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Abstract
We study electro-mechanical entanglement in a system where a massive membrane is capacitively
coupled to a low frequency LC resonator. In opto- and electro-mechanics, the entanglement
between a megahertz (MHz) mechanical resonator and a gigahertz (GHz) microwave LC resonator
has been widely and well explored, and recently experimentally demonstrated. Typically, coupling
is realized through a radiation pressure-like interaction, and entanglement is generated by
adopting an appropriate microwave drive. Through this approach it is however not evident how to
create entanglement in the case where both the mechanical and LC oscillators are of low frequency,
e.g., around 1 MHz. Here we provide an effective approach to entangling two low-frequency
resonators by further coupling the membrane to an optical cavity. The cavity is strongly driven by
a red-detuned laser, sequentially cooling the mechanical and electrical modes, which results in
stationary electro-mechanical entanglement at experimentally achievable temperatures. The
entanglement directly originates from the electro-mechanical coupling itself and due to its
quantum nature will allow testing quantum theories at a more macroscopic scale than currently
possible.

1. Introduction

In optomechanics, an optical field can couple to a massive mechanical oscillator (MO) via the radiation
pressure force [1]. This approach provides the possibility to prepare quantum states of macroscopic systems
by manipulating optical degrees of freedom. Over the past decade, significant experimental progress has
been achieved in observing quantum effects in massive mechanical systems, including reaching the
quantum ground state [2, 3], quantum squeezing of the mechanical motion [4–6], quantum entanglement
between two MOs [7, 8], and between an MO and an electromagnetic field [9, 10], among many others.
Such quantum states of massive objects have important implications for both quantum technologies, e.g.,
quantum sensing [11], quantum transducers [12], as well as foundational studies of decoherence theories at
the macro scale and the boundary between the quantum and classical worlds [13].

In this paper, we provide a scheme to entangle a massive MO with a macroscopic low-frequency LC
oscillator. Specifically, we consider a tripartite system where a mechanical membrane is capacitively coupled
to an LC resonator and further optomechanically coupled to an optical cavity. Unlike most other
approaches with GHz resonators [2, 9, 14, 15], the LC resonator we consider here is in the radio frequency
domain, around 1 MHz [16, 17], and close to the mechanical frequency. Such a low-frequency LC resonator
means a much larger product L × C (L-inductance; C-capacitance) than that at microwave frequency (106

larger for frequency of 1 MHz compared to 1 GHz), which typically implies a much larger number of
charges and a much bigger LC circuit. The membrane-LC interaction takes a nonlinear form Hint = �g0xq2

[18–20], where x is the mechanical position, q the charge and g0 the bare electro-mechanical coupling rate,
which is a radiation pressure-like interaction. We note that the entanglement between a nanomechanical
resonator and an LC resonator of microwave frequency has been well studied [18, 19], where the
electro-mechanical interaction is a radiation pressure type ∝ g0xb†b. Here b is the annihilation operator of
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the LC field and q = (b + b†)/
√

2. The interaction is derived by taking the rotating wave approximation
(RWA) and neglecting fast oscillating terms, which is valid only for the LC frequency much larger than the
mechanical frequency, ωLC � ωm. Such a radiation pressure interaction predicts the generation of
electro-mechanical entanglement if an appropriate microwave drive is adopted [18]. However, when the LC
frequency is approaching the mechanical frequency, like in references [16, 17] and as considered here, it is
not clear how to apply an appropriate driving field such that (stationary) electro-mechanical entanglement
can be produced. In other words, it is not apparent how to apply the mechanism of reference [18] to two
nearly resonant low-frequency oscillators.

