Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Assessment of optimal passive suspensions regarding motion sickness mitigation in different road profiles and sitting conditions

Georgios Papaioannou1, Jenny Jerrelind1, Lars Drugge1 and Barys Shyrokau 2

Abstract—Automated vehicles (AVs) are expected to lead the evolution of mobility. Motion sickness, known as car sickness, is one of the main issues AVs will face, and could jeopardise their wide impact. However, a limited work has been done on how the optimisation of suspension dynamics could contribute. In this direction, this paper explores the mitigation of car sickness and the improvement of ride comfort through the optimisation of passive suspension systems. More specifically, a half car model, which represents a passenger vehicle from IPG/CarMaker, is used to optimise front suspension system for minimising comfort, but also maintaining vehicle handling while the vehicle is driving over two different road classes. The evaluation of comfort is conducted using the common standardised metric suggested by ISO-2631. After having obtained the optimum design solutions, the optimal solutions are simulated using IPG/CarMaker by assigning the road profiles on a 23 km long countryside road path. Then, vehicle accelerations are transferred to the occupant’s head using appropriate models from the literature for both back-on and back-off sitting conditions. Afterwards, car sickness and ride comfort are further assessed to explore in detail how the tuning of the suspension systems through optimisation has minimised the first and enhanced the latter. For the assessment of car sickness, a three dimensional detailed biomechanical human model is used. The results imply that the pitch velocity seems more suitable, as a cost function for optimising the suspension systems with regards to motion sickness mitigation. Therefore, it should be considered either on its own or in combination with metric suggested by ISO-2631.

I. INTRODUCTION

AVs are expected to constitute almost 60% of vehicle sales, and 40% of all vehicle travel by 2050 [1]. At the same time, there are still important challenges able to jeopardise the AVs wide impact. Consumers consider the ability to engage in other leisure activities or be more productive while being driven, among the three most important reasons for adopting AVs [2]. However, the majority of the envisaged designs of fully automated vehicles, such as when the vehicle control is handed over, occupants are seated backwards or their view to the road ahead is blocked by displays or internal structures, increase significantly the incidence of motion sickness (MS) [3]. So, a refocus on MS and comfort is crucial in order to secure the AVs wide impact and their acceptance by the society.

Motion sickness is commonly described as a variable range of responses to the stimulus of actual or perceived motion, and is considered as the human’s natural response to unnatural movements. There are multiple explanations why motion sickness occurs. The evolutionary theory [4] attributes motion sickness to the continuous misalignment between the different sensory inputs (visual, vestibular and proprioceptive). On the other hand, according to the sensory conflict theory [5], motion sickness is caused by the mismatch between sensed and anticipated (based on prior experience) sensory inputs. The posture instability theory [6] attributes motion sickness to prolonged uncoordinated configuration of the body and its segments, rather than sensory stimulation.

Car sickness is MS that results from provocative motion frequencies occurring in a road vehicle in transit. On contrary to the past when the main issues were cause, function, symptoms, and estimation, nowadays the researchers focus on how it can be minimised. Even though vehicle dynamic factors can affect car sickness likelihood, the literature only recently started focusing on them from the perspective of motion planning [7]. Motion planning is a proven countermeasure of MS incidence as it could reduce excessive head and body motion, and should be considered. However, the excessive reduction of the speed that the motion planner might suggest, could dissatisfy users as journey time might increase, affecting the user acceptance and satisfaction. Therefore, additional approaches of enhancing motion comfort should be considered without affecting journey time to a great extent or even allowing the vehicle to keep it short.

