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Abstract: Green’s function retrieval by crosscorrelation may suffer from
irregularities in the source distribution, asymmetric illumination, intrinsic
losses, etc. Multidimensional deconvolution (MDD) may overcome these
limitations. A unified representation for Green’s function retrieval by
MDD is proposed. From this representation, it follows that the traditional
crosscorrelation method gives a Green’s function of which the source is
smeared in space and time. This smearing is quantified by a space–time
point-spread function (PSF), which can be retrieved from measurements at
an array of receivers. MDD removes this PSF and thus deblurs and
deghosts the source of the Green’s function obtained by correlation.
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1. Introduction

Research in the past decennium has revealed that the crosscorrelation of recordings of
a wave field at two receivers yields, under specific conditions, the Green’s function
between these receivers.1,2 This has led to numerous applications in the fields of ultra-
sonics,3 regional seismology,4 exploration seismics,5,6 underwater acoustics,7 medical
imaging,8 and infrasonic investigations of the atmosphere.9 For open systems, the
main assumptions are that the medium is lossless and that the wave field is generated
by a regular distribution of sequential transient sources or uncorrelated noise sources,
enclosing the receivers. Heuristic arguments and practical results show that reasonably
accurate Green’s functions can be retrieved, even when these assumptions are not
entirely fulfilled. However, when the underlying assumptions are severely violated, the
retrieved Green’s functions are inaccurate and contaminated with artifacts.

Recently, researchers have shown that some of the assumptions can be circum-
vented when the correlation is replaced by deconvolution.5,10–13 The proposed
approaches vary from case to case: Some employ a trace-by-trace spectral whitening10

or deconvolution;11 others account for the three-dimensional (3D) character of the
field;5,12,13 and some are designed for transient sources5,12 and others for noise sour-
ces.10,11,13 Here we derive a unified representation for Green’s function retrieval by
multidimensional deconvolution (MDD), which applies among others to 3D diffusion
and wave phenomena from transient or noise sources.

2. Basic Green’s function representation

We consider a Green’s function G(x, xS, t) obeying the equation

X
n

an x; tð Þ � @
n

@tn �HðxÞ
" #

Gðx; xS; tÞ ¼ dðx� xSÞdðtÞ; (1)

where xS is the source position, the asterisk (\) denotes temporal convolution, the an(x, t)
are medium parameters, and H(x) is a spatial differential operator.14 For example, for
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diffusion phenomena, a1(x, t) ¼ d(t) [note that d(t) \ @G=@t = @G=@t], all other an are
zero, and H(x) ¼ r � Dr, where D(x) is the diffusion coefficient. For acoustic waves in
media with losses, only the a1 and a2 are non-zero and H(x) ¼ r � q�1r, where q(x) is
the mass density; for the special case of a lossless medium a1 ¼ 0 and a2 ¼ d(t)=qc2, with
c(x) as the propagation velocity. In these examples, H is a symmetric operator, which
implies G(x, xS, t) ¼ G(xS, x, t).

In 3D space we define a volume V bounded by a surface S with outward
pointing normal vector n. We introduce the bilinear form L( f, g) via14ð

V

½f � ðHgÞ � ðHf Þ � g�dV ¼
þ

S

Lð f ; gÞdS; (2)

where f and g are space- and time-dependent functions. For example, for
H(x) ¼ r � br (where, e.g., b ¼ D or b ¼ 1=q) we obtain, using the theorem of
Gauss,

Lð f ; gÞ ¼ bðf � rg �rf � gÞ � n: (3)

We define a reference Green’s function �Gðx; xR; tÞ (the bar denotes the reference situa-
tion) obeying Eq. (1), but with the source term on the right-hand side replaced by
dðx� xRÞdðtÞ. In V the an and H for �G are the same as for G in Eq. (1), but they may
be different outside V. We take the reference medium for �G homogeneous outside V.
Moreover, we choose xR inside V and xS outside V. Figure 1(a) shows GðxR; xS; tÞ and
G x; xS; tð Þ (with x on S) in an arbitrary inhomogeneous medium (the black dots denote
scatterers) and Fig. 1(b) shows �G x; xR; tð Þ ¼ �G xR; x; tð Þ in the reference medium.

