
Safe reinforcement learning in
long-horizon partially observable
environments
B. Kovács

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Safe reinforcement
learning in long-horizon
partially observable

environments
by

B. Kovács
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday August 20, 2020 at 10:30 AM.

Student number: 4770552
Project duration: November, 2019 – August, 2020
Thesis committee: Dr. M. T. J. Spaan, TU Delft, supervisor

Dr. J. C. van Gemert, TU Delft
Dr. J. Kober, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

The cover photo was based on
https://www.pexels.com/de­de/foto/abstrakt­bewegung­bewirken­blitz­373543/ and

cliparts from https://openclipart.org/ and http://www.clker.com/.

http://repository.tudelft.nl/
https://www.pexels.com/de-de/foto/abstrakt-bewegung-bewirken-blitz-373543/
https://openclipart.org/
http://www.clker.com/

Preface
You are reading my thesis project, concluding my master studies at Delft University of Technology. In
the past nine months, I was conducting research in deep reinforcement learning, an emerging area
in artificial intelligence. During this period, my primary goal was to implement a project that has high
added value for the machine learning community. I have faced several challenges in both the scientific
and engineering parts of my project. Especially, large­scale training of the agents and training for
hundreds of thousands of steps proved to be a time­consuming task, during both the hyperparameter
tuning phase and the experimental evaluation. Finally, I am happy that I have managed to overcome
all difficulties and reach appealing conclusions. I am proud to deliver this report about my work and
hope that it will serve as a basis for a scientific publication and my possible Ph.D. studies in the future.

I am thankful to my supervisors Dr. Matthijs Spaan and Qisong Yang, for their guidance through
this project with all their advice and support, and to the members of the thesis committee, Dr. Jan van
Gemert, and Dr. Jens Kober for providing feedback and evaluating my work. I would also like to thank
all the teaching staff of TU Delft for providing high­quality education with exciting lectures, challenging
team projects, and many more scientific activities outside class hours. It was pleasant to be part of the
international community in the past two years as well as to develop my skills through group projects
and teaching assistant activities.

Naturally, this research would not have been possible without the continuous support frommy family.
Also, I am especially thankful to my girlfriend, Dorina, for keeping me motivated and making the past
two years fun and memorable together with our friends, Zsombor, Betti, and Dorka.

Finally, this project could not have been implemented without many open source libraries and online
services. Since most of the training procedure was conducted in the cloud ecosystem, I would also
thank for the Google and Microsoft for funding my research by making several tools (Google Colab
notebooks, Azure ML tools, Google Cloud) and free credits available for educational and research
purposes.

B. Kovács
Delft, August 2020

iii

Abstract
Deep reinforcement learning went through an unprecedented development in the last decade, resulting
in agents defeating world champion human players in complex board games like go and chess. With
few exceptions, deep reinforcement learning research focuses on fully observable environments, while
there is slightly less research in the direction of partially observable environments. Though, they are
relevant in real­world applications where the physical systems’ sensors can read only a limited subset
of features required for decision making. In many problems, long­term memory is required for the
agent to make optimal decisions, possibly through tens or hundreds of timesteps. In supervised deep
learning, in the NLP domain, sequential input processing is done with specialized network architectures
like variants of RNNs and attention­based networks.

In this work, we investigate the potential of these advanced sequence­processing architectures in
the context of deep reinforcement learning for partially observable environments. Additionally, since
partial observability widely appears in the physical world, we take a safe approach by trying to limit high
exploration costs and damage to the agent and its environment. First, we augment the soft actor­critic
method with constraints on the episodic cost, resulting in an objective function with two Lagrangian
multiplier: an entropy temperature and a safety temperature. Then, to support long­horizon, partially
observable environments, we use gated recurrent (LSTM, GRU) and self­attention based neural net­
works for the policy and the estimation of Q­functions. We also study how the design choices and
hyperparameters of the self­attention based method affect the performance.

To evaluate the problem in safety­constrained environments with long­term temporal dependen­
cies, we develop a new set of benchmarks with four parameterizable, partially observable simulations.
The environments are also parameterizable with the length of the history containing relevant features.
Hence, we can observe how different network architectures handle the same problems with varying
time horizons. Additionally, we introduce a practical framework for the reproducible evaluation of the
methods.

We conclude that both the recurrent and the self­attention based architectures have high application
potential in the introduced domains. We confirm that the feedforward network based baseline agent,
shows high performance on problems where only a few, or tens of timesteps have to be processed se­
quentially. The recurrent and self­attention based architectures show their advantage in environments
with longer horizons, where the sequence of events play an important role and looking back to a fixed
position is not sufficient.