This paper explores the mitigation of car sickness and the improvement of comfort through the optimisation of passive suspension systems, a subject that hasn’t been studied so far to the authors knowledge. More specifically, in this work, a half car model, which represent a passenger vehicle, is used to optimise its suspension system for minimising comfort, but also maintaining vehicle handling while the vehicle is driving over class B and C road profiles. The evaluation of comfort is conducted with the common standardised metric suggested by ISO-2631 for suspension optimisation following works in the literature [8]. The optimal solutions obtained are simulated using IPG/CarMaker, where the road profile, for which the suspensions are optimised, is assigned to a 23 km long countryside road path. Then, the vehicle accelerations are transferred to the occupant’s head for both back-on and back-off sitting positions using appropriate transmissibility functions that exist in the literature. Afterwards, the optimum suspension designs are further assessed using a
multi-dimensional biomechanical human and motion sickness model. In this way, a detailed exploration is performed regarding how the tuning of the suspension system through optimisation have mitigated MS and enhanced comfort. At the same time, the assessment for the two sitting conditions provides insights with how the occupants will react in case they are involved in non-driving activities that made them to not support their back to the seat.

II. METHODOLOGY

A. Vehicle modeling

The half car model, shown in Figure 1, is selected for optimising the suspension systems, as it is the most efficient [9]. The model includes the front and rear axles of the vehicle allowing both pitch and bounce phenomena to be observed, but lateral motions are not considered. The vehicle body is considered as a rigid body of mass, \(m_s \), which is equal to half of the total mass of the vehicle. The suspensions consist of linear springs (\(K_F, K_R \)) and passive dampers (\(C_F, C_R \)). The front and rear tyres are modelled as linear springs (\(K_{TF}, K_{TR} \)), which receive as input the irregularities of the road profile. The distance of the front and rear unsprung masses (\(m_F \) and \(m_R \)) from the center of mass are equal to \(a_F \) and \(a_R \), respectively. The parameters for the half car model, which have been extracted from the validated vehicle model of a passenger car, are shown in Table I.

![Half car model](image)

Fig. 1: Half car model.

TABLE I: Parameters of half car model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_s) [kg]</td>
<td>544.5</td>
<td>(a_f) [m]</td>
<td>1.02</td>
</tr>
<tr>
<td>(I_{yy}) [kg m²]</td>
<td>1346</td>
<td>(a_r) [m]</td>
<td>1.64</td>
</tr>
<tr>
<td>(m_F) [kg]</td>
<td>45.24</td>
<td>(K_{TF}) [N/m]</td>
<td>4.50 (10^5)</td>
</tr>
<tr>
<td>(m_R) [kg]</td>
<td>35.06</td>
<td>(K_{TR}) [N/m]</td>
<td>4.50 (10^5)</td>
</tr>
<tr>
<td>(C_F) [Nm/s]</td>
<td>3000</td>
<td>(K_R) [m]</td>
<td>3.00 (10^4)</td>
</tr>
</tbody>
</table>

The governing equations of the vehicle model are the following:

\[
m_s \ddot{z}_s + C_F \dot{ST}_F + C_R \dot{ST}_R + K_F \dot{ST}_F + K_R \dot{ST}_R = 0 \tag{1}
\]

\[
I_{yy} \ddot{\theta} - a_F C_F \dot{ST}_F + a_R C_R \dot{ST}_R - a_F K_F \dot{ST}_F + a_R K_R \dot{ST}_R = 0 \tag{2}
\]

\[
m_F \ddot{z}_F - K_F \dot{ST}_F + C_F \dot{ST}_F + K_T F (z_F - z_{ROAD_F}) = 0 \tag{3}
\]

\[
m_R \ddot{z}_R - K_R \dot{ST}_R + C_R \dot{ST}_R + K_T R (z_R - z_{ROAD_R}) = 0 \tag{4}
\]

where \(ST_F = z_s - z_F - a_F \theta \) and \(ST_R = z_s - a_R (z_F + a_F \theta) \) are the front and rear suspension travel; \(z_{ROAD_F}, z_{ROAD_R} \) the excitations applied to the vehicle model, which are considered as random road profiles of Class B and C (see Figure 2). The rear wheels excited by the same road profile as the front wheels, but with a time delay \(t_{distance} = (a_F + a_R) \), which is due to the vehicle wheelbase (\(a_F + a_R \)).

B. Motion comfort

In this work, standardised metrics suggested by ISO-2631 [13] are used during the optimisation to assess comfort, while a multi-dimensional model is used to assess MS with the measurements obtained from the simulation of the vehicle’s digital twin in enhanced simulation software IPG/CarMaker.

