Enige aantekeningen met betrekking tot het opwekken van regelmatige golven in een golfgoot

interne nota

M 1419

februari 1977
<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Thema</th>
<th>Blz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inleiding</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Overzicht van de problematiek</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Golftheorieën</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Lineaire golftheorie</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Berekening voortplantingssnelheid en golflengte van een lopende golf</td>
<td>4</td>
</tr>
<tr>
<td>3.3</td>
<td>Reflektie</td>
<td>5</td>
</tr>
<tr>
<td>3.4</td>
<td>Andere golftheorieën</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Nadere beschouwing van de diverse problemen</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Stoorgolven</td>
<td>7</td>
</tr>
<tr>
<td>4.2</td>
<td>Bepaling reflektiecoëfficiënt in afhankelijkheid van de golfhoogte</td>
<td>8</td>
</tr>
<tr>
<td>4.3</td>
<td>Opgewekte translatiegolven</td>
<td>9</td>
</tr>
<tr>
<td>4.4</td>
<td>Golven bij stromend water</td>
<td>10</td>
</tr>
<tr>
<td>4.5</td>
<td>Capillaire krachten bij modelonderzoek</td>
<td>11</td>
</tr>
<tr>
<td>4.6</td>
<td>Plaats van meting</td>
<td>12</td>
</tr>
<tr>
<td>4.7</td>
<td>Wijze van instellen</td>
<td>12</td>
</tr>
<tr>
<td>4.8</td>
<td>Benodigde insteltijd</td>
<td>13</td>
</tr>
<tr>
<td>4.9</td>
<td>Meting korte golftrein</td>
<td>13</td>
</tr>
</tbody>
</table>

BIJLAGEN I, II, III, IV, V en VI

Lijst van gebruikte symbolen
Inleiding

Bij vele waterbouwkundige problemen wordt uit metingen in de natuur (en eventueel extrapolatie daarvan) voor ontwerppomstandigheden een maatgevend golfspectrum en daarmee ook de grootte van de significante (inkomende) golf bepaald. Bij modelonderzoek zal men soms trachten dit golfspectrum te reproduceren doch veelal zal men een benadering zoeken in het opwekken van een regelmatige golf, welke soms overeenkomt met de vastgestelde significante golf. Plaats men nu een obstakel in het water dan zal een zekere mate van reflectie optreden waardoor de amplitude van de golven bij het obstakel toeneemt. Bij het simuleren hiervan in een golfgoot treedt echter een probleem op. Waar in de natuur de gereflecteerde golfenergie verdwijnt in de (grote) zee, wordt deze in een golfgoot teruggekaatst naar het golfschot en vandaar weer teruggekaatst naar de constructie enz., zodat een opbouw van energie in de goot kan plaatsvinden; uiteindelijk zal door dissipatie een evenwichtstoestand worden bereikt. Men kan de grootte van de inkomende golf nu niet meer meten omdat de aanwezige inkomende golf groter is dan die door het golfschot geleverd wordt. Dit probleem is op twee wijzen op te lossen:

- Het is mogelijk (bij gebruik van regelmatige golven) een staande golf te stellen tussen golfschot en constructie en dan uitgaande van de lineaire golftheorie uit de grootte van knopen en buiken de reflectiekoefficiënt te bepalen, waarmee de grootte van de inkomende golf ook bekend is. De onderhavige nota welke is samengesteld door C.P. de Jong behandelt enkele aspecten van deze laatste methode.

De nota moet beschouwd worden als een algemene inleiding op de praktische problemen van het golven, waarvoor een diepere theoretische kennis van de diverse golftheorieën noodzakelijk is. Het is een weergave van de kennis die vergaard is bij het opstarten van M 1419 en mede verkregen door contacten met de afdeling MARK. Men dient er voor te waken om uitsluitend aan de hand hiervan te gaan golven, daar dit aanleiding zou kunnen geven tot ernstige nalatigheden. De bedoeling is uitsluitend om de tijd, benodigd om inzicht te krijgen in de problematiek te reduceren.
Daartoe zullen enkele problemen globaal theoretisch toegelicht worden en met enige metingen geïllustreerd. Ook worden een aantal referenties over de verschillende aspecten vermeld.
2 Overzicht van de problematiek

Begonnen wordt met een summier inleiding in de lineaire golftheorie en de
reflektieberekeningen die men met behulp van deze theorie kan opzetten, waarna
de volgende problemen behandeld zullen worden:

- Er zijn vele golftheorieën voor diverse situaties en men zal hieruit een
 keuze moeten doen. Het eenvoudigst werkt de lineaire theorie doch men dient
 zich te realiseren onder welke voorwaarden die gebruikt kan worden.

- Daar in de regel met een (stijf) sinusvormig bewegend golfschot gewerkt
 wordt, zullen stoorgolven kunnen ontstaan. Het optreden hiervan zal toegelicht
 worden en tevens zullen enige grafieken toegevoegd worden ten einde tot een
 optimale rotatie-translatie instelling van het golfschot te komen, hetgeen de
 invloed van de stoorgolven beperkt.

- De berekening van de inkomende golf uit de grootte van buiken en knopen van
 een staande golf kan enige manko's vertonen. Deze zullen worden toegelicht
 en een verwijzing wordt gegeven naar korrektiegrafieken.

- Door de golven wordt een variërend verval bij de konstruktie aangebracht,
 hetgeen bij een gedeeltelijk open konstruktie translatiegolven teweegbrengt.

- Bij stromend water zullen golven, welke met de stroom meebevogen, uitrekken
 (waarbij de amplitude kleiner wordt) en golven die tegen de stroom in bewe-
 gen verkorten (waarbij de amplitude groter wordt). Dit geeft een ander inter-
 ferentiepatroon voor de konstruktie dan er bij stilstaand water optreedt.

Ook zullen nog een aantal meer praktische problemen behandeld worden.

- In het prototype heeft men normaliter te maken met zwaartekrachtsgolven. Men
 kan nu geen onbeperkt grote schaalfactor kiezen daar men dan problemen kan
 krijgen als gevolg van relatief te grote oppervlaktespanningen.

