The geometric basis of mimetic spectral approximations

Marc Gerritsma

René Hiemstra, Jasper Kreeft, Artur Palha and Pedro Rebelo

Faculty of Aerospace Engineering
TU Delft, The Netherlands

Discretization Methods for Polygonal and Polyhedral Meshes

Workshop Milano, 17 September 2012
Relation between physical variables and geometric objects

All physical variables are related to geometric objects

Mass M is associated to a volume, V.

Average density $\bar{\rho} = \frac{M}{V}$. $\rho = \lim_{V \to 0} \frac{M}{V}$

Mathematically justified, but physically questionable.
All physical variables are related to geometric objects

Flux F is associated to a area, A.

Average flux density F/A. $\lim_{A \to 0} \frac{F}{A}$ mathematically justified, but physically questionable.
Relation between physical variables and geometric objects

All physical variables are related to geometric objects

Velocity F is associated to a curve, C.

The velocity, \mathbf{v}, can be measured by recording the position, \mathbf{r}, of a particle at two consecutive time instants, t_1 and t_2. These positions are related to the velocity by

$$\mathbf{r}(t_2) - \mathbf{r}(t_1) = \int_{t_1}^{t_2} \frac{d\mathbf{r}}{dt} \, dt = \int_{t_1}^{t_2} \mathbf{v} \, dt$$

This relation is **exact** and then we approximate ‘the’ velocity by

$$\mathbf{v} \approx \frac{\mathbf{r}(t_2) - \mathbf{r}(t_1)}{t_2 - t_1}$$

Letting $\Delta t = t_2 - t_1 \to 0$ to have the velocity at a time instant is physically not meaningful.
Relation between geometric objects

Boundary operator

The most important operator in mimetic methods is the **boundary operator** ∂

$$\partial : k\text{-dim} \rightarrow (k - 1)\text{-dim}$$
The most important operator in mimetic methods is the boundary operator ∂

$$\partial : k\text{-dim} \rightarrow (k - 1)\text{-dim}$$
Relation between geometric objects

Boundary operator

The most important operator in mimetic methods is the boundary operator ∂

$$\partial : k\text{-dim} \rightarrow (k - 1)\text{-dim}$$
Orientation and type of orientation

Orientation and sense of orientation

Every geometric object can be oriented in two ways. For instance, in a surface we define a sense of rotation, either clockwise or counter clockwise.
Orientation and type of orientation

Orientation and sense of orientation

Every geometric object can be **oriented in two ways**. For instance, in a surface we define a **sense of rotation**, either clockwise or counter clockwise.

Furthermore, we distinguish between **inner-orientation** and **outer-orientation**.
Orientation and type of orientation

Let \star denote the operator which switches between inner- and outer-orientation.
Orientation and type of orientation

Let \star denote the operator which switches between inner- and outer-orientation

Then we have the operations:

$$\partial : k\text{-dim} \rightarrow (k - 1)\text{-dim} \quad \star \partial \star : k\text{-dim} \rightarrow (k + 1)\text{-dim}$$
Oriented dual cell complexes

Double boundary complex

In 3D we have points, curves, surfaces and volumes

Outer Orientation

Inner Orientation

Marc Gerritsma
The geometric basis of mimetic spectral approximations 6 / 30
Matrix representation of boundary operator

Set of points:

\[
\begin{pmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{pmatrix}
\]
Matrix representation of boundary operator

Set of lines:

\[
\begin{pmatrix}
\frac{\partial L_1}{\partial L_1} \\
\frac{\partial L_2}{\partial L_2} \\
\frac{\partial L_3}{\partial L_3} \\
\frac{\partial L_4}{\partial L_4}
\end{pmatrix}
= \begin{bmatrix}
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{pmatrix}
\]
Matrix representation of boundary operator

Surface:

$$\partial \partial S_1 = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix} \begin{pmatrix} \frac{\partial L_1}{\partial L_1} \\ \frac{\partial L_2}{\partial L_2} \\ \frac{\partial L_3}{\partial L_3} \\ \frac{\partial L_4}{\partial L_4} \end{pmatrix}$$
Matrix representation of boundary operator

Surface:

\[
\partial \partial S_1 = \begin{bmatrix}
1 & -1 & -1 & 1 \\
\end{bmatrix} \begin{pmatrix}
\partial L_1 \\
\partial L_2 \\
\partial L_3 \\
\partial L_4 \\
\end{pmatrix}
\]

\[
= \begin{bmatrix}
1 & -1 & -1 & 1 \\
\end{bmatrix} \begin{bmatrix}
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
\end{bmatrix} \begin{pmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4 \\
\end{pmatrix}
\]

\[
= \begin{bmatrix}
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Final remarks geometric objects

Topological vs metric-dependent operations

The boundary operator ∂ is **topological operator**, \star operator is **metric-dependent**.
Final remarks geometric objects

Topological vs metric-dependent operations

The boundary operator ∂ is topological operator, \star operator is metric-dependent.

