water bestaan 2 hydraten bestaan, namelijk HNO₃ - H₂O en HNO₃ - 3 H₂O

Smeltpunt:
- 18,5 °C
- 37,7 °C

Gew. % HNO₃:
77,8
53,8

In oplossingen van HNO₃ in water blijven deze hydraten bij 25 °C als in tevreden te hebben van de samentelde wrmr. in Ender als de verschillende normen concentratie (lit. 3).

Bij de later te kiezen bereidingsmethode van HNO₃ komen slechts kenmerken vast tussen 0 en 53 gew. % HNO₃ voor.

Daarbij komen geen overgangen van het ene hydraat naar het andere voor, zodat de samentelde wrmr. in Ender als de samentelde wrmr. in niet-symeetrisch veranderen bij wijzen van het enge gelijke.

Bij de later kenmerken zijn de volgende fysische

constanten gemeten: (bij 25 °C)

gew. % HNO₃	1/°	2/°	3/°	4/°	5/°	6/°	7/°	8/°
 2 | 0,916 | 4,07 | 5,1 | 1,01 | 0,577 | ||
 4 | 0,914 | 3,97 | 5,2 | 1,02 | 0,590 | ||
 10 | 0,908 | 3,72 | 6,0 | 1,05 | 0,571 | ||
 15 | 0,925 | 3,55 | 6,2 | 1,08 | 0,545 | ||
 20 | 0,942 | 3,38 | 6,5 | 1,11 | 0,537 | ||
 30 | 1,026 | 3,08 | 7,2 | 1,18 | 0,502 | ||
 40 | 1,152 | 2,80 | 8,9 | 1,24 | 0,470 | ||
 53 | 1,316 | 2,71 | 11,5 | 1,32 | 0,431 | ||

lit: 6, 4, 5

b Gebruik en produktie:

Het grootste verbruik van salpeterzuur is van de kemistem-fabricage (75 % in de V.S.A.). De overige 25 % wordt (in 1958) van de bemand van benzine (15 %) en van synthetiekzuur, koolstofzuur en "plastics" geïntegreerd (lit. 9).

Van veel fabricaten is de HNO₃-productie afzonderlijk, dat 50 tot 100 km NH₃-staf per jaar wordt gebruikt (lit. 8, 1, 9).

Aanvullende data en productie (verarming) van de kolen van het produkt...
winder worden, in bij de gekozen praktischeheid de reactie van HNO₃ bij een reactie van 100% NH₃ - miskl van hetzuur (likt 11).

In Nederland was in 1984 de volgende in een nitraten van HNO₃:

<table>
<thead>
<tr>
<th>Nitrozuur</th>
<th>Uitvoer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,182% am HNO₃</td>
<td>425 am HNO₃</td>
</tr>
<tr>
<td>/ 373,000</td>
<td>/ 180,000</td>
</tr>
</tbody>
</table>

De inverse inrichting veel groter dan de uitvoer (likt 10)

De grotere snelheid HNO₃ wordt echter welke tot een kwantitatief verbredt (6% NH₄NO₃).

C Berichtiging van Salpeterzuur

1 Kogellijk salpeterzuur bereidingen door NH₃ verbranding.

| Verbranding van NH₃, reactie van NO + NO₂ en atmosfeer - miskl van NO₂ tot HNO₃ in de kleine overlast (5% 0). Het licht NH₃ mengsel komt met 1/2 % NH₃ (likt 1). Dit system heeft het nadelen dat de inrichtingenstilzetting nooit lang zijn. Door de geringe sterkte zijn het volumineuze gassen zeer. Terwijl de reductieve span van de gassen, zoals NO en O₂ in het mengsel koud bij lange tijd, neerwaarts de reacties, 6% de reductie van NO tot NO₂, ery kouder worden, maar dat mogelijk grote verschillen van sterkte en reductie niet zijn, tegen deze kou niet te bieden. Teverge aan het berichte HNO₃ zit ze haar als de bij de atmosfeer onder druk het zodanig geventileer zijn. Het platininfectie der actie is ezing. De energie komt van het compressor van de gassen voor de verbranding gemeten erg klein, vergelijk door de korte van het compressor van de gassen van de ploes, dat 6% bij 7 GHz. Druk plaats vindt, Bij het laag druk grof water wordt van een filter en een mengsel, waarin de menging met NH₃ plaats heeft, aangezien en een compressor, waarin het mengsel van filter en een warmtevoermaat momenten in meer de verbranding alleen wordt geled. De verhitting in de volgende inrichting in alternatieven van het NH₃ - mengsel van het mengsel: (likt 2)

| NH₃ in NH₃ in het NH₃ - mengsel | 9,5 | 10,5 | 11,5 |
| Temperaturen van het mengsel van de reactie | 180 | 130 | 30 |

Bij de uitvoer - mengel wordt een bepaalde verbrandingstemperatuur worden bereikt. Bij een klein NH₃ mengsel komt minstens 5% grij, aangezien het NH₃ - mengsel druk moet worden voorwaarde. De verbrandingstemperatuur ligt meer en 900 °C. Na de verbranding worden de verbrandingsgassen opgeheven met behulp van waterstof.
misten. In de overvloed van de vlaamse mestmaterialen, vooral de mest, zijn de mestmateriaal om
verdund te worden, met name door de mestmateriaal voedsel te voeden in een mengsel, waarin
de mestbehandeling van de mestmateriaal in een mengsel, dat met de mestmateriaal verbrakt
wordt, met de mestmateriaal voor de mestmateriaal in een mengsel, waarin de mestmateriaal
van de mestmateriaal in een mengsel wordt verbruikt, waarbij de mestmateriaal wordt gemas-
terceerd. De mestmateriaal van de mestmateriaal in een mengsel, dat met de mestmateriaal verbrakt
wordt, met de mestmateriaal voor de mestmateriaal in een mengsel, waarin de mestmateriaal
van de mestmateriaal in een mengsel wordt verbruikt, waarbij de mestmateriaal wordt gemas-
tereerd.

Het NH₃ gehalte van het NH₃-lucht mengsel ligt tussen 9,5 en 12 % (Loc. 2) en in mest 11 % (Loc. 1). Naast mestmateriaal met
het NH₃-lucht mengsel heeft plaats gehouden, niet唯e mestmateriaal van NH₃-gassen met de temperatuur van 250° C door een gasteller genogen,
waarna er een compressor in militaire trons wordt geleid.

In de gasteller ontstaat het grotendeels deel van het NH₃-lucht mengsel, waardoor de gassen met de temperatuur van 250° C door een gasteller genogen,
waarna er een compressor in militaire trons wordt geleid.

In de gasteller ontstaat het grotendeels deel van het NH₃-lucht mengsel, waardoor de gassen met de temperatuur van 250° C door een gasteller genogen,
waarna er een compressor in militaire trons wordt geleid.

De reactie van de gassen met het zuur in de atmosferische trons
komen neer op de volgende reactie, vergelijking voorstellen:

\[H₂O + 3NO₂ → 2HNO₃ + NO. \]

 lijkt NO moet met het NO₂ worden gemasceerd, hetgeen enige tijd verzuig.

In de gasteller ontstaat het grotendeels deel van het NH₃-lucht mengsel, waardoor de gassen met de temperatuur van 250° C door een gasteller genogen,
waarna er een compressor in militaire trons wordt geleid.

De reactie van de gassen met het zuur in atmosferische trons
komen neer op de volgende reactie, vergelijking voorstellen:

\[H₂O + 3NO₂ → 2HNO₃ + NO. \]

 Dit NO moet met het NO₂ worden gemasceerd, hetgeen enige tijd verzuig.
wordt gebruikt. De laatste reductie, stortings, van welke de gassen genomen, wordt niet want gevoeld. In de borst vervult zich verantwoord, dat aan de voorgaande borst, wordt toegepast, voor een deel, terwijl de rest van de circulatie dient. Dezelfde reacties wordt bij iedere borst toegepast. Als de gassen door het stortings systeem betreden, komen ze met het water. De bedrijfsmachine reinigen in samenstelling. Daar wordt a toen NO met salpeterzuur gebruikt, omdat de gassen b.v. 0,1\% NO bevatten, worden ze bij de stortings met salpeterzuur tot 0,3\% NO, met een stortings met Na\(_2\)CO\(_3\) of Ca(OH)\(_2\) oplosings toegepast, ook in een spoor stortings toren. De opgeloste reacties zijn dan:

\[4\text{NO}_2 + 2\text{Ca(OH)}_2 \rightarrow \text{Ca(NO}_3\text{)}_2 + \text{Ca(NO}_2\text{)}_3 + 2\text{H}_2\text{O}\]

\[\text{2NO}_2 + \text{Na}_2\text{CO}_3 \rightarrow \text{NaNO}_3 + \text{NaNO}_2 + \text{CO}_2\]

Ook wordt als alkalische oplosings met een oplosning van NH\(_3\) gebruikt, zoals bij de caproducten (dus nylons) bereidings vanwege NH\(_3\)NO\(_2\) wordt gevoeld. Ca(NO\(_3\))\(_2\) en NaNO\(_2\) kunnen met salpeterzuur voor in de nitraten worden omgezet. De gassen bevatten na de alkalische oplosings nog rechtst 0,1-0,05\% NO (cfr. 2).

2. Verbranding bij 11\% atm, stortings bij 3,18-5 atm.

3. Verbranding en stortings onder lucht (2,4 atm)

De apparatuur in veel kleiner. De stroommelkheid van het mengsel door het net is werkt ook veel groter. De reactie van de gassen met het aardgas vloeit in een stortings toren geschieden, maar ook gebruikt het wel in een zij cylinder, die op een helling liggend. Ter kleding worden deze cylinder buiten met water besproeiend. De stortings van NO\(_2\) wordt nu alleen in HNO\(_3\)-oplossing plaats. Er is dus geen alkalische verbranding.
zijn ze hoger en kleiner aan te nemen dan de normale voor. Hoe meer metalen er zijn, hoe groter het platina verlies wordt (let 15). Bij gebruik van een met grootte eerst op het apparaat in het platina zouden ze niet uitgelopen, welke kunnen stoppen en door de gassen kunnen worden neergezet. In apparaat met brander met wel netten zijn metalen filters ingebouwd, welke het Pt, stof 'afflit' in de gassen. Netz die mechanische stelling verwijderd van de chemische stelling: Ontbreken brander in het Pt. op, dan het apparaat verslinden in het serum van Pt. zweden, welke in de gassen verloren (let 15)

Deze chemische stelling trekt men welde in het system de ongewenste door keramische filters met Bij manifest bekend, in de wet. Dit zijn welke nog onder-

stelling. Bij atemporerische verbinding zijn de platina verbonden kleinere. Hierin wordt de verbinding, als wel de gewenste, atemporerisch niet, terwijl de absorptive onder druk gesteld. Bij een beperkte productie grotere, waarbij ne van de verbinding bij atemporerische druk b.v.

9 ovums metig zonde hebben, zijn bij eenzelfde gassnelheid bij de netten, bij 3 atn., dus 9 = 3 van voorstaan. Als het mogelijk is de gassnel-
heid 3 2 van 3 groot te maken, dan worden in dus slechts 2 ovums metig hebben. Bij eenzelfde stelling van het gas aan-
de netten, zouden er in het laatste geval echter 3 2 meer zoveel
netten aanwezig moeten zijn.

6 - Kenmerkt de verschillende beuringswijzen het grote aantal verschillende HNO₃-productie-processen (let 1, 2, 8, 10, 16, 18, 19, 20) bekend is er geen enkele manier is om economisch zo voordelig mogelijk HNO₃ te maken (let 9). Bij processen, welke bij

lage druk worden uitgevoerd, verkrijgt men een product dat meer

gereconstrueerd is (let 9), men heeft een kleine apparaatue vereist,
dus men heeft minder investeringskosten, deze hogere groei van absorptie

dan worden aangewonden (omdat de absorptive onder druk veel vлагge zetelt). Desgewijzen de apparaatue, omdat de klein is, meer voordeligh is in

Verbinding onder druk gelt het echter een kleine N/NO₃-top, hogere
catalyseten verliezen (let 9) een veel meer energie voordat de

compressie gebruikt, oftewel er tevens wordt in het proces een

zoveel energie lozen. Hierbij zijn echter in de van energie verloren, welke zelf de compressie energie levert. Hierin vindt echter een

zoveel energie verloren, welke zelf de compressie energie levert. Hierin vindt echter een

zoveel energie verloren, welke zelf de compressie energie levert. Hierin vindt echter een
Bespreking met name genoemd (li. 14), zoals in "Auto-Thermisch" proces (li. 8, 23).

In 1956 werd gevonden (li. 16) dat verbranding bij atmosferische druk en reactie van NO en gestoomde wateropbrengst voor Europees heetbrove processen

In Nederland hebben zich echter meer ontwikkelingen voorgedaan in de richting van verbranding onder druk (li. 1, 21). Als proces is onmogelijk het in lit. 21 beschreven proces geklasseerd, omdat dit niet

Nederland heeft moment noemen gereserveerd, met in de literatuur werd beschreven

: Oa. licentie bij 3,2 atm., optimalie bij 2,8 - 2,7 atm., in gepakte toren.

Aandacht bij procesen onder druk energie besparings belangrijk is.

is hier niet de optimalie in men helende ligging VS. staat. Van

gemeten, aangezien het gemiddelde van de gemeten kiest bij 0,5 atm. in de

gemachte toren met m. star "stokje" kloppig ringt (bij bevordering 0,2 atm. voor alle toren, kloppen)

drukreceptur. Aandacht hier uitspruit van 4 voor de verbranding

van NH₃ gemeten, 4 wordt later aan het zware mengsel (voor de realitaats

kloppen). De verbrandingskampe kloppen de 85% - 90%.

Nooi verbranding van een NH₃ - lucht mengsel met 10,5 vol % NH₃

tussen ruk 3,2 atm. en 100 atm. NH₃ - stokje ruk 4 en

mogelijk, de echte vier meten met een diameter van 2,8 meter laten,

die netto ligger op elkaar. De realitaats toren zijn 12 m, de

optimalie toren 10 meter hoog. De diameter des rijkabsorptie is

4,66 meter, de ene circulerings voor de toren 4,5 meter, toren 177 te 266

m³ per uur, drie toren, waarin de niet gecirculeerde NH₃ - lucht mengsel

circuleren, bestaan uit 2 secties, om een goede warmte afvoer te verkrijgen. De concentratie der circulerende amm gelating zijn 2 %, 4 %, 10 %, 15 %, 20 %, 30 %, 40 %, 53 % (over 2,6 %)

Uit de gerekende van de reactie toren wordt 20 % zoov opgelost, hetgeen dus niet onder de verbranding gickt in geval, met de reactie toren wordt 53 % NH₃ opgelost. De gepakte

optimalie toren bereikte elk 4 bedden, 2,5 meter hoog, bestaande uit

2 rijk "stokje" kloppig ringen. De concentratie der circulerende

zunom meer niet sterk stok voorzon. In de toren werd of een

cirkel met een druk van 11,5 atm en de temperatuur van 250 °C (die ook

weerzonder stuk met een ander gelede de fabriek, voor het is ongast
Het heeft een temperatuur van 100°C. Na de hevige van een geschikt proces moet men zich afvragen welk product men nastreeft. Als het nitrobernersubstans bestaande in procenten van 100% nitrobernersubstans, een niet-koolstofproduct meer houden, waarbij het product zo weinig mogelijk water bevat, dus bij hoge druk trekken. Omdat in het gestrefte distilleermiddel van 50% HNO₃ een waarmoedig gevoel wordt (60% HNO₃)
in de verhitting van water met HNO₃ een dure proces. De nitrobernersubstans product een rechts staand met water afgegeven, dan kan het water genoemd deel met de nitrobernersubstans worden door intrekken en drogen. Voor de bereiding van nitrobernersubstans van de koolstof inductie zal men dus alleen de procenten die het nitrobernersubstans 20% nitrobernersubstans zijn.

\[\text{NH}_3 \text{ productie (voor de verbinding met } \text{HNO}_3 \text{) en } \text{HNO}_3 \text{-verniezing.} \]

Naar de moderne HNO₃ bereiding moet bij de dekkende het NH₃ op andere wijze gevonden. De H₂, nodig om de NH₃ productie moet nodig niet met waterige gas of nitrogereservoir, doch met waarmoedige, water in die. Door gestrefte distilleermiddel van 50% HNO₃ wordt rechts gevolgd, van de NH₃ synthese en naarmate voor de onvolledige verbinding van de zee, in aanwezigheid van water. Hierbij vindt de volgende rechte plaats:

\[\text{C}_2 \text{H}_4 + \text{O}_2 + \text{H}_2 \text{O} \rightarrow \text{CO} + \text{CO}_2 + \text{CH}_4 + \text{H}_2 \]

Het samengesteld wordt eerst van water, welke ook bij de verbinding van de rechte wordt gevonden, CO wordt met H₂O omgezet:

\[\text{C} + \text{H}_2 \text{O} \rightarrow \text{CO} + \text{H}_2 \text{, onwijkelijke andere zover, dan } \text{H}_2, \text{ door nitrobernersubstans worden verwijderd.} \]

De H₂ en de N₂ (die men uit de basis in bereit) worden voor de NH₃ synthese gebruikt. De NH₃ synthese wordt uitgevoerd bij een druk van 3000 bar en 500°C. Naast een 30% van het synthese gas wordt ingevoerd bij het samengestelde deel door de koolstof inductie. Dit is gemakkelijk verergerd in een klein deel van het NH₃ wordt uit de bereiding van HNO₃ gebruikt en bereikt de nitrobernersubstans met een druk van 5 bar (lid 2)

Het HNO₃ wordt niet voor- en voorwerkt, bijv. kalzilteifen

\[5 \text{Ca(NO}_3)_2 + \text{NH}_4 \text{NO}_3 \rightarrow \text{H}_2 \text{O, ammonium metform nitriert. } 2 \text{NH}_4 \text{NO}_3 \text{ (NH}_4\text{)_2SO}_4 \]

En kalzilteifen nitriert, een ingekort metform NNO₃ + 2NH₃ + H₂O. (lid 2)
De kennis van plaats van bereiding

De ongebruikelijk fijn en het beste kunnen worden gemaakt op de oever van het Hollandsch Diep, vlak bij de overtocht. Deze plaats heeft goede verbindingen met steden als Den Haag en Rotterdam. Waarschijnlijk wordt in het midden van Noord-Brabant de schaaf aan kruitwater groot in de bebouw, als zulk gebied van het Westland als component voor Randstad Holland worden gebruikt en daardoor de vraag naar intensief te betonnen landbouwgrond, van Randstad Holland van landbouwproducten te voorzien, in gebieden als de Langestraat sterk beperkt. Brandien is de grote ongewenstheid van het Hollandsch Diep, onverklikelijk met het org. op de grote hoeveelheid benodigd kolblik voor het bedrijf. Veel bedrijven, welke b.v. in Rotterdam zijn gelegen, betrekken een gedeelte van hun personeel uit Noord-Brabant, welke met tussen de dag is en meestal verzekerd. De voor het bedrijf benodigde olie voor de V49 bereiding kan per boot, per vloot of per auto genadigelijk worden aangerond. Teens links het bedrijf op de gelegen plaats van af van zijn evenwichten, het Nijkerk bedrijf in Utrecht en het bedrijf der staatszaken, in Zuid-Limburg.