- Het kiezen van de plaats, waar buiken, knopen of energiespektra bij al dan
 niet regelmatige golven gemeten worden, verdient enige toelichting.

- Een snelle wijze om een goede staande golf te creëren is op het oog het golfs-
 chot in een buik of knoop zetten.

- Er is altijd een zekere insteltijd nodig alvorens een regelmatig patroon
 wordt verkregen.

- Wil men de inkomende golf bepalen door middel van het meten van een korte
golfrein, dan dient men zich te realiseren dat hiervoor een bepaalde mini-
mum (vrije) lengte van de golfgoot vereist is.
3 Golftheorieën

3.1 Lineaire golftheorie

Een lopende golf is een functie van plaats en tijd. De vergelijking hiervan luidt in de lineaire golftheorie voor een golf die in $+$ x-richting loopt:

$$\eta = a \sin \left(\frac{2\pi}{T} t - \frac{2\pi}{L} x \right), \text{ waarin } \frac{2\pi}{T} = \text{ hoekfrequentie } \omega$$
$$\frac{2\pi}{L} = \text{ golfgetal } k.$$

Voor een golf die in $-$ x-richting loopt vindt men dan:

$$\eta = a \sin (\omega t + kx).$$

Neemt men de bewegingsvergelijking voor een golf, uitgaande van een ideale vloeistof en een konservatief krachtveld, dan kan men de vergelijking van Bernoulli voor niet permanente stroming afleiden:

$$\frac{\partial \phi}{\partial t} + \frac{1}{2} v^2 + \frac{P}{\rho} + gz = 0.$$

In de lineaire theorie van Airy wordt nu $\frac{1}{2} v^2$ verwaarloosd. Dit is voor een golf met een geringe steilheid wel gerechtvaardigd, doch voor een met een grote steilheid niet. De orde van grootte van de geïntroduceerde onnauwkeurigheid is:

$$\frac{H}{L} = \frac{1}{10} \rightarrow \text{ onnauwkeurigheid } \approx 15\% \text{ (t.o.v. } gz)$$

$$\frac{H}{L} = \frac{1}{100} \rightarrow \text{ onnauwkeurigheid } \approx 1,5\% \text{ (t.o.v. } gz).$$

(voor berekening hiervan zie bijlage I).

Bij gebruik van de lineaire theorie zullen zich dus al snel afwijkingen van de werkelijkheid voordoen als gevolg van de reële amplitude. Voor golflengte en golfsnelheid zijn de afwijkingen minder groot.

3.2 Berekening voortplantingssnelheid en golflengte van een lopende golf

Met behulp van de genoemde verwaarlozing kan men een formule voor $\phi(x,z,t)$ afleiden en daarmee de dispersievergelijking:
\[w^2 = gk \tanh kd. \]

Hieruit volgt:

\[c = \sqrt{\frac{g}{k}} \tanh kd. \quad (I) \]

In ondiep water is \(kd \) klein \(\Rightarrow c \approx \sqrt{gd}. \)

In diep water is \(kd \) groot \(\Rightarrow c_o = \sqrt{\frac{g}{k}} = \sqrt{\frac{gL_o}{2\pi}} \rightarrow c_o^2 = \frac{gL_o}{2\pi} = \frac{gc_oT}{2\pi} \rightarrow c_o = \frac{gT}{2\pi}. \)

Dan is ook: \(c = c_o \tanh kd \) (substituere \(c_o \) in de gekwadraterde vgl. I).

Daar \(L = cT \) is ook \(L = L_o \tanh kd. \)

Vermogenvuldiging van beide leden met \(\frac{2\pi d}{L_L_o} \) levert:

\[\frac{2\pi d}{L_o} = \frac{2\pi d}{L} \tanh \frac{2\pi d}{L}. \]

Tezamen met de formule voor \(c_o \) levert dit bij gegeven \(T \) en \(d \) voldoende informatie om de voortplantingssnelheid en golflengte te berekenen. Deze berekening wordt vereenvoudigd door gebruik te maken van de tabellen in Shore Protection Manual III.

3.3 Reflektie

Bij weerkaatsing van de golf tegen een obstakel kan volledige of partiële reflektie optreden, afhankelijk van de aard van de constructie en de steilheid van de golf. Zo is volgens Miche de reflektie van golven tegen een heilling afhankelijk van de steilheid van de golf \(\frac{H_o}{L_o} \).

\[r_{1,0} \]

\[H_o \left(\frac{L_o}{L_o \text{ crit}} \right) H_o \frac{L_o}{L_o} \]

Ook bij bijvoorbeeld niet volledig gesloten constructies zal partiële reflek-
tie optreden.

De vergelijking van een inkomende + een niet volledig gereflekteerde golf luidt bij de lineaire golftheorie:
\[\eta = a \{ \sin(\omega t - kx) + r \sin(\omega t + kx) \} , \text{ met } r = \text{reflektiekoëfficiënt}. \]

Dit is met enige goniometrische identiteiten om te werken tot:

\[\eta = a \{ 1 + 2r \cos 2kx + r^2 \}^{\frac{1}{2}} \sin(\omega t - \psi(x)) \]

gemoduleerde amplitude

\[r = \frac{\eta_{\max} - \eta_{\min}}{\eta_{\max} + \eta_{\min}} \]

3.4 Andere golftheorieën

Als de lineaire theorie tot te grote afwijkingen leidt, bestaat er de mogelijkheid met behulp van reeksoplossingen tot betere benaderingen te komen. Hierbij gelden ongeveer de volgende gebieden voor de toepasbaarheid:

\[
\begin{align*}
\text{c door } t \text{ en } \frac{H}{L} \text{ bepaald} & \\
\text{Stokes-theorie} & \\
\text{cnoidale-theorie} & \\
\frac{d}{L} &= \frac{1}{10} & \frac{d}{L} &= \frac{1}{50}
\end{align*}
\]