Inspired by recent experiments [16, 17], we apply a DC drive for the LC circuit, which significantly
enhances the effective electro-mechanical coupling rate. The linearized interaction takes the form ∝ gδxδq
[16, 20], where g is the effective coupling rate. Based on this ‘quadrature–quadrature’ coupling,
electro-mechanical entanglement can indeed be created, but only at unrealistic extremely low temperature
(below 0.1 mK for 1 MHz oscillators), where both the oscillators are actually at their quantum ground
state. In this situation, the component of the beamsplitter interaction in the ‘quadrature–quadrature’
coupling is significantly suppressed, while the component of the two-mode squeezing interaction plays a
dominate role, leading to the generation of electro-mechanical entanglement. The entanglement completely
vanishes at typical cryogenic temperatures of a few tens of millikelvin, because of the low resonant
frequencies and thus large thermal occupations. In our approach, we overcome this limitation and show
that by further coupling the mechanical membrane to an optical cavity field via radiation pressure, and by
driving the cavity with a red-detuned laser, both the mechanical and electrical modes get significantly
cooled, which leads to the emergence of electro-mechanical entanglement. Here, the red-detuned cavity
cools the mechanical mode, which then acts as a cold bath for the electrical mode [21]. The entanglement is
in the steady state regime and robust against temperature.

The remainder of the paper is organized as follows: in section 2, we introduce our tripartite
opto-electro-mechanical system, provide its Hamiltonian and the corresponding Langevin equations, and in
section 3 we show how to obtain the steady-state solutions of the system and quantify the entanglement.
In section 4, we present the results of electro-mechanical entanglement and discuss optimal parameter
regimes for obtaining the entanglement and its detection. Finally, we draw the conclusions in section 5.

2. The system

We consider a tripartite opto-electro-mechanical system, as shown in figure 1, which consists of an LC
electrical circuit, an MO, and an optical cavity. An experimental realization of a suitable MO could be a
metal coated nanomembrane [16, 17], which is capacitively coupled to an LC resonator and further
coupled to an optical cavity field via radiation pressure. Specifically, the radiation pressure of the cavity
field causes a mechanical displacement which further changes the capacitance of the LC circuit, and
conversely, the voltage fluctuation in the LC circuit leads to an optical phase shift via the mediation of the
MO. The Hamiltonian of the system reads

H/� =ωca†a +
ωm

2
(x2 + p2) +

ωLC

2
(q2 + φ2) − G0a†ax

+ g0xq2 − q
q0

�
V + iE(a†e−iωlt − a eiωlt), (1)

where a (a†) is the annihilation (creation) operator of the cavity mode, x and p (q and φ) are the
dimensionless position and momentum (charge and flux) quadratures of the mechanical (LC) resonator, and
therefore [a, a†] = 1 and [x, p] = [q,φ] = i. The resonance frequencies ωc, ωm, and ωLC = 1√

LC
are of the

cavity, mechanical, and LC resonators, respectively, where L(C) is the inductance (capacitance) of the LC
circuit. The capacitance C(x) is a function of the mechanical position x, which characterizes the capacitive
coupling to the MO. The MO–LC nonlinear coupling ∝ g0xq2 is derived by expanding the capacitance C(x)

around the membrane equilibrium position and expanding the capacitive energy q2

2C(x) as a Taylor series up
to first order [18, 20], and G0 is the single-photon optomechanical coupling rate. The last two terms in the
Hamiltonian denote the electric driving for the LC circuit and the laser driving for the cavity, respectively,
where V is a DC bias voltage (see figure 1(a)), q0 =

√
�/LωLC is the zero-point fluctuation of the LC

oscillator, and E =
√

2Plκ/�ωl is the coupling between the cavity field with decay rate κ and the driving
laser with frequency ωl and power Pl. Note that references [18, 19] considered a different form of MO–LC
coupling, ∝ g0xb†b, which was derived by neglecting fast oscillating terms xbb and xb†b† valid only when
ωLC � ωm. Instead, here we consider two low frequency nearly resonant oscillators ωLC � ωm, and thus one
has to consider the full interaction ∝ g0xq2. Another major difference is that the blue- or red-detuned

2
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Figure 1. (a) A mechanical oscillator, embodied by a metal coated membrane, is capacitively coupled to an LC circuit and
simultaneously coupled to an optical cavity via radiation pressure, where the membrane forms one end mirror of the cavity. (b)
The mechanical oscillator couples to the cavity via nonlinear radiation pressure interaction ∝ G0a†ax, and to the LC circuit via
radiation pressure-like interaction ∝ g0xq2. The frequencies we consider for the mechanical and LC oscillators are around 1
MHz, much lower than the cavity resonant frequency.

pump used in references [18, 19] to activate electro-mechanical Stokes or anti-Stokes process does not apply,
in a clear way, to our case of nearly resonant oscillators.