Maintaining safety proves to be problematic when the reward and cost functions show correlation.
Additionally, strict cost limits usually lead to a poor policy and no exploration, contributing to higher
costs on the long term, for some environments.

We propose further research for architectural changes to scale up the method for more complex
environments, and to analyze the method on discrete­action and environments.

v

Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Research questions . 3
1.3 Contributions . 3
1.4 Outline . 5

2 Literature review 7
2.1 Reinforcement learning . 7
2.2 Deep learning. 8

2.2.1 Sequence modeling . 9
2.3 Deep reinforcement learning. 10

2.3.1 Policy gradient methods . 11
2.3.2 Actor­critic methods . 12
2.3.3 Deep reinforcement learning in continuous action spaces 12
2.3.4 Proximal policy optimization . 13
2.3.5 Soft actor­critic . 13
2.3.6 Deep reinforcement learning in partially observable environments 14
2.3.7 Deep reinforcement learning with parallel agents. 15

2.4 Safe reinforcement learning . 16
2.4.1 Safe RL in partially observable environments. 17

3 Problem statement 19

4 Problem context 21
4.1 Soft actor­critic . 21

4.1.1 Real­world training of a walking robot . 23
4.2 Constrained optimization using the Lagrange multiplier method 23
4.3 Constrained Reinforcement learning . 24

4.3.1 Formulation . 24
4.3.2 Standardizing benchmarking. 24

4.4 Recurrent networks. 25
4.5 Self­attention . 25

5 Safe reinforcement learning framework for partially observable environments 27
5.1 Sequence processing for partially observable environments. 27

5.1.1 Feedforward network with dense layers . 29
5.1.2 Recurrent Neural Network (LSTM or GRU­based) 29
5.1.3 Self­attention­based network . 29

5.2 Maximum­entropy reinforcement learning with safety constraints 30

6 Benchmark set of partially observable environments with safety constraints 33
6.1 Requirements for the environments . 34
6.2 Environments . 34

6.2.1 Canon . 35
6.2.2 Sail . 36
6.2.3 Growing flowers . 37
6.2.4 MoveNd . 38

6.3 Wrapper environments . 39
6.3.1 OpenAI gym / Pendulum­v0 . 39
6.3.2 OpenAI gym / HalfCheetah­v2 . 40

vii

viii Contents

7 Experimental evaluation 41
7.1 Evaluation metrics . 41
7.2 General setup. 42
7.3 Evaluation framework for gym­based environments . 42

7.3.1 Python library . 42
7.3.2 Web application. 43
7.3.3 Process overview. 43
7.3.4 Summary . 44

7.4 Implementation of the method . 44
7.5 Comparing fully and partially observable environments 44

7.5.1 The pendulum environment . 44
7.5.2 The half cheetah environment . 44

7.6 Comparing network architectures . 48
7.6.1 Canon environment . 48
7.6.2 Flower environment . 49
7.6.3 Sail environment . 50
7.6.4 Move environment . 51

7.7 Comparing recurrent architectures . 51
7.8 Comparing the self­attention based network . 51

7.8.1 Attention heads . 51
7.8.2 Position embedding . 52

7.9 Safety . 52
7.10 Pre­training with experiences obtained by legacy controller 54
7.11 Computational complexity . 56

8 Conclusion 59
8.1 Summary . 59
8.2 Drawbacks of the method . 60
8.3 Future work . 61

8.3.1 Experimental evaluation . 61
8.3.2 Method . 61

A Appendix 63
A.1 Hyperparameters . 63
A.2 Supporting material for experimental evaluation . 64

A.2.1 Sail environment . 64
A.2.2 Flower environment . 65

List of Figures

1.1 Overview of our work . 3
1.2 Outline . 5

3.1 Partially observable problem setup with safety violation cost. The environment presents
an observation 𝜔𝑡, a reward 𝑟𝑡 and a safety constraint violation cost 𝑐𝑡 on each timestep
𝑡 to the agent. Next, the agent performs an action 𝑎𝑡 ∈ 𝐴 in the partial observable
environment. As a result, the state of the environment changes from 𝑠𝑡 to 𝑠𝑡+1. The
whole procedure is repeated until the end of the episode is reached. 20

5.1 Basic multilayer­perceptron (MLP) network with dense layers 28
5.2 Recurrent (LSTM / GRU) based network . 28
5.3 Architecture of the self­attention based network. The input sequence is embedded with a

learned position embedding before the self­attention layer. The linear layers are followed
by a ReLu activation function. The policy and Q­networks use the same underlying
architecture except the network heads, however they do not share weights. 30