Literatuur:
- Stencils bij college korte golven (b76) - Battjes, J.A.
- Shore Protection Manual-Volume I + III - U.S. Army Coastal Engineering Research Center
- Cursus wetenschappelijke staf W.L. 1975/1976
4 Nadere beschouwing van de diverse problemen

4.1 Stoorgolven

Volgens Fontaneet zijn er op voldoende afstand (enkele malen de waterdiepte) vanaf een sinusvormig transiterend golfschot de volgende golven:

a) de 1e orde golf met basis periode T, amplitude a en de voortplantings-
snelheid c van de vrije golf met periode T volgens de lineaire theorie van
Airy.

b) de 2e orde Stokes-tern die ad a vergezelt met periode $\frac{T}{2}$ met een amplitude
α_2 van de 2e orde en met dezelfde voortplantingssnelheid als ad a. De gol-
ven ad a en ad b samen vormen in de 2e orde benadering van Miche de vorm-
vaste basisgolf.

c) de door Fontaneet berekende vrije 2e orde term, eveneens met periode $\frac{T}{2}$, maar
met een voortplantingssnelheid c_2 van de vrije golf volgens de lineaire theo-
rrie. Hij is dus langzamer dan de basisgolf ad a en ad b, tenzij $c = \sqrt{\frac{g}{d}}$,
dus ondiep water. Hij heeft een amplitude α_2 en een golflengte L_2.

Door de aanwezigheid van de basisgolf en de vrije stoorgolven ontstaan niet-
lineaire interakties welke ook weer resulteren in stoorgolven. Het door elkaar
heenlopen van de diverse golven heeft tot gevolg dat het golfbeeld, hoewel in
de tijd stationair, van plaats tot plaats verschilt. De aanwezigheid van de
stoorgolf met $T' = T/2$ spreekt het meest op die plaatsen waar de top van de
stoorgolf samenvalt met het (veelal wat platte) dal van de basisgolf. Het
blijkt dat er voor deze plaatsen een duidelijke relatie bestaat tussen de re-
latieve waarden van de 2e, 3e en 4e harmonischen en de Ursell parameters

$$U_r = \frac{a L^2}{d^3}$$

(zie bijlage II, uit: Oscillatory Wave Forces on Small Bodies).

Door het golfschot een zodanige combinatie van rotatie en translatie te geven,
dat deze zo nauwkeurig mogelijk aansluit bij de orbitaalbeweging in de op
tekken vormvaste golf, beperkt men de grootte van de "vrije" 2e orde har-
monische stoorgolf. Dit kan men doen met behulp van wieginstelling en exen-
triciteit van het golfschot. Met behulp van de
wieginstelling kan men het (fiktieve) draaipunt
voor de golfschotbeweging instellen, waarna men
met de excentriciteitsinstelling de amplitude kan
regelen. Bij gegeven slag aan waterspiegel en bo-
dem is op deze wijze de juiste instelling van het
golfschot te berekenen.
Om deze instelling te vinden worden in bijlage III enige figuren + toelichting gegeven waaruit hij bepaald kan worden. Oppemerkt dient te worden dat voor relatief ondiep water deze ideale golfschotinstelling goed benaderd wordt door een zuiver translatieschot. Ook dient men zich te realiseren dat de waterbeweging bij een staande golf afwijkt van die van een lopende golf. In een perfekte staande golf treden in de buiken alleen maar vertikale en in de knopen alleen maar horizontale snelheden op.

N.B. De problematiek der stoorgolven is nogal ingewikkeld. Het is daarom wellicht het meest doeltreffend een golf op te wekken en bij de inkomende golf gewoon te kijken of er een stoorgolf optreedt. Zo dit niet te konstateren is kan men het verschijnsel waarschijnlijk beter verwaarlozen. Bij vraagstukken betreffende sedimenttransport dient men hiermede erg op te passen, daar daarbij de stoorgolven wel van belang schijnen te zijn.

Literatuur:
- S 55-III - sept. 1972 - WL.
 Golfopwekking in relatief ondiep water - ir. C.H. Hulsbergen
- Mouvements ondulatoires de la mer en profondeur constante ou décroissante
 Annales des Ponts en Chausées 1944 - Miche, M.
- Théorie de la génération de la houle cylindrique par un batteur plan
 La Houille Blanche, 1961 no. 1 en 2 - Fontanet, P.
- Oscillatory Wave Forces on Small Bodies- J.P. Hooft
 Publikatie nr. 331 van NSP - Wageningen
- Stencil: Reproduktie golfverschijnselen en golfbelastingen op konstrukties (WL).

4.2 Bepaling reflektiekoëfficiënt in afhankelijkheid van de golfooghte

Volgens Yoshimi Coda en Yoshiki Abe veroorzaakt de berekening van de reflektiekoëfficiënt via de lineaire theorie voor golven met een grote steilheid die weerkaatsen tegen een object met een grote reflektiekoëfficiënt een te lage schatting van de reflektiekoëfficiënt en een te hoge schatting van de inkomende golfhoogte. Zij hebben de berekende reflektiekoëfficiënten vergeleken met de werkelijke en deze uitgezet voor een aantal relatieve dieptes op de volgende wijze:
Hierbij is \(r \) de werkelijke reflektieëfficiënt en \(r' \) de berekende.
Met deze diagrammen kunnen, aldus de auteurs, de laboratoriumgegevens over
golfreflektie die met behulp van de lineaire methode bepaald zijn gekorri-
geerd worden zodat de werkelijke waarden van de reflektieëfficiënt en de
golfhoogte bekend zijn.
Ook geven zij via een derde orde golfberekening aan dat de golflengtes van
tegen elkaar inlopende golven afnemen, waarbij de amplitudes toenemen. Ook
dit wordt grafisch uitgezet. Een resultaat van dit verschijnsel is dat de
staande golf een klein beetje groter is dan twee keer de hoogte van de afzon-
derlijke golven.

N.B. Ook konkluderen zij uit hun afleiding dat in de knopen van staande gol-
ven een trilling met dubbele frequentie optreedt, welke voornamelijk te wij-
ten is aan de tweede harmonische component van golven met een eindige ampi-
litude.