Nilpotency of ∂ and $\star \partial \star$

Application of the boundary operator twice always yields the empty set: $\partial \circ \partial \equiv 0$
Assigning a value to geometric objects

k-chains and k-cochains

A basic k-dimensional object will be called a k-cell, τ_k. A collection of oriented k-cells is called a k-chain, c_k. The space of all k-chains will be denoted by C_k.

The operation which assigns a value to a physical quantity associated with a geometric object is called a k-cochain, c^k:

$$c^k : C_k \rightarrow \mathbb{R} \quad \iff \quad \langle c^k, c_k \rangle \in \mathbb{R}$$
Assigning a value to geometric objects

k-cochains and integration

\[c^k : C_k \longrightarrow \mathbb{R} \iff \left\langle c^k, c_k \right\rangle \in \mathbb{R} \]

In the continuous setting in 3D this should be compared to

- $k = 0$, point: $f(P)$,
- $k = 1$, curve: $\int_C a(x, y, z) \, dx + b(x, y, z) \, dy + c(x, y, z) \, dz$,
- $k = 2$, surface: $\int_S P(x, y, z) \, dydz + Q(x, y, z) \, dzdx + R(x, y, z) \, dxdy$,
- $k = 3$, volume: $\int_V \rho(x, y, z) \, dxdydz$.
Assigning a value to geometric objects

k-cochains and integration

\[c^k : C_k \rightarrow \mathbb{R} \iff \langle c^k, c_k \rangle \in \mathbb{R} \]

In the continuous setting in 3D this should be compared to

\[k = 0, \text{ point: } f(P) , \]

\[k = 1, \text{ curve: } \int_C a(x, y, z) \, dx + b(x, y, z) \, dy + c(x, y, z) \, dz , \]

\[k = 2, \text{ surface: } \int_S P(x, y, z) \, dydz + Q(x, y, z) \, dzdx + R(x, y, z) \, dxdy , \]

\[k = 3, \text{ volume: } \int_V \rho(x, y, z) \, dxdydz . \]

The expression underneath the integral sign is called a differential k-form, $a^{(k)}$.

\[\langle a^{(k)}, \Omega_k \rangle := \int_{\Omega_k} a^{(k)} \in \mathbb{R} \]
Assigning values to geometric objects

k-cochains and integration

Both integration of differential forms and duality pairing between cochains and chains is a metric-free operation

$$\langle c^k, c_k \rangle \in \mathbb{R} \iff \langle a^{(k)}, \Omega_k \rangle \in \mathbb{R}$$

$\langle c^k, c_k \rangle$ is to be considered as discrete integration.
Cell complex \Leftrightarrow computational grid

If we glue volumes, surfaces, lines and points together we obtain a so-called cell-complex.
The Mother of all equations

The coboundary operator

Duality pairing between chains and cochains allows us to define the adjoint of the boundary operator δ

$$\left\langle \delta c^k, c_{k+1} \right\rangle := \left\langle c^k, \partial c_{k+1} \right\rangle$$

The coboundary operator maps k-cochains into $(k+1)$-cochains:

$$\delta : C^k \rightarrow C^{k+1}$$

$$\partial \circ \partial \equiv 0 \quad \iff \quad \delta \circ \delta \equiv 0$$
The Mother of all equations

The coboundary operator

\[\langle \delta c^k, c_{k+1} \rangle := \langle c^k, \partial c_{k+1} \rangle \]
The coboundary operator

\[\langle \delta c^k, c_{k+1} \rangle := \langle c^k, \partial c_{k+1} \rangle \]

Let \(C \) be an arbitrary curve going from the point \(A \) to the point \(B \)

\[
k = 0 : \int_C \nabla \phi \, ds = \int_{\partial C} \phi = \phi(B) - \phi(A)
\]
The coboundary operator

\[\langle \delta c^k, c_{k+1} \rangle := \langle c^k, \partial c_{k+1} \rangle \]

Let \(S \) be a surface bounded by \(\partial S \) then

\[k = 1 : \int_S \text{curl} \, \vec{A} \, d\vec{S} = \int_{\partial S} \vec{A} \cdot d\vec{s} \]
The Mother of all equations