Samentrekking, zijn we dus dat de gelegen plaats genadiglijk is door a) genadiglijke aanvaard van de generaal, die b) genadiglijke aanvaard van de producent (kruitwaterstof) c) genadiglijke visserij van de vissers. (kruitwaterstof) d) genadiglijke visserij van de visserij van de visserij. (kruitwaterstof) e) genadiglijke visserij van de visserij. (kruitwaterstof) f) genadiglijke visserij van de visserij. (kruitwaterstof)

Concentratie van waterkoudend salpeterzuur

De concentratie van 53 % HNO₃, 17 % HNO₃, 79 % HNO₃, kan niet door geïntegreerde distillatie gewonnen. Bij atmosferische druk heeft 68,5 % HNO₃, namelijk een aerothermische samenstelling. De concentratie van het salpeterzuur geschiedt op drie manieren:

- Men concentreert eerst 53 % water tot 65 % water door distillatie. Toena voegt men aan het water 98 % 99 % H₂Se tot een destillaatwater van 98 % 99 % HNO₃ bestaat.
Dit condensaat van de dampen en ontzetting van het condensaat nijt bij 98-99% natriumsulfaat. Het H₂SO₄ wordt vervolgens verder gedistilleerd tot de gattemikte de fractierimes kolom als 60-70% H₂SO₄ is afgezet.

1. In plaats van H₂SO₄ gebruikt men tegenwoordig N₂H₄ met Mg(NO₃)₂. ten deel ontzetting in sulfaatwasm, door de ontzetting in de distillatie van naturetensulfaatwasm heeft. (Lit 9, 22)

2. Een nieuwe methode, welke in geen met de volgende wordt toegang, in de distillatie van het sulfaatwasm bij 1 km, ten deel vertolkt onder de acetonische samenstelling, 60,5%, en water. Dit 60,5% vloeistof wordt daarna nogmaals gedestilleerd bij een druk van 150mm kweek, waarbij de acetonische samenstelling 66% vloeistof is. Onder dit toe staat konst van 66% vloeistof naar de eerste kolom vochtsedistilleerd, terwijl de kolom kopen dampen van 99% HNO₃. (Lit 22)

4. Construktiewe materialen, nokking, smering.

Als construktiewe materiaal wordt vaak 18-8 Cr. Ni staal gebrukt, waarmee ook een min of meer Ti, Nb of Mo aan kan worden geadviseerd. Omdat in de meest als katalysator niet gebruikt, wordt de konstant van deze van Cr. Ni staal gewaakt. Ook staal wordt niet gebruikt als basisstof bijnul sulfaatwasm van 85% tot 90% HNO₃, toegang.

De konst van de condensaat, waarin de vochtsedistilleer met water is gewassen, kunnen we vaak maken, omdat dan gezet wordt ontdaan in het water-lichtzijde 18-8 staal, Damast 20, blauwe staal, SiFe en andere met de vorm van de stukken. Dit stukken, plaats, gelegen, worden voor apparaten, zoals pompvallen, afgeschoten.

Als gat en maken kan ook worden bij het last of de deel (kromme en ene-apparaten) gebruiken. Voor smearing van zand, e. w. worden zoolen die gebruikt, aangezien deze stukken zijn gemaakt en gedestilleerd kan worden bij contact met sulfaatwasm. Het apparaat bedient binnen de N₂- en de rook door middel van een rook en door middel van een rook.
Gevonden berekening van insteltemperatuur

Lucht: compressie

We zullen veronderstellen dat we lucht en koolwater met een temperatuur van 15 °C betrekken, lucht met een relatieve vochtigheid van 50%. Bij het compresseren neemt de temperatuur van 15 °C tot 120 °C toe, als de luchttemperatuur absolute geschikt van 1 atm. tot 3,2 atm. Vervolgens zal dan een verdeling PV = RT, (2/3) = 0, dY = dH + PdV, 0 = (2/3) dT + P dV,

\[C = \frac{dH}{dV} = \frac{d}{} \frac{dP}{dT} \]

\[= \frac{R}{C} \ln \left(\frac{T_f}{T_i} \right) = \frac{R}{C} \ln \left(\frac{T_f}{T_i} \right) + \frac{R}{C} \ln \left(\frac{T_f}{T_i} \right) = \ln \left(\frac{T_f}{T_i} \right), \quad \ln \frac{P_f}{P_i} = \ln \left(\frac{T_f}{T_i} \right) \]

\[A \frac{C}{R} \log \left(\frac{T_f}{T_i} \right) = \log \frac{P_f}{P_i}. \]

Luchtcompressor

Voor het nemen de lucht na de compressor met koolwater moet de luchttemperatuur worden laag zijn voor een goede maling. De lucht blijft na de maling een temperatuur van 22 °C te hebben gekregen. Vervolgens wordt de lucht in een koeling in de warmte versneller tot 65 °C doorgevoerd. In de warmteversneller moet de warmte versneller aan het waterbed van de klepmachine komen. Hiervoor kan dit, bij het latere expanderen in de afgas-turbine, warme compressor-inhoud wordt verdergeven, nog meer energie leveren, doordat het van 25 °C tot 70 °C in de warmteversneller wordt verwarmd.

Luchtstructuurnen

In de luchtstructuurnen wordt de lucht omververen in de toren, passend ten bed van 3 meter "dampf". Aansluitend, moet de luchtstructuur, met een "spriet" instel opgesteld (door een groot aantal sprietstems, welke in dunne leidingen met de lucht te verbinden) gevormd voor eventuele watergasgassen uit de lucht te verwijderen. Daarna een dik gas de lucht in verlaat dan de toren aan de onderzijde. De sprietstems zijn onder het gevalle opgesteld en zorgen voor een regelmatige vloeistof verdeling over het Aansluitend bed. Door de luchtstructuurnen na de compressor in het system te plaatsen, warmde de luchtstructuur bij 3 atm. plaats niet, in plaats van voor de compressor, wordt bereikt dat de afstandsbeheerder klein is.
Bijwijk de wittering van opgenomen kosten is, welke soms in de lucht aanwezig zijn, zoals H₂, SO₂, C₂H₄, PH₃, roest, stof, die met intensieve plaats heeft. Ook wordt om de strak niet gemeten welke bij het ingemeren in de lucht wordt gesneden. Ook wordt het volume der lucht nimmer, omdat een deel der samenzijn van oneens is, met overtreding (Uit de waarden staat voor de compresse is geplaatst, wordt de lucht vrij, ze heeft een relatieve vochtigheid van 70%, deze wordt me 100% tot de lucht dus water opgewekt en in volume bestaat.) Na de waarden gaat 4% lucht naar de mens, 4% naar de medische zones.

\[\text{NH}_3 \text{ stroom en menging van NH}_3 \text{ en lucht.} \]

\[\text{NH}_3 \text{ filters.} \]

De NH₃ wordt onder een druk van 5 atm. aangevoerd. Om eventuele stof afwezig te vermijden wordt het door drie filters geleid. Het eigenlijke filtermedium is een poreuze cylinder. Als de maximale snelheid NH₃ door de filters wordt geleid, zijn twee filters voorbereid, het derde filter kan daardoor tijdelijk worden afgekoppeld en vervolgens de worden. Neemt zijn dus drie filters in beeld, waarvan (door een grotere filter medium) de gassen langzaamer door een filter stromen en het drukvermogen van het filter niet zo groot is, dan in het geval dit slechts twee filters in gebruik zijn. Het drukvermogen van de filters ligt bij 0,5 atm. gesteld (onder normalisatie 90% betekent) zodat de druk voor de filters in het NH₃ 4,5 atm is. Bij een filter wordt het NH₃ eerst in een sterk geleid, welke om het filter medium is gebonden. Daarna stroomt het NH₃ door de filter cylinder naar de filter uitlaat.

Op het processchema zijn 3 filters getekend, dat derde bevindt zich hier achter, en dit bovenwijd kunst.

Meng ejectioners

Bij de mengejecteurs drukt het NH₃ met een druk van 4,5 atm binnen. De lucht met een druk van 3,1 atm. Het mengsel krijgt dan een druk van 3,2 atm. Dit is het gezicht van de NH₃ met een gehele snelheid (zonder de snelheid van de lucht) in de lucht slalom gezien.

Het NH₃ beweegt dan langs op de lucht voor, waardoor de lucht (aan de zijde van de mengejecteur) met een druk, iets lager dan
de druk van het middelste mengsel (3,5 xh) de mengsfeer binnenkomt. Aangenomen dat de inkomst van de lucht bij deze omstandigheden zo lang mogelijk is, -0,1 atm, wordt hiermee een bijtwe gelieve tot ca. 20% mogelijk bereikbaar over compressie energie.

Verbranding van NH₃

Bij de verbranding van NH₃ treedt een reeks de volgende reakties op:

1. \[\text{NH}_3 + \text{O}_2 \rightarrow \text{H}_2\text{NO}_2 \]
2. \[\text{H}_2\text{NO}_2 + \text{O}_2 \rightarrow \text{HNO}_2 + \text{H}_2\text{O} \]
3. \[\text{HNO}_2 \rightarrow 2\text{NO} + \text{H}_2\text{O} \]

(Hierdoor wordt bij het gekozen proces 97% NH₃ tot NO gemiddeld)

4. \[\text{NH}_3 + \text{H}_2\text{NO}_2 \rightarrow \text{N}_2 + \text{H}_2\text{O} + 2\text{H}_2 \]

(Hierdoor wordt bij het gekozen proces 3% NH₃ tot N₂ gemiddeld)

5. \[\text{H}_2\text{NO}_2 + \text{HNO}_2 \rightarrow \text{N}_2\text{O} + 2\text{H}_2\text{O} \]

(Dit resultaat vormt slechts 0,01% N₂)

Lijkt vóór 15

De reactie van NH₃ in NO wordt als bevorderd door: hoge ontwikkeling, hoge temperatuur, hoge O₂ concentratie aan het nit.

Als het NH₃-lucht mengsel wordt hete apparatuur alleen verwarmt, omdat het niet bedekt, dan de reactie \(\text{NH}_3 + \text{N}_2 + 3\text{H}_2\) geen volloopt, want bij NH₃, zodat in N₂ wordt mengsel. Deze reactie verloopt niet als het mengsel langs de tijd op hoge temperatuur in, omdat de verbranding plaats hebben. Boven de reaktor in een lang brandt reiken aangetrokken. Deze blijkt voor een getijndige laag van het NH₃-lucht mengsel meer het nit te bewerkstelligen en om de staans die niet tegen de houden, waardoor het boven gemiddelde de rot niet zo held wordt en dus het NH₃-lucht mengsel niet reeds bij het binnentrekken, deze even sterk wordt verwarmd. De gasen welte die over worden binnengeleid worden eerst nog langs de bovenzijde worden geleid door een cirkel, waardoor ze zelfde met rekening worden verwezen en teven de behoorzaad der over volgens geheid en dus niet zo held wordt. Bij de afkoelen overwein
en niet-vorm berijden de gassen met het net verder tot de NH₃-dissociatie tot een minimum wordt beperkt.

De NH₃-lucht verbranding moet benaderen een maximum waarde blijven, welke bepaald wordt door de regelkleppen. Bij 2, 3 en 4 lopen deze 13, 2 % NH₃ (elk 2, 12). Als het NH₃ gehalte van het NH₃-lucht mengsel stijgt, stijgt ook de witte temperatuur, dus ook de hoeveelheid uitgaande stralingsverlies van het net. Hierin is de werking van de verbrandingsinstallatie tegen stralingsverlies gebaseerd, welke een signaal kan geven aan een snel-opsplitter in de NH₃-trouwe leiding. Als de lucht trouwe niet als, omdat de branderenceen stoppen, dan moest ook de NH₃-trouwe stoppen, omdat anders de stralingsverlies vanuit de leidingen. Ook als de NH₃ wordt toegevoegd. Een driehoekig metalen in de verbrandingsader comprimeert, geeft bij starten de driehoek een signaal van een snel-opsplitter in de NH₃-trouwe leiding. Bovendien wordt de NH₃-lucht verbranding geregeld door een "flow-meter" in de luchtleiding, welke niet om regelkleppen de NH₃-trouwe regelt (elk 20)

Per mm zijn 4 netten aanwezig bij verbranding van een 10,5 % NH₃-lucht mengsel bij een methode van 50 cm NH₃-plaats verbrand in 4 zones met een diameter van de netten van 2,0 m. Deze netten zijn witte temperatuur van 950 - 1000 °C, de techniek van NH₃ in N₂ is 97 %

Driehoekige metalen in de lucht luchtig nemen, welke op een meter zijn aangebracht

Ketting van verbrandings zones

Stroomproductie

Onder het net gehalte waarin de verbranding plaats vindt, zijn twee voorheen inmiddels gehele installatie opgesteld, welke aansluiting zijn verder gekoeld. De verbrandingszones worden de verbranding in 4 etappes gekoeld: Eerst stromen ze door een pijp in bundel in zone renken de aanverwante stromen (10,5 1,15 mm), welke hierdoor ongewenst wordt (250, 150°C) Danna stromen ze door een pijp bundel waarin ze werden overgespannen met water (185 °C), betegelen in stroom wordt ongeveer (125 °C)

Economiser

Hierna treedt de gassen uit de verbranding in gassen en econoiserine. De drie een van deze water-onnemer mogelijk de gassen. De van de pijpenbundel, waarin water van 100 °C tot 185 °C wordt voorwarmd van de branderende
Het water van 100 °C is afkomstig van een ontsparring installatie (van voedingswater dat hier onder in het bedrijf wordt gekoeld). De gassen verlaten de economiser met een temperatuur van 150 °C.

Gaskolers
Na de economiser worden de gassen tot 25 °C gekoeld in één gaskoler (Van alle vier de verbrandingsinstallatie is er dus in totaal één gaskoler). Bij de koeling van 150 °C tot 25 °C treedt condensatie van het H₂O der verbrandingsgassen op. Dit verlaat de kolers als 20 % natriumsulfaat en wordt aan de inwendingslucht van een absorptietoren van 20 % natriumsulfaat, toegewaagd. De gaskolers treden dus als residu uit NO + O₂ en de gasabsorptietoren zie NO₂ + H₂O → 2 HNO₃ + NO₂. Ten berekenen der gassen, stelling van het gas, dat de gaskolers vertrekken, en tellinge stammen dat dit gas in evenwicht met het zuur is.

De gaskolers is met een helling van ± 60° opgesteld, in een platte afvoer van condensaat mogelijk te maken. In de schotten is onder een opening gemaakt om het natriumsulfaat gelijk de gassen niet. Slechts als beide ontsteking van het zuur stroom kon en een der gaten kon stromen, het vuur, zoals die gaten niet, werden de schotten niet van stuit.

Samenvatting: gassen van de gaskoler.

Om deze te berekenen moeten we aannemen, dat het natriumsulfaat in evenwicht is met het gassen. De opening van H₂O door natriumsulfaat is in lit. 12 gegeven, als evenwicht in opgesteld bij 25 °C.

Evenals in het volgende evenwicht: 2 NO₂ → N₂O₄, dat zit altijd van met instand, dat we voor de berekeningen kunnen aannemen dat het is ingesteld. Bij 25 °C is K = \(P_{N_2O_4} = 9.00 \times 10^{-4} \) bij 1 atm. met een formule van lit. 1.

Voor de berekening hebben we de "partikeld" evenwichtsconstante van natriumsulfaat: 3 NO₂ + H₂O → 2 HNO₃ + NO₂, K = \(P_{NO_2} \) atm.², met een.
Deze K, variëert met de temperatuur en de samenstelling van het salpeterzuur waarbinnen het evenwicht zich instelt (bij 25, 26).

Grafiek 1

Evenwichtsconstante $K_1 = \frac{P_{NO}}{P_{N_2}}$ van het evenwicht $3N_2 + H_2O \rightarrow 2HNO_3 + NO$

Tevens is de reactie $2NO + O_2 \rightarrow 2NO_2$ van belang voor de berekening. Het 'evenwicht' $2NO + O_2 \rightarrow 2NO_2$ ligt bij 25°C schuin rechts.