Literatuur:
Apparent Coefficient of Partial Reflection of Finite Amplitude Waves.
- Y. Goda en Y. Abe:
7, No. 3, September 1968, Nagase, Yokosuka, Japan.

4.3 Opgewekte translatiegolven

Bij het werken met een ten dele geopende konstruktie, zal een variërend verval
over de konstruktie, hetwelk door de golven opgewekt wordt, translatiegolven
teweegbrengen, die zich naar weerszijden van de konstruktie voortplanten. Het
is aan te bevelen deze golven aan het eind van de goot uit te dempen om te
voorkomen dat ze bij de konstruktie terugkeren. Ten einde een indruk te krijgen van de grootte van deze golven is zowel bij korte golftreinen als bij een permanent staande golf voor en achter de konstruktie de golfhoogte bepaald (M 1419). Deze metingen zijn te vinden in bijlage IV.

Men dient zich wel te realiseren dat hierbij ook een gedeelte van de niet-ge-reflekteerde golfenergie zit. Hiervan zal een gedeelte middels vrijving, turbulenties, trillingen van de konstruktie e.d. verloren gaan, doch een ander gedeelte zal de konstruktie passeren.

De translatiegolf naar het golfschot toe zal dus kleiner zijn dan de achter de konstruktie geregistreerde golf. Bovendien kan in de permanente situatie opslingering achter de konstruktie plaatsvinden doordat geen demping achter in de goot plaatsvond (bij stromend water zal waarschijnlijk wel een zekere demping optreden). Het is niet duidelijk op welke wijze een goede indikatie voor de grootte van de translatiegolven kan worden verkregen. Slechts twee zaken zijn duidelijk: de translatiegolf voor de konstruktie is kleiner dan de achter de konstruktie gemeten golf en de translatiegolf heeft dezelfde periode als de opgewekte golf.

4.4 Golven bij stromend water

Wel kan men via het plaats-tijd diagram de plaats van maximale en minimale uitwijking bepalen. Deze worden gegeven door $\hat{\eta}_{\text{max}} = \varepsilon a_A + r\phi_A$ en $\hat{\eta}_{\text{min}} = \varepsilon a_A - r\phi_A$, waarin $\varepsilon = f(u,c_A)$ en $\phi = f(u,c_A)$ (zie bijlage V), waarin u de snelheid van het water is en c_A de voortplantingssnelheid van de golf in stilstaand water. Bij gegeven watersnelheid kan men op deze wijze toch de reflektiekoëfficiënt bepalen via $r = \frac{\varepsilon \hat{\eta}_{\text{max}} - \hat{\eta}_{\text{min}}}{\phi \hat{\eta}_{\text{max}} + \hat{\eta}_{\text{min}}}$.
4.5 Capillaire krachten bij modelonderzoek

Bij het gebogen oppervlak van golven ontstaat in de grenslaag lucht-water een spanning, die de oppervlaktespanning genoemd wordt:

\[\sigma = \frac{\sigma_0}{1 + \frac{\tau k^2}{g}} \]

Met name bij hele kleine golfjes en een sterk gebogen oppervlak is dit van invloed, omdat er in de vloeistof overdruk moet ontstaan om evenwicht te maken met de extra spanning door de vertikale ontbondene van de oppervlaktespanning.

Wanneer men dit uitwerkt voor een gelineariseerde golf vindt men voor de voortplantingssnelheid op diep water:

\[c^2 = \frac{g}{k} (1 + \frac{\tau k^2}{g}) \]

in plaats van de normale \(c^2 = \frac{g}{k} \) \((k = \frac{2\pi}{L}) \)

(waarbij \(\tau = \frac{\sigma}{\rho} \)).

Dit levert de volgende grafiek in plaats van die voor zwaartekrachtgolven:

Boven een bepaalde golflengte-golfhoogte-verhouding is de oppervlakte spanning te verwaarlozen.

Als \(\frac{\tau k^2}{g} \gg 1 \) + duidelijk capillaire golven

als \(\frac{\tau k^2}{g} \ll 1 \) + duidelijk zwaartekrachtgolven.
Ter informatie: bij 20° C is \(\tau \approx 74 \times 10^{-6} \text{ m}^3/\text{s}^2 \).

Er is dus een zekere ondergrens waar beneden men de invloed van de oppervlaktespanning niet meer kan verwaarlozen.

N.B. Voor het overbrengingsmechanisme van de energie van de wind op het water speelt het capillaire aspekt waarschijnlijk een rol.

4.6 Plaats van meting

Men dient enige voorzichtigheid te betrachten bij het meten van golven. Hierbij dient onderscheid gemaakt te worden tussen onregelmatige golven en regelmatige golven. Meent men bij onregelmatige golven op enige afstand voor de konstruktie, dan vindt men een min of meer constante waarde voor de energiedichtheid. Vlak bij de konstruktie echter stelt zich over korte afstand een (variërende) staande golf in die dit beeld kan verstoren.

Een tweede probleem speelt wanneer de konstruktie niet gelijkvormig is over de breedte (zoals bij M 1419: in het midden een open schuif, aan de zijkanten gesloten). In dat geval varieert de reflectiekoëfficiënt over de breedte en doet men er verstandig aan op enige afstand van de konstruktie te meten, waar de verschillen enigszins genivelleerd zullen zijn.

Literatuur: rapport onderzoek M 1320 (WL).

4.7 Wijze van instellen

Bij veel golfgoten kan men op twee wijzen een gewenst aantal golflengtes instellen tussen konstruktie en golfschot. Door de frekwentie te variëren zal men de golflengte beïnvloeden en door het golfschot te verplaatsen de afstand golfschot-konstruktie. Nu is het evident dat een door een frekwentieverandering gewijzigde golflengte iedere golf verandert en derhalve met het aantal golflengtes tussen konstruktie en golfschot vermenigvuldigd moet worden om de korrigierende werking te kennen. Deze kan al snel groot zijn en vooral waar geen digitaalmeter op de frekwentie-instelling van het golfschot aanwezig is, kan dit leiden tot erg lang zoeken voordat bij relatief lange goot een mooie staande golf ingesteld is. Daarom zal men hier na globale instelling van de frekwentie de juiste instelling bepalen met de plaats van het golfschot. Een illustratie hiervan vindt men in bijlage VI.