We derive a convolution-type representation for the field at xR. To this end
we convolve both sides of Eq. (1) with �G x; xR; tð Þ. Similarly, we convolve both sides of
the equation for �G x; xR; tð Þ with G x; xS; tð Þ. Subtracting the two equations, integrating
both sides over V, using Eq. (2) and the property f � @ng=@tn ¼ g � @nf =@tn yields

G xR; xS; tð Þ ¼
þ

S

Lð�G x; xR; tð Þ;G x; xS; tð ÞÞdS: (4)

This representation is the starting point for Green’s function retrieval by MDD.

3. Simplification of the integral

From here onward we choose H xð Þ ¼ r � br. Hence, using Eq. (3), Eq. (4) becomes

G xR; xS ; tð Þ ¼
þ

S

b xð Þf�G x; xR; tð Þ � rG x; xS; tð Þ � r�G x; xR; tð Þ � G x; xS; tð Þg � ndS: (5)

Fig. 1. Green’s functions in an arbitrary inhomogeneous open system. (a) Actual situation. These Green’s func-
tions represent the observations at xR and x. (b) Reference situation. This Green’s function is the response of a
virtual source at x. MDD resolves this Green’s function from the observations at xR and x.
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As indicated in Fig. 1, S consists of an open surface S0 and a half-sphere S1. By letting
the radius of the half-sphere go to infinity, the integral along S1 vanishes (Sommerfeld
radiation condition). Hence, the integration in Eq. (5) can be restricted to the open bound-
ary S0. On S0, we write G(x, xS, t) as the superposition of inward (into V) and outward
(away from V) propagating fields, according to G ¼ Gin þ Gout. Note that the reference
Green’s function �G x; xR; tð Þ is outward propagating at S0. By using pseudo-differential op-
erator theory,15 it follows that the two terms in

Ð
bf�G � rGout �r�G � Goutg � ndS0 cancel

each other, whereas the terms in
Ð

bf�G � rGin �r�G � Ging � ndS0 are identical but oppo-
site in sign. (This can be more easily derived with a far-field approximation,16 but the
pseudo-differential approach circumvents this approximation.) Using this in Eq. (5), to-
gether with �G x; xR; tð Þ ¼ �G xR; x; tð Þ, we obtain

G xR; xS; tð Þ ¼
ð

S0

�Gd xR; x; tð Þ � Gin x; xS; tð ÞdS0; (6)

where �Gd xR; x; tð Þ ¼ �2b xð Þn � r�G xR; x; tð Þ. The subscript “d” denotes that the source
at x has a dipole character because of the operator n � r. Note that �Gd xR; x; tð Þ is the
response to be resolved from Eq. (6). If representation (6) was a single equation, the
inverse problem would be ill-posed. However, Eq. (6) exists for each source position
xS, which we will denote from hereon by x ið Þ

S , where i denotes the source number. Solv-
ing this ensemble of equations for �Gd xR; x; tð Þ involves MDD. Recall that the bar
denotes a reference situation which is equal to the actual medium in V but homogene-
ous outside V. This means that the retrieved Green’s function �Gd xR; x; tð Þ is correct
for the medium in V but does not include scattering from outside V, see Fig. 1(b). In
the example in Sec. 4 we show that this may improve the interpretability of the
retrieved Green’s function. The reference medium does not restrict the method, because
the “measured” Green’s functions G and Gin in Eq. (6) are defined in the actual me-
dium, see Fig. 1(a).