In the frame rotating at the drive frequency ωl, the quantum Langevin equations (QLEs) governing the
system dynamics are given by

ȧ = −(iΔ0 + κ)a + iG0xa + E +
√

2κain,

ẋ = ωmp,

ṗ = −ωmx − γmp + G0a†a − g0q2 + ξ,

q̇ = ωLCφ,

φ̇ = −ωLCq − γLCφ− 2g0xq +
q0

�
V ,

(2)

where Δ0 = ωc − ωl, γm and γLC = 2R/L (with R the resistance of the circuit) are the mechanical and
electrical damping rates, respectively, ain is the input noise operator for the cavity, whose mean value is zero
and the only non-zero correlation is

〈ain(t)ain†(t′)〉 = δ(t − t′) (3)

The Langevin force operator ξ accounts for the Brownian motion of the MO and is autocorrelated as

〈ξ(t)ξ(t′) + ξ(t′)ξ(t)〉/2 � γm(2n̄m + 1)δ(t − t′), (4)

where we have made a Markovian approximation valid for large mechanical quality factors
Qm = ωm/γm � 1 [22], and n̄m � kBT

�ωm
is the equilibrium mean thermal phonon number in the high

temperature limit, with kB the Boltzmann constant and T the environmental temperature.
In order to get strong optomechanical (electro-mechanical) coupling for cooling both the mechanical

and LC oscillators (creating MO–LC entanglement), we consider an intense laser pump, leading to a large
amplitude of the cavity field |〈a〉| � 1, and a large number of charges 〈q〉 � 1. This allows us to linearize
the system dynamics around the semiclassical averages by writing any operator as O = 〈O〉+ δO
(O = a, x, p, q,φ) and neglecting small second-order fluctuation terms. Therefore, the QLEs equation (2)
are separated into two sets of equations: one is for averages Os ≡ 〈O〉 and the other for zero-mean quantum
fluctuations δO. The steady-state averages can be obtained by setting the derivatives to zero and solving the
following equations

as =
E

κ+ iΔ
, xs =

1

ωm

(
G0|as|2 − g0q2

s

)
, qs =

1

ω′
LC

(q0

�
V̄
)

, ps = φs = 0, (5)

where Δ = Δ0 − G0xs is the effective cavity-laser detuning, and ωLC
′ = ωLC + 2g0xs is the effective LC

frequency including the frequency shift caused by the nonlinear MO–LC interaction. The linearized QLEs
describing the quadrature fluctuations (δX, δY, δx, δp, δq, δφ), with δX = (δa + δa†)/

√
2,

3
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δY = i(δa† − δa)/
√

2, are given by

δẊ = ΔδY − κδX +
√

2κXin,

δẎ = −ΔδX − κδY + Gδx +
√

2κY in,

δẋ = ωmδp,

δṗ = −ωmδx − γmδp + GδX − gδq + ξ,

δq̇ = ω′
LCδφ,

δφ̇ = −ω′
LCδq − γLCδφ− gδx +

q0

�
δV ,

(6)

where G =
√

2G0as (g = 2g0qs) is the effective optomechanical (electro-mechanical) coupling rate, and
Xin = (ain + ain†)/

√
2, Y in = i(ain† − ain)/

√
2 are the quadratures of the cavity input noise. Note that in

deriving the above QLEs, we have chosen a phase reference such that as is real and positive.
The effective coupling g increases linearly with qs, which then is linear dependence on the bias voltage V̄
(see equation (5)). This means that the electro-mechanical coupling strength can be significantly improved
by increasing the bias voltage [16]. The fluctuation of the bias voltage δV ≡ V − V̄ can be considered as the
input noise for the flux, and is autocorrelated as