Gekonstateerd is dat de lengte van de staande golf niet over de hele goot
konstant is. Dit geeft een extra komplikatie in het berekeningschepisch vaststellen van plaats en frequentie van het golfschot.

Opmerking: om een regelmatig patroon te verkrijgen moet de hoeveelheid energie die door het golfschot aan het water overdragen wordt per periode konstant zijn. De waterspiegel bij het golfschot dient dus per cyclus gelijk te zijn. Door bij het golfschot te kijken en deze in (bijvoorbeeld) een knoop te zetten kan men dit controleren en eventueel corrigeren.

4.8 Benodigde insteltijd

Het duurt enige tijd voordat een permanente situatie ingesteld is. De golf dient enige malen heen en weer te lopen ten einde z'n energie op te bouwen. Tijd van invloed van een golf bij aangenomen reflectiecoefficiënt van constructie 0,5 en golfschot 0,9:

Buik bij constructie: 1e keer : \(H + 0.5 \times H = 1.5 \times H \)
2e keer : \(0.5 \times 0.9 \times H + 0.5^2 \times 0.9 \times H = 0.68 \times H \)
3e keer : \(0.5^2 \times 0.9^2 \times H + 0.5^3 \times 0.9^2 \times H = 0.30 \times H \)
4e keer : \(0.5^3 \times 0.9^3 \times H + 0.5^4 \times 0.9^3 \times H = 0.14 \times H \).

De golf dient in dit geval zo'n 3 à 4 keer heen en weer te lopen (eigenlijk iets meer in verband met het voortplanten van de golffnergie) alvorens een permanente situatie is ingesteld. Wanneer de frequentie-instelling en de plaats van het golfschot niet helemaal korrekt zijn, zal zich geen stabiele situatie instellen.

4.9 Meting korte golftrein

Bij het meten van een korte golftrein dient men zich te realiseren dat de golf enige tijd nodig heeft om zich op te bouwen. Dit kan belangrijk zijn in verband met de afstand golfschot-constructie ten opzichte van de golflengte. Is men namelijk niet in staat om de inkomende golf te meten, wanneer de constructie ingebouwd is, dan doet men er verstandig aan bij een aantal instellingen van het golfschot deze reeds van te voren op te meten.

De benodigde tijdsduur voor de opbouw van een golf vindt men als volgt (via de lineaire theorie): de in een golf aanwezige energie is

\[E_{\text{tot}} = \frac{1}{2} \rho g a^2 = \frac{1}{6} \rho g H^2. \]

Verder is

\[E_{\text{pot}} = E_{\text{kin}} = \frac{1}{4} \rho g a^2. \]

Bij voortplanting van een golf is:

\[E_{k,\text{nieuw}} = \frac{1}{2} E_p = \frac{1}{2} E_k = E_{p,\text{nieuw}}. \]
E_k halveert $\rightarrow H_2 = \sqrt{\frac{1}{2}} H_1 = 0,71 H_1$.

Bij wijze van voorbeeld worden hier de golfhoogtes gegeven vanaf het golfschot wanneer deze 15 trillingen heeft gedaan: (theoretisch)

\[
\begin{align*}
0,99997 H &- 0,9998 H - 0,998 H - 0,99 H - 0,97 H - 0,92 H - 0,83 H - 0,70 H - \\
\approx H \\
0,54 H &- 0,38 H - 0,24 H - 0,13 H - 0,06 H - 0,0221 H - 0,0055 H.
\end{align*}
\]

niet te constateren

Dus in verloop van 6 à 7 T bouwt de golf zich op. Meet men dichter bij het golfschot dan gaat dit iets sneller. Zo vindt men na 5 trillingen:

\[
\begin{align*}
0,98 H &- 0,90 H - 0,71 H - 0,43 H - 0,18 H. \\
\approx H \\
\end{align*}
\]

zich op.
BIJLAGE I

Neem aan een golf met $L = 30$ m, $T = 4,5$ sek, $H = 3,0$ m (naar Mc. Cormick).
Enig rekenwerk levert

\[v = \frac{\pi H}{T} = \frac{\pi \cdot 3}{4,5} = 2,10 \text{ m/s} \]

\[\frac{1}{2}v^2 = 2,2 \text{ m}^2/\text{s}^2 \]

\[g z_{\text{max}} = 10 \cdot 1,5 = 15 \text{ m}^2/\text{s}^2. \]

De verhouding tussen de termen is $\frac{2,2}{15} \approx 0,15$.

Neem nu aan een golf met $L = 30$ m, $T = 4,5$ sek, $H = 0,3$ m.

Nu is \[v = \frac{\pi H}{T} = 0,21 \text{ m/s} \rightarrow \frac{1}{2}v^2 = 0,022 \text{ m}^2/\text{s}^2 \]

\[g z_{\text{max}} = 10 \cdot 0,15 = 1,5 \text{ m}^2/\text{s}^2. \]

De verhouding hier bedraagt $\frac{0,022}{1,5} = 0,015$.
RELATIE TUSSEN URSELL PARAMETERS EN DE RELATIEVE WAARDEN DER 2e, 3e EN 4e HARMONISCHEN.
BIJLAGE III

Golfopwekking: Instelling van het wieggolfschot. Golfhoogte - slagverhouding

Voor het bepalen van de verhouding van slag van het golfschot (op de waterlijn) en de golfhoogte, bij variabele golflengte-waterdiepte-verhouding, is uitgegaan van de formules die F. Biëssel geeft in het artikel "les appareils générateurs de houle en laboratoire" (La Houille Blanche).