4. Transient sources

To comply with practical situations, the Green’s functions G and Gin in representation
(6) should be replaced by responses of real sources, i.e., Green’s functions convolved
with source functions. For the responses of transient sources we write uinðx; xðiÞS ; tÞ
¼ Ginðx; x ið Þ

S ; tÞ � s ið Þ tð Þ and uðxR; x
ið Þ

S ; tÞ ¼ GðxR; x
ið Þ

S ; tÞ � s ið Þ tð Þ. Convolving both sides of
Eq. (6) with s ið Þ tð Þ, we thus obtain

u xR; x
ið Þ

S ; t
� �

¼
ð

S0

�Gd xR; x; tð Þ � uin x; x ið Þ
S ; t

� �
dS0: (7)

Solving Eq. (7) in a least-squares sense is equivalent to solving its normal equation.
We obtain the normal equation by crosscorrelating both sides of Eq. (7) with
uinðx0; xðiÞS ; tÞ (with x0 on S0) and taking the sum over all sources.13 This gives

C xR; x0; tð Þ ¼
ð

S0

�Gd xR; x; tð Þ � C x; x0; tð ÞdS0; (8)

where

C xR; x0; tð Þ ¼
X

i

uðxR; x
ið Þ

S ; tÞ � uinðx0; xðiÞS ;�tÞ; (9)

C x; x0; tð Þ ¼
X

i

uinðx; x ið Þ
S ; tÞ � uinðx0; xðiÞS ;�tÞ: (10)

Equation (9), defining the correlation function, CðxR; x0; tÞ, is the traditional expression
used for Green’s function retrieval by crosscorrelation for the situation of transient
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sources5,6 (except that instead of uin one usually takes a time-gated version of the total
field u). Equation (8) shows that this correlation function is proportional to the Green’s
function �Gd xR; x; tð Þ with its source smeared in space and time by C(x, x0, t). We call
C(x, x0, t) the space–time point-spread function (PSF). If we would have a regular
distribution of impulsive sources xðiÞS along a sufficiently large source boundary, and
if the actual medium outside V were homogeneous and lossless, the PSF as defined in
Eq. (10) would approach a band–limited delta function. In practice, there are many fac-
tors that make the PSF deviate from a delta function. Among these factors are the
irregularity of the source distribution, medium inhomogeneities, a finite aperture, asym-
metric illumination, multiple reflections in the illuminating wave field, intrinsic losses,
etc. In all those cases Eq. (8) needs to be inverted by MDD, i.e., the effects of the PSF
C(x, x0, t) need to be removed from the correlation function C xR; x0; tð Þ to obtain the
Green’s function �Gd xR; x; tð Þ. This is illustrated with a numerical example in Fig. 2.

5. Noise sources

We show that Eq. (8) also holds for the situation of simultaneously acting uncorre-
lated noise sources. To this end, we define the correlation function and the PSF,
respectively, as

CðxR; x0; tÞ ¼ uðxR; tÞ � uin x0;�tð Þ
� �

; (11)

Fig. 2. Numerical example. (a) Seismic exploration configuration with sources at the surface (stars) and
receivers in a horizontal borehole (triangles). The red triangle indicates the virtual source. The blue ellipse repre-
sents a gas cloud which acts as an acoustic lens. The deep orange layer represents a hydrocarbon reservoir. (b)
Red traces: Virtual source response C xR; x0; tð Þ obtained with the correlation method [Eq. (9), but with decom-
posed wave fields at both receivers17], with x0 being the virtual source position and xR varying along the bore-
hole. Black traces: Directly modeled reflection response of the reservoir. The match is reasonable, but we also
observe distortions along the reflection event as well as severe ghost events. (c) PSF C(x, x0, t) (clipped at 50% of
its maximum amplitude). (d) Red traces: Virtual source response �Gd xR; x; tð Þ obtained by MDD, i.e., by decon-
volving the correlation function in (b) by the PSF in (c). Black traces: Directly modeled reflection response of
the reservoir. Note that the match is very good. Moreover, the retrieved reflection response is free of multiple
scattering caused by the earth’s surface, the geological layers, and the gas cloud. This response can subsequently
be used for imaging and characterization of the reservoir layer.
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C x; x0; tð Þ ¼ uin x; tð Þ � uin x0;�tð Þ
� �

; (12)

where h�i denotes ensemble averaging, which is in practice replaced by integration over
sufficiently long time and/or averaging over different time intervals. The noise responses
in Eqs. (11) and (12) are defined as uin x0; tð Þ ¼