1) ISO-2631: ISO-2631 standard provides a guideline for measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock. According to it, the ride comfort is assessed by combining the root mean square (RMS) values of the weighted accelerations (\(RC_{W_i} \)) measured at the vehicle’s centre of gravity. The weighted RMS value can be calculated as:

\[
RC_i = \left(\frac{1}{t} \int_0^t a_{w_i}^2 \, d\tau \right)^{\frac{1}{2}} \tag{5}
\]

where \(a_{w_i} \) stands for the weighted accelerations at the \(i^{th} \) direction, with appropriate filters (\(W_i \)) being applied on it for the vertical [13] and the lateral [14] vibrations.
2) **Motion sickness assessment model**: Motion sickness is commonly described as a variable range of responses to the stimulus of actual or perceived motion, and is considered as the human’s natural response to unnatural movements. The main cause is considered the mismatch between sensory information from the vestibular system and the estimated sensory information from internal model. As an extension of a one-dimensional model [11], who modeled the sensory inputs processed by the vestibular system in the vertical direction, a three dimensional nervous system model [15] considered that the vertical conflict occurs by rotation stimulus. The model is illustrated in Figure 3a. In summary, the part which is framed by dots is the internal model that predicts the human motion; G describes the human body rotation and the direction of gravity is seen from the head; SCC and SCC are the semicircular canals and their internal model, respectively; LP and LP are estimating the sensed and internal dynamics, respectively; OTO is the otolith organ, but here it is assumed as a unit matrix; K and K are gains to estimate accurately the occupant’s head translational accelerations and rotational velocities, while Kc, Kc and Kc are feedback gains. The inputs to assess MS with the MS model are axh, ayh, azh, r, f and θh, where axh, ayh, and azh are the longitudinal, lateral and vertical translational accelerations and f, θh and θh are the yaw, roll and pitch rotational velocities at the head reference frame. This model is validated with regards to the results by Bos et al. [11] and McCauley et al. [12], which is shown in Figure 3b.

3) **Transmissibility models**: In this work, the three dimensional model is used to assess car sickness. However, the inputs of the motion sickness incidence (MSI) model are in the head reference frame, therefore the accelerations (ax, ay, az, f, φ and θ) from the vehicle CoG have to be transmitted from the chassis to the head (axh, ayh, azh, fh, φh and θh). In this direction, seat-to-head transmissibilities from experimental tests and simulation models are used. More specifically, the vehicle vertical accelerations are transferred to the head, according to Equation 6, using the transfer functions (Tz) obtained from the human body model presented in Figure 4.

\[a_{zh0} = T_z \ddot{a}_z \] \hspace{1cm} (6)

![Fig. 3: (a) Six degrees of freedom subjective vertical conflict model, and (b) its validation with regards from Bos et al. [11] and McCauley et al. [12].](a)

![Fig. 4: The biomechanical human body model [16].](b)
Regarding yaw accelerations (\ddot{r}), Paddan et al. [17] assessed their transmission from the seat to the head (T_{yaw}), both at back-on and back-off sitting conditions, i.e. when the occupant lies to the backrest or not. These transfer functions are used in this work according to Equation 8:

$$\ddot{r}_h = T_{yaw}\ddot{r}$$

where \ddot{r}_h is the yaw head acceleration without the effect of any other excitation. Also, Paddan et al. [18] evaluated experimentally not only how roll (ϕ) and pitch (θ) accelerations are transmitted to the head from the seat, but also how these accelerations affect the rest translational and rotational accelerations both at back-on and back-off conditions. Regarding the pitch accelerations (θ), they assessed the transmissibility (T_θ) of θ to $\dot{\theta}_h$, but also their effect ($T_{\theta\theta}$ and $T_{\theta\phi}$) to a_{xh} and a_{zh}. These transmissibilities are used in this work according to Equation 9. Similarly for the roll accelerations (ϕ), they [18] assessed their transmissibility (T_ϕ) to the head ($\dot{\phi}_h$), but also their effect ($T_{\phi\phi}$ and $T_{\phi\theta}$) to a_{yh} and \ddot{r}_h. These are used in this work according to Equations 10.

