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Extracting hysteresis from nonlinear measurement
of wavefront-sensorless adaptive optics system
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In many scientific and medical applications wavefront-sensorless adaptive optics (AO) systems are used to
correct the wavefront aberration by optimizing a certain target parameter, which is nonlinear with respect
to the control signal to the deformable mirror (DM). Hysteresis is the most common nonlinearity of DMs,
which can be corrected if the information about the hysteresis behavior is present. We report a general ap-
proach to extract hysteresis from the nonlinear behavior of the adaptive optical system, with the illustration
of a Foucault knife test, where the voltage–intensity relationship consists of both hysteresis and some
memoryless nonlinearity. The hysteresis extracted here can be used for modeling and linearization of the AO
system. © 2008 Optical Society of America
OCIS codes: 010.1080, 230.6120.
Deformable mirrors (DMs) with piezoelectric actua-
tion are widely used in adaptive optics (AO) systems
to reduce the wavefront aberration [1,2]. However,
the intrinsic hysteresis of the piezoactuators imposes
a limit in the accuracy of the DM, which may degrade
the convergence speed of the AO system or even in-
troduce instability problems [1–4]. In conventional
AO systems, the hysteresis of the piezo DM can be
characterized with Shack–Hartman wavefront sen-
sors, shearing interferometry or curvature sensors
[5], etc., where the sensor output is linearly related to
the actuator displacement or the curvature. But in
wavefront-sensorless AO systems, which have been
developing rapidly owing to their simplicity and low
cost in implementation [6–8], piezo DM corrects the
wavefront aberration by optimizing only a certain
target parameter, such as the light intensity within a
certain aperture, which suffers from some memory-
less nonlinearity originating from the optical system
as well as the hysteresis of the DM. Therefore we
want to investigate how to extract the hysteresis of
the piezo DM based only on the nonlinear measure-
ment.

The schematic of the experimental setup is de-
picted in Fig. 1 (left). The collimated laser beam
(He–Ne laser, with a wavelength of 632 nm) passes
through the beam splitter (BS) first, then is reflected
by the DM and directed to the lens. Similar to the
Foucault test [9], a razor blade blocks part of the
beam at the back focal plane of the lens, followed by a
photodiode (TSL250R-LF, TAOS, Korea) measuring
the light intensity of the residual beam. The DM pro-
totype (OKOTech, Delft, The Netherlands) has a
clear aperture of 25 mm and the mirror plate is sup-
ported symmetrically by 12 piezoelectric tubes
[PT130.00, Physik Instrumente, Germany; refer to
Fig. 1 (right) for the actuator distribution]. The high
voltage amplifier (HVA) has an input range of 0–5 V
and a voltage amplification of 60 for frequencies
lower than 1 kHz. Signal generation and data acqui-
sition is accomplished by a dSPACE system

(DS1103PPC, dSPACE, Germany) with the digital-to-
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analog card output range of ±10 V, 14 bits and the
analog-to-digital card input range of ±10 V, 16 bits.

During each experiment, only one actuator in the
DM is driven by the control voltage Vi via the HVA,
while the electrodes of all other actuators are open.
Since the frequency of Vi (less than 10 Hz) is much
lower than the first resonant frequency of the DM
(about 1 kHz), all the dynamics can be neglected. The
control voltage Vi can be defined as the input of this
optomechatronic system and the output is the light
intensity measurement Vo. The problem is how to es-
timate the hysteresis of the piezoactuator based only
on the �Vi ,Vo� data.

By physical modeling [10], Vo can be represented
as
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where A is a constant, j=�−1, � is the wavelength,
and f is the focal distance of the lens. �� ,�� and �u ,v�
represent the coordinates in the input plane and the
focal plane of the lens, respectively. � represents the
area in the focal plane that is not blocked by the ra-
zor blade. �i is the wavefront of the incident light. �m
is the surface deflection of the DM, determined by the
following equations [11]:

Fig. 1. Left, schematic of the experimental setup (input,
control voltage Vi; output, light intensity measurement Vo).

Right, distribution of the actuators in the DM.
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where z= �zx ,zy� and 	= �	x ,	y� are the coordinates in
the DM surface. Pk, k=1. . .K are the forces applied to
the DM faceplate by actuator k at 	k. D, W�z ,	k�, w0,
w1, w2, and ke are the coefficients. h�Vi� represents
the displacement of the actuator when driven by volt-
age Vi, with free end.

According to Mayergoyz’s theory [3], hysteresis can
be defined as the memory effect in the input–output
relationship. This allows one to write Eqs. (1)–(4) as

Vo = f�x�, x = Hs�Vi�, �5�

where Hs� � represents the memory effect owing to
hysteresis and f� � represents all memoryless nonlin-
earity originating from the optical system. x denotes
the output of Hs� �. Since there is no other transfor-
mation in Hs� � except for the memory, the hysteresis
represented by Hs� � is normalized in the sense that
two hysteresis branches in a hysteresis loop join at
�Vic ,xc� with xc=Vic (refer to Fig. 2), and this loop can
be generalized for different input ranges.

