Variable Amplitude Fatigue of FMLs
On Developing a Mechanistic Understanding

Calvin Rans, René Alderliesten, Rinze Benidictus, Sharif Khan
Faculty of Aerospace Engineering, Delft University of Technology
3-12-2009
Outline

• Introduction
• Background
• From constant to variable amplitude loading
 • Delamination growth
 • Delamination shape
 • Crack tip plasticity
 • Crack Growth
• Conclusions
Introduction

Fatigue of FMLs

- Superior fatigue crack growth performance
 - Thin metallic layers (plane stress)
 - Fiber bridging mechanism
Introduction

Fatigue of FMLs

- Full utilization of FML potential requires a fundamental understanding of fatigue phenomenon
- This is not possible through standard open hole initiation and center cracked tension specimens
 - Infinite combination of metals and fibers → infinite tests
 - Testing is expensive!
 - Data for past configurations will limit exploration of new configurations
- Analogous to composite world
 - Continued use of quasi-isotropic layups despite promises for full customization
Introduction

Fatigue of FMLs

- Development and certification can be done the hard way
 - Demonstrated for the A380
- Airbus recognized the value of developing generic models
 - Research collaboration resulted in generic crack initiation and growth models for constant amplitude loading
 - Continued research on variable amplitude fatigue and residual strength
- Efforts will allow design and virtual testing of arbitrary FMLs for arbitrary loading scenarios!
Background

Constant Amplitude Fatigue Model for FMLs
Background

Constant Amplitude Fatigue Model for FMLs

- Superposition of bridging load

\[G = f(S_{metal}, S_{fibre}, S_{br}) \]
Background

Determining the Bridging Load
Background

Determining the Bridging Load

- Cracked adherent
 \[\nu = \nu_\infty - \nu_{br} \]

- Undamaged adherent
 \[\delta = \delta_\infty + \delta_{br} + \delta_{ad} \]

Over delamination length, \(b \)
\[\nu = \delta \rightarrow S_{br} \]
Background

Implementation for Constant Amplitude Fatigue

Crack Length

Delamination Shape/Size

Applied Loads

Lamina stress

Determine bridging stress for current geometry

\[K = K_{\infty} - K_{br} \]

\[G = f(S_{metal}, S_{fibre}, S_{br}) \]
From CA to VA Fatigue
Developing a Fundamental Understanding

- How does variable amplitude loading affect each mechanism?
 - Delamination behavior
 - Crack growth behavior
- What mechanisms are present?
 - Load history effects
 - Plasticity and retardation effects
- Can we develop a generic understanding?
Delamination Behavior

Variable Amplitude Growth

- Useful to study delamination growth behavior independent of crack growth
- Use of ply interrupt specimen (Mode II growth)
- Configuration provides precise control over delamination growth driving force

\[G \neq f(b) \]
Delamination Behavior

Variable Amplitude Growth

<table>
<thead>
<tr>
<th>Block Loading</th>
<th>Programmed Load Spectra</th>
<th>Repetitive Overloads</th>
<th>Fatigue Spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lo → Hi</td>
<td>- Lo → Hi → Lo</td>
<td>- Mini-Twist</td>
<td>- Mini-Twist</td>
</tr>
<tr>
<td>- Hi → Lo</td>
<td>- Hi → Lo → Hi</td>
<td>- Wide body fuselage spectra</td>
<td>- Wide body fuselage spectra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Delamination Behavior

Variable Amplitude Growth

- No apparent retardation effects
- No history effects observed for block loading
- Results correspond to CA delamination growth rates

\[\frac{db}{dN} \propto \sqrt{G_{\text{max}}} - \sqrt{G_{\text{min}}} \]

Suggests suitability of LDA
Delamination Behavior

Variable Amplitude Growth

- LDA under predicts delamination growth (changing mean stress)
- Small shear deformations do not contribute to growth

Overcome with rain flow counting
Delamination Behavior

Shape Behavior After Over Load

- What happens when there is a crack?
Delamination Behavior

Shape Behavior After Over Load

- Kinked shape not predicted by linear damage accumulation
- Plastic zone due to overload causes local stress redistribution
 - Analogous to post stretching
 - Reversal of residual stress state
 - Modified bridging load

\[\text{stress} \]

\[\sigma_{\text{aluminium}} \]

\[\sigma_{\text{fiber layer}} \]

\[\text{strain} \]

residual stress in ‘as cured’ laminate

residual stress in ‘stretched’ laminate
Delamination Behavior

Shape Behavior After Over Load

- Reduction of metal layer and bridging stress in overload plastic zone
- Reduced bridging stress => reduced delamination growth
- No effect on crack growth \((K_{\text{tip}} = K_{\text{ff}} - K_{\text{br}}) \)

\[
S_{\text{al}} + S_{\text{br}} = S_{\text{applied}}
\]

Section A-A: ‘as-cured’

Section B-B: ‘post-stretched’
Crack Tip Plasticity

Stiffness Miss-Match Considerations

- Plasticity known to influence metal VA fatigue
- Considering combination of aluminum with glass/epoxy
 - Stiffness of metal higher than fibers
 - Stress in metal layers higher than applied stress
 - Exacerbated by curing stress
- Situation can be different
 - Relative stiffness of constituents
 - Thermal expansion coefficients of constituents

![Stress Diagram](image)
Crack Tip Plasticity

Fiber Bridging

- Fiber bridging reduces crack tip stress
- Relative to monolithic Al under same load
 - Smaller plastic zone
 - Less crack growth retardation due to overload

GLARE3 – 5/4 – 0.4

Note the higher far field strain in FML
Crack Tip Plasticity

Metal Layer Thickness

- FML layer thickness < 0.5mm
- Transition from Mode I to slanted crack almost instantaneous
- Implications for application of da/dN data from thicker sheets
Crack Tip Plasticity

Fiber Bridging

- Isn’t less crack retardation bad? **No!**
 - Crack bridging present regardless of overload
 - Less crack length dependency on number of delay cycles
 - Overall crack growth performance superior

Less retardation makes it easier to predict VA fatigue behaviour
Variable Amplitude Fatigue of FMLs

Crack Growth

- No history effect for delamination growth
 - Linear damage accumulation possible (delamination growth only)
 - Application of rain flow counting to eliminate small load cycles
- Local stress redistributions affect delamination shape
 - Analogous to post stretching
 - Difference in bridging balanced by stress redistribution (can be neglected in predictions)
- Plastic zone size much smaller in FMLs
 - Complicated retardation models not necessary
Variable Amplitude Predictions

A Simple Example

Crack Length

Delamination Shape/Size

Applied Loads

Lamina stress

Determine bridging stress for current geometry

Wheeler Yield Zone Model

\[K = K_\infty - K_{br} \]

Linear Damage Accumulation

\[G = f(S_{metal}, S_{fibre}, S_{br}) \]
Variable Amplitude Predictions
Block Loading
Variable Amplitude Predictions

Overloads
Variable Amplitude Predictions

Spectra

Significant overloads require crack closure model
Summary

Variable Amplitude Fatigue of FMLs

- It is possible to approach fatigue in FMLs by developing a fundamental understanding of the failure mechanisms
- Such an approach has considerable advantages
 - Generic design tools
 - Optimization potential
 - Reduced testing
 - Improved understanding
- This understanding does exist for FMLs!
Acknowledgements

- The authors thank Airbus Industries, and especially Dr. Thomas Beumler, for funding the research and for his valuable input to the project.

It is clear that development of fundamental understanding and related predictive capability relevant for actual structural applications is only possible with close and direct collaboration between academia and industry.