$$a_{xh} = T_{\theta\phi}a_{xh0}, \quad a_{zh} = T_{\theta\phi}a_{zh0}, \quad \ddot{\theta}_h = T_\theta\phi \dot{\phi}$$

$$a_{yh} = T_{\phi\phi}a_{yh0}, \quad \ddot{r}_h = T_{\phi\phi}\ddot{r}_{h0}, \quad \ddot{\phi}_h = T_\phi\phi \dot{\phi}$$

III. OPTIMISATION

As mentioned before, this paper explores the mitigation of car sickness and the improvement of comfort through the optimisation of passive suspension system. In this direction, an optimisation problem is configured, using the half car model, aiming to minimise comfort and maintain vehicle handling by optimising its front suspension.

A. Configuration

A multi-objective optimisation problem is formulated where the following objective functions are considered to represent the objectives of car sickness and handling:

$$F_1 = RC_z$$

$$F_2 = RMS(z_F - z_{RoadF}) + RMS(z_R - z_{RoadR})$$

where F_1 considers the standardised metric suggested by ISO-2631, and F_2 is the sum of the root mean square of the front and rear tyre deflections, which are related with the road holding performance to improve vehicle handling. Regarding the design variables, only the front suspension parameters are considered (K_F and C_F) in an attempt to extract more safer conclusions regarding the potential effect of suspension to MS mitigation. As upper and lower bounds for the design variables, [15000 : 60000] and [500 : 3000] are selected for K_F and C_F, respectively. The optimisation is conducted for two different cases, where Class B and C roads (Figure 2) are used as excitations. The optimisation is conducted using the GAMULTIOBJ toolbox from MATLAB 2017b.

B. Results

The optimisation results are presented in a three dimensional plot (Figure 5), showing the relation of the optimal design variables with the discomfort levels provoked to the occupants. According to Figure 5, the optimal damping coefficient (C_F) has converged to values across the whole range of bounds, while the spring stiffness (K_F) has converged to values closer to the lower bound providing solutions where K_F is lower than K_R (≈ 30000 N/m). Regarding the car sickness levels, the stiffening of both the damper and the spring leads to higher discomfort as expected, but the stability is increased.

![Fig. 5: The optimal design variables (K_F and C_F) with regards to the comfort levels (F_1-Objective).](image)

IV. FURTHER CAR SICKNESS ASSESSMENT

A. Enhanced multi-body simulation

While the optimisation is conducted for the ride vehicle model, the IPG/CarMaker based simulations (Figure 6b) consider also an intense path to provoke more the car sickness incidence. Hence, the two road profiles are assigned to a 23 km road path (Figure 6b), which at the end includes a 1.5 km straight line for the occupant’s MS to habituate. This road path is artificial, however the levels of accelerations induced are comparable with a real-world country road. In order to focus on the suspensions impact on MS, the artificial driver model (AI driver) from IPG/CarMaker is used to always follow the centreline of the road path and maintain constant velocity.

B. Results

After obtaining the optimisation results, the following procedure is considered for the car sickness assessment:

1) The commercial software is used to simulate the optimum suspension design variables and extract the a_x, a_y, a_z, \ddot{r}, $\dot{\phi}$ and $\dot{\theta}$ vehicle responses for each case. The simulations are conducted for the two cases, where the different road roughness profiles (Class B and C) are applied to the road path.
2) The transmissibility models are applied, as described in Equations 6-10, to transfer the vehicle responses to the occupant's head \((a_{xh}, a_{yh}, a_{zh}, \dot{r}_h, \dot{\theta}_h, \phi_h)\). The \(\dot{r}_h, \dot{\theta}_h\) and \(\phi_h\) are integrated to obtain their corresponding velocities \((\ddot{r}_h, \ddot{\theta}_h, \ddot{\phi}_h)\) to be used as inputs to the MSI model alongside \(a_{xh}, a_{yh}\) and \(a_{zh}\). The transmissibility models of two sitting conditions are used in this work. This is to investigate how the occupants will react in case they are involved in non-driving activities that made them not support their back to the seat.