P
i Ginðx0; xðiÞS ; tÞ �NðiÞ tð Þ and u xR; tð Þ

¼
P

j GðxR; x
jð Þ

S ; tÞ �N jð Þ tð Þ, in which the noise signals are mutually uncorrelated,
according to hN jð Þ tð Þ �N ið Þ �tð Þi ¼ dijS ið Þ tð Þ. Upon substitution into Eqs. (11) and (12)
it follows that the correlation function and the PSF as defined in Eqs. (11) and (12) are
identical to those defined in Eqs. (9) and (10), assuming s ið Þ tð Þ � s ið Þ �tð Þ ¼ S ið ÞðtÞ.
Hence, whether we consider transient or noise sources, Eq. (8) is the relation that needs
to be inverted by MDD to resolve the Green’s function �Gd xR; x; tð Þ.
6. Discussion and conclusions

The methodology of retrieving the Green’s function by crosscorrelation has a number
of attractive properties as well as several limitations. The main attractiveness of the
method is that a virtual source response can be obtained by crosscorrelating responses
at two receivers, without the need to know the medium parameters and the sources.
For open systems the method works well when the receivers that are used in the corre-
lation process are surrounded by a regular distribution of sequential transient sources
or uncorrelated noise sources with equal autocorrelation functions. However, in practi-
cal situations the method may suffer from irregularities in the source distribution,
asymmetric illumination, intrinsic losses, etc.

We have shown that these imperfections manifest themselves as a blurring of
the source of the Green’s function in the spatial direction and the generation of ghosts
in the temporal direction. These effects are quantified as a convolution of the Green’s
function with the space–time PSF [Eq. (8)]. As such, our PSF plays a similar role as
the spatial PSF in optical, acoustic, and seismic imaging systems.18–20 When the PSF
of an imaging system is known, the resolution of an image can be improved by decon-
volving for the PSF.21 In a similar way, the blurred source-with-ghosts of the Green’s
function obtained by the crosscorrelation method can be deblurred and deghosted by
deconvolving for the space–time PSF, i.e., by inverting Eq. (8) by MDD. We have
demonstrated this with a numerical example for seismic exploration data with transient
sources (Fig. 2), but similar improvements can be achieved for Green’s function re-
trieval from ambient noise.13

Of course also the MDD method has its limitations. First, in order to retrieve
the Green’s function �Gd xR; x; tð Þ it does not suffice to have two receivers only, at xR
and x, because x is assumed to be an element of a regular (or regularized) array of
receivers along S0, see Fig. 1(a). Second, the expressions for the correlation function
[Eqs. (9) and (11)] and for the PSF [Eqs. (10) and (12)] contain the inward propagating
field uin on S0 (propagating into V). In order to extract this inward propagating field
from the total field, either multicomponent receivers22 or two receiver surfaces close to
each other23 are required. Alternatively, when multiple scattering is weak, one could
correlate the total fields and extract the PSF by applying a time window around t ¼ 0.
Third, MDD involves an inversion of an integral equation, which in practice is
achieved by matrix inversion. Apart from the higher cost (in comparison with the cor-
relation method), this matrix inversion can become unstable when there are gaps in the
illumination directions of the virtual source. Despite these limitations, for applications
in which the data are measured with arrays of receivers, Green’s function retrieval by
MDD has the potential to obtain virtual sources that are better focused and contain
less ghost events than those obtained by the crosscorrelation method.

During the review process it has been pointed out that there is a link with an
interesting method called “time exposure acoustics.”24 This method has been designed
to image scatterers that are illuminated by ambient noise. Assuming these scatterers
can be seen as uncorrelated noise sources (meaning their mutual distance should be
larger than the spatial correlation length of the noise), they can be imaged by
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backpropagating the recorded noise. The image quality improves with increasing expo-
sure time. The optimum achievable image is quantified by a spatial convolution of the
scattering model with a noise-derived PSF. There are also important differences.
Time exposure acoustics is model-driven (it uses a background velocity for the back-
propagation and for the computation of the PSF), and it ignores multiple scattering.
Green’s function retrieval by MDD is data-driven (the correlation function and the
PSF are obtained from measured responses), it does not assume a minimum distance
between scatterers, and it accounts for multiple scattering. The output is not an image
but a virtual source response that can be used for further processing (tomographic
inversion, model-driven imaging, etc.).
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