Step 1. LEARNING FROM THE SHIPS DIMENSIONS: to define their routes-paths

Cargo Ships [CS]
- W = 30 m
- D = 60 m
- Z = 3 m
- P = 200 m
- Ya = 150 m
- Yb = 20 m
- Zb = 5 m
- Za = 30 m
- Xa = 220 m
- Xb = 30 m
- Quantity = 25

Cruise Ships [CS]
- W = 270 m
- D = 290 m
- Z = 5 m
- P = 100 m
- Ya = 150 m
- Yb = 20 m
- Zb = 5 m
- Za = 30 m
- Xa = 220 m
- Xb = 30 m
- Quantity = 2

Boats+Vessels [B+V]
- W = 20 m
- D = 10 m
- Z = 1 m
- P = 50 m
- Ya = 150 m
- Yb = 20 m
- Zb = 5 m
- Za = 30 m
- Xa = 220 m
- Xb = 30 m
- Quantity = 350

LEARNING FROM THE SHIPS: dimensions, docking maneuvering and berth layout

Terminal Sea Area [TSA]
- TSA 1
- TSA 2
- TSA O = 830 mts
- TSA 1 = 250 mts
- TSA 2 = 680 mts
- Bay Width [WBay] = 2(DL) + W
- DL [a] = 500 mts
- DL [b] = 250 mts
- WBay [a] = 2 km
- WBay [b] = 1.5 km
- Z = Za + Zb
- Y = Ya + Yb
- X = Xa + Xb

EVALUATING ON THE BAY: ships routes-paths

Distance from the Land [DL]
- DL [a] = 500 mts
- DL [b] = 250 mts
- WBay [a] = 2 km
- WBay [b] = 1.5 km

Step 2. LEARNING FROM THE SHIPS: dimensions, docking maneuvering and berth layout

Cargo Ships [CS]
- W = 30 m
- D = 60 m
- Z = 3 m
- P = 200 m
- Ya = 150 m
- Yb = 20 m
- Zb = 5 m
- Za = 30 m
- Xa = 220 m
- Xb = 30 m
- Quantity = 25

Cruise Ships [CS]
- W = 270 m
- D = 290 m
- Z = 5 m
- P = 100 m
- Ya = 150 m
- Yb = 20 m
- Zb = 5 m
- Za = 30 m
- Xa = 220 m
- Xb = 30 m
- Quantity = 2

Boats+Vessels [B+V]
- W = 20 m
- D = 10 m
- Z = 1 m
- P = 50 m
- Ya = 150 m
- Yb = 20 m
- Zb = 5 m
- Za = 30 m
- Xa = 220 m
- Xb = 30 m
- Quantity = 350

Step 3. EVALUATING ON THE BAY: ships routes-paths

Distance from the Land [DL]
- DL [a] = 500 mts
- DL [b] = 250 mts
- WBay [a] = 2 km
- WBay [b] = 1.5 km

Step 4. TOPOGRAPHICAL STUDY

Step 5. INTERLACING CRUISE SHIP [CS]: international connections

IDEAL OCEAN WAVE

ACTUAL OCEAN WAVE

INTERLACING CS+BOATS+VESSELS

Step 6. INTERLACING BOATS+VESSELS:

Step 7. INTEGRATING THE WAVES
BUENAVENTURA revival
Maritime Terminal for Passengers
INTERWEAVING THE WAVES

"The network of mobility is most strongly expressed at its nodes. The perception of nodes prevails over the awareness of lines, not only because of their intrinsic architectural dominance, but also because of their particular nature as meeting place and point of public interaction."

The Landscape of Contemporary Infrastructure
Kelly Shannon Marcel Smets. Nai, Rotterdam, NL.

Infrastructure may be seen as the ultimate public space: it is generally paid for the public authorities, it is accessible to almost every one, and it marks a common itinerary or a collective place. Infrastructure, by its very nature, expands the public realm beyond the boundaries of a single place. It articulates the aspirations and dignity of contemporary society. Infrastructural investments thus allow for a form of public management or partnership in a more complex urban transformation.

ESTABLISHING:
Andreia Peñaloza Caicedo
Dr. Henriette Bier - Dr. Nimish Biloria - Martin Sobota
Master of Science in Architecture - Hyperbody Graduation Lab
The Netherlands

EMPLOYMENT + CITY IMAGE
+ increasing city identity
+ appropriation feeling
+ new public space
+ new citizens spatial conditions
+ stimulating new urban spatial strategies
+ improving inhabitants life quality
+ it is attracting visitors and passengers:
 + local commerce
 + foreign and local long term investors
+ generation of new employment opportunities through its functions:
 + Repairing Boats
 + 6 to 21mts long crains
 + working area offices
 + tools - equipment offices
 + services
 + Commercial Activity
 + Souvenirs Shops
 + Fruits
 + Social Activity
 + restaurant & coffee
 + seafood school
 + Sport Activity
 + Sailing School

Buenaventura revival
Maritime Terminal for Passengers
INTERWEAVING THE WAVES
BUENAVENTURA revival
Maritime Terminal for Passengers
INTERWEAVING THE WAVES

Establishing:

the emerging edificative attractive and monumental shape +
but also effective because of the new rain water collection system +
which helps to solve one of the population’s main problem:
the lack of water service +