〈δV(t)δV(t′)〉 =
[

4kBTR + γLC

(
�

q0

)2
]
δ(t − t′), (7)

which corresponds to the quantum version of the Johnson–Nyquist noise correlation [23] for a resistor
R = γLC

2 L at temperature T by including the vacuum fluctuation. In such a way, the noise correlation for
the operator δV(t) ≡ q0

�
δV(t) can be written in the form

〈δV(t)δV(t′)〉 = γLC(2n̄LC + 1)δ(t − t′), (8)

with n̄LC � kBT
�ωLC

being the thermal occupancy of the LC oscillator, which takes a consistent form as that
for the Langevin force operator ξ. This is the reason why we defined the damping rate γLC as twice its
conventional definition γLC

′ = R/L.

3. Steady-state solutions and quantification of Gaussian entanglement

We are interested in the quantum correlation between the mechanical and LC oscillators in the stationary
state. Owing to the fact that the dynamics are linearized and all input noises are Gaussian, the Gaussian
nature of the state will be preserved for all times. The steady state of the quantum fluctuations of the system
is therefore a three-mode Gaussian state and is completely characterized by a 6 × 6 covariance matrix (CM)
C, which is defined as Cij =

1
2 〈ui(t)uj(t′) + uj(t′)ui(t)〉 (i, j = 1, 2, . . . , 6), where

u(t) =
[
δX(t), δY(t), δx(t), δp(t), δq(t), δφ(t)

]T
. The stationary CM C can be obtained by solving the

Lyapunov equation [24]
AC + CAT = −D, (9)

where A is the drift matrix determined by the QLEs (6), given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κ Δ 0 0 0 0
−Δ −κ G 0 0 0

0 0 0 ωm 0 0
G 0 −ωm −γm −g 0
0 0 0 0 0 ω′

LC

0 0 −g 0 −ω′
LC −γLC

⎞
⎟⎟⎟⎟⎟⎟⎠

, (10)

and D = diag [κ, κ, 0, γm(2n̄m + 1), 0, γLC(2n̄LC + 1)] is the diffusion matrix, which is defined by
〈ni(t)nj(t′) + nj(t′)ni(t)〉/2 = Dijδ(t − t′), with the vector of input noises

n(t) =
[√

2κXin(t),
√

2κY in(t), 0, ξ(t), 0, δV(t)
]T

. To quantify the Gaussian entanglement, we adopt the
logarithmic negativity [25], which is a full entanglement monotone under local operations and classical
communication [26] and sets an upper bound for the distillable entanglement [25]. The logarithmic
negativity is defined as [27]
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Figure 2. Electro-mechanical entanglement EN vs detuning Δ/ωm and ωLC/ωm (with ωm fixed). We take G = g = 3κ in (a) and
5κ in (b), while the surrounding bath temperature T = 10 mK. See text for the other parameters.

EN ≡ max[0, − ln 2ν̃−], (11)

where ν̃− = min eig|iΩ2C̃4| (with the symplectic matrix Ω2 = ⊕2
j=1 iσy and the y-Pauli matrix σy) is the

minimum symplectic eigenvalue of the partially transposed CM C̃4 = P1|2C4P1|2, with C4 being the 4 × 4
CM of the mechanical and electrical modes, obtained by removing in C the rows and columns related to the
cavity field, and P1|2 = diag(1,−1, 1, 1) being the matrix that performs partial transposition on CM [28].