To identify Hs� � from Vi and Vo, the signal x needs
to be reconstructed from Vo as

x = f−1�Vo�. �6�

Physical expression of f−1� � is difficult to achieve if
only based on Eqs. (1)–(4), because the parameters
such as �i and � are unavailable in most practical
cases. However, a numerical approach can be taken
as an alternative, which consists of three steps:

1. Suppose there was no hysteresis in the system,
then x=Vi. The virtual output Vol would be

Vol = f�Vi�. �7�

As hysteresis is present, Vol can be approximated by
taking the average of the two branches in the �Vi ,Vo�
loop. For a certain input Vi=Vi0 (see Fig. 2), we get

Fig. 2. Transfer from Vi to Vo. Two hysteresis branches
join at x=Vi. Virtual output Vol= f�x0�= f�Vi0� can be ap-

proximated by f�x1�+ f�x2�� /2 with error �.
V̂ol =
1

2
�f�x1� + f�x2�� = f�x0� + 
, �8�

where V̂ol is the approximation of Vol and
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is the approximation error. If x1−x0�x0−x2 and the
higher-order terms are small enough, then V̂ol
� f�x0�= f�Vi0�. More generally,

V̂ol � f�Vi�. �9�

2. The inverse of f� � (if it exists), can be identified
by polynomial curve fitting, defined as

min
am

�Vi − V̂i�2
2, with V̂i = f̂−1�V̂ol� = �

m=0

M

amV̂ol
m, �10�

where V̂i and f̂−1� � are the estimations of Vi and
f−1� �, respectively. M and am are the order and the co-
efficients of the polynomial, respectively. If f−1� � does
not exist because the mapping from V̂ol to Vi is not
unique, then the �Vi , V̂ol� data set is divided into dif-
ferent subsets according to the first-order derivative
of V̂ol with respect to Vi [12]. In each subset, the map-
ping from V̂ol to Vi is unique and thus can be approxi-
mated by function f̂n

−1� �, n=1,2. . .N, where N is the
number of subsets.

3. Appropriate function f̂n
−1� � is selected for given

Vo, according to the first-order derivative of Vo. Then
the estimation of x, denoted by x̂, is obtained by

x̂ = f̂n
−1�Vo�, n = 1,2 ¯ N. �11�

To improve the accuracy of x̂, two methods can be
employed: (1) f� � and its inverse f−1� � depend on the
area � [refer to Eq. (1)], and therefore the razor may
be tuned such that f−1� � is simple enough to be ap-
proximated accurately; (2) polynomials with higher
order may be used to approximate f−1� �.

Concerning the symmetry in the actuator layout
and the optical system, during the experiments only
actuator 1 or 4 is excited individually. Figure 3 shows
the typical �Vi ,Vo� curves corresponding to actuator 1
(left) and 4 (right) when the razor is at different po-
sitions. The change of nonlinearity as well as the hys-
teresis can be observed clearly. To get accurate x̂, only
the curves with simple nonlinearity, marked as A1,
A2, B1, and B2, are selected for further processing
and the hysteresis curves extracted from these four
are plotted in Fig. 4. To evaluate the accuracy of the
estimation, hysteresis of a piezoactuator of the same
type has been measured independently by a position

sensor (S5990-01, HAMAMATSU, Japan) using an
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optical lever, as shown in Fig. 4. Because the mea-
sured hysteresis curve involves linear transforma-
tions owing to the measurement as well as the
memory owing to the hysteresis but Hs� � only in-
cludes the memory, the measured hysteresis curve
has been scaled to eliminate the effect of linear trans-
formations while keeping the memory unchanged.
Table 1 shows the variance accounted for (VAF) for
all x̂ extracted from A1, A2, B1, and B2, with polyno-
mial order M=8,12,15, where VAF is defined by

VAF = �1 −
var�x̂ − xmeasure�

var�xmeasure�
� � 100 % . �12�

xmeasure is the hysteresis curve from the measurement
after scaling and var�x� is the variance of x. Even in
the worst case, VAF still reaches as high as 99.95%,
indicating quite accurate estimation of x.

Based on the hysteresis curve extracted from A1
(with M=8, as in Fig. 4), an inverse Coleman–
Hodgdon hysteresis model [1] has been identified and
inserted between Vi and the HVA to compensate for
the hysteresis in the piezo DM. Figure 5 shows the
resulting �Vi ,Vo� curves, where the reduction of hys-
teresis can be observed clearly compared with Fig. 3.

Fig. 3. (Color online) Left, �Vi ,Vo� curves for actuator 1
when the razor is at its initial position, tuned by 0.45, 0.52,
0.60, and 0.80 mm (top to bottom). Right, �Vi ,Vo� curves for
actuator 4 when the razor is at its initial position, tuned by
0.37, 0.50, 0.59, and 0.80 mm (top to bottom).

Fig. 4. (Color online) �Vi , x̂� curves (solid curve) extracted
from A1, A2, B1, and B2, with polynomial order M=8. The
hysteresis curve measured by a position sensor (dashed
curve) is used for comparison.
The largest gaps between two branches in A1, A2, B1,
and B2 have been reduced by 67% �0.03 to 0.01 V�,
89% �0.18 to 0.02 V�, 83% �0.06 to 0.01 V�, and 86%
�0.21 to 0.03 V� as in Ã1, Ã2, B̃1, and B̃2, respectively,
indicating accurate estimation of the hysteresis.
Moreover, although the inverse hysteresis model is
only based on the hysteresis curve extracted from A1,
it is still able to correct hysteresis in other conditions
such as A2, B1, and B2, which means good generali-
zation property of the hysteresis estimation.

In conclusion, an experimentally proven general
approach has been proposed to extract the hysteresis
of a DM from the nonlinear measurement of the sys-
tem target parameter, illustrated by our successful
experiment with the Foucault knife test. The hyster-
esis extracted here can be used for modeling and lin-
earization of the AO systems.
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Fig. 5. (Color online) �Vi ,Vo� curves corresponding to ac-
tuator 1 (left) and 4 (right) after hysteresis compensation.
The razor is at the same positions as in Fig. 3.

Table 1. VAF of x̂ Extracted from A1, A2, B1, and B2,
with Polynomial Order M=8,12,15

M A1 A2 B1 B2

8 99.95% 99.96% 99.99% 99.96%
12 99.95% 99.96% 99.99% 99.97%
15 99.95% 99.96% 99.99% 99.97%