Deze reactie verloopt mogelijk langer dan de reactie $2N_2 + H_2O \rightarrow 2HNO_3 + NO$. De reactie snelheid wordt echter bij lagere temperatuur. De rechtermelkzuurstand is, van de reactie is gedefinieerd door $\frac{dNO}{dt} = k \cdot \frac{NO \cdot PO_2}{PO_2}$. Voor de berekeningen moet k bepalend worden, aangezien hij niet in de formule is gegeven, doch de tijd in minuten en de stofverhoudingen in grammens gegeven waren (bij 4).
Li. 4. \[\frac{\gamma_1 P_0}{R} \frac{T_0^4}{T} = 2.09 \times 10^6 \] gedefinieerd als \[\frac{\Delta C_{NO}}{\Delta C_{N_2} C_{O_2}} \]

Non-vol kg gas is \[P \cdot V = R \cdot T \], \[P = C \cdot R \cdot T \]

\[\begin{align*}
\lambda &= -\frac{\Delta C_{NO}}{P_0} \cdot \frac{1}{R} \\
&= -\frac{RT \cdot C_{NO}}{P_0} \cdot \frac{1}{60.2 \cdot x} \\
&= k \cdot \frac{1}{60.2 \cdot x}
\end{align*} \]

waarbij \(R \) in latm \(nol \) en \(T \) in °C. \[k = 0.08206 \text{ latm m} \cdot \text{°C}^{-1} \]

\[\lambda = \frac{k}{60.2 \cdot x^2} = \frac{2.09 \times 10^6}{60.271^2 \cdot 0.08206} = 69.6 \text{ sec}^{-1} \text{ atm}^{-2} \text{ latm} \]

Natuurlijke verbindingen lieten zo berekend:

<table>
<thead>
<tr>
<th>(T) °C</th>
<th>(\lambda) sec⁻¹ atm⁻² latm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>4.1</td>
</tr>
<tr>
<td>60</td>
<td>28.9</td>
</tr>
<tr>
<td>90</td>
<td>20.8</td>
</tr>
<tr>
<td>141</td>
<td>13.2</td>
</tr>
<tr>
<td>197</td>
<td>8.8</td>
</tr>
<tr>
<td>241</td>
<td>6.7</td>
</tr>
<tr>
<td>291</td>
<td>5.2</td>
</tr>
<tr>
<td>340</td>
<td>4.3</td>
</tr>
<tr>
<td>389</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Deze \(k \) waarden komen vrij aardig overeen met die uit lit. 1. Het onderzoek naar de \(k \)-waarden is in lit. 28.1.29 verricht, waarin ook \(k \)-waarden gegeven worden. De \(k \)-waarden uit lit. 4 waren iets rechter, zo behield deze voor de berekening van de \(k \) waarden deze genomen. In grafiek 2 is \(k \) tegen \(T \) uitgezet.

2 Oxidatie van NO tot NO₂

Gezien, die niet de zuurdeelt kan, worden naar de

true oxidatie-trends gediend, waarbij stevige de secondaire lucht

aan de gassen wordt toegevoegd. In de oxidatie-trends wordt

NO tot NO₂ gemiseerd. Als het gas met de oxidatie-trends

kort, met 90% der stikstof reeds gemiseerd zijn, dus

\[\frac{P_{NO} + P_{NO_2}}{P_{NO} + P_{NO_2}} = 0.9 \]

bij hoge temperatuur verhoogt de oxidatie

moeilijk (\(k \) is dan groot, zie grafiek 2). Bij de oxidatie-trends ontstaat vrij. Deze trend moet worden opgevoerd (zie gassen krom de re. trends in en verlaten ze met een temp. van

25 °C). Als we de temperatuur 25 °C willen houden, dan blijkt dat er een/z gang toekomt - opmerkelijk merkig is. Tijdens de reactie

mogen we namelijk met water, het door toelichting wordt.
Graph 2

Reaktionstechnische Rechnung

Reaktion: 2NH₃ + O₂ → 2NO₂

Temperature, °C →
\[Q = A \cdot V \cdot t \]

Door de temperatuur te vergroten kan men de massa kleiner maken. We zullen daarom in de eerste kolommen de temperatuur tot 100 °C laten oplopen, waardoor het voluit blijft, A een geringe grootte krijgt. Als we de temperatuur nog hoger laten oplopen, dan komt het evenwicht

\[2N_2 + O_2 \rightarrow 2N_2O_5 \]

meer naar links te zitten, wat natuurlijk de reactie veel minder wilt doen verlopen.

Door de temperatuur tot 100 °C te laten oplopen wordt de reaktie melkachtig constante toon en een sterk kleine af. De tijd, welke de reaktie nodig heeft om evenwichtig te verlopen, dat in het gas 90 % der stof als reeds als N2O4 aanwezig is, is tevens de tijd dat het mengsel in de reaktie troons moet blijven. Bij een bepaalde gasvolume storm melkheid (\(\frac{m^3}{sec} \)) kunnen we dus hier niet het volume der troons berekenen. De gasstrom in de tonen wordt door rechts geleid. De gassen passen gelijke malen de kolommen. Deze strom in een paar zijn over de gehele breedte der tonen opgerold, zie schema. De benaderde berekening zou echter alleen gelden bij "piston flow" (let i), waarbij elke gasdeelstel 1 bepaalde verhouding in de tonen zou hebben. Dit is het geval, botten de kolommen in de stroming laminair, waardoor het even dulpte handen gaat aan het andere gedeelte.

Tevens treedt het verscheidene op dat de gassen in "dolle troons" der reactie troons verbeteren bij "gasstorm" (let i). Het stromingsbeeld blijft tonen dat van een "piston flow" en een "ideale menging" in te blijven (let 1, 30). In let 1 wordt geconstateerd dat dit afsplitsende stromingsbeeld slechts 25 % de resultaten beïnvloed in het eerste geval (ideale menging). Bij mijn berekening is gelopen dat dit, wat betreft de inbreng der troons een factor 4,5 scheelt, dus 450 %. De trots die de ternet hecht is 12 meten gesteld. In de reaktie troons constante nog een kleine evenwijdige meten, dat enkel 53 % nulstelsel voor en via twee water (voor iedere ton een), waar men en evens beter gas gescheiden komen worden, en met behulp van een "Viking jump", een soort briefet geplaatst dat een diameter van 75 mm had, dus
In het schema, schat 1:0,5, wil iets groter getekend moeten zijn, in de berekening de relate actieve groep van de kruisingen met de relatie van 53 % waar
wordt gesteld.

§ Absorptie van nitrogeen gassen in water:
De klimaat van de absorptie van nitrogeen gassen in water is nog onvolledig bekend (let). Tussen geven een
dat de absorptie evenredig is met \(\text{NO}_2 \), andere nemen
van dat de absorptie evenredig is met \(\text{NO}_2 \) en sommige
wel evenredigheid met \(\text{NO}_2 \) verondersteld (let 1, 31). Een reeks
- Rekton-Blakctie in Chem. Engag. Sci. geeft voor reactie mechanismen

\[
\begin{align*}
\frac{1}{2} \text{NO}_2 + \text{H}_2 \text{O} & \rightarrow \text{HNO}_3 + \text{NO} \\
\text{HNO}_2 & \rightarrow \text{HNO}_3 + \text{HNO}_2 \\
\text{NO}_2 + \text{H}_2 \text{O} & \rightarrow \text{HNO}_3 + \text{HNO}_2 \\
\text{N}_2 \text{O}_3 + \text{H}_2 \text{O} & \rightarrow \text{HNO}_3 + \text{N}_2 \text{O}_3 \\
\text{HNO}_3 + \text{H}_2 \text{O} & \rightarrow \text{HNO}_3 + \text{H}_2 \text{O}\nonumber
\end{align*}
\]

en ook
\[
\text{NO}_2 + \text{H}_2 \text{O} \rightarrow \text{HNO}_3 (\text{gas}) + \text{NO}\nonumber
\]

\[
\text{HNO}_3 (\text{gas}) + \text{H}_2 \text{O (gas)} \rightarrow \text{H}_2 \text{O}_3 \text{NO}_3 (\text{water})\nonumber
\]

Hiermit blijkt dat hoe complexer het reactie mechanism is,
ongerekend met de maximale reactiviteit van de totale reactie deel-
nemen. Echt de laatste reactie, waarbij nitrogene \text{HNO}_3
een zuur niet zuur, welke door diffusie van de absorptie
- Rekton-Blakctie heeft men (let 33) een bijzondere wijze van
absorptie bekend, welke met behulp van een ventiel in-
gester wordt genomen. Dit bijzondere gas ver-
mening (krijgt dus een grote modulatie), waarbij men in de
vermenning water in het gas vermeer. Alsn verkruijt de
bijzondere fijne mengselstromen gas en stoestig van bijeen,
der groot stof-uitwisselings schijf. Bovendien noeg men
stroom toe aan het nitrogeen gas mengsel wanneer de reacties
smeller verloopen (zie reactie mechanismen). Over dit boek
heeft de echter geen literatuur kunnen vinden (deken let 33,
voor echter geen getallenweten ten weinig vermeld) en het is in de
industrie ook niet toegestaan. De keuze van het absorptie
system blijft dus onbeperkt tot e) gezoete torens,
d) scheets kolommen e) torenen van cilinders op een
helling. Systeem e) heeft een te groot drukverschil voor
de nitrium-zuren. Bij een druk van 2,8-2,9 atm.
kan men het beste gezoete kolommen toepassen, omdat
scheets kolommen te dunn zijn en ooit een groter
drukverschil van het gassenpel als bevocht hebben.
We zullen ons een systeem van gezoete torens kiezen.
De gezoete van scheets kolommen is via de rekening van
Theorie, schets kolommen en een rekening verlies zuren.
Bijna de schetskolommen zijn rekening te berekenen (lith 22). Het
kan de berekening doorvoeren door bij elke schets evenredig
aan de nemen te nemen a) NO2 tot N2O3 b) NO, NO2 in het zuur,
verder men tussen de schetskolommen de zoetheid gewend NO2
ten berekenen met \frac{dP_{NO} \cdot dP_{NO}}{dP_{N} \cdot dP_{O}}. Bij gezoete torens
in deze berekening niet door te voeren. Hier moet de
berekening van grote waarde, van de rekenaar zorgen een gas
moeilijk verloop gaan. Lith 21 geeft met waarde voor keg. welske
voor ontheven van kolommen van kleine afmeting. Lith 27
berekend hieruit en nog niet meer gegevens die afmeting
van een met schets Genees, met ND. ON opbrengt benzinemol.
Voor mijn geval is de keg echter niet om te re-
kenaar aangeraden deze 3.4. aflatte in van de zoetheid
en de mate van bevochtiging van de kolom (welke ook niet bekend)
Om gegevens van het atmosfeer systeem te verkrijgen heb ik
mijn berekenings gekregen van ND. kneek, gemiddeld. Men
kan mijn daar globaal enkele gegevens verstrekken.
Voor de atmosfeer zijn vijf torens nodig, 18 m hoog, 4,6 m
diameter, elk met 4 helden van 2,5 m hoogte, bestaande uit
2.1 schets kolommen. "Russtig zorgen. De stenen torens met het
meer gemengde reentensatie zoon zijn in twee secties ver-
scheid, waarbij iedere sectie in eigen naar reentensatie heeft.
Bij de torens, welke niet deze secties bestaan, wordt het zoon
Lennert niet zoon, als het met het onderste deel der sectie
vallt, opgevangen door een vorm betrek, waaronder het naar
een grote te stromen, waaruit het via een gatenbeheer
meer naar een reentensatie door de stromen. De zoon gesteekt
heeft naar, door een aantal plaatselijke kwaliteit, wel
De beddende van onder naar boven doorstromen.

Bij elke sectie stroomt een enkele platte, waardoor minste-
laars opgesteld. De afmetingen der koelplaats is 3 bij 3,6
De vertikale zuur kanalen zijn 4 bij 2,2 mm in doorsnee.
54 kanalen zijn in iedere platte aanwezig. Het zuur,
tek naar boven door de platte wordt, wordt gehecht
door water dat aan de binnenzijde van de platte langs de
platen loopt. Het wordt door een gort met een ge-
lende zuurloze ruimte over de platte verdeeld en in
een andere gort weide opgewaaid. Dit systeem is niet
wezig in wat 37 beschreven is gestroomd van buiten,
plaat mineraal, voor de bereiding van sulfaeruma. Nadat
warmte mineraal wordt naar een deel van het zuur
neer de steunende truss (met een meer-gehechte-
ruimte) afgeplaatst in de zuur wordt bij het circ-
latie tevoorschijn uit de mineraal zuur van bijgezegd.
Thierna komt het zuur bij de mineraal. Het best kan
men hiervan veel kleine mineraal nemen, hetgeen een
gelijkmatige bereiding van het bed geef (helps al
wordt het mineraal zuur weide opgewaaid, waarbij enkele, grote
mineraal niet goed mee zouden functioneren). Voor bed-
neringen stellen we de lucht door de truss voor de min-
ners 1/2 atm boven stelt dan de lucht in de lucht. Met de
laatste lucht ontvankelijk het afgas, dat eerst nog een
gasbed is gemaakt, hetgeen evenwel nog in het afgas
zwemende stofstof-stofstof verwijderd. Het afgas wordt
looping nu verwarmd in de woonde mineraal, waarmee
gekompenseerd lucht wone in het afgas afstond. Daarna
wordt het in de afgas-turbine van 2,6 tot 1,1 atm. ge-
lagedeeld en naar een schoorsteen geleid.

15

Reiniging van gesorteerd sulfaeruma met bedd.
Het 53% sulfaeruma wordt met mineraal verder met
1 inch damp. Daarbij ringen verversd in onder het bed
werd opgewaaid en naar de opslag geleid. Secundair bed
heeft eventueel optien te zitten bij het zuur, passend na
het daardoor ringen bed een gans bed te zetten daarna naar de静电
tures.
Berekening van apparaatente weee in mg/lamens

a Luchtwaarden

Samenstelling aangezogen lucht:

We nemen lucht aan met $T = 15^\circ C$ en rel. vochtigheid = 50%.

De samenstelling van droge lucht is 20,95 vol % O_2, 0,93 vol % N_2 bij $15^\circ C$ in $P_{H_2} = 129,9$ mm, dus bij 760 mm rel. vochtigheid in $P_{H_2} = 0,76 \times 129,9 = 99,1$ mm Hg. Bij 760 mm Hg totalelukt in $P_{H_2} = 760 - 99,1 = 660,9$ mm Hg in vochtige lucht met 50% rel. vochtigheid.

Het "mengel" van droge lucht en waterdamp bevat dus

$$\frac{99,1 \times 100}{760} = 1,28 \text{ vol } % H_2O, \quad \frac{20,95 \times 750}{260} = 20,78 \text{ vol } % O_2.$$

0,92 vol % N_2 en $77,18$ vol % N_2.

NH$_3$ - lucht mengsel naar open en stoomdrukd lucht:

De productie door fabriek wordt berekend door het NH$_3$ verbruikt:

100 ton NH$_3$ - stikstof per etmaal, dus $100 \times 1000 = 20,74 \text{ kg}$ met NH$_3$/uur. Het vracht de open grijze mengsel be- vat 10,5 vol % NH$_3$, dus $\frac{100}{10,5} = 2,554$ k N /kg lucht per uur. Dit is $\frac{1}{2}$ van alle aangezogen lucht, $\frac{1}{2}$ wordt naar de luchtwerven afgesplitst, de rest wordt lucht. Deze luchtwerven is $\frac{1}{2} \times 2,554,0 = \frac{1}{4} \times 2,534,0 = 623,5$ kg NH$_3$ per uur.

De primeire lucht bevat met b.v. 2,534,0 $\times \frac{2,072}{760} = 52,5$ k ton NH$_3$ per koolstaal.

Aangezogen primeire lucht

2,9,9 H$_2$O; 522,5 O$_2$; 233 A; 1955,6 N$_2$; 2536,0

stoomdrukd lucht

75 H$_2$O; 131,2 O$_2$; 564 A; 289,4 N$_2$; 3163.5

Totaal

37,4 H$_2$O; 656,2 O$_2$; 29,1 A; 2444,8 N$_2$; 3163.5

Het is dus de hoeveelheid lucht, welke door de compressor wordt aangezogen.
Dit mengsel bestaat 10% + 70° = 34, 93 gassenmoleculen gas.

\[C = \frac{242,1}{6,92} \text{ en } \frac{34,93}{3,09} \text{ kcal/°C van de voedingslucht.} \]

De gasconstante, \(R = 1,988 \text{ en } \frac{34,93}{3,09} \text{ kcal/°C.} \]

Lucht compressor:

Bij de compressor neemt de druk van de lucht van 1 atm tot 3,2 atm toe. De ingangstemperatuur van de lucht is 15°C, 200°F.

Passen we in de onder D, een gewone formule toe: \(C \frac{\log T_2}{P_2} = \log \frac{T_1}{P_1} \), dan geldt \(6,92 \frac{\log T_2}{P_2} = \log \frac{34,93}{1,988} \), \(T_2 = 130°C \). De lucht ver-

laat de compressor met een temperatuur van 130°C. De com-

pressor compressor 3167,5 kcal/°C lucht. De totale rendement van compressor 85%, dan moeten we de volgende arbeid noodzakelijk berekenen:

\[3167,5 \times 6,92 \times (130-15) \times 8,19 = 3450 \text{ kcal/W.} \]

Warme miscellaar:

In de warme miscellaar wordt de lucht tot 65°C gekoeld.

Hierbij komt 65 x 6,93 x 3167,5 = 1430,000 kcal/°C = 1660 kcal/W.

Het afgas bevat 2591,4 kcal/°C, \(C = 6,94 \text{ kcal/°C.} \), dus

\[\Delta T = \frac{1,430,000}{2591,4 \times 6,94} = 55°C. \]

Het afgas komt bij 25°C en in de

warme miscellaar een verlies tot

bij 90°C. De warme miscellaar heeft 50 tot 1/3 milk binnen.

Van de brandstof stroomt de lucht, in de warme de afgas

De binnendiameter is 9 meter, de omgeving heeft een diameter van 152 meter.

Afgas turbine:

Het afgas exponeert in de turbine van 2,6 tot 1,1 atm.

Als we van de turbine een rendement van 85% nemen, dan kunnen we berekenen hoeveel arbeid hij kan leveren:

thermische exploitatie heeft de temperatuur van het gas dalen. We passen weer de formule toe: \(C \frac{\log T_2}{P_2} = \log \frac{T_1}{P_1} \), dan

\[\log \frac{34,93}{25} \times \frac{T_2}{P_2} = \log \frac{34,93}{1,988} \times \frac{T_2}{P_2} \Rightarrow \log \frac{T_2}{P_2} = 3°C \times 30°C, \]

\[T_2 = 6°C, \quad T_1 = 80°C, \quad \Delta \text{ de temperatuur dalen.} \]

Als het afgas niet door de warme miscellaar was gezogen, dan

was de temperatuur van 25°C tot -40°C gedal, dus 65°C.