3) For the in-depth assessment of the optimal suspension design, various metrics are evaluated. More specifically, the maximum level that the MS accumulated \((MSI)\) is calculated via the MS model. Then, the \(RCZ\) (Equation 5) is re-calculated using the commercial software measurements, while the root mean square values of the rotational velocities \((\ddot{r}_h, \ddot{\theta}_h, \ddot{\phi}_h)\) are calculated respectively \((RCr, RCP\) and \(RCR)\). Similarly, the root mean square values of the translation accelerations \((a_{xh}, a_{yh})\) are calculated \((RCX\) and \(RCY)\).

4) The above metrics are normalised with their maximum values among the optimum design solution and are plotted in Figures 7 and 8 for the road class B and C case, respectively. More specifically, in Figures 7a, 7c, 8a and 8c, the normalised \(MSI\) metric is plotted in comparison with the normalised \(RCZ, RCX\) and \(RCY\) for two sitting conditions. In Figures 7b, 7d, 8b and 8d the same metric is plotted in comparison with the normalised \(RCP\) and \(RCr\). The normalisation with their maximum value allows to not focus only on their values, but (a) also on the metrics behaviour, (b) possible correlation and (c) the assessment of the optimum solutions with regards to MS mitigation and comfort enhancement.

Using the artificial driver model of IPG/CarMaker, the lateral accelerations and yaw velocities are mostly kept similar in all the cases, as shown in Figures 7 and 8, where \(RCY\) and \(RCr\) have insignificant variations. Only the \(RCr\) in the road class C case (Figure 8) isn’t maintained constant or with insignificant variations, as the intense road profile forced the driver model in few adjustments in the requirements. Also, based on Figures 7a, 7c, Figures 8a and 8c, where the translational accelerations are compared with the \(MSI\) metric, the optimal solutions have increasing \(RCZ\) values, as indicated by the optimisation (Figure 5). However, in both the road class cases and the two sitting conditions, the increasing behaviour in the \(RCZ\) metric is not also present in the \(MSI\), which questions the suitability of the car sickness objective \((F_1)\) during the optimisation. On the other hand, according to Figures 7b, 7d, 8b and 8d, the \(MSI\) metric is following the same increasing-decreasing pattern with the \(RCP\), which is the root mean square of the pitch velocity. The above outcome is more obvious in the back-off sitting positions, where \(RCP\) and \(MSI\) illustrate similar levels of increase and decrease as well and not only similar pattern. This validates the already discussed sensitivity of human to pitch motion compared rather than lateral or vertical vibrations [19].

V. Conclusions

This paper explored the mitigation of car sickness and the improvement of comfort through the optimisation of passive suspension system. In overall, the pitch vibration levels seemed to be in greater alignment with regards to the motion sickness metrics, on contrary with the standardised metric suggested by ISO-2631. More specifically, the increase (decreases) in the metrics related with the latter are not leading to an increase (decrease) in the motion sickness metric. At the same time, the motion sickness metric is following the change in the pitch vibrations levels. The above remark implies a potential unsuitability of the metric suggested by ISO-2631, i.e. the weighted vertical accelerations, as a cost
function for optimising the suspension systems with regards to motion sickness mitigation. However, the root mean square of the pitch velocities seems more suitable, and should be considered either on its own or in combination with the root mean square of the weighted vertical accelerations.

Further work is in progress to investigate the above conclusions with different road profiles and by conducting different optimisation scenarios to compare the suitability of different cost functions with regards to motion sickness mitigation. The validation of these outputs through experimental studies and the subjective evaluation of motion sickness is under consideration.

REFERENCES

[10] ISO8608, “Mechanical vibration-Road surface profiles-Reporting
Fig. 8: The comparison of the optimum solutions for driving on the road class C profile (Figure 2) with regards to various metrics (RCZ, RCX, RCY, RCP, RCy and MSI) at both back-on and back-off sitting conditions.