Symbolen:

\[T = \text{golfperiode} \]
\[H = \text{golfhoogte (top-dal)} \]
\[D = \text{waterdiepte} \]
\[L = \text{golflengte} \]
\[S = \text{slag (dubbele amplitude) van het golfschot op de waterlijn} \]
\[S_0 = \text{slag van het golfschot aan de bodem} \]
\[k = \frac{2\pi D}{L} \]
\[K = \frac{H}{S} \text{ bij translatiebeweging} \]
\[K' = \frac{H}{S} \text{ bij rotatiebeweging (draaipunt op de bodem).} \]

Grafiek I geeft voor enkele waterdiepten verband tussen \(L \) en \(T \).

Grafiek II geeft \(K \) en \(K' \) als functie van \(\frac{2\pi D}{L} \).

Grafiek III en IV geven de optimale instelling van het wieggolfschot als functie van \(D \) en \(T \). De slag aan de bodem \(S_0 \) is gelijk gecomen aan de as van de orbitaalbeweging aan de bodem

\[S_0 = \frac{1}{H} \frac{1}{\text{sh} kD} \]

Daarbij is een zodanige slag op de waterlijn \(S \) berekend dat juist de gewenste golfhoogte \(H \) ontstaat.
VERBAND TUSSEN T, L EN D

\[
T = \sqrt{\frac{2\pi L}{g \cdot \text{th} \cdot kD}}
\]

GRAFIEK I
BIJLAGE IV

Ten einde de grootte van de translatiegolf te kunnen bepalen, is getracht deze rekentechnisch vast te stellen en daarna te verifiëren aan de metingen. Dit is gedaan door het debiet bij verschillend verval te bepalen middels de formule \(Q = \mu A \sqrt{2gh} \), waarbij \(\mu \) uit bekende meetgegevens is gedestilleerd (overigens was deze waarde vrij onnauwkeurig en bovendien afhankelijk van verval en gemiddelde waterstand). Ervar uitgaande dat het debiet onmiddellijk op de verval-variaties reageert is via \(Q = h.b.c. \) de grootte van de te verwachten translatiegolf berekend. Deze bleek niet eenduidig overeen te stemmen met de metingen achter de konstruktie. Het is echter mogelijk dat dit aan onnauwkeurigheden in de proeven te wijten is, afgezien van de niet gereflekterde of gedissipeerde golfenergie en de fluktuaties ten gevolge van het woelige stromingsbeeld zoals die bij \(Q = 60 \) l/s lijken op te treden (M 1419).
Stilstaandwater 15 sec. golven ±6 m. voor de constructie.

Stilstaandwater 15 sec. golven achter de constructie.

0.40 l/sec. inkomendegolf \(u=0.108 \text{ m/s} \)

0.40 l/sec. korte golf achter de constructie \(u=0.108 \text{ m/s} \)

Vergelijking inkomendegolf en geïnduceerde translatiegolf achter de constructie bij verschillende debieten.
$Q = 60 \text{ l/s} \quad \Rightarrow U = 0,162 \text{ m/s}$

golf achter de constructie.

$Q = 60 \text{ l/s}
\quad \text{15 sec. golven inkomendegolf } \pm 21 \text{ m voor de constructie.}$
BIJLAGE V

Verandering van golfsnelheid, -lengte en -hoogte in gebieden met stromingen

Bevindt zich ergens een watermassa in beweging dan blijven alle voor stilstaand water geldende wetmatigheden van kracht mits alle gegevens betrokken worden op het bewegende water. Dit wordt echter anders wanneer golven uit een gebied zonder stroom in een gebied met stroom geraken. Voor diep water geldt dan het volgende:

De snelheid van golven ten opzichte van het bewegende water wordt gegeven door de formules die ook voor diep water gelden: \(L = \frac{2\pi c^2}{g} \), waarin \(c \) is de snelheid ten opzichte van het water. Lopen de golven van een vast punt buiten de stroom (A) naar een vast punt in de stroom (B) dan is in beide punten de periode echter dezelfde. Wanneer deze periode is \(T' \) en \(U \) is de stroomsnelheid in B dan geldt in A: \(T' = \frac{L}{C_0} \) en in B: \(T' = \frac{L}{C + U} \). Hierin zijn \(C_0 \) en \(L \) golsnelheid en golflengte voor het binnentreden van de stroom en \(C \) en \(L \) de golsnelheid ten opzichte van het water en de golflengte bij B.

Dit geeft: \(\frac{L}{C_0} = \frac{L}{C + U} \).

Bij uitdrukken van \(L \) in \(C_0 \) en \(L \) in \(C \) geeft dit:

\[
\frac{2\pi c^2}{g} \frac{C}{C_0} = \frac{2\pi c^2}{C + U} \text{ ofwel } C_0(C + U) = C^2.
\]

Dit is om te werken tot: \(\frac{C}{C_0} = \frac{1}{2}(1 + \sqrt{1 + \frac{4U}{C_0}}) \).

Daar \(L : L_0 = C^2 : C_0^2 \) volgt hieruit:

\[
\frac{L}{L_0} = \frac{1}{4}(1 + \sqrt{1 + \frac{4U}{C_0}})^2.
\]

Om de golfhoogteverandering te berekenen wordt de energieverplaatsing beschouwd. Deze moet (afgezien van storende effekten) bij B dezelfde zijn als bij A, anders zou er daartussen energie-ophoping plaatsvinden of energie verdwijnen.

Het energietransport per m' dwars bij A is: \(\frac{1}{2} C_0 E_0 \) en bij B \(\frac{1}{2} CE + UE \) (\(E = \) golfgenergie per m²).
Dus: \(\frac{1}{2} C_0 E_0 = \frac{1}{2} CE + UE \) of \(\frac{E}{E_0} = \frac{1}{2} C_0 / (\frac{1}{2} C + U) \) of

\[
\frac{H}{H_0} = \sqrt{\frac{\frac{1}{2} C_0}{\frac{1}{2} C + U}} = \sqrt{\frac{1}{C_0 + 2U/C_0}} = \sqrt{\frac{4U/C_0 + 1 + \sqrt{1 + 4U/C_0}}{C_0}}.
\]

Voor meer informatie en verdere toepassingen zijn verwezen naar:
- Zeegolven. Dr. P. Groen en Dr. R. Dorrestein.