Het afgas van de turbine is de temperatuur dalen dus ±10% hoger,

dus nöt de energie ontwikkeling van de turbine. Wele de warme miscellaar ingevierd en, is de arbeid die de turbine levert:

\[2591,4 \times 6,94 \times 77 \times 4,19 \times 0,85 = 1370 \text{ kcal/W.} \]
Het berekenen der compressor arbeid gebeurt dus voor $\frac{1370 \times 100}{3450} = 40\%$. De elektriciteit moet dus ten voor-\[\text{mogen van } 3450 - 1370 = 2080 \text{ kW} \text{ leveren.}\]

Lucht-voorstroom
In de meeste gevallen stijgt het gas op door een met water bedekte grens, dat met 2 inch "stomped" Rostig, ringen bestaat. De gestrekte is 3,1 atm. Het gas beront: 27,4 kmol/m3 $H_2 = 675$ kg/m3

656 kmol/m3 $O_2 = 20980$ kg/m3

$29,1$ kmol/m3 $N_2 = 60000$ kg/m3

Totaal $3167,5$ kmol/m$^3 = 9133$ kg/m3

De temperatuur van het bevruchten water is $15^\circ C$, die van het gas $25^\circ C$, beide stappen de stromen binnen komen. We kunnen aannemen dat het gas bij het verlaten de stroom een temperatuur van $30^\circ C$ heeft. De lucht-misching in de stroom is $2167,5$ kmol/m3, bij een gemiddelde lucht-temperatuur van $\frac{1}{2}(65+20) = 42.5^\circ C$, dus bij een snelheid van $\frac{3167.5 \times 2167.5}{3141.75} = 26400$ m3/h; f-lucht = $\frac{9133}{26400} = 0,346$ kg/m3 = $0,2163$ lbm/ft3.

We kunnen uit de gemiddelde druk en snelheid, dat bij iets kleiner is dan de "loading-velocity" in de stroom, namelijk dan bij een ze klein mogelijke drukverschil over het bed van 2 inch "stomped" Rostig, ringen, het oppervlak tussen luchtstof-en-gas zo groot mogelijk is (Literatuur 2) $\Phi = \frac{V_{F}}{V_{O}} = 0,2163 = 5,70$.

De massa stroom van het gas is $9133 \times 2167,5 = 201250$ lbm.m^3/h.

Een stroom-diameter van 12 ft geeft een oppervlak van donder van $\frac{\pi}{4} \times 12^2 = 113.1$ ft2. De massa stroom is dan $G = 1770$ lbm.ft^2/sec.$\frac{G}{\Phi} = 1047$. Met de graphiek (Literatuur 2) der "loading velocity" bij een 2 inch Rostig, ringen en $L = 4000$ lb$./ft^2$, dit is een luchtstof-stroomdichtheid van 452000 lb$./ft^3 = 120,5$ ft3/lbm.m^3 De stroom-diameter in dan $3,66$ meter, de lucht hoge in 2 meter.

We hebben nu de temperatuur berekenen vanwege het gas, menig de stroom verlaat, T_{2g}. De inlaat temper van het gas is T_{1g}. De luchtstof en met laag-temperaturen schijnen met T_{1w} in T_{2w} samen. We zullen $T_{2w} = 20, 25$ in $30^\circ C$ stellen en berekenen welke temperatuur het must met T_{2g} overeenkomt.
Er werd een experiment gedaan met een warmtebron, waarin een A = 1 m² oppervlakte stroom botende in \(U = 2 \text{ W/m}^2 \) en \(T = 32,3 \text{ K} \). Het totale verlies was \(88,5 \text{ W} \) en de hoek van 2 mink. Kouding was in \(0,8 \text{ kg} \) in kg. Kouding is \(\frac{1}{2} \times 3,66 \times \frac{x}{2} \times 95 \text{ m}^2 \). Het totale volume van het lek was \((\frac{1}{2} \times 3,66 \times \frac{x}{2} \times 95 \text{ m}^2 \times 3,1 \text{ m}^3) \). De waterstroom van de hydro in de struik, naast het oppervlak van de hydro, bestaat uit de formule \(Q_w = \rho \cdot v_{1} \times (T_2 - T_2) \).

<table>
<thead>
<tr>
<th>(T_2) (°C)</th>
<th>(T_2 - T_2)</th>
<th>(Q_w = \rho \cdot v_{1} \times (T_2 - T_2))</th>
<th>(T_2 - T_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>45</td>
<td>2,741,000</td>
<td>5°</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>2,44,000</td>
<td>4°</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>2,13,500</td>
<td>4°</td>
</tr>
</tbody>
</table>

\(Q_w \) en \(Q_w \) komen het meest bij 20 °C overeen.

Bij 20 °C is de verticale spanning van waterdamp 17,5 mm(Hg)

De verticale druk in de waterdamp is 3,1 atm = 2357 mm(Hg), de partiële spanning van de "droge" lucht is 2357 - 17,5 = 2340 mm

In de struik komt 3167,5 kmol/m³ lucht = 37,4 kmol/m³ waterdamp, dus 3130,1 kmol/m³ "droge" lucht. Als de lucht de struik vertrekt is de verdeling van waterdamp, bij de nitroshoek temperatuur \(T_2 \). Er is dan \(3130,1 \times \text{Paw} = 3130,1 \times 15,5 = 23,4 \text{ kmol H}_2\text{O} \) in het dampveld. Er is dus \(37,4 - 23,4 = 14,0 \text{ kmol H}_2\text{O} \) waterdamp geëvaporéert. We stellen de condensatiewarmte gelijk

\[\Delta H_{\text{cond}}\text{H}_2\text{O} = \Delta H_{\text{sol}}\text{H}_2\text{O} = 10,5 \text{ kcal/mol}. \]

De stand is in

\[\frac{3,08}{67} = 2,3 \text{ kcal/mol H}_2\text{O} \]
We nemen nu nogmaals directe meet berekening met voor \(T_2 \):

\[
\begin{array}{cccccc}
\text{T}_2 & \text{T}_w & \text{SWa} + \text{condensatie} & \text{T}_w - \text{T}_w & \text{kwart} & \text{P}_w = A \cdot \text{kwart} \\
\text{20°C} & 45° & 315,000 \text{cal/sec} & 5,5° & 18,1° & 260,000 \\
\text{25°C} & 40° & 285,000 \text{cal/sec} & 5° & 23,3° & 342,000 \\
\end{array}
\]

\(T_2 \) zal dus kunnen 20 en 25°C liggen, bij nieuwe 2,2°C hebben \(SWa + \text{condensatie} \) en \(P_w \) een gelijke waarde.

Bij 22°C is \(P_{w,0} = 19,8 \text{ mm Hg} \), \(\text{to is dan} \quad 19,8 \times 26,5 \text{ mm Hg} \), \(2357-19,8 \)

H2O in de luchtstroom maten, 37,4 - 26,6 = 10,8, 26,6

H2O condenseert.

\[\text{NH}_3 \text{ versus en NH}_3 - \text{lucht menging.} \]

De \(NH_3 \) wordt door een lucht geleid en staat na smaak mengstems met de lucht gemengd.

We kunnen stellen dat na de filters druk en temperatuur van het \(NH_3 \) 4,5 en \(20°C \) zijn. In de systemen staat de druk van het \(NH_3 \), na het mengen, 3,2 atm.

Adiabatische expansie van temperatuur van de lucht gemengd hebben, welke we nu kunnen berekenen: \(\frac{T_1}{T_2} = \frac{P_1}{P_2} \).

\[\frac{P_1}{P_2} = (1 - \frac{e}{R}) \cdot \log \frac{P_1}{P_1} \cdot (1 - \frac{e}{R}) = \log \frac{P_1}{P_1} = 1,51. \]

\[\log 3,1 = \log \frac{293}{3,2}, T_2 = 0°C. \]

We kunnen dit voor alle lucht berekenen. Zodat de lucht de lucht van de lucht

\(3,1 \text{ atm.} \)

Na de lucht is de druk dus 3,2 atm. De temperatuur van lucht is 22°C.

\[\frac{T_1}{T_2} = \frac{P_1}{P_2} = \log \frac{T_2}{T_1} = \log \frac{293}{6,9} = \frac{\log 3,2}{1,51}, T_2 = 25°C. \]

De menging zal zich echter de menging eind temperatuur

e instellen. \(C_{NH_3} = 8,92 \text{ cal/mole} °C \) \(C_{lucht} = 6,93 \text{ cal/mole} °C \).

De luchtstroom is 2525,4 kmol/h, de \(NH_3 \) stroom 29,5 kmol/h. De eind temperatuur van het \(NH_3 \) van 0°C zijn, die van de lucht

25°C. Bij menging van beide zal de lucht aan het \(NH_3 \) overnemen:

\[(25 - t_E) \times 2525,4 \times 6,93 = (t_E - 0) \times 297,4 \times 8,92, t_E = 22°C. \]

Bij menging blijft de temperatuur dus bijna constant lucht 22 – 22°C en \(NH_3 \), 20 – 22°C. We kunnen de luchtdruk bij danner in de lucht berekenen. De verhouding door het \(NH_3 \) overvloot van de lucht eind temperatuur is 3,1, \(P_2 \) te stellen. \(PV = n \cdot R \cdot T \), \(nV = n \cdot R \cdot T \cdot P_1 \) bij andere \(T_1 \).
\[dV = -nRTdP \]
\[\int dPV = nRT \ln \frac{P_0}{P} \]

\[n_1 = n_2 \times \frac{P_0}{P_1} \]
\[\frac{P_0}{P_1} \]

2.74 \log \frac{3.5}{3.2} = 2.52 \frac{4}{3.2} \frac{P_2}{P_2}

Aangezien hier sprake was van een mengsel, en niet van een zuurstof reactie, betekent de berekening niet de impulsoverdracht getoond (moleculaireverschillen zijn niet erg groot), toch op energie-overdracht.

C Verbranding van NH₃

Bij de verbranding treedt de volgende eetstofreactie:

\[\text{a) } \text{NH}_3 + \frac{3}{4} \text{O}_2 \rightarrow \text{NO} + \frac{1}{2} \text{H}_2\text{O} \]

\[\text{b) } \text{NH}_3 + \frac{3}{4} \text{O}_2 \rightarrow \frac{1}{2} \text{N}_2 + \frac{1}{2} \text{H}_2\text{O} \]

Reactie a) per serie wordt in de serie 2,974 x 0,97 = 2,88, 4 k mol NH₃, dus 360, 5 k mol O₂ verbrandt en 268,4 k mol NO en 432, 6 k mol H₂O gevormd.

Reactie b) per serie wordt in de serie 3,0 k mol NH₃, dus 6,75 k mol O₂ verbrandt en 4,5 k mol N₂ en 13,5 k mol H₂O gevormd. Zoals de reactie reageert in de serie, in 1 serie, in:

\[2,974 \text{ k mol NH}_3 + 3,67 \text{ k mol O}_2 = 2,884 \text{ k mol NO} + 4,5 \text{ k mol N}_2 + 446,1 \text{ k mol H}_2\text{O} \]

Koolstof, in koolstof: \[\text{N}_2, \text{O}_2, \text{A, H}_2\text{O, E} \]

Samenstelling gebruiksmateriaal: \[2444,8 \text{ koolstof, } 656,2 \text{ koolstof, } 2,9, 26,6 \text{ koolstof, } 3156,7 \]

Afgeleide secondary materiaal: \[489,0 \text{ koolstof, } 131,2 \text{ koolstof, } 5,8 \text{ koolstof, } 631,3 \]

Lucht na verbranding \[\text{NH}_3 \text{ koolstof, } 1955,8 \text{ koolstof, } 525,0 \text{ koolstof, } 23,3 \text{ koolstof, } 21,3 \text{ koolstof, } 2525,4 \]

Lucht na verbranding \[288,4 \text{ koolstof, } 1960,3 \text{ koolstof, } 157,8 \text{ koolstof, } 23,3 \text{ koolstof, } 467,4 \text{ koolstof, } 2891,2 \]

Door de berekening van de brandtabelen hebben we de temperatuur van het gas nodig, welke bij de verbranding maximal wordt bereikt, T_max. We zullen nu eerst de reactie warmte bij 0°C berekenen uit ΔH₂₉₃,0 enerzijds versus verschillende verbindingen (bij 38).
De reactie was:

\[\text{NH}_3 + 3 \text{Cl}_2 \rightarrow 2 \text{NH}_4 \text{Cl} + \text{H}_2 \text{O} \]

\[\Delta H_{173} = -9.2 \text{ kcal/mole} \]

\[\Delta H_{175} = -17.8 \text{ kcal/mole} \]

\[\Delta H_{175} = -45.0 \text{ kcal/mole} \]

\[\Delta H_{175} = -16.5 \text{ kcal/mole} \]

Om de reactie normale bij de verbrandings-temperatuur te berekenen moesten we 1% de enthalpie ternaire van het NH₃-bundel mengsel bij verhitten van 0°C tot \(T_{\text{max}} \) berekend en 2% de enthalpie ternaire van de zuren na de verbranding, bij temperatuurverhitten vanaf 0°C tot de optimale verbrandings-temperatuur \(T_{\text{max}} \) berekend. Alle cijfers aanmerken dat de optimale verbrandings-temperatuur tussen 840 en 850°C ligt.

Voor de berekening worden de volgende formules van \(C_p \) der zuren gebekeind (lid 12).

\[S_{\text{str}} \]

\[C_p \text{ m kcal/cm}^2 \]

\[\text{Temp. gebied} \]

\[A \quad 4.97 \]

\[N_2 \quad 8.05 + 0.0000000233 \quad T = 1563000^2 \quad \text{m w} \]

\[N_2 \quad 8.50 + 0.001000 \quad T \quad 127^2 \]

\[H_2O \quad 8.22 + 0.0000000134 \quad T \quad 127^2 \]

\[O_2 \quad 8.47 + 0.000250 \quad T = 194700^2 \quad \text{m w} \]

\[\text{NH}_3 \quad 6.79 + 0.0000000 \quad T = 27^2 - 527^2 \]

De andere waarden voor \(C_p \) worden met een metformule afgelezen (lid 12). Alle cijfers enthalpie verschillen bij \(T_{\text{a}} = T_{\text{b}} \) °C.

\(T_{\text{a}} \)	\(T_{\text{b}} \)	21°C	41°C	51°C	71°C	81°C	87°C	91°C	97°C	10°C	11°C	12°C	15°C	18°C	19°C	22°C	25°C	28°C	30°C	31°C	34°C	35°C
\(\text{Ammoniak} \)	49.4	49.7	49.7	49.7	49.7	24.9	406.8	4115.4	4165.1	4214.8	4264.5	4314.2	1032	9.9	6110	6209	4970	5070	15.0			
\(\text{Nitriër} \)	5.197	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	
\(\text{O}_2 \)	6540	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	6470	
\(\text{N}_2 \)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
\(\text{H}_2 O \)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
\(\text{NH}_3 \)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
\(\text{O}_2 \)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
\(\text{N}_2 \)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
\(\text{H}_2 O \)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
\(\text{NH}_3 \)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	

in een tabel weergeven, als \(\Delta C_p \cdot d T \). De stoffen, waarvan deze enthalpie verschillen gelden zijn onder de formule \(\Delta C_p \cdot d T \) geplaatst.
In tabel I zijn de verschillen der enthalpien van 1. omstandig bij twee verschillende, binnen aangegeven temperatuur berekend. Het door gegeven zijn tabel II en III berekend. Tabel II toont de enthalpie - verschillen der aangegeven krommen zijn bij de aangegeven temperaturen. Deze zijn van het hele mengsel gemiddeld, rook de enthalpie verschillen van het mengsel tussen b.v. 22 en 850°C zijn berekend. Tabel II heeft dus betrekking op de gassen na de verbakening. Bij de enthalpie verschillen van het mengsel tussen b.v. 22 en 850°C is later het enthalpieverschil voor het mengsel, tussen 0 en 22°C gemiddeld worden dus de enthalpie verschillen tussen b.v. 0 en 850°C worden verkregen. Hetzelfde is in tabel III voor de gassen voor de verbakening berekend. Tenslotte in deze tabel het verschil der enthalpieverschillen tussen b.v. 0 en 850°C berekend van de gassen voor en na de verbakening. Dit is in het verschil der reactie warmten bij beide
Temperatuur. De "reactie-warmte" bij 0 °C is bekend, doch de reactie-warmte (in het gebied voorliggend bij 250 °C) bij de snelle temperatuur is te berekenen. De zijn nu de reactie-warmte berekend bij 0,40, 0,50, 0,60, 0,70, 0,80 en 0,90 °C. De (met de ideale getallen) reactie verloopt slechts bij 1 temperatuur. Bij deze temperatuur komt dus een hevigheid warmte vrij welke de naasten staande warmte tot de rechte temperatuur verhit. Het NH₃-lucht mengsel komt met een temperatuur van 22 °C van de eijkemkes. De reactie warmte is dus gelijk aan de hevigheid warmte welke het NH₃-lucht mengsel moet hebben om het de rechte temperatuur te maken, als de verbranding staat. Hierbij geeft de verbrandingsreactie dus alleen warmte of wan den nieuwe aangekomen gasmen met warmte verbreekt naar buiten, b.v. door met - sterking of geleiding door de ovenmantel in een rekemek gekond. Wanneer de vier van de vloek tolven, met b.v. bereikt wordt dat door vlak boven het met een laag Rostig ragen van te brengen, tegen warmte strekken, de binnenkomende kondensatien gassen langs de ovenmantel te leiden en de warmte goed te wisselen. De isolatie moet ook bij het gebruik voorzien van de toegewerkt. De maximale gastemperatuur is het enige praktisch de beperkt (spectakkel 3). Bij 887 °C is de vrijkomende reactiewarmte zo groot dat het NH₃-lucht mengsel van 22 °C tot 887 °C hier mee kan worden verhit.