4. Electro-mechanical entanglement in the steady state

In this section, we present the results of the entanglement between the mechanical and LC oscillators. All
results are in the steady state guaranteed by the negative eigenvalues (real parts) of the drift matrix A. We
adopt experimentally feasible parameters [16, 17]: ωc/2π = 200 THz, ωm/2π = 1 MHz, κ = 0.1ωm,
γm = 10−6ωm, γLC = 10−5ωLC, and consider the LC frequency ωLC as a variable which is tuned around ωm.
To avoid additional low-frequency electronic noises, LC frequencies much below 1 MHz will not be
considered. We work in the resolved sideband limit, κ � ωm, and assume a relatively large Q factor of the
LC oscillator compared to those typically demonstrated at room temperature [16, 17] as we place the system
at cryogenic temperatures where superconductivity can significantly improve the Q factor [29].
At a few tens of millikelvin, the mechanical and LC oscillators still exhibit significant thermal excitations
because of their low frequencies. Therefore, we use a red-detuned laser to drive the cavity and stimulate the
optomechanical anti-Stokes process, which results in cooling of the mechanical mode [3], and owing to the
MO–LC coupling, the electrical mode also gets cooled. In such a system, it is even possible to cool a 1 MHz
LC resonator into its quantum ground state from temperature of a few tens of millikelvin [21].
The cooling process in this hybrid system can be considered as the transport of thermal excitations from the
electrical mode to the mechanical mode, and then to the cavity mode, which eventually dissipates the heat
via cavity photon leakage to the environment. The low effective temperatures of the mechanical and
electrical modes are a precondition for observing their entanglement if strong coupling rates are used. This
is verified numerically and shown in figure 2, where the entanglement is maximal for a cavity-laser detuning
Δ � ωLC. We assume both the optomechanical and the electro-mechanical coupling to be strong G, g > κ,
in order to significantly cool both the mechanical and electrical modes [21] and to ultimately create the
desired electro-mechanical entanglement. We have verified that based on the values of the bare coupling
rates G0 and g0 estimated from the experiments [14, 16, 17], with the parameters used for our results the
nonlinear electro-mechanical coupling induced frequency shift ωLC

′ − ωLC � ωLC. Therefore, throughout
the paper we consider ωLC

′ � ωLC. Figure 2 also shows that in our system two nearly resonant oscillators are
preferred to maximize the entanglement. If the couplings are further increased (cf figure 2(b)) the system
becomes unstable for Δ <∼0.4ωm.

We further show the stationary electro-mechanical entanglement as a function of the two coupling rates
g and G for the resonant case [16, 17] in figure 3(a). It is clear that the entanglement grows with increasing
coupling strengths and strong couplings G, g > κ are generally required to obtain considerable
entanglement. The coupling strengths are restricted by the stability condition. Note that the system becomes
stable only when all the eigenvalues of the drift matrix A have negative real parts. The parameter regime
where stability occurs can be obtained from the Routh–Hurwitz criterion [30], but the inequalities are quite
involved for the present tripartite system. Therefore, to provide an intuitive picture we numerically plot the
maximum of the eigenvalues (real parts) of the drift matrix A in figure 3(b). The white area denotes that the

5
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Figure 3. (a) Stationary MO–LC entanglement EN, (b) the maximum of the eigenvalues (real parts) of the drift matrix A vs
coupling rates g and G. The white area denotes that the system is unstable. We take an optimal detuning Δ � ωm for ωLC = ωm,
and T = 10 mK. The other parameters are the same as in figure 2.

maximum is larger than zero, i.e., at least one eigenvalue has a positive real part, and thus the system is
unstable when the couplings lie within this area. Under such strong couplings, one may conjecture the
‘optical-spring’ effect may play a significant role. We therefore derive the expression of the effective
mechanical frequency (see appendix for the derivation), which in the frequency domain is given by

ωeff
m (ω) =

[
ω2

m − G2Δωm(Δ2 + κ2 − ω2)

(Δ2 + κ2 − ω2)2 + 4κ2ω2
− g2ωLCωm(ω2

LC − ω2)

(ω2
LC − ω2)2 + γ2

LCω
2

] 1
2

, (12)

where the first term is the MO’s natural frequency, and the second term is the frequency shift caused by the
optomechanical interaction, followed by the third term which denotes a further frequency shift due to the
electro-mechanical coupling. Under the optimal condition for entanglement, ω = Δ = ωm = ωLC ≡ ω0,
and in the resolved sideband limit κ � ωm, we obtain

ωeff
m (ω0) �

√
ω2

m − G2/4 (13)

For what we have used the strongest coupling G = 6κ and κ = 0.1ωm, we have ωeff
m (ω0) � 0.95ωm, implying

that the mechanical frequency in most cases remains unchanged. This is mainly due to the fact that we work
in the resolved sideband limit [1].