The coboundary operator

\[\langle \delta c^k, c_{k+1} \rangle := \langle c^k, \partial c_{k+1} \rangle \]

Let \(V \) be a volume, bounded by \(\partial V \) then

\[\int_V \text{div} \vec{F} \, dV = \int_{\partial V} \vec{F} \cdot d\vec{S} \]
The coboundary operator

\[\langle \delta c^k, c_{k+1} \rangle := \langle c^k, \partial c_{k+1} \rangle \]

Duality pairing and the boundary operator DEFINE the coboundary operator!
I.e. grad, curl and div are defined through the topological relations and are therefore coordinate-free and metric-free.
The Mother of all equations

The coboundary operator

\[\langle \delta c^k, c_{k+1} \rangle := \langle c^k, \partial c_{k+1} \rangle \]

Duality pairing and the boundary operator **DEFINE** the coboundary operator!
I.e. grad, curl and div are defined through the topological relations and are therefore coordinate-free and metric-free.

If we choose basis functions for our numerical method, the basis functions should cancel from the equations. There cannot be an explicit dependence on the basis functions. The same topological relations hold for low order methods and high order methods.
The Mother of all equations

At the continuous level, in terms of differential forms, this relation is given by the generalised Stokes Theorem:

\[
\int_{\Omega_{k+1}} \omega^{(k)} := \int_{\partial \Omega_{k+1}} \omega^{(k)}
\]
The ’Hodge-⋆’ operator

Remember that ⋆ was the operator which switches between inner- and outer orientation. We can also write down a formal adjoint of this operation

\[
\langle \star c^k, c_{n-k} \rangle := \langle c^{n-k}, \star c_k \rangle
\]

The ⋆ operator applied to \(k\)-dimensional geometric objects turns them into \((n-k)\)-dimensional geometric objects with the other type of orientation. The ⋆ operator applied to \(k\)-cochains turns them into \((n-k)\)-cochains acting on geometric objects of the other orientation.
The 'Hodge-\(\star\)' operator

Remember that \(\star\) was the operator which switches between inner- and outer orientation. We can also write down a formal adjoint of this operation

\[
\langle \star c^k, c_{n-k} \rangle := \langle c^{n-k}, \star c_k \rangle
\]

The \(\star\) operator applied to \(k\)-dimensional geometric objects turns them into \((n-k)\)-dimensional geometric objects with the other type of orientation. The \(\star\) operator applied to \(k\)-cochains turns them into \((n-k)\)-cochains acting on geometric objects of the other orientation. The \(\star\) operator is metric-dependent and can therefore not be described in purely topological terms.
\[\delta^* = \star \delta^* \]

Recall that

\[\star \partial^* : C_k \rightarrow C_{k+1} \]

So the formal adjoint of \(\star \partial^* \) would be

\[
\left\langle \delta^* c^k, c^k_{-1} \right\rangle := \left\langle \star \delta^* c^k, c^k_{-1} \right\rangle = \left\langle c^k, \star \partial^* c^k_{-1} \right\rangle
\]
The ugly stepmother

\(\delta^* \) and grad, curl and div

\(\delta^* \) also represents the grad, curl and div

\[\delta^* : C^k \rightarrow C^{k-1} \]

Note that in contrast to \(\delta \), \(\delta^* \) is a metric-dependent version of grad, curl and div and can therefore NOT be the same as the topological grad, curl and div. We will make this difference explicit by grad*, curl* and div*.
Laplace-Hodge operator

The scalar Laplace operator acting on \textit{outward oriented points} is given by

\[- \text{div}^* \text{grad} \phi \]
The vector Laplace operator acting on outward oriented lines is given by

\[[-\text{grad} \cdot \text{div}^* + \text{curl}^* \cdot \text{curl}] \vec{A} \]
The vector Laplace operator acting on outward oriented surfaces is given by

$$[\text{curl} \, \text{curl}^* - \text{grad}^* \, \text{div}] \vec{F}$$
The vector Laplace operator acting on **outward oriented volumes** is given by

$$-\text{div} \, \text{grad}^* \rho$$
On contractible domains the geometric structure given above is called the \textit{double DeR-ham complex}.
How do we discretize the metric-dependent part?
Let the \textit{reduction operator} be defined by

\[
\mathcal{R} : \Lambda^k(\Omega) \rightarrow C^k(\Omega)
\]

\[
\left\langle \left(\mathcal{R}a^{(k)} \right), \tau_k \right\rangle := \int_{\tau_k} a^{(k)}
\]
Let the **reduction operator** be defined by

\[\mathcal{R} : \Lambda^k(\Omega) \rightarrow C^k(\Omega) \]