6.1 The canon environment . 35
6.2 The sail environments. 36
6.3 The flowers environments. 37
6.4 The move environments. 38
6.5 Visualization of the pendulum environment . 39
6.6 Visualization of the half cheetah environment . 40

7.1 Components and data flow in the evaluation system. The developer pushes the new
version of the code to the version control system and the hyperparameters and image
version for the experiments in the queue. The version control system triggers a build on
the continuous integration (CI) tool building a frozen image with the dependencies of the
application. Next, the image is pushed to the container registry, from where the worker
node can fetch it. 43

7.2 Comparing agents on partially and fully observable unconstrained pendulum environments. 45
7.3 Unconstrained agents on the partially and fully observable HalfCheetah­v2 environ­

ments . 45
7.4 Constrained agents the partially and fully observable HalfCheetah­v2 environments . 46
7.5 A training run for the safety constrained agent on the HalfCheetah environment 47
7.6 Analyzing network architectures for unconstrained agents on the flower environment . . 50
7.7 Various agent on the unconstrained flower environment (hard level) 51
7.8 Constrained and unconstrained feedforward agent on the POCanon16­v0 environment 53
7.9 Analyzing safety on the flower environment (sequence length = 160) 53
7.10 Performance of agents in the move environment. The radius of the points is proportional

the length of pretraining. 55
7.11 Training time for 10000 steps versus sequence length. 57
7.12 Parameter count versus sequence length. 57

ix

List of Tables

4.1 Objectives in Reinforcement learning. The maximum­entropy goal generalizes the stan­
dard goal with an entropy term, with a relative importance 𝛼. 21

4.2 The GRU and the LSTM cells . 26

6.1 The observation space of the pendulum environment. 39
6.2 State space of the fully and partially observable variants of the half cheetah environment 40

7.1 Average return and cost for agents with multiple network architectures on the variants of
the POCanon­v0 environment. 48

7.2 Training and test return on flower environment . 49
7.3 Average per­episode metrics after random exploration on the POCanon16­v0 environ­

ment by the feedforward agent . 52

A.1 Hyperparameters applicable for all experiments . 63
A.2 Hyperparameters values for the tested environments . 63
A.3 Training and test return on the sail environment . 64
A.4 Agents on the 2­dimensional move environment. The training return includes the re­

ward of samples collected off­policy way (by the heuristics or random exploration). . . . 65
A.5 Agents on the 8­dimensional move environment. The training return includes the re­

ward of samples collected off­policy way (by the heuristics or random exploration). . . . 65
A.6 Agents on the 2­dimensional move environment. The training return does not include

the reward of samples collected off­policy way (by the heuristics or random exploration). 66
A.7 Agents on the 8­dimensional move environment. The training return does not include

the reward of samples collected off­policy way (by the heuristics or random exploration). 66

xi

Acronyms
A2C advantage actor critic

A3C asynchronous advantage actor critic

ANN artificial neural network

API long

CMDP constrained Markov decision process

CNN convolutional neural network

CPO constrained policy optimization

DDPG deep deterministic policy gradient

DL deep learning

DNN deep neural network

DQN deep Q network

DRL deep reinforcement learning

DRQN deep recurrent Q­network

FPS first person shooter

GPU graphics processing unit

GRU gated recurrent unit

LSTM long short­term memory

MDP Markov decision process

MLP multilayer perceptron

NLP natural language processing

POMDP partially observable Markov decision process

PPO proximal policy optimization

ReLU rectified linear unit

RL Reinforcement learning

RNN recurrent neural network

SAC soft actor­critic

SGD stochastic gradient descent

SRL safe reinforcement learning

TD temporal­difference

TD3 twin delayed deep deterministic policy gradient

TRPO trust region policy optimization

xiii

1
Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) is an emerging field of artificial intelligence, one
of the most actively researched areas nowadays. It is usually treated as the third essential machine
learning paradigm besides supervised­ and unsupervised learning. In reinforcement learning, a self­
learning agent is employed with the goal of discovering how to act optimally in an unknown environment.
Agents interact with the environment in discrete steps by taking actions based on the observations.
After each step, the environment emits a scalar reward signal. Environments can be episodic, meaning
that after reaching a state or a time limit, the environment terminates. The agent’s goal is to maximize
the return – the sum of the per­step rewards received through an episode.

Besides its huge successes of