2. Kondeling der Verbrandingsgassen.

Stromergeradatie: Voor de stromergeradatie leveren de ver brandende gassen warmte af tot 150 °C zijn opgehouden. De volgende enthousiaste berekeningen handelen allen over de verbrandende gassen. Met tabel II volgt voor het totale gas mengsel $\sum E \int C_p d T = 16.584.000 \text{ kcal/ha}$, $\sum E \int C_p d T = 16.329.600 \text{ kcal/ha}$, dus $\sum E \int C_p d T = 16.584.000 \text{ kcal/ha}$; $\sum E \int C_p d T = 16.329.600 \text{ kcal/ha}$, $\sum E \int C_p d T = 16.584.000 \text{ kcal/ha}$.

Voor het verhitten van water van 100 °C tot 185 °C in 87,5 kcal/ha warmen van water van 185 °C in stoom van 185 °C in 11,5 at., kraak en de weten is 476,0 kcal/ha warme zin. Om stoom van 185 °C in 11,5 at. en de weten in stoom van 250 °C in 11,5 at. is 37,5 kcal/ha warme zin (art 36)
Om 1 kg water van 100 °C in stoom van 250 °C en 11,5 atu. in te zetten,
in dus $87,5 + 476,0 + 37,5 = 601,0$ kg. eel aan warmte nodig. De verbrenningsgassen geven $13.871,830$ kal/k st., dus de warmte
\[
\frac{13.871,830}{601,0}
\]
Bij de verwarming der stoom wordt de stoom $23060 \times 37,5 = 865.300$ kcal
opgenomen, bij het verwarmen van het verbrandingswater: $23060 \times 0,75 = 2019,000$ kcal,
bij de stoom voering $13.871,830 - 2.019,000 - 865.300 = 10.997.530$ kcal.
Overschotgas
De gassen stromen na de verbranding het eerste door de overschotgasvertrekken van de stoom. De stoom neemt hier 865.300 kcal/m² op.
\[E_n \cdot S \cdot cp \cdot \frac{T_1}{2} = 16.507.600 \text{ kcal/m²} \]
als de verbrandingsgassen met een temperatuur van \(T_1 \) de overschotgasvertrekken verlaten, dan is
\[E_n \cdot S \cdot cp \cdot \frac{T_1}{2} = 16.507.600 \]
\[T_1 = 16.507.600 - 865.300 = 15642.380 \text{ kcal/m²} \]
Nu staat \(T_1 \) is met behulp van \(E_n \cdot S \cdot cp \cdot \frac{T_1}{2} = 15642.380 \text{ kcal/m²} \)
in tabel II de waarde 851°C te vinden. De verbrandingsgassen stromen door een pijpenstok van 137 buizen met een lengte van 60 cm. De diameter der buizen is 95 mm, de diameter der mantel van de warmte wandelaar is 1,50 meter. De overgedragen warmte is 865.300 kcal/m² in 4 uren, dat is 251.3 kln per uur. De constructie bestaat van 18-10-90 Ni- \(\text{Cu} \) en 18-8. De warmte afvoer wordt met enigheid (let 23). \(\Delta T \) is voor deze warmte warmte 650°C.

Verdering water-vormen, economizers.
Het verderingwater en de verderingswortel van 1.08°C wordt door 2.019.000 kcal/m² op. De verbrandingsgassen stromen nu bij 150°C af in de economizers.
\[N_1 \text{ (tabel II)} \]
\[E_n \cdot S \cdot cp \cdot \frac{T_1}{2} = 2.327.300 \text{ kcal/m²} \]
\[E_n \cdot S \cdot cp \cdot \frac{T_1}{2} = 2.115.600 \text{ kcal/m²} \]
De gassen de economizers met een temperatuur van \(T_2 \) komen dan in \(E_n \cdot S \cdot \frac{T_2}{2} = 2.019.000 \text{ kcal/m²} \)
Deze extrapolatie is \(T_2 \) te berekenen, \(T_2 \) is 245°C. De gassen komen dus de warmte warmte binnen met een temperatuur van 245°C. Bij elke evaporatoren vindt zich een economizer. \(\Delta T \) = 55°C voor de economizer. Het water stromt 30 m door de buizen omdat het maar 105°C is verwarmd. Het gas heeft drie "shell-passes", de stoering 30 tube-passes.
\(\Delta T_n \) is nu via een graphiek in lijn 12 berekend. Via enkele temperatuur-afvoerformules, \(x = 0.587 \) en \(z = 1.12 \) werd \(y = 0.94 \) gevonden.
\[\Delta T_n = 55^\circ \cdot 0.94 = 52^\circ \]

Verdunders
De afvoer van de warmte van water in de stoom wordt neergezet. De verbrandingsgassen door de buizen te drukken wordt afgevoerd, 12 mm diameter, 1290 stok. De lengte der pijpenstok is 580 meter, de mantel diameter 085 meter. In 1 economizer zijn de warmte warmte 587 kW.
stroom van 310 g/h. gewaagd. Het gas wordt daarbij gehouden van 851°C tot 245°C. De pijpemmel bestaat uit 195 buizen, de bundel lengte is 6 meter, de emmel diameter is 15 meter, de pijpen diameters is 55 mm.

Zuurkoker.

Bij de dosering in de zuurkoker tot 25°C condenseert een grote hoeveelheid in de gassen aanwezige waterdamp. Ook treedt bij deze lage temperatuur reactie van NO tot N0_2 op, dat met het aanwezige water 20% sulfozuur vormt.

Voor de berekening der vrijkomende hoeveelheden zuur konden we waarnemen dat eerst de gassen tot 25°C worden gekoeld en daarna bij 25°C de reactie plaats vindt. Uit tabel II vinden we dat voor de verbrande gassen geldt: E in [Cp dT = 2,573.500 kcal/m. Dit is dus de waarde die bij de dosering vrij komt.

We konden nu eerst de gassenstelling en vloeistof samenstelling berekenen van de stoffen die de zuurkoker verlaten, de stinkt dus daar 2,9 atm. In de zuurkoker komt het volgende gassenstel:

288,4 kmol NO, 1960,3 kmol N_2, 157,8 kmol O_2, 467,4 kmol H_2O, 23,3 kmol A, totaal 2897,2 kmol. Voor het berekenen van het evenwicht bij het verbranden der koolstof hebben we de volgende gegevens nodig:

\[P_{NO} = 20,6 mm\rtm; H_2 = 0,027 atm \]

20% sulfozuur bij 25°C (tegen K = \[P_{NO} = 5,63 \times 10^{-5} \] (rapport 1) bij 25°C, 20% sulfozuur. \[K_{NO} = 4,80 \] bij 25°C (tegen 1) de vormingsreactie van 20% sulfozuur is precies

\[N0 + \frac{3}{4} O_2 + 14 \frac{1}{2} H_2O \rightarrow HN0_3 + 14 H_2O \]

De condensatie blijft er echter over, zoals wij laten zien. De condensatie blijft er echter over, zoals wij laten zien.

Volgens de vormingsreactie van 20% sulfozuur is er een verbruik van 446,4 kmol H_2O = 30,4 kmol NO = 22,8 kmol O_2. Er is dan over 258,0 kmol N_2, 1960,3 kmol N_2, 135,0 kmol O_2, 27,0 kmol H_2O en 23,3 kmol A, residu 2403,6 kmol.

Naarmate P_{NO} rijst: \[\frac{P_{NO}}{2403,6} \times 2,9 = 0,027 \]. Er vindt meer condensatie plaats. Er blijft over in NO: \[\frac{0,027 \times 2,9 = 2,2, 4 kmol H_2O} {0,027} \]. Deze condensatie is 4,6 kmol H_2O, en de verandering van 0,3 kmol NO én 0,2 kmol O_2.
Er is dan over 257,7 kmol/l NO, 1960,3 kmol/l N₂, 134,8 kmol/l O₂, 22,4 kmol H₂O en 23,3 kmol A, samen 2398,5 kmol/l.

Men is \(P_{NO} = \frac{257,7 \times 2,9 \cdot 0,312 \ atm}{2398,5} \) mbar

\[P_{NO} = 0,303 \text{ (m bar)} \]

\(P_{N_2O_4} = 7,00 \rightarrow P_{N_2O_4} = 7,00 \cdot (0,0001)^2 = 0,000001 \text{ atm}, \) \(P_{NO} \) in mbar

\(P_{N_2O_4} \)

De waarde van \(P_{N_2O_4} \) en \(P_{NO} \), dus we kunnen beperkt een kleine mooiheid. Na reuk van NO afgehalen bij een test en een berekening, omdat dit relatief veel minuten de werkzaamheid. Door de \(N_2O_4 \) vorming in berekening nemen was \(P_{NO} = 0,312 \ atm \), en werd 0,303 atm. En werd dus aan \(N_2O_4 \) gevormd: 257,7 \(\times \) 0,312 - 0,303 = 7,4 kmol/l NO₂.

De \(N_2O_4 \) mooiheid, gevormd in, in de vorm van 7,4 \(\times \) 0,00001 = 0,5 kmol/l NO₂. Dit geeft dus ten koste van het NO₂, en verbruikt dus aan \(N_2O_4 \): 7,4 + 2 \cdot 0,5 = 8,4 kg. Dit wordt met 4,2 kmol/l O₂ in NO₂ en NO₄ verbruikt.

Er is nu aanwezig: 249,3 kmol/l NO₂, 1960,3 kmol/l N₂, 130,6 kmol/l O₂, 22,4 kmol/l H₂O, 23,3 kmol/l A, 7,4 kmol/l NO₂, 0,5 kmol/l N₂O₄, samen 2393,8 atm. Men is met \(P_{NO} = \frac{257,7 \times 2,9 \cdot 0,312}{2393,8} \text{ atm} \)

dus \(P_{H₂O} = \text{ in evenwicht in het mengsel} \).

We nemen nu de waarde van de verschillende stoffen in kmol/lgiven:

\(\begin{align*}
\text{NO} & : 1460,3 \text{ kmol/l} \\
\text{O₂} & : 23,3 \text{ kmol/l} \\
\text{H₂O} & : 288,4 \text{ kmol/l} \\
\text{N₂O₄} & : 47,4 \text{ kmol/l} \\
\text{NO₂} & : 30,7 \text{ kmol/l} \\
\text{N₂O} & : 445,0 \text{ kmol/l}
\end{align*} \)

We nemen nu de reekselnmade bij 25°C berekend naast H₂O word

\((x \times 38,26 @ 25°C) \).

\(445,0 \text{ kmol/l H₂O} \) en er niet het gemengsel verdunnen, 15,3 kmol/l dient voor de zuur vorming, 429,7 kmol/l zuurzuur.

De "reactie", wier de zuurzuur ontstaat, is (in kmol/l)

\(39,1 \text{ NO} + 27,2 \text{ O₂} + 1445,0 \text{ H₂O} \rightarrow 7,4 \text{ N₂O} + 0,5 \text{ N₂O₄} + 30,7 \text{ HNO₃} + 449,7 \text{ H₂O} \)

We nemen nu de reekselnmade bij 25°C berekend naast H₂O word

(uit dit 30,26.1)
Temperature het melk verloopt. Enz. eid nietdooi de Hz-kamp wordt ook de partijelspanning van stikstofnoordide en van zuurstof groter, waarin de reactie ook net verloopt, immers \(\frac{dN_2}{dt} = k \cdot N_2 \cdot P_2 \). Opvoorn de gebruikelijke snelheid loswater zorgt er bij het vaarst noch met verwante onge. 0,47 m³/pe. Het water stratste door 2800 kubiepassen van 25 mm diameter, het gas inke one bendoeld heem. De lengte der zuurstofbundel is 6 meter, de diameter die muntel 2 meter. Het afgescheuden zuur wordt naar een absorptie toren geleid, de gassen naar de oxidatie toren.

Oxidatie van NO tot NO₂

De reactie lucht komt, met de temperatuur van 25°C van de producietijd mager stof worden. De gassen tonen een die zuurstof. We zullen eerst het gesamenheid dat de oxidatie toren in een bepaalde: (alleen in kmol/m³)

\[
\begin{align*}
N_2 & + O_2 & = & NO & NO_2 & N_2O & H_2O & \text{%}
\end{align*}
\]

Sersou sale lucht: 489 5,8 131,2 2,7 629,7

Gassen uit zuurstof: 196,0 23,5 130,6 249,3 7,4 0,5 23,4 2393,8

2449,3 29,1 261,8 249,3 7,4 0,5 26,1 3022,5

De oxidatie in de toren wordt zo gedaan, dat bij het rontdooi de gassen de oxidatie grond 90 % is, en de temperatuur 25°C. In de oxidatie torens Condensation 53 % salpeterzuur. We hebben bij de berekening aangenomen dat de bruislucht gevonden salpeterzuur bepaalde worden door de bruislucht water. In lit. 12 is aangegeven dat bij 25°C loren 53 % bij eenwicht \(P_{NO} = 9,7 \text{ mm Hg} \) als er meer water in dampvorm aanwezig is, dan zonders werd dit. Het condensaat wordt als 53 % ruis afgezanden. Daarom in de bruislucht 53 % ruis, welke worden gevonden, bepaald door de bruislucht Hz, wilde condensat.

Ook met bij eenwichtsinstelling bij 25°C \(P_{NO} = 7,5 \text{ mm Hg} \).

De berekening der mengstelling van de gassen, die de oxidatie toren verlaat was moge lang en werd niet gedaan volgens het stairand eerst principe. Daarom zal ik de berekening deze niet geven (bij verkiezing mogelijk als de berekening der mengwerkeninges bij de zuurstof), door een aantal
dat de resultaten bekoop: \[\begin{align*} \text{A} & \quad \text{O}_2 \quad \text{NO} \quad \text{HNO}_3 \quad \text{N}_2 \text{O}_4 \\
\text{Gewichtsmeting van broens} & \quad 2499.3 \quad 29.1 \quad 2618 \quad 249.3 \quad 261.7 \quad 7.4 \quad 0.5 \\
\text{Gewichtsmeting na broens} & \quad 2499.3 \quad 29.1 \quad 1489 \quad 254 \quad 149 \quad 93.0 \quad 67.0 \\
\text{Verloop der reactie} & \quad -112.9 \quad -223.9 \quad -132 + 85.6 + 67.3 \\
\text{Chem.} & \quad 3.7 \text{HNO}_3, 11.4 \text{HCl} \\
\end{align*} \]
De gasmen de broens zijn in totaal 282.6 kg/km³.

Voor vermindert bij 25°C gedeelt \[\frac{P_{\text{NO}}}{P_{\text{N}_2 \text{O}_4}} = 7.0 \]

Voor de gasmen geldt \[\frac{P_{\text{NO}}}{P_{\text{N}_2 \text{O}_4}} = \frac{67.0}{261.7 \times 2.8} = 7.9 \quad \text{dit blijkt dus.} \]

Noots in P\text{NO} bij 25°C lopen 53% \text{HNO}_3 = 9.7 \text{mm Hg}.
\[P_{\text{NO}} = 2.8 \times 760 \times 12.7 \times 2.83 = 12.7 \text{mm Hg} \]
Dit betekent als dat

De gemiddelde reactie grens met 90% zijn:
\[\begin{align*} \text{bereken} & = \frac{92.0 + 2 \times 67.0}{2 \times 67.0} = 90.0 \text{%),} \\
\end{align*} \]
De concentratie van het afgevoerde kunstzal carbonate 53% zijn:
\[\begin{align*} \text{bereken} & = \frac{3.7 \times 60 + 11.4 \times 11}{3.7 \times 60} = 52.2 \text{%),} \\
\end{align*} \]
Dit ligt ook als men van de menging van \[3.7 \text{HNO}_3 \] en \[11.4 \text{HCl} \] van het percentage in mengelings

De reactie in de reactie broens is: (± \text{HCl})
\[\begin{align*} & \text{HCl} \\
& 11.2 \; 0.2 + 22.3 \; 9.1 \; \text{NO} + 13.5 \; \text{HNO}_3 \rightarrow 0.5 \; 6 \; \text{N}_2 \text{O}_4 + 67.3 \; \text{N}_2 + 3.7 \text{HNO}_3 + \text{HCl} \\
\text{Eh:} & \text{HCl} + 11.2 \; 0.2 + 22.3 \; 9.1 + 13.5 \; 5.7.80 + 0.5 \; 6 \; 6.691 + 67.3 \; 2 + 3.7 \; 4.7.13 - 3.7 \; 4.7.13 - 14.615 \text{)} \\
& = -4.183 \text{,000 kcal/km} \\
\]
Er komt dus \[4.183.000 \text{ kcal/km} \] van gec

Het gas komt de reactie broens in een koelte van 25°C, de stas reactie
\[\text{lucht heeft echter een temp. van 29°C, dus kan worden opgevoer:} \\
6.29.7 \text{kmol/} \text{kL reactie lucht,} \quad C_p = 6.29.7, \text{ bij 10} \\
\text{temp. stijging neemt de reactie 437 kcal/km} \text{ op.} \]
De in dit \[\text{graad opgeronde} \text{ warmte bij de temp. van de gasmen.} \]
\[\text{P}_{\text{NO}} \] ligge ingang ster broens \[2499.3 \times 2.5 \times 0.2349 \text{,atm.} \]
\[\begin{align*} P_{\text{NO, in}} & = \frac{261.7}{3023.5} \times 2.85 = 0.2465 \\
P_{\text{NO, in}} & = \frac{254}{2826.4} \times 2.85 = 0.256 \\
\text{Aan (set 1)} & \quad a = 0.2465 \quad a - b = 0.1290 \\
& \quad b = 0.1175 \quad a - x = 0.1419 \\
& \quad x = 0.1047 \quad b - x = 0.0138 \]
\[k_c = \frac{1}{2(a_c-x)^2} \left[\frac{(a_c-x)}{b(c-x)} - \log \frac{(a_c-x)}{b(c-x)} + 2,3 \log \frac{(a_c-x)}{b(c-x)} \right] = 219,9 \]

\[k_{25\circ c} = 47,5 \text{ dus } t = 4,62 \text{ seconden.} \]

Bij een ideale mengsel durft de reactie veel langer. De merkwaardige reactie tijd varieert tussen de reactie tijd bij piston flow en de reactie tijd van een ideale mengsel in liggen. We zullen het gemiddelde er voor nemen. Met behulp van dit 30 bepalen we de reactie tijd bij een ideale mengsel. Met een grafiek van dit 30 bepalen we de druk welke met piston flow is bereikt van zijn als de merkwaardige druk, dus bij de ideale mengsel het "maksimaal" systeem, een bepaalde grootte heeft (P0). Deze bepaalde grootte moet bij bereikt (20% merkwaardig). In het piston flow systeem van de reactie als verder gevorderd zijn. We vinden de P0 van het piston flow systeem en kunnen dan de reactie tijd met een constante formule bepalen.

\[P_{0.01} = 0,2349, \quad P_{0.05} = 0,256 \text{ atm.} \]

Stel \(P_{0.01}\) bij piston flow \(P_x \).