We note that the entanglement originates from the component of the two-mode squeezing interaction
∝ g(δmδb + δm†δb†) in the ‘quadrature–quadrature’ coupling ∝ gδxδq = g(δm + δm†)(δb + δb†)/2,
where m is the annihilation operator of the mechanical mode. This can be verified by the fact that there
will be no entanglement for a weak coupling g � ωm/LC, which allows one to make the RWA and the

interaction essentially becomes a beamsplitter type ∝ g(δmδb† + δm†δb). As clearly visible from figure 3(a),
this situation of weak coupling g < κ � ωm/LC does not produce any entanglement. Apart from a
sufficiently large g, G should also be strong, G > κ, in order to efficiently cool both the oscillators. Taking
G = g = 5κ in figure 3(a) for example, we obtain the average excitation number of the two modes:
n̄eff

m = 1
2

(
〈δx2〉+ 〈δp2〉 − 1

)
� 0.15; n̄eff

LC = 1
2

(
〈δq2〉+ 〈δφ2〉 − 1

)
� 0.08, implying both the oscillators are

cooled into their quantum ground state. This yields an entanglement EN � 0.18.
We further investigate the entanglement as a function of bath temperature and the data in figure 4 shows

that it is robust against temperature, surviving up to ∼100 mK, based on realistic parameters. Even though
the electro-mechanical coupling rate g and the Q factor of the LC resonator we use are larger than the
demonstrated values [16, 17], it is realistic to assume that they can be achieved at low temperature and by
properly designing the system [29].

Finally, we would like to discuss how to detect the electro-mechanical entanglement. The task requires to
essentially measure the four quadratures of the mechanical and electrical modes, (x, p, q,φ), based on which
the CM can be re-constructed and the logarithmic negativity can then be computed according to the
definition in equation (11). To measure the mechanical quadratures, we adopt the strategy used in
references [9, 10, 31], i.e., sending a weak red-detuned probe field with detuning equal to the mechanical
frequency Δp � ωm into the cavity, which maps the mechanical state onto the anti-Stokes sideband of the
probe field at cavity resonance. Thus, by homodyning the probe output field, the two mechanical
quadratures are measured. The quadratures of the electrical mode can also be measured by employing a
homodyne scheme at radio frequency.

6
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Figure 4. Stationary MO–LC entanglement EN vs bath temperature T: solid (dashed) line is for g = 8κ and G = 6κ
(g = G = 5κ). The other parameters are the same as in figure 3.

Figure 5. Density plot of 〈δX2
+〉+ 〈δY2

−〉 vs T and QLC = ωLC/γLC (ranging from 104 to 105 with fixed ωLC) for g = G = 6κ.
The white area shows 〈δX2

+〉+ 〈δY2
−〉 > 2. The other parameters are the same as in figure 3.

In order to avoid measuring the whole 4 × 4 CM for quantifying entanglement, alternatively, one can
also verify the entanglement by using the Duan criterion [32], which requires the measurement of only two
collective quadratures, X+ = x + q, and Y− = p − φ. A sufficient condition for entanglement is that the two
collective quadratures should satisfy the following inequality

〈δX2
+〉+ 〈δY2

−〉 < 2 (14)

Figure 5 shows that in moderate ranges of temperature and LC Q factor the inequality is fulfilled, indicating
the presence of electro-mechanical entanglement. The entanglement survives up to 19 mK for
QLC = 2 × 104, and 86 mK for QLC = 105.