\[\langle (\mathcal{R}a^{(k)}), \tau_k \rangle := \int_{\tau_k} a^{(k)} \]

\[\mathcal{R}d = \delta \mathcal{R} \]

\[\Lambda^k \xrightarrow{d} \Lambda^{k+1} \]

\[\Lambda^k \xrightarrow{\mathcal{R}} C^k \]

\[C^k \xrightarrow{\delta} C^{k+1} \]
The reconstruction operator needs to satisfy

\[\mathcal{I} : C^k(\Omega) \rightarrow \Lambda_h^k(\Omega) \subset \Lambda^k(\Omega) \]

\[d\mathcal{I} = \mathcal{I} \delta \quad \text{and} \quad \mathcal{R} \circ \mathcal{I} \equiv \mathbb{I} \]

\[
\begin{array}{ccc}
C^k & \delta & \rightarrow & C^{k+1} \\
\downarrow \mathcal{I} & & \downarrow \mathcal{I} \\
\Lambda^k & \stackrel{d}{\rightarrow} & \Lambda^{k+1}
\end{array}
\]
Reconstruction

The reconstruction operator needs to satisfy

\[\mathcal{I} : C^k(\Omega) \rightarrow \Lambda^k_h(\Omega) \subset \Lambda^k(\Omega) \]

\[d\mathcal{I} = \mathcal{I}\delta \quad \text{and} \quad \mathcal{R} \circ \mathcal{I} \equiv \mathbb{I} \]

\[C^k \xrightarrow{\delta} C^{k+1} \quad \downarrow \mathcal{I} \quad \downarrow \mathcal{I} \]

\[\Lambda^k \xrightarrow{d} \Lambda^{k+1} \]

Spectral element basis functions which satisfy these relations are called **mimetic spectral elements**
Discretization ⇔ projection

We define the projection operator as

\[\pi := I \circ R \]
Metric

Discretization ⇔ projection

We define the projection operator as

\[\pi := I \circ R \]

The commutation relations ensure that

\[d\pi = dIR = I\delta R = IRd = \pi d \]

\[\Lambda^k \xrightarrow{d} \Lambda^{k+1} \]

\[\Lambda^k \xrightarrow{\pi} \Lambda^k \]

\[\Lambda^h \xrightarrow{\pi} \Lambda^h \]

NOTE: This only holds for the topological grad, curl and div! NOT for grad*, curl* or div*.
We define the **projection operator** as

\[\pi := \mathcal{I} \circ \mathcal{R} \]

The commutation relations ensure that

\[d\pi = d\mathcal{I}\mathcal{R} = \mathcal{I}d\mathcal{R} = \mathcal{I}\mathcal{R}d = \pi d \]

\[\Lambda^k \xrightarrow{d} \Lambda^{k+1} \]

\[\Lambda^k_h \xrightarrow{d} \Lambda^{k+1}_h \]

NOTE: This only holds for the topological grad, curl and div! **NOT** for grad*, curl* or div*.
In 1D we only have **points** and **line segments**, so we use

nodal Lagrange interpolation: \(h_i(x_j) = \delta_{ij} \)

Edge interpolation: \(\int_{x_{j-1}}^{x_j} e_i(x) = \delta_{i,j} \), \(e_i(x) = -\sum_{k=0}^{i-1} dh_k(x) \)
Comparison with higher order RT-elements

Stokes problem

- Raviart–Thomas, \(N=2 \)
- Mimetic Spectral, \(N=2 \)
- Mimetic Spectral, \(N=3 \)

\[\frac{\| \omega - \omega_h \|_{L^2}}{h} \]

\[\frac{\| d(\omega - \omega_h) \|_{L^2}}{h} \]

\[\frac{\| u - u_h \|_{H^1}}{h} \]

\[\frac{\| p - p_h \|_{L^2}}{h} \]
Comparison with higher order RT-elements

Stokes problem

- tangential velocity - pressure
- normal velocity - tangential velocity
- tangential vorticity - normal velocity
- tangential vorticity - pressure

\[\| u - u_h \|_{H^1} \]
\[\| \omega - \omega_h \|_{H^1} \]
\[\| p - p_h \|_{L^2} \]

Graphs showing the comparison for different values of \(N \):
- \(N=2 \)
- \(N=4 \)
- \(N=6 \)
- \(N=8 \)
How to avoid $\text{grad}^*, \text{curl}^*$ and div^*

Integration by parts

Finite element methods remove the metric-dependent vector operations through integration by parts

\[
(d a^k, b^{k+1}) = d a^k \wedge * b^{k+1} = (-1)^{k+1} a^k \wedge d * b^{k+1} = \\
a^k \wedge * d * b^{k+1} = (a^k, d * b^{k+1})
\]