De grofheid is \(1 - P_x \) als grofheid van \(P_{0.01} - P_x \)

Stel \(P_x = 2 \).

En in \(P = 1 - P_x = 1 - \frac{P_x}{P_{0.01}} \cdot \frac{P_{0.01}}{P_{0.01}} = 1 - \frac{P_{0.01}}{P_x} \cdot \frac{P_{0.01}}{P_{0.01}} = 1 - \frac{P_{0.01}}{P_x} = 0,2349 - \frac{0,2349 - 0,256}{0,256} = 0,184 \).

<table>
<thead>
<tr>
<th>Tabel IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0,9</td>
</tr>
<tr>
<td>0,8</td>
</tr>
<tr>
<td>0,6</td>
</tr>
<tr>
<td>0,3</td>
</tr>
</tbody>
</table>

We mogen \(P_x \) berekend in \(P_x \) gevonden in de reaktilis langs \(P_x \) nietzitten. Beide \(P_x \) lijnen snijden elkaar in een punt waarbij dus de grootte \(P_x \) geformuleerd in deze de grootte \(P_x \) wordt in af te lezen: \(Z = 0,267 = \frac{P_x}{P_{0.01}} \).

Op het moment dat \(P_{0.01} \) een grootte wordt heeft bereikt, 0,0079, in \(P_x \) al weer veel kleiner. Mellen we deze met van \(P_x \) in
De geïntegreerde Boltzmann-achting in gluur vinden we kwam de tijd dc'm in de ideale menger nodig was om
Pruit te berekenen.

![Graph 4](image)

\[P_{x} = 0, 267 \times 0, 0256 = 0, 00709 \text{ atm} \]
\[P_{0_{m}} = 0, 2349 = 26 P_{0_{m}} = 0, 2465 \]
\[-a \cdot \log P_{x} = 0, 2349 - 0, 00709 = 0, 2278 = 2 \times x = 0, 1139 \]
\[a = 0, 2465 \quad a - e = 0, 1290 \]
\[b = 0, 1175 \quad a - x = 0, 1326 \]
\[x = 0, 1139 \quad b - x = 0, 0036 \]
\[k \cdot t = \frac{1}{2} \frac{1}{(a - b)^2} \left[\frac{(a - b) x}{b} + 2, 3 \log \left(\frac{b - x}{a - x} \right) \right] = 9, 54 \]
\[k_{25^\circ C} = 4, 75 \]

In deze tijd is de jet sneller stroming \(P_{0_{m}} \) tot \(P_{x} \) ge-
denkend, in deze zelfde tijd is in het ideale menger
systeme dus \(P_{0_{m}} = 0, 0256 \) atm bereikt.

In het zuurstof plas systeme is \(P_{m} = 0, 0256 \) atm in
4, 63 sec bereikt, bij het ideale menger systeme duurt
acht 20, 1 sec. De systemen in de praktijk hebben een
kunstig bijgevoegd sterminings buil. We zullen hiermee
soenen dat in ons system Pruit bereikt is in
\[\frac{1}{2} (4, 6 + 20, 1) = 12, 4 \text{ sec} ; \]
\[k \cdot t = 589, 0 \quad (k_{350^\circ C} = 4, 75) \]

Het product \(k \cdot t \) is netzoid in temperatuur afhankelijk
Als de temperatuur in de panel bereken-
zaakt van moeten blijven dan kunnen we 37, 400 kooltrijen.
nogig hebben en een enorme bruisheid ontstaan: 837%.
Weer de cijfers bevat het mengsel 3020,5 kpwd/gp,
erz 1216,4 kpwd/gp, dus gemiddeld 2023,5 + 1216,4 = 2925,0 kpwd/gp. De druk is voor de m. tons 2,9 atm,
man 2,8 atm, dus gemiddeld 2,85 atm. We kennen
de temperatuur tijdens die reactie reactie niet te
kunnen bepalen, omdat de reactie anders
weg langs een snelle reactie (zie grafiek 2). We
kennen daarom een middelweg kiezen door de
gas-temperatuur maken in de tons 100°C te laten zijn.
Hiervoor hebben we veel minder kokewater en koolbuisen
moeten. Bij 25°C is het gemiddeld gas volume
2 925,0 x 298 x 273 = 25080 m³/®. t = 12,4 sec. bij 25°C
De gasstroom is 25080 m³/® = 6,9 m³/sec. Met een
verblufting van 12,4 sec. wordt het volume der beide
tons 83,9 m³. Beide tons zijn 12 meter hoog.
De oppervlakte der dorrede is m 83,9 = 3,50 m²
Bij 100°C is het gasvolume 8,74 m³/sec. k. t = 589,0.
K 40°C = 19,1 = t = 30,8 sec. Het volume der tons
is 8,74 x 30,8 = 269,2 m³. De oppervlakte van een
dorde is 11,22 m². Bij 100°C van de tons een
dorrende oppervlakte hebben van 11,22 m², bij 25°C en
3,50 m² worden. Onderin, in de temp. 25°C, torenen
100°C. We kennen het oppervlak van het beste
middelen tot 7,36 m². Als koolend "oppervlak" worden
deg 0,50 torrissen, fijner met 0,50, gebruikt. Hete kokewater heeft
deg 0,50 torrissen; deg 0,50 torrissen van 12 mm hebben een door-
miide oppervlakte van 1,13 cm² x 4960 = 5620 cm²
0,56 m². Het totaal oppervlak van een dorrede dorreder
is dus 0,56 m² + 7,36 = 7,92 m². De diameters van
een ton, in dem 3,18 meter. Bij een kap. 15 + 25°C wordt dan 209
7,92 m² gebruikt.

Absorptie der nitrater gasen in water.

We kunnen ondertussen met de stellingen om het afgas bestrijken.
De nitrater gasen (gezien de verbranding) bleven

<table>
<thead>
<tr>
<th>NO</th>
<th>N₂</th>
<th>A</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,6%</td>
<td>19,6%</td>
<td>3,1%</td>
<td>15,7%</td>
</tr>
<tr>
<td>489,0</td>
<td>29,3</td>
<td>18</td>
<td>15,7</td>
</tr>
</tbody>
</table>
Als beide gassen gemengd worden, dan verschijnen
24,9,3 + 29,1 = 249,4 kmol% inzett (N + A) samengesteld.
Bij het verlies der laatste stroom (2% HNO₃) bij 25 °C, is in dit gas de zuivere ammoniakspanning van H₂O (25 °C) 2,1% in
berekent, 23,0 mm Hg = 0,0303 atm. De totale druk is 2,7 atm.
Er is dus 0,0303 x 100 = 1,12 vol % H₂O samengesteld.
Het NO gehalte der afgesapte gas wordt gemiddeld 0,25 %.
Nu is NO + 3/4 O₂ + 1/4 H₂O = HNO₃. Als men een NO equivalente
zuivere O₂ aanwezig voert, dan was dus bij de gehalte
van 0,25 % NO, het gehalte van O₂ 0,19 % geweest.
Nu in H₂O + NO + O₂ gehalte samen 1,12 + 0,25 + 0,19 = 1,56 vol %.
De rest is dus 98,44 vol %, Er was in totaal 289,0 kmol% O₂,
met NO equivalent in m 3/4 x 289,4 = 216,3 kmol% O₂. "Over" is dus
289,0 - 216,3 = 72,7 kmol% O₂. De stoom inzet was
249,4 kmol%, de samengestelde zuivere zuivere 0,727 kmol% O₂,
dus samen
is het 255,1 kmol%. Dit is in 98,44 vol % van het gasgemengd.
Het totale gasgemengd bevat dus 255,1 x 100 = 2592 kmol% total
98,44
aan gas. 1,12 vol % H₂O is in m 1,12 x 2592 = 29,0 kmol% H₂O.
De rest is in totale 6,5 kmol% NO een 4,8 kmol% O₂. De totale zuivere
O₂ in het afgesapte is O₂ + O₂ = 4,8 + 72,7 = 77,5 kmol%.
De samenvatting van het afgesapte is in m
291,0 kmol% H₂O 6,5 kmol% NO 77,5 kmol% O₂
244,9,3 kmol% N₂ en 29,1 kmol% A.

Algemeen der gegevens
In de gassen wurde aanwezig 289,4 kmol% NO, in het afgesapte
is dit 6,5 kmol%. Er is dus in HNO₃ mengsel 289,4 - 6,5 = 282,7
kmol%. De HNO₃ producten de product in de 281,9 kmol% HNO₃
De overige zuivere in de: 281,9 x 100 = 95%.
H₂O inhoud der afgesapte 281,9 kmol% HNO₃, hetzij chemisch gegeven
141,0 kmol% H₂O. 281,9 kmol% HNO₃ = 177,40 kg% HNO₃, 53 % van bevat
100.0 x 17740 = 335000 kg% N₂ in totaal. De rest 33500 - 17740 = 8750,8
/kg% N₂ behoort water voor verbranding. De totale water zuivere
van het zuivere in m 141,0 + 8750,8 = 10168,8 kmol%.
De verbrandingsox, met de zuivere, bevatten 467,4 kmol% totale NO,
de symmetrische boven 71,5 kmol% H₂O, dus men de afgesapte
wond met beide zuivere 467,4 + 71,5 = 474,9 kmol% H₂O.
Met het afgesapte wordt 29,1 kmol% H₂O verwijderd, met het zuivere
101,8 kmol/4, dus totaal 1045,7 kmol/4. Aan het systeem wordt toegewezen:
474,9 kmol/4 met de verbindingen zwavel en de secundaire lucht.
Het restant, 1045,7 - 474,9 = 570,8 kmol/4 wordt als water aan
het alternatie systeem toegewezen.

Secundaire lucht door het ontgasingsbrouwtje:
Bij 24 °C = P200, een 5% oplossing van 9,1 mm Hg.
De lucht komt in het ontgasingsbrouwtje op een snel van 22 °C.
In kruisvent.somt het zwaar in 25 °C. De zware stoomen en de
Lucht, de lucht bij het ontgasen van het toestel 24 °C in.

P200 in de secundaire lucht, wilde van de lucht-onderdrukking in
is 19,8 mm Hg. De restant van 9,1 mm Hg. De lucht bevatte 7,5
kmol/4 H2O. Na het ontgasen in 9,1 mm H2O, 3,7 kmol/4 H2O.
Bij de condensatie blijkt de temperatuur van het water 0,2 °C
hoe te nemen, omdat de drijf man niet zal denken, omdat het
de normer loos. De condensaat 7,5 - 3,7 = 3,8 kmol/4 H2O.
Het zwaar heeft het ontgasingsbouwtje in plaats van 875,8 kmol
H2O als verbindingen in de secundaire lucht 875,8 - 3,8 = 872,0 kmol/4 H2O
15 700 kg H2O dus 15,700 kg H2O = 17 720 kg H2O. Dit
bevat ook 5,7% water bezig (kern 0,1% man - en - wissel).

De secundaire lucht, welke de ontgasingsreiziger bevat,
3,7 kmol/4 H2O, 137,2 kmol/4 O2, 5,8 kmol/4 A, 489,0 kmol/4 N2
dus samen 629,7 kmol/4.

Voor de berekening van het alternatie systeem zullen we
een vereenvoudigd schema voor de berekening invullen (volgende
pagina). In de torens heb ik de stoom van het zwaar in % aangeduid.
De gasstroom blijkt niet, de vrucht stromen met gedeelt stroomen.
Men heeft de concentraties deze in de torens verwijderde
zuren global meegeld, zodat het alternatie systeem niet vol-
wassen exact bereken kan worden. De berekening in echte vrijheid.
De luchtstemperatuur vertoont de temperatuur van het water in 25 °C.
In het alternatie systeem komt de temperatuur in het mengsel de 35 °C
niet. Omdat de toestanden net in het mengsel vrij klein zijn,
zo kunnen maar een lineaire verloop aangenomen:
18,9 kmol/4 na de middelin tom, 14,9 kmol/4 water A, 16,9 na A2, 18,9 na A3.
20,9 na A4, 23,0 na A5, 25,0 na A6, 27,0 na A7 en 29,0 kmol/4 water na A8,
in het afgas. In de torens verdampen dus 2,0 kmol/4 H2O, dus tot A5 24,9 kmol/4.
Er wordt 570,8 kmol HNO₃ per ton A₂ toegevoegd, en verdampen 2,0 kmol H₂O, over 568,8 kmol H₂O. Dit wordt 2% aan het in glomerings. Is dit volgens de vermenigvuldiging der zuren?

2% zuren: 1 kmol HNO₃ = 63 kg HNO₃ = 2% Zo. 100% zó = 3150 kg.
Er is dan 3150-63 = 3087 kg H₂O in glomerings. De rest is in 1 kmol HNO₃, 0,5 kmol H₂O in glomerings, samen zó = 3087 kg H₂O = 1716 kmol H₂O in totaal 1721 kmol H₂O, dus in glomerings bekomen worden.

We kunnen de berekeningen van de zuren in tabelvorm weergeven:

<table>
<thead>
<tr>
<th>%</th>
<th>HNO₃</th>
<th>H₂O in glomerings</th>
<th>H₂O in glomerings gekend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3150 kg HNO₃</td>
<td>3087 kg H₂O</td>
<td>1721 kg H₂O</td>
</tr>
<tr>
<td>4</td>
<td>1575 kg HNO₃</td>
<td>1512 kg H₂O</td>
<td>64,51 kg H₂O</td>
</tr>
<tr>
<td>6</td>
<td>945 kg HNO₃</td>
<td>912 kg H₂O</td>
<td>32,02 kg H₂O</td>
</tr>
<tr>
<td>8</td>
<td>420,2 kg HNO₃</td>
<td>400 kg H₂O</td>
<td>20,34 kg H₂O</td>
</tr>
<tr>
<td>10</td>
<td>315,0 kg HNO₃</td>
<td>252,0 kg H₂O</td>
<td>14,50 kg H₂O</td>
</tr>
<tr>
<td>15</td>
<td>210,1 kg HNO₃</td>
<td>147,1 kg H₂O</td>
<td>9,72 kg H₂O</td>
</tr>
<tr>
<td>20</td>
<td>157,5 kg HNO₃</td>
<td>94,5 kg H₂O</td>
<td>5,75 kg H₂O</td>
</tr>
<tr>
<td>50</td>
<td>110,0 kg HNO₃</td>
<td>55,0 kg H₂O</td>
<td>3,597 kg H₂O</td>
</tr>
</tbody>
</table>

Uit tabel A0 vormt dus 568,8 (normaal in deel tot HNO₃ gekend) kg H₂O. Elders in 2%, dus 172,1 vrij en geladen water bevat 1 kmol HNO₃. 568,8 kmol vrij en geladen water bevat

568,8 = 3,3 kmol HNO₃. Dit bevat 1,7 kmol geladen water. Er is 1721

568,8 - 1,7 = 567,1 kmol HNO₃ water in het aan sluit de

Alum in de verkeerd als verdieningswater.

Uit tabel A1 vormt dus 568,8 = 8,0 = 566,8 kmol HNO₃ gekend in verdienings

mater, 80 kg HNO₃. De bevat 566,8 = 6,7 kmol HNO₃, liggen

3,4 kmol HNO₃ water geladen deelt. Het aan sluit 566,9 - 3,4 = 563,5 kmol

verdienings water. In de aan is gevonden: 50 = 0,17 - 5,3 = 5,4 kmol HNO₃. We kunnen de verdere berekeningen in tabel vorm geven:
Tabel VI

<table>
<thead>
<tr>
<th>Toren</th>
<th>Zuur concentratie</th>
<th>In HCl</th>
<th>Onder el Mat</th>
<th>Onder Mat</th>
<th>pH</th>
<th>pH met HNO₃</th>
<th>pH met HCl</th>
<th>pH met HNO₃</th>
<th>pH met HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₈</td>
<td>2.70</td>
<td>570.4%</td>
<td>2.0</td>
<td>585.8%</td>
<td>3.3</td>
<td>1.4</td>
<td>3.3</td>
<td>1.5</td>
<td>3.3</td>
</tr>
<tr>
<td>A₉</td>
<td>4</td>
<td>566.8%</td>
<td>2.0</td>
<td>566.8</td>
<td>6.7</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>566.4</td>
</tr>
<tr>
<td>A₆</td>
<td>15</td>
<td>566.8%</td>
<td>2.0</td>
<td>564.6</td>
<td>17.6</td>
<td>10.9</td>
<td>8.8</td>
<td>566.0</td>
<td></td>
</tr>
<tr>
<td>A₅</td>
<td>15</td>
<td>564.8%</td>
<td>2.1</td>
<td>562.7</td>
<td>27.7</td>
<td>10.1</td>
<td>13.9</td>
<td>548.0</td>
<td></td>
</tr>
<tr>
<td>A₄</td>
<td>20</td>
<td>562.7%</td>
<td>2.0</td>
<td>560.7</td>
<td>30.8</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strom 56: 419,1+15,5 = 445,0 30,7
Strom 71: 11,4+1,9 = 13,3 3,7

Strom 56 ingevuld: 419,1+15,5 = 445,0 30,7
Strom 71 ingevuld: 11,4+1,9 = 13,3 3,7

De gasstroom zijn (in kmol/h)

| Smaar 17 | 2449,3 | 29,1 | 149,9 | 25,4 | 93,0 | 6,7 | 12,9 |
| Smaar 25 | 2449,3 | 29,1 | 77,5 | 6,5 | 29,0 | | |

Verschil: -71.4 -89.9 -93.0 -67.8 +16.1

De zuurstof stroom zijn in kmol/h

Smaar 61	11,4	3,7	
Smaar 28	570,6		
Smaar 64	290,7	3,0,7	
Smaar 58	872,0	28,9	
Smaar 58	64-61	430,9	247,5

De totale zuurstof in de stromen is berekend door vermenigvuldiging van de verschil

In de gasstroom, stroom 28 is het verschil in de stromen 58 - 64 - 61

De berekening als (in kmol/h)

\[\text{HNO}_3 = 10^3 (\text{pH} - 18,9 \times 2,560 - 93,9 \times 0,91 - 67,8 \times 2,51 + 139,9 \times 6,52 - 16,1 \times 9,80 - 24,5 \times 0,9) \]

\[= 4420.000 \text{ kmol/h} \]

De totale zuurstof menen in de toonenvinding,

Moet evenredig met de zuurstof zuur, welke in een strom wordt genomen.