5. Conclusions

We have provided a straightforward but effective approach to preparing entangled states of low-frequency
mechanical and LC resonators. At typical cryogenic temperatures, the two resonators still contain significant
thermal excitations, which effectively destroy their joint quantum correlations. In order to solve this, we
couple the mechanical element to an optical cavity via the radiation pressure force, which can act as an
additional cold bath: by driving the cavity with a red-detuned laser, both the mechanical and electrical
modes are sequentially cooled, resulting in remarkable electro-mechanical entanglement emerging from
thermal noise. The entanglement originates from the electro-mechanical coupling and can be in the
stationary state and robust against temperature.

The present work can be considered as a complementary study to the widely explored situation where
the LC frequency, typically in microwave domain [2, 9, 14, 15], is much larger than the mechanical
frequency, and in this case electro-mechanical entanglement can be directly generated by adopting an
appropriate microwave drive [18]. The entanglement generated in this work, however, uses a different

7
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mechanism and is of low-frequency resonators (both around 1 MHz), which implies its macroscopic
quantum nature, and would allow us to test quantum theories at a more macroscopic level [33–35].
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Appendix. ‘Optical-spring’ effect in the opto-electro-mechanical system

Here we show how to derive the effective mechanical frequency in our strongly coupled tripartite system.
We solve the QLEs (6) in the frequency domain by taking Fourier transform of each equation and derive the
effective mechanical susceptibility, through which we extract the effective mechanical frequency.

Solving separately two quadrature equations for each mode, we obtain the solutions given in terms of
the natural susceptibilities of the three subsystems, which are

χ−1
c (ω) δX(ω) = GΔδx(ω) +

√
2κ

[
(κ− iω)Xin(ω) +ΔY in(ω)

]
,

χ−1
c (ω) δY(ω) = (κ− iω)Gδx(ω) +

√
2κ

[
(κ− iω)Y in(ω) −ΔXin(ω)

]
,

χ−1
m (ω) δx(ω) = GδX(ω) − gδq(ω) + ξ(ω),

χ−1
LC(ω) δq(ω) = −gδx(ω) + δV(ω),

(15)

where χc(ω), χm(ω), and χLC(ω) are the natural susceptibilities of the cavity, mechanical, and electrical
modes, respectively, given by

χc(ω) =
1

Δ2 + (κ− iω)2
,

χm(ω) =
ωm

ω2
m − ω2 − iγmω

,

χLC(ω) =
ωLC

ω2
LC − ω2 − iγLCω

(16)

The mutual interactions among the three modes lead to the modification of their natural susceptibilities,
and thus yield effective mode frequencies, which are associated to the real part of the reciprocal of the
susceptibilities. Inserting δX(ω) and δq(ω) in equation (15) into the equation of δx(ω), we obtain

χeff−1
m (ω)δx(ω) =χc(ω)G

√
2κ

[
(κ− iω)Xin(ω) +ΔY in(ω)

]
+ ξ(ω) − χLC(ω)gδV(ω), (17)

where χeff
m (ω) is the effective mechanical susceptibility, defined by

χeff−1
m (ω) = χ−1

mc(ω) − g2χLC(ω), (18)

with
χ−1

mc(ω) = χ−1
m (ω) − G2Δχc(ω), (19)

where χmc(ω) corresponds to the effective mechanical susceptibility in the presence of only the
optomechanical interaction. From the real part of χeff−1

m (ω), we extract the effective mechanical frequency,
where we can recognize the so-called ‘optical-spring’ effect which is accompanied by a further shift due to
the electro-mechanical coupling, i.e.,

ωeff
m (ω) =

[
ω2

m − G2Δωm(Δ2 + κ2 − ω2)

(Δ2 + κ2 − ω2)2 + 4κ2ω2
− g2ωLCωm(ω2

LC − ω2)

(ω2
LC − ω2)2 + γ2

LCω
2

] 1
2

(20)
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