Vector operations

In conventional vector operations this reads (without boundary)

\[
(\text{grad}\phi, \vec{b}) = (\phi, -\text{div}^* \vec{b}) , \quad (\text{curl}\vec{a}, \vec{b}) = (\vec{a}, \text{curl}^* \vec{b}) , \quad (\text{div}\vec{a}, \phi) = (\vec{a}, -\text{grad}^* \phi)
\]
The scalar Laplace operator acting on outward oriented points is given by

$$-\text{div}^* \, \text{grad} \phi = f$$
The scalar Laplace operator acting on **outward oriented points** is given by

\[(-\text{div}^* \text{grad} \phi, \psi) = (f, \psi) \]
The scalar Laplace operator acting on outward oriented points is given by

\[(\nabla \phi, \nabla \psi) + b.i. = (f, \psi)\]
The vector Laplace operator acting on \textit{outward oriented volumes} is given by

\[
div \, grad^* \rho = f
\]
Laplace-Hodge operator

The vector Laplace operator acting on **outward oriented volumes** is given by

\[\vec{q} = \text{grad}^* \rho \]

\[\text{div} \vec{q} = f \]
The vector Laplace operator acting on \textit{outward oriented volumes} is given by

\[(\vec{q}, \vec{p}) - (\text{grad}^* \rho, \vec{p}) = 0\]

\[(\text{div} \vec{q}, w) = (f, w)\]
The vector Laplace operator acting on outward oriented volumes is given by

\[(\vec{q}, \vec{p}) + (\rho, \text{div}\vec{p}) + b.i. = 0\]

\[(\text{div}\vec{q}, w) = (f, w)\]
The weak formulation (direct or mixed) is determined by the geometry which in turn is determined by the physics!
Resonant Cavity problem (benchmark case)

Eigenvalue problem (borrowed from our neighbors)
Maxwell equations with unit coefficients and zero force functions.

\[\nabla \times \left(\nabla \times \vec{E} \right) = \lambda \vec{E} \quad \text{on} \quad \Omega = [0, \pi]^2 \]

All eigenvalues are known integers: \(\lambda = 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, \ldots \)
Resonant Cavity problem (benchmark case)

Results

\[\Delta \vec{u} = \lambda \vec{u}, \quad \text{div} \vec{u} = 0, \quad \Omega = [0, \pi]^2 \]

Not solvable with standard FEM / SEM, see [Boffi, Acta Numerica 2010].
Resonant Cavity problem (benchmark case)

Results

$$\Delta \vec{u} = \lambda \vec{u}, \quad \text{div} \vec{u} = 0, \quad \Omega = [0, \pi]^2$$

Not solvable with standard FEM / SEM, see [Boffi, Acta Numerica 2010].
Resonant cavity in L-shaped domain
Resonant cavity in L-shaped domain

Dirichlet boundary conditions

Neumann boundary conditions
Eigenfunctions on the Möbius strip
Eigenfunctions on the Möbius strip

\[\lambda_1 = 27 \]
\[\lambda_2 = 28 \]
\[\lambda_3 = 31 \]
\[\lambda_4 = 37 \]
\[\lambda_5 = 44 \]

\[\lambda_6 = 37 \]
\[\lambda_7 = 37 \]
\[\lambda_8 = 44 \]

Marc Gerritsma
The geometric basis of mimetic spectral approximations
Eigenfunctions on torus
Adaptive grid refinement - 0-forms
Adaptive grid refinement - 0-forms
Adaptive grid refinement - 2-forms
Adaptive grid refinement - 2-forms
The use of harmonic forms in potential problems
The use of harmonic forms in potential problems
Stokes problem

\[(\text{curl curl}^* - \text{grad}^* \text{div}) u + \text{grad}^* p = f\]
\[\text{div } u = 0\]

Since \(\text{div } u = 0\), we can remove this term from momentum. Introduce \(\omega = \text{curl}^* u\).
Stokes problem

\[\omega - \text{curl}^* u = 0 \]

\[\text{curl} \omega + \text{grad}^* p = f \]

\[\text{div} u = 0 \]
Stokes problem
Stokes problem

The figure shows the solution to the Stokes problem on a triangular domain. The left panel depicts the velocity field, while the right panel shows the pressure field. The color scale indicates the magnitude of the velocity (|u|) with values ranging from 0 to 1.0. The domain is discretized into triangles, and the solution is visualized using contour lines.
Stokes problem
Stokes problem
Further reading:

http://mimeticspectral.com