Beschouw nu een lineaire golf:

\(\eta = a \sin(\omega t - kx) \).

Bij stromend water zal deze golf met de stroming mee uitrekken, waarbij ook de amplitude kleiner wordt, terwijl tegen de stroming in de golflengte kleiner wordt en de amplitude groter.

Neem aan: stroomsnelheid water = U.

(Noem langere golf nr. 1 en kortere nr. 2, originele nr. A.)

Nu is: \(\frac{L_1}{L_A} = \frac{1}{4}(1 + \sqrt{1 + \frac{4U}{C_A}})^2 = \alpha \)

en \(\frac{L_2}{L_A} = \frac{1}{4}(1 + \sqrt{1 - \frac{4U}{C_A}})^2 = \beta \)

Ook is: \(C_1 = C_A \left(\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{U}{C_A}} \right) = \gamma C_A \)

en \(C_2 = C_A \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{U}{C_A}} \right) = \delta C_A \).

De bijbehorende golfhoogtes worden:

\[
\frac{H_1}{H_A} = \sqrt{\frac{4U/C_A + 1 + \sqrt{1 + 4U/C_A}}{C_A}} = \epsilon.
\]
\[
\begin{align*}
\frac{H_2}{H_A} &= \sqrt{\frac{2}{\frac{-\Delta U}{C_A} + 1 + \sqrt{1 - \frac{4U}{C_A}}} = \phi \\
\text{In formule: } \omega &= \frac{2\pi}{T} = \text{identiek} \\
k_1 &= \frac{2\pi}{L_A} = \frac{2\pi}{\alpha L_A} = \frac{k_A}{\alpha} \text{ en } k_2 = \frac{2\pi}{\beta L_A} = \frac{k_A}{\beta} \\
a_1 &= \varepsilon a_A \text{ en } a_2 = \phi a_A.
\end{align*}
\]

De twee golven zijn nu (tegen elkaar inlopend) als volgt te schrijven:

\[
\eta_1 = \varepsilon a_A \sin(\omega t - \frac{k_A}{\alpha} x) \text{ en } \eta_2 = \phi a_A \sin(\omega t + \frac{k_A}{\beta} x).
\]

Als de konstruktie slechts partieel reflektie met reflektiekoëfficiënt \(r \) is:

\[
\eta_2 = r\phi a_A \sin(\omega t + \frac{k_A}{\beta} x).
\]

Nu is:

\[
\begin{align*}
\eta_1 &= \varepsilon a_A \left(\sin\omega t \cos \frac{k_A}{\alpha} x + \cos\omega t \sin \frac{k_A}{\alpha} x \right) \\
\eta_2 &= r\phi a_A \left(\sin\omega t \cos \frac{k_A}{\beta} x - \cos\omega t \sin \frac{k_A}{\beta} x \right) \\
\eta_t, x &= \eta_1 + \eta_2 = \sin\omega t (\varepsilon a_A \cos \frac{k_A}{\alpha} x + r\phi a_A \cos \frac{k_A}{\beta} x) + \\
&+ \cos\omega t (\varepsilon a_A \sin \frac{k_A}{\alpha} x - r\phi a_A \sin \frac{k_A}{\beta} x).
\end{align*}
\]

Stel nu: \(p = \varepsilon a_A \cos \frac{k_A}{\alpha} x + r\phi a_A \cos \frac{k_A}{\beta} x \)

\[
\text{en } g = \varepsilon a_A \sin \frac{k_A}{\alpha} x - r\phi a_A \sin \frac{k_A}{\beta} x.
\]
Dan is: \(\eta_{t,x} = p \sin \omega t + g \cos \omega t \).

Stel \(\tan \xi = \frac{\sin \xi}{\cos \xi} = \frac{g}{p} + \cos = \frac{p}{\sqrt{p^2 + g^2}} \)

\[
\eta_{t,x} = \frac{p}{\cos \xi} (\cos \xi \sin \omega t + \sin \xi \cos \omega t)
\]

\[
\eta_{t,x} = \sqrt{p^2 + g^2} \sin(\omega t + \xi)
\]

\[
\eta_{t,x} = \hat{\eta}_x \sin(\omega t + \xi)
\]

Dus:

\[
\hat{\eta}_x = \sqrt{(\varepsilon a_A \cos \frac{k_A}{\alpha} x)^2 + (\varepsilon a_A \cos \frac{k_A}{\beta} x)^2 + (\varepsilon a_A \sin \frac{k_A}{\alpha} x)^2 + (\varepsilon a_A \sin \frac{k_A}{\beta} x)^2 + 2 \varepsilon a_A \cos \frac{k_A}{\alpha} x \cdot \varepsilon a_A \cos \frac{k_A}{\beta} x -
\]

\[
- 2 \varepsilon a_A \sin \frac{k_A}{\alpha} x . \varepsilon a_A \sin \frac{k_A}{\beta} x -
\]

\[
\hat{\eta}_x = \sqrt{(\varepsilon a_A)^2 + (\varepsilon a_A)^2 + 2 \varepsilon a_A^2 \cos (\frac{k_A}{\alpha} x + \frac{k_A}{\beta} x) .
\]

\[
\hat{\eta}_x = \sqrt{4U^2 A + 1 + \sqrt{1 + 2U^2 A} + \sqrt{1 + 2U^2 A} .
\]

\[
\hat{\eta}_{\max} = \varepsilon a_A + \varepsilon a_A
\]

\[
\hat{\eta}_{\min} = \varepsilon a_A - \varepsilon a_A
\]

\[
\alpha = \frac{1}{4} (1 + \sqrt{1 + \frac{4U^2}{C_A}})^2
\]

\[
\beta = \frac{1}{4} (1 + \sqrt{1 - \frac{4U^2}{C_A}})^2
\]

\[
\varepsilon = \sqrt{\frac{4U^2}{C_A} + 1 + \sqrt{1 + \frac{4U^2}{C_A}}}
\]