De totale zuurstof menen in 4420.000 kmol/h

De in een stroom gevonden zuurstof HNO₃ in dit Tabel VI is deze.
De warme loodstroom, welke in trum A wordt gevonden in 59,0.10³ kg/km²/s en 2465.10³ K/km²/s. Af in tabel

<table>
<thead>
<tr>
<th>Trum</th>
<th>Warme loodstroom</th>
<th>Aanwezigheid</th>
<th>Warme loodstroom</th>
<th>Aanwezigheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>3,3</td>
<td>59,0.10³</td>
<td>2465.10³</td>
<td>1853</td>
</tr>
<tr>
<td>A_1</td>
<td>4,4</td>
<td>60,7</td>
<td>2538</td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>4,9</td>
<td>195,0</td>
<td>815,6</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>10,1</td>
<td>180,9</td>
<td>75,6</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td>11,1</td>
<td>198,4</td>
<td>830,0</td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td>46,4</td>
<td>828</td>
<td>3460</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td>58,5</td>
<td>104,5</td>
<td>4370</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td>103,8</td>
<td>1853</td>
<td>9750</td>
<td>4,42.10³</td>
</tr>
</tbody>
</table>

De zuurrecirkulatie der absoptive stromen zijn afhankelijk van de in de trum opgetredende warme loodstroom, die worden opgemaakt tussen 177 en 266 m³/h. We zullen de loodstroom te veronderstellen naar lineair afhankelijk van de in een trum ontstekende wachte te stellen. De fysische eigenschappen van melkpetersun zijn reeds genoemd in B

vergegeven (p, A, c, etc.)

Er is in trum A_0 de zuurrecirkulatie 177 m³/h. 2 poj melkpetersun, 175, 20% melkpetersun = 1,01 kg/km²/s, de massa stroom is 1,01 x 10³ x
177 kg/km²/s = 178,8 kg/km²/s, de in de trum ontstekte loodstroom wordt in 2465.10³ K/km², de soortelijke wachte van 2 poj melkpetersun bij 25°C is 4,07 K/kg²°C, zodat deze massa stroom 178,8 kg/km²/s = 0,4°C wordt verwarmd. De temperatuur van het melkpetersun wordt dan van 250°C 25,4°C. In trum A_1 wordt 9 m³/h 20 poj melkpetersun bij de bodem der kolom toegevoegd. Dit wordt met het recirkulatie zure, door de circulatie centrifugaal pompen door de koelers (van die trum) gevoerd. De wachte in de circulatie zure in de temperatuur stroom van stille in de trum wordt in tabel VIII vergegeven.
Tabel VIII

<table>
<thead>
<tr>
<th>Arum</th>
<th>m% circulatie zuin</th>
<th>% zuin</th>
<th>m% zuin</th>
<th>Ondertekende verh.</th>
<th>ΔT, °C</th>
<th>$\frac{Tm}{°C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 8</td>
<td>177</td>
<td>2</td>
<td>178,800</td>
<td>2,46,5</td>
<td>4,07</td>
<td>0,4</td>
</tr>
<tr>
<td>A 7</td>
<td>177</td>
<td>4</td>
<td>180,600</td>
<td>2,53,8</td>
<td>3,97</td>
<td>0,4</td>
</tr>
<tr>
<td>A 6</td>
<td>184</td>
<td>6</td>
<td>193,200</td>
<td>3,15,6</td>
<td>3,72</td>
<td>1,2</td>
</tr>
<tr>
<td>A 5</td>
<td>183</td>
<td>15</td>
<td>197,000</td>
<td>3,55,6</td>
<td>3,55</td>
<td>1,1</td>
</tr>
<tr>
<td>A 4</td>
<td>184</td>
<td>2</td>
<td>204,400</td>
<td>3,80,0</td>
<td>3,83</td>
<td>1,1</td>
</tr>
<tr>
<td>Beigegepast A 4</td>
<td>193</td>
<td>20</td>
<td>214,100</td>
<td></td>
<td>1,61</td>
<td>1,1</td>
</tr>
<tr>
<td>A 2</td>
<td>215</td>
<td>30</td>
<td>254,000</td>
<td>3,460,0</td>
<td>3,08</td>
<td>0,4</td>
</tr>
<tr>
<td>A 1</td>
<td>226</td>
<td>40</td>
<td>280,100</td>
<td>4,270,0</td>
<td>2,80</td>
<td>0,5</td>
</tr>
<tr>
<td>A 1</td>
<td>266</td>
<td>55</td>
<td>351,500</td>
<td>7,750,0</td>
<td>2,71</td>
<td>0,1</td>
</tr>
</tbody>
</table>

De koelers voor het circulatie zuin bestaan uit kolplaten (fig. 3), welke verticaal staan gemonteerd. Boven elke kolplaat is een reserveraad gemonteerd, welke voor een regelmatige stroom koelmiddel langs de binnenzijde der kolplaten zorgt. De hoogte der kolplaten is 1 meter. Samengevat wordt van boven naar beneden de kanalen van 47 bij 2,2 mm, dan de kolplaten geplaatst. 1 plaat heeft 54 "kool-kanalen".

De stroomstreek van 1 kanaal is $47 \times 2,2 + 47 + 2,2 = 98,4$ mm.

Het doorsnede oppervlak van 1 kanaal is $47 \times 2,2 = 103,5$ mm2.

De hydraulische verlieshout is $4 \times 103,5 = 4,21 \times 10^{-3}$ m.

Het warmte uitslaande oppervlak is van 4 platen:

$4 \times 1 \text{ m (hoogte)} \times 98,4 \times 10^{-3} \text{ m (ontwerp kanaal)} \times 54 \text{ (aantal kanalen)} = 21,2$ m2.

Het doorsnede oppervlak van 1 kolplaat, van alle 54 kanalen in $54 \times 103,5 = 5,58 \times 10^{-3}$ m2.

Van de te verwachten is $\frac{v}{u} \cdot k_{\text{a}} = 0,0225 \cdot \frac{A}{D} \cdot \text{Re} \cdot \text{Pr} \cdot \text{Nu}$ (2.13).

Van de verschillende meetwerken is λ, ν, Pr en Nu bekend in $\frac{B}{a}$.

Als voldoende zullen we de meetwerken voor 2% van de berekening:

2% zuin: $A = 0,5 \times 7,5 \text{ mm}, \text{ V} = 2,26, \text{ V} = 0,916 \times 10^{-6} \text{ m}^2 \text{ sec}^{-1}$. De hydraulische diensten worden (in m) 4,21 $\times 10^{-3}$ mm.

Schat Re = 10.000 = $\frac{\nu}{\text{D}}$,

Alen in $\frac{\nu}{\text{D}} = 2,18 \times 10^{-3} \text{ m} \text{ sec} \text{ in} \frac{\nu}{\text{D}} = 0,0225 \cdot \frac{A}{D} \cdot \text{Re} \cdot \text{Pr} = 113 \text{ m}$

Het opp. der losse gehele doorsnede van de koolkanalen van 1 kolplaat, dus 54 kanalen, is $5,58 \times 10^{-3}$ m2, de zuinerhout in de kanalen $4 \times 2,18 \times 10^{-3} \text{ m}^2 \text{ sec}^{-1}$. Bij Re = 10.000

$177 \text{ m}^2 \text{ sec}^{-1}$ zuin met behulp worden. Hiervoor worden dus 54 kolplaten moeten worden ge

bouwd (177/4,58). Bij gebruik van 4 kolplaten is de stroomstreek van het zuin.
Nijverheids: Glu 1 / volume stroom in liter 1 / metaphoer x volume stroom per plaat bij 80°C
\[x_{\text{met.}} = \beta \times \frac{\text{volume stroom}}{\text{metaphoer}} \]
\[= 11390 \times \left(\frac{2.20}{2.18} \right)^{0.8} = 11480 \text{ l/sec, m^3/°C} \]
Volgens de formule
\[Q = 60.5 \text{ l/sec} = 16.7 \text{ kg cal/°C} \]
Het zuur moet getrockend worden

\[L = 3000 \times (1 + 0.0144 \times T) \sqrt{\frac{P_k}{10}} \]
De gemiddelde koelruimte
\[L_{\text{min}} = 3000 \times (1 + 0.0144 \times 0.2) \sqrt{\frac{1}{1.4}} = 1118 \sqrt{\frac{Q}{P_k}} \text{ kg/m^2} \text{ day} \]
koelwater nodig
\[= 3000 \times 10^3 \times 1.18 \times 1420 \times 10^3 \text{ kg/m}^2 \text{ day} \]
Dan in dus
\[Q = U.A \Delta T = 68500 \text{ kcal} = 1270 \text{ kcal/m}^2 \text{ sec} \times A \text{ m}^2 \times 50° \text{C} \]

De koelers van 10°C gemeten. Deze moeten via de instroom...

Tabel 15

<table>
<thead>
<tr>
<th>Tr.</th>
<th>Lijnstuk</th>
<th>(L_{\text{min}})</th>
<th>(V_{\text{min}})</th>
<th>(\lambda_{\text{min}})</th>
<th>(V_{\text{min}})</th>
<th>(\lambda_{\text{min}})</th>
<th>Net stroom zuur/tyde 10000</th>
<th>Vol stroom zuurzuur/tyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>2</td>
<td>0,597</td>
<td>2,26</td>
<td>0,918</td>
<td>11390</td>
<td>2,16</td>
<td>4,38</td>
<td>1,77</td>
</tr>
<tr>
<td>A7</td>
<td>4</td>
<td>0,591</td>
<td>2,28</td>
<td>0,914</td>
<td>11390</td>
<td>2,17</td>
<td>4,36</td>
<td>1,77</td>
</tr>
<tr>
<td>A6</td>
<td>10</td>
<td>0,571</td>
<td>2,45</td>
<td>0,908</td>
<td>11820</td>
<td>2,16</td>
<td>4,34</td>
<td>1,77</td>
</tr>
<tr>
<td>A5</td>
<td>15</td>
<td>0,545</td>
<td>2,49</td>
<td>0,950</td>
<td>11580</td>
<td>2,20</td>
<td>4,42</td>
<td>1,83</td>
</tr>
<tr>
<td>A4</td>
<td>20</td>
<td>0,533</td>
<td>2,57</td>
<td>0,942</td>
<td>11580</td>
<td>2,24</td>
<td>4,51</td>
<td>1,93</td>
</tr>
<tr>
<td>A3</td>
<td>30</td>
<td>0,502</td>
<td>2,68</td>
<td>1,026</td>
<td>11390</td>
<td>2,44</td>
<td>4,91</td>
<td>2,15</td>
</tr>
<tr>
<td>A2</td>
<td>40</td>
<td>0,470</td>
<td>2,98</td>
<td>1,152</td>
<td>11860</td>
<td>2,72</td>
<td>5,47</td>
<td>2,26</td>
</tr>
<tr>
<td>A1</td>
<td>53</td>
<td>0,431</td>
<td>3,39</td>
<td>1,316</td>
<td>12390</td>
<td>3,13</td>
<td>6,30</td>
<td>2,66</td>
</tr>
<tr>
<td>(\times 10^3)</td>
</tr>
</tbody>
</table>

Voor de pumpeer zuur circulatie werden centrale juivel per van 45 meter held. Het grootste te overdragen drukverschil is 0,5 atm. gekozen en van de waterkringstelsel koeling 0,1 sport aantal kleine spoerringen worden genomen voor een...

We dwalen na de slootkop en gaten van de een zenuw naar de Nachstoofstoring: Deze bestaan uit mengsels, hebben een heetheid HNO₃ en de onder het hoofd: "Voy H₂O" genoemde heetheid H₂O...
2,18 \times \frac{177}{4 \times 43,8} = 2,20 \text{ m/s}^2 \text{ gen.} \quad \text{Bij deze snelheid heeft ook de een andere waarde:}

\[\text{el VII} \text{ is de snelheid van vanne verdoving in de 2% eeuwen. A}_8 = 59,0 \times 10^3 \text{k/w} \]

van 25,4 tot 25°C (tabel VIII) met bolommer van 15°C. Allerijl de 2% eeuw-

system regelmatig gemeten waardoor el VII van het deel oppervlakte van de kolom
die kolom de beide laatste als. treuren in dus is groot. Als ook in het
die regeneratie periode men waart in de beide laatste treuens
gemakkelijk vergroot kan worden, zodat kruid verderende mitruese
gemakkelijk met de sture,

\[T = 25,4 \text{ tot } 25,4 \text{ °C in} \]

\[\Delta T = 50^\circ \text{C aan } 25,4 \text{ °C} \]

\[d_4 = 11 \text{ m}^2, \text{ de helft van het deel oppervlakte van } 4 \text{ kolomplaten, } 21,2 \text{ m}^2. \]

\[\text{Uit berekening voldoende gegevens. De resultaten zijn in tabel VII samengebracht.} \]

<table>
<thead>
<tr>
<th>Uitkomsten</th>
<th>(V)</th>
<th>(\dot{V})</th>
<th>(T)</th>
<th>(\Delta T)</th>
<th>(\gamma)</th>
<th>(\dot{V})</th>
<th>(\dot{V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2,20</td>
<td>1140</td>
<td>66,5</td>
<td>16,9</td>
<td>25,4</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2,20</td>
<td>1150</td>
<td>70,4</td>
<td>16,9</td>
<td>25,4</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2,29</td>
<td>1240</td>
<td>226,6</td>
<td>26,7</td>
<td>25,4</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2,28</td>
<td>1180</td>
<td>210,2</td>
<td>26,6</td>
<td>25,4</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2,40</td>
<td>1230</td>
<td>230,5</td>
<td>55,1</td>
<td>26,1</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2,67</td>
<td>12160</td>
<td>961</td>
<td>29,4</td>
<td>24,4</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2,81</td>
<td>12190</td>
<td>1214</td>
<td>29,0</td>
<td>30,6</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>1,65</td>
<td>9440</td>
<td>2155</td>
<td>515</td>
<td>33,1</td>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>

opgen geleverd van het type HDM-31-3, welke een spoelhoogte
was 23,0 m. Net het drukverschil over de spoelers in de loop
Men een goede verstoring van het zuur dan het beste een

gelijkmata re sturing van de geleverde bedien van kolommen.

Andere berekenen:

mengsel is van de in tabel VII onder het hoofd: "Dit bestaat uit HNO₃" genoemde

Dit wordt in tabel XII aangegeven.
Tabel X

| De korrels aangegeven | (volgens H2O) | (volgens HNO3) | Afval
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naam van korrel</td>
<td>Zien</td>
<td>Zien</td>
<td>Zien</td>
</tr>
<tr>
<td>Neutrale A</td>
<td>0</td>
<td>57.0</td>
<td>13.0</td>
</tr>
<tr>
<td>A8 en A7</td>
<td>2</td>
<td>567.1</td>
<td>10.390</td>
</tr>
<tr>
<td>A7 en A6</td>
<td>4</td>
<td>563.4</td>
<td>10.120</td>
</tr>
<tr>
<td>A6 en A5</td>
<td>10</td>
<td>556.0</td>
<td>10.010</td>
</tr>
<tr>
<td>A5 en A4</td>
<td>15</td>
<td>548.0</td>
<td>9.080</td>
</tr>
<tr>
<td>A4 en A3</td>
<td>20</td>
<td>971.0</td>
<td>17.480</td>
</tr>
<tr>
<td>A3 en A2</td>
<td>30</td>
<td>945.3</td>
<td>17.020</td>
</tr>
<tr>
<td>A2 en A</td>
<td>40</td>
<td>914.5</td>
<td>16.450</td>
</tr>
<tr>
<td>A1, naarmate</td>
<td>53</td>
<td>972.0</td>
<td>15.700</td>
</tr>
<tr>
<td>Bovenkomen A</td>
<td>20</td>
<td>429.7</td>
<td>7.740</td>
</tr>
</tbody>
</table>

Om de korrels tussen de kolommen te berekenen, moeten we aannemen dat de met een korrel gestromde gassen evenwicht hebben bereikt met de in de kolom circulerende sulferdioxide-concentratie, bij 45°C temperatuur in de kolommen, 25°C. Ni is bij 25°C en

\[K_2 = 7.8 = \frac{P_{N_2O_4}}{P_{NO_2}} \]

(Evenwicht 2 NO2 \rightarrow N2O4)

Voor het evenwicht 3 NO2 + H2O = 2 HNO3 + NO is bij 25°C de waarde van \(K_1 = \frac{P_{NO}}{P_{NO_2}} \)

De gassen, die in de kolom gestroomd zijn, moeten in de kolom gescheiden worden (zie pagina's 4-5), de korrels N2 en A zijn constante, zodat na iedere korrel van het gas de korrelheid H2O + N2 + A gemiddeld druk met de korrels in de kolom gestroomd zijn. De korrelheid in elke korrel wordt in de kolom geregereerd in de korrels in tabel X.

