Urban form and multi-modal mobility patterns

Jorge Gil
Researcher
Department of Urbanism, TU Delft

Modelling World 2015
Thursday 4th of June 2015
Kia Oval, London
Cities require knowledge-based and performance oriented approaches to urban design and planning, involving stakeholders from different backgrounds and domains of expertise, using and sharing multiple levels of information, at multiple scales of analysis and intervention.
BIM levels of maturity
CIM – City Information Modelling

- CIM is more than an amalgamation of all the BIM models
- CIM represents higher level networks of infrastructure, governance and human activity and ultimately forms the structure that holds all BIM models together
- CIM allows the description, visualisation, analysis and monitoring of the urban environment to support urban design and planning from the very local to the regional
- CIM meets the needs of the various stakeholders with specific design and decision support tools
- The backbone of CIM is an integrated, cross-disciplinary, spatial data model based on open standards
CIM levels of maturity

Adapted from Bew and Richards, 2008
Source: http://www.modelur.com/

Source: http://www.holisticcity.co.uk/index.php/en/citycad
Urban form and multimodal mobility patterns

Legend
- Post codes
 - VINEX neighbourhoods
 - Transit tracks
 - tram
 - metro
 - rail
 - Motorways
 - Roads
 - Water
Travel patterns
Integrated multimodal urban network model

Legend

a) Main road
 Road
 Cycle lane
 Pedestrian path

b) Rail
 Metro
 Tram
 Bus

c) Transit interface
 Transit–road interface

e) Buildings

f) Building–road interface

General
Land
Water
The backbone of a CIM

Urban form and multi-modal mobility patterns – Jorge Gil
Integrated multimodal urban network model

Private transport (a), public transport (b), land use (c) systems
‘Urban modality’ spatial indicators

<table>
<thead>
<tr>
<th>Measure</th>
<th>Target</th>
<th>Distance Type</th>
<th>Cut-off</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity</td>
<td>Distance to nearest feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>Pedestrian areas</td>
<td>Metric</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Bicycle lanes</td>
<td>Metric</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Main roads</td>
<td>Metric</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Motorways</td>
<td>Metric</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Local transit stops</td>
<td>Metric</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Rail stations</td>
<td>Metric</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td>Density</td>
<td>Size or count of features within catchment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>Pedestrian areas</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m, n</td>
</tr>
<tr>
<td></td>
<td>Bicycle lanes</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m, n</td>
</tr>
<tr>
<td></td>
<td>Motor roads</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m, n</td>
</tr>
<tr>
<td></td>
<td>Main roads</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m, n</td>
</tr>
<tr>
<td></td>
<td>Motorways</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m, n</td>
</tr>
<tr>
<td></td>
<td>Cul-de-sacs</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>Crossings (X and T)</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>Local transit stops</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>Rail stations</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>n</td>
</tr>
<tr>
<td>Reach</td>
<td>Streets with non-motorised access</td>
<td>Angular</td>
<td>90, 180 degrees</td>
<td>m, n</td>
</tr>
<tr>
<td></td>
<td>Motor roads</td>
<td>Angular</td>
<td>90, 180 degrees</td>
<td>m, n</td>
</tr>
<tr>
<td>Activity</td>
<td>Residential land use</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m², n</td>
</tr>
<tr>
<td></td>
<td>Active land use</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m², n</td>
</tr>
<tr>
<td></td>
<td>Work land use</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m², n</td>
</tr>
<tr>
<td></td>
<td>Education land use</td>
<td>Metric</td>
<td>400, 800, 1600m</td>
<td>m², n</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Activities within catchment (area; utility)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Active land use by car</td>
<td>Temporal</td>
<td>10, 20, 30 min</td>
<td>m², -</td>
</tr>
<tr>
<td></td>
<td>Active land use by transit</td>
<td>Temporal</td>
<td>10, 20, 30 min</td>
<td>m², -</td>
</tr>
<tr>
<td></td>
<td>Work land use by car</td>
<td>Temporal</td>
<td>10, 20, 30 min</td>
<td>m², -</td>
</tr>
<tr>
<td></td>
<td>Work land use by transit</td>
<td>Temporal</td>
<td>10, 20, 30 min</td>
<td>m², -</td>
</tr>
<tr>
<td>Configuration</td>
<td>Network centrality of area (mean; top decile share)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closeness</td>
<td>Streets with non-motorised access</td>
<td>Angular</td>
<td>400, 800, 1600m</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Motor roads</td>
<td>Angular</td>
<td>400, 800, 1600m</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Local transit stops</td>
<td>Topological</td>
<td>400, 800, 1600m</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Rail stations</td>
<td>Topological</td>
<td>400, 800, 1600m</td>
<td>-</td>
</tr>
<tr>
<td>Betweenness</td>
<td>Bicycle lanes</td>
<td>Angular</td>
<td>400, 800, 1600m</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Motor roads</td>
<td>Angular</td>
<td>400, 800, 1600m</td>
<td>-</td>
</tr>
</tbody>
</table>

04/06/2015

Urban form and multi-modal mobility patterns – Jorge Gil
Proximity to transit

Public Transport Access

Rail
- 0 – 400
- 400 – 800
- 800 – 1200
- 1200 – 1600
- 1600 – 2000

Metro
- 0 – 400
- 400 – 800
- 800 – 1200
- 1200 – 1600
- 1600 – 2000

Tram
- 0 – 400
- 400 – 800
- 800 – 1200
- 1200 – 1600
- 1600 – 2000

Bus
- 0 – 200
- 200 – 400
- 400 – 600
- 600 – 800
- 800 – 1000
Integrated accessibility analysis

Car accessibility

Transit accessibility

Urban form and multi-modal mobility patterns – Jorge Gil
Sustainable mobility potential evaluation

Modality types: mean mobility profile

Movement of Parkbuurt Oosteinde (2548)

Performance of Parkbuurt Oosteinde (2548)
Future work

Graph databases

Source: https://github.com/neo4j-contrib/spatial
Conclusions

• Urban design and planning is holistic and knowledge based.

• CIM offers a support instrument: an integrated urban model from different disciplines and stakeholders.

• Topology of the city: representation of linked urban features that is detailed, scalable, analytic, descriptive.

• Multimodal travel has clear spatial patterns. ‘Urban modality’ is a characteristic of different places.

• Statistics, visualisation and data mining are tools for exploring and understanding urban complexity.

• CIM as a tool for thinking and ask questions, instead of giving the one answer or solution.
THANK YOU!

j.a.lopessgil@tudelft.nl

Research conducted at the TU Delft, Faculty of Architecture, Department of Urbanism, under the supervision of Prof. Vincent Nadin and Dr. Stephen Read.

Jorge Gil partly funded by Science and Technology Foundation (FCT), Portugal, (SFRH/BD/46709/2008).