\[
\phi = \sqrt{\frac{-4U^2}{C_A} + 1 + \sqrt{1 - \frac{4U^2}{C_A}}}
\]
Wanneer men een plaats-tijd diagram maakt vindt men voor de maximale waarden weer een cos-profiel. Daar de golflengte hiervan beïnvloed wordt door de faktor \(\frac{1}{\alpha} + \frac{1}{\beta} \) neemt de lengte van deze golfbeweging bij toenemende snelheid af. Dit is als volgt te kwantificeren:

\[
\begin{align*}
0 & \; 1/s \Rightarrow C_A = 2,06 & \alpha = 1 & \beta = 1 & \frac{1}{\alpha} + \frac{1}{\beta} = 2 \\
20 & \; 1/s + U = 0,054 m/s \Rightarrow \frac{4U}{C_A} = 0,105 & \alpha = 1,05 & \beta = 0,95 & 2,01 \\
40 & \; 1/s + U = 0,108 m/s \Rightarrow \frac{4U}{C_A} = 0,210 & \alpha = 1,10 & \beta = 0,89 & 2,03 \\
60 & \; 1/s + U = 0,162 m/s \Rightarrow \frac{4U}{C_A} = 0,315 & \alpha = 1,15 & \beta = 0,84 & 2,06.
\end{align*}
\]

De metingen stemmen hiermee overeen. Het steeds terugkerende patroon in de plaats-tijd diagrammen is wellicht te wijten aan boven harmonischen.

Berekent men voor \(Q = 0, Q = 40 \) en \(Q = 60 \) l/s de reflektiekoëfficiënt via:

\[
\begin{align*}
\hat{\eta}_{\text{max}} &= \varepsilon a_A + r \phi a_A \\
\hat{\eta}_{\text{min}} &= \varepsilon a_A - r \phi a_A \\
r &= \frac{\hat{\eta}_{\text{max}} - \hat{\eta}_{\text{min}}}{\hat{\eta}_{\text{max}} + \hat{\eta}_{\text{min}}},
\end{align*}
\]

dan levert dit voor de verschillende plaatsstijddiagrammen:

\[
\begin{align*}
Q = 0 & \; 1/s \Rightarrow r = 0,69 \\
Q = 40 & \; 1/s \Rightarrow r = 0,43 \\
Q = 60 & \; 1/s \Rightarrow r = 0,38.
\end{align*}
\]

Er zit een dalende tendens in de reflektiekoëfficiënt bij toename van de stroming.
$T_{golf} \approx 1.32$ sec.

Richting golfschot
constructie

Stilstaandwater

Richting golfschot

15sec

15sec

Stromendwater $u=0.108 \, \text{m/s}$ $Q=40 \, \text{l/s}$

Richting golfschot

Stromendwater $u=0.162 \, \text{m/s}$ $Q=60 \, \text{l/s}$

Plaats_tijd diagrammen bij verschillende stroomsnelheden.

UIT M1419

A4

WATERLOOPKUNDIG LABORATORIUM Bijlage I Blz. 7
Moment opnamen van inkomende golf en gereflecteerde golf \((r=1)\) bij stromend water.
BIJLAGE VI

In WL-onderzoek M 1419 werd gewerkt met de volgende gegevens:

\[d = 0,37 \text{ m} \]

\[k = \frac{2\pi}{L} \]

\[T = 46 \text{ perioden/min} \rightarrow T = 1,30 \text{ sek} \]

\[C_o = \frac{gT}{2\pi} = 2,03 \text{ m/s} \rightarrow L_o = 2,64 \text{ m} \rightarrow \frac{d}{L_o} = 0,1402. \]

Uit tabellen S.P.M. III: \(\frac{d}{L} = 0,1751 \rightarrow L = 2,1131 \text{ m} \).

Neem nu \(T = 45,5 \text{ perioden/min} \rightarrow T = 1,32 \text{ sek} \)

\[C_o = 2,06 \text{ m} \rightarrow L_o = 2,72 \text{ m} \rightarrow \frac{d}{L_o} = 0,1361. \]

Hieruit volgt: \(\frac{d}{L} = 0,1717 \rightarrow L = 2,1549 \)

Verschil in golflengte: 0,0418 m.

Bij een afstand van 40 m en een aantal golflengtes \(\frac{40}{2,14} \approx 19 \) tussen constructie en golfschot geeft dit een lengteverandering: 0,79 m ofwel 0,37 × gemiddelde golflengte. Dit is erg veel, zeker als men de figuren hierna beziect waar de invloed blijkt van een verstelling van 3 cm van het golfschot. Uiteraard ligt dit probleem bij relatief korte goten geheel anders.
registratie bij de constructie in buik een tijd laten ingolven.

56 cm. (½λ) golfschot verplaatst
links registratie in buik - rechts plaats tijds diagram.

verplaatsing 3 cm naar cabine toe. (slechter) (registratie in buik)

verplaatsing 6 cm naar golfschot toe. (slechter) (registratie in buik)

verplaatsing 3 cm naar cabine toe. (registratie in buik)

Invloed van kleine verplaatsingen van het
golfschot op het golfpatroon.

UIT M1419

A4

WATERLOOPKUNDIG LABORATORIUM

Bijlage VI

Blz. 2
LIJST VAN GEBRUIKTE SYMBOLEN

a amplitude
b golfnelheid
c waterdiepte
d frekwentie
e zwaartekrachtversnelling
f golfgetal
g druk
h reflektiekoëfficiënt
i watersnelheid
j snelheid van deeltje in de orbitaalbeweging
k plaatshoogte (meestal t.o.v. stilwaterniveau)
l golfenergie
m golfhoogte (top-dal)

n golflengte
o debiet in goot
p periode
q α
r β
s γ
	n δ
u ε
v φ
w ϕ
x ι_{max}
y ι_{min}
z τ

{ functies van U en C_A

\rho dichtheid water
\sigma oppervlaktespanning
\tau \sigma/\rho
\omega hoekfrekwentie
\omega_0 index voor diep water
\omega_A index voor stilstaand water-situatie