De korrelheid H2O in het gas is in de kolom gestroomd en de korrelheid (inhalte paginas 4-5), de korrelheden N2 en A zijn constant, zodat na elke korrel van het gas de korrelheid H2O + N2 + A gemiddeld druk met de korrels in de kolom gestroomd is. De korrelheid in elke korrel geregereerd in de korrels in tabel X gegeven in elke korrel van de korrels in elke korrel van het gas. Bij het verlopen van de korrels in de korrels in tabel X.
Naa de met kolom A's bedoelde garen gelokaliseerden:

<table>
<thead>
<tr>
<th>(in cm³etry)</th>
<th>Partiell op. in atm.</th>
<th>K hiermit berechnet</th>
<th>K mit lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂ + A + H₂O</td>
<td>2493,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>52,5</td>
<td>P₉₂ = 52,5 x 2,7285</td>
<td>52,5</td>
</tr>
<tr>
<td>N₂O₂</td>
<td>53,7</td>
<td>P₉₂ = 53,7 x 2,7285</td>
<td>53,7</td>
</tr>
<tr>
<td>N₂O₄</td>
<td>22,0</td>
<td>P₉₂ = 22,0 x 2,7285</td>
<td>22,0</td>
</tr>
<tr>
<td>O₂</td>
<td>136,5</td>
<td></td>
<td>136,5</td>
</tr>
<tr>
<td>Totaal</td>
<td>2758,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De K-waarden blijven bij de getelde rekenmethoden goed te kloppen.

De berekeningsresultaten voor de andere gastromen worden hieronder in tabel XII vermeld, waarbij tegen de gastantwoorden van N₂, N₂O₂ en N₂O₄ de waarde berekende K-waarden in de Tabel XIII werden opgenomen.

<table>
<thead>
<tr>
<th>Tabel XII</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gaststromen tussen de hieronder genoemde kolommen</th>
<th>N₂A₁H₂O</th>
<th>NO in</th>
<th>N₂O in</th>
<th>O₂ in</th>
<th>Totaal in</th>
<th>PNO in atm</th>
<th>PNO₂ in atm</th>
<th>PKRON in atm</th>
<th>Proportionale K₁-K₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁ → A₂</td>
<td>2493,3</td>
<td>52,5</td>
<td>53,7</td>
<td>22,0</td>
<td>65</td>
<td>55</td>
<td>0,0551</td>
<td>0,0574</td>
<td>0,0531</td>
</tr>
<tr>
<td>A₂ → A₃</td>
<td>2495,3</td>
<td>66,5</td>
<td>19,2</td>
<td>3,0</td>
<td>29</td>
<td>76</td>
<td>0,0682</td>
<td>0,0687</td>
<td>0,0682</td>
</tr>
<tr>
<td>A₃ → A₄</td>
<td>2497,3</td>
<td>37,7</td>
<td>10,1</td>
<td>0,6</td>
<td>21</td>
<td>89</td>
<td>0,0374</td>
<td>0,0392</td>
<td>0,0359</td>
</tr>
<tr>
<td>A₄ → A₅</td>
<td>2499,3</td>
<td>30,3</td>
<td>10,1</td>
<td>0,6</td>
<td>11</td>
<td>95</td>
<td>0,0418</td>
<td>0,0439</td>
<td>0,0406</td>
</tr>
<tr>
<td>A₅ → A₆</td>
<td>2501,4</td>
<td>21,9</td>
<td>2,2</td>
<td>0,9</td>
<td>9</td>
<td>100</td>
<td>0,0530</td>
<td>0,0530</td>
<td>0,0530</td>
</tr>
<tr>
<td>A₆ → A₇</td>
<td>2503,4</td>
<td>12,0</td>
<td>1,2</td>
<td>0,6</td>
<td>10</td>
<td>100</td>
<td>0,0612</td>
<td>0,0625</td>
<td>0,0625</td>
</tr>
<tr>
<td>A₇ → A₈</td>
<td>2505,4</td>
<td>9,14</td>
<td>0,4</td>
<td>0,9</td>
<td>4</td>
<td>100</td>
<td>0,0698</td>
<td>0,0700</td>
<td>0,0700</td>
</tr>
</tbody>
</table>

Tabel XII en tabel XII geven dus de samenhalingen van de gastromen tussen de kolommen onderling.

Reiniging van geportueerd nitroglycerine met lucht.

In het hoofdstuk: "eindepil des nitroglycerine in water" werd de waarde in afgelezen gekopieerd in de ontgasten berekend. De secundaire lucht welke de ontgassend verlucht bevat:

3,7 km³/h = 6,7 kg/h H₂O
131,2 km³/h = 4200 kg/h O₂
5,8 km³/h = 231 g/h A
489,0 km³/h = 1377 kg/h N₂

De druk in de ontgassers in 2,9 atm. de

Temperatuur = 629,7°K = 5300 m³/h

Moleculair gewicht = 8200 = 3,47 kg/h³
De getallen beschrijven de hoeveelheden gassen in de atmosfeer, inclusief zuurstof, zuurgas, waterstof en andere gasmetingen. De temperatuur en de hoeveelheden worden voor elke staat gemeten. Het wordt vermeld dat de getallen nauwkeurig zijn gemeten en dat ze gebruikt worden voor de studie van de atmosfeer. De getallen worden weergegeven in een tabel, waarin de gewenste waarden worden weergegeven.
Tabel:

<table>
<thead>
<tr>
<th>Noedstrom</th>
<th>Druk (mm)</th>
<th>Temp. °C</th>
<th>N2</th>
<th>A</th>
<th>O2</th>
<th>NO</th>
<th>N2O</th>
<th>N2O4</th>
<th>H2O</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>2,76</td>
<td>25</td>
<td>2449,5</td>
<td>29,1</td>
<td>96,4</td>
<td>38,3</td>
<td>3,7</td>
<td>0,1</td>
<td>20,9</td>
<td>2629,8</td>
</tr>
<tr>
<td>22</td>
<td>2,75</td>
<td>25</td>
<td>2449,3</td>
<td>29,1</td>
<td>96,7</td>
<td>21,9</td>
<td>2,2</td>
<td>-</td>
<td>23,0</td>
<td>26,152</td>
</tr>
<tr>
<td>23</td>
<td>2,74</td>
<td>25</td>
<td>2449,3</td>
<td>29,1</td>
<td>96,0</td>
<td>12,0</td>
<td>1,2</td>
<td>-</td>
<td>25,0</td>
<td>25,936</td>
</tr>
<tr>
<td>24</td>
<td>2,75</td>
<td>25</td>
<td>2449,3</td>
<td>29,1</td>
<td>97,8</td>
<td>9,4</td>
<td>0,4</td>
<td>-</td>
<td>27,0</td>
<td>25,930</td>
</tr>
<tr>
<td>26</td>
<td>2,65</td>
<td>25</td>
<td>2449,3</td>
<td>29,1</td>
<td>97,5</td>
<td>6,5</td>
<td>-</td>
<td>-</td>
<td>29,0</td>
<td>25,914</td>
</tr>
<tr>
<td>27</td>
<td>2,75</td>
<td>25</td>
<td>2449,3</td>
<td>29,1</td>
<td>97,5</td>
<td>6,5</td>
<td>-</td>
<td>-</td>
<td>29,0</td>
<td>25,914</td>
</tr>
</tbody>
</table>

De velo-ismat van stroomen zijn:

<table>
<thead>
<tr>
<th>Noedstrom</th>
<th>Druk (mm)</th>
<th>Temp. °C</th>
<th>H2O</th>
<th>HNO3</th>
<th>Noedstrom</th>
<th>Druk (mm)</th>
<th>Temp. °C</th>
<th>H2O</th>
<th>HNO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>3,2</td>
<td>25</td>
<td>576,8</td>
<td>0</td>
<td>46</td>
<td>4,3</td>
<td>25</td>
<td>97,0</td>
<td>69,5</td>
</tr>
<tr>
<td>29</td>
<td>3,2</td>
<td>25</td>
<td>974,3</td>
<td>53,4</td>
<td>47</td>
<td>5,3</td>
<td>25,1</td>
<td>97,1</td>
<td>680,3</td>
</tr>
<tr>
<td>30</td>
<td>3,3</td>
<td>25</td>
<td>567,1</td>
<td>3,3</td>
<td>40</td>
<td>2,8</td>
<td>25,1</td>
<td>97,1</td>
<td>680,3</td>
</tr>
<tr>
<td>31</td>
<td>5,2</td>
<td>25,4</td>
<td>974,0</td>
<td>53,4</td>
<td>49</td>
<td>3,3</td>
<td>25,4</td>
<td>97,1</td>
<td>115,9</td>
</tr>
<tr>
<td>32</td>
<td>6,7</td>
<td>25,4</td>
<td>974,0</td>
<td>56,7</td>
<td>50</td>
<td>3,4</td>
<td>24,4</td>
<td>94,5</td>
<td>115,9</td>
</tr>
<tr>
<td>33</td>
<td>3,2</td>
<td>25</td>
<td>964,1</td>
<td>11,3</td>
<td>5,1</td>
<td>5,3</td>
<td>24,4</td>
<td>98,0</td>
<td>120,92</td>
</tr>
<tr>
<td>34</td>
<td>3,3</td>
<td>25</td>
<td>563,4</td>
<td>6,7</td>
<td>3,3</td>
<td>5,7</td>
<td>25,4</td>
<td>98,0</td>
<td>120,92</td>
</tr>
<tr>
<td>35</td>
<td>5,2</td>
<td>25,4</td>
<td>964,0</td>
<td>11,4</td>
<td>5,3</td>
<td>3,3</td>
<td>25,4</td>
<td>9378,3</td>
<td>172,10</td>
</tr>
<tr>
<td>36</td>
<td>2,7</td>
<td>25,4</td>
<td>964,0</td>
<td>11,4</td>
<td>5,4</td>
<td>3,4</td>
<td>25,4</td>
<td>914,5</td>
<td>174,4</td>
</tr>
<tr>
<td>37</td>
<td>3,5</td>
<td>25</td>
<td>556,0</td>
<td>17,6</td>
<td>5,5</td>
<td>3,3</td>
<td>25,4</td>
<td>92,23,9</td>
<td>285,72</td>
</tr>
<tr>
<td>38</td>
<td>3,2</td>
<td>25</td>
<td>966,0</td>
<td>29,5,9</td>
<td>5,6</td>
<td>3,7</td>
<td>30,6</td>
<td>93,47,0</td>
<td>179,5</td>
</tr>
<tr>
<td>39</td>
<td>5,1</td>
<td>26,2</td>
<td>965,3</td>
<td>306,8</td>
<td>5,7</td>
<td>5,2</td>
<td>30,6</td>
<td>93,47,0</td>
<td>179,5</td>
</tr>
<tr>
<td>40</td>
<td>3,6</td>
<td>26,2</td>
<td>965,3</td>
<td>306,8</td>
<td>5,8</td>
<td>3,9</td>
<td>25,4</td>
<td>872,0</td>
<td>281,9</td>
</tr>
<tr>
<td>41</td>
<td>3,3</td>
<td>25</td>
<td>933,8</td>
<td>460,2</td>
<td>5,9</td>
<td>4,3</td>
<td>33,1</td>
<td>918,14</td>
<td>296,47</td>
</tr>
<tr>
<td>42</td>
<td>3,4</td>
<td>25</td>
<td>948,0</td>
<td>27,7</td>
<td>6,0</td>
<td>2,8</td>
<td>25,4</td>
<td>918,14</td>
<td>296,47</td>
</tr>
<tr>
<td>43</td>
<td>4,4</td>
<td>26,1</td>
<td>933,0</td>
<td>470,3</td>
<td>6,1</td>
<td>2,9</td>
<td>25,4</td>
<td>11,4</td>
<td>3,7</td>
</tr>
<tr>
<td>44</td>
<td>2,8</td>
<td>26,1</td>
<td>933,0</td>
<td>470,3</td>
<td>6,2</td>
<td>2,8</td>
<td>25,4</td>
<td>917,00</td>
<td>296,10</td>
</tr>
<tr>
<td>45</td>
<td>3,3</td>
<td>25</td>
<td>908,7</td>
<td>628,5</td>
<td>6,3</td>
<td>2,8</td>
<td>25,4</td>
<td>875,8</td>
<td>281,9</td>
</tr>
<tr>
<td>66</td>
<td>10,8</td>
<td>25</td>
<td>6,5</td>
<td>2,8</td>
<td>25,4</td>
<td>11,4</td>
<td>3,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ongeveer gemiddelde druk in de leiding, ondanks de stroomplaats afhankelijk is bij naam en breedte.
De worstte stromen, stromen van verwarmeren en de arbeid van de luchtcompressor worden in tabelvorm weergegeven:

<table>
<thead>
<tr>
<th>Warming agent</th>
<th>Air blower 1</th>
<th>Horsepower output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid heater, app. heat, (W_1)</td>
<td>1.60 (\text{kg/sec})</td>
<td>1660 kw</td>
</tr>
<tr>
<td>In warm: warm water, per brick, (W_2)</td>
<td>1.60 (\text{kg/sec})</td>
<td>251 kw</td>
</tr>
</tbody>
</table>
| ...
| Bank of: warm water, per brick, \(W_6 \) | 1.60 \(\text{kg/sec} \) | 3191 kw |
| Warmboiler, \(W_7 \) | 4.70 \(\text{kg/sec} \) | 587 kw |
| Condenser system, \(W_8 + W_9 \) | 11.6 \(\text{kg/sec} \) | 9855 kw |
| Cooler structure enters, \(A_1, \ W_8 \) | 14.50 \(\text{kg/sec} \) | 4865 kw |
| ...
| Cooler structure enters, \(A_7, \ W_9 \) | 7.0 \(\text{kg/sec} \) | 2155 kw |
| ...
| Cooler structure enters, \(A_{15}, \ W_{15} \) | 1.57 \(\text{kg/sec} \) | 1214 kw |

| Amount of air entering compressor \(L \) | 5.7 \(\text{kg/sec} \) |

Arbeid luchtcompressor = arbeid afgas turbine + arbeid elektronturbine

3450 kw = 1370 kw + 2080 kw.

Om de stofstroom in \(\text{kg/sec} \) te berekenen, moeten de volgende moleculair gewichten bekend zijn:

\[
\begin{align*}
NH_3 & : 17.03 \\
H_2NO & : 16.02 \\
H_2O & : 18.02 \\
NO & : 30.01 \\
NO_2 & : 46.01 \\
N_2O_4 & : 92.02 \\
O_2 & : 32.00 \\
N_2 & : 28.02 \\
A & : 39.94
\end{align*}
\]

De massa stromen worden dan als volgt:
<table>
<thead>
<tr>
<th>No</th>
<th>(\text{O}_2)</th>
<th>(\text{N}_2)</th>
<th>(\text{NO})</th>
<th>(\text{NO}_2)</th>
<th>(\text{H}_2\text{O})</th>
<th>(\text{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.323</td>
<td>19.04</td>
<td>5.84</td>
<td>1.13</td>
<td>0.018</td>
<td>125.1</td>
</tr>
<tr>
<td>2</td>
<td>0.323</td>
<td>19.04</td>
<td>5.84</td>
<td>1.13</td>
<td>0.018</td>
<td>125.1</td>
</tr>
<tr>
<td>3</td>
<td>0.323</td>
<td>19.04</td>
<td>5.84</td>
<td>1.13</td>
<td>0.018</td>
<td>125.1</td>
</tr>
<tr>
<td>4</td>
<td>0.328</td>
<td>15.22</td>
<td>4.67</td>
<td>1.07</td>
<td>0.017</td>
<td>125.1</td>
</tr>
<tr>
<td>5</td>
<td>0.064</td>
<td>3.808</td>
<td>1.16</td>
<td>1.07</td>
<td>0.017</td>
<td>125.1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td></td>
<td>1.07</td>
<td>0.017</td>
<td>125.1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td></td>
<td>1.07</td>
<td>0.017</td>
<td>125.1</td>
</tr>
<tr>
<td>8</td>
<td>0.323</td>
<td>19.04</td>
<td>5.84</td>
<td>1.13</td>
<td>0.018</td>
<td>125.1</td>
</tr>
<tr>
<td>9</td>
<td>0.325</td>
<td>15.28</td>
<td>1.42</td>
<td>1.06</td>
<td>0.016</td>
<td>125.1</td>
</tr>
<tr>
<td>10</td>
<td>0.328</td>
<td>15.28</td>
<td>1.42</td>
<td>1.06</td>
<td>0.016</td>
<td>125.1</td>
</tr>
<tr>
<td>11</td>
<td>0.328</td>
<td>15.28</td>
<td>1.42</td>
<td>1.06</td>
<td>0.016</td>
<td>125.1</td>
</tr>
<tr>
<td>12</td>
<td>0.325</td>
<td>15.28</td>
<td>1.42</td>
<td>1.06</td>
<td>0.016</td>
<td>125.1</td>
</tr>
<tr>
<td>13</td>
<td>0.325</td>
<td>15.28</td>
<td>1.42</td>
<td>1.06</td>
<td>0.016</td>
<td>125.1</td>
</tr>
<tr>
<td>14</td>
<td>0.325</td>
<td>15.28</td>
<td>1.42</td>
<td>1.06</td>
<td>0.016</td>
<td>125.1</td>
</tr>
<tr>
<td>15</td>
<td>0.064</td>
<td>3.808</td>
<td>1.16</td>
<td>1.06</td>
<td>0.016</td>
<td>125.1</td>
</tr>
<tr>
<td>16</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>17</td>
<td>0.325</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>18</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>19</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>20</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>21</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>22</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>23</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>24</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>25</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>26</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
<tr>
<td>27</td>
<td>0.323</td>
<td>19.09</td>
<td>2.326</td>
<td>2.075</td>
<td>0.095</td>
<td>125.1</td>
</tr>
</tbody>
</table>

Binnen 9.7% kleuren de volgende massa-balansen:

Gesamtelement 1 + S.6 + S.28 = S.27 + S.66 + S.63

S.8 = S.4 + S.5 ; S.9 = S.4 + S.5 ; S.16 = S.17 + S.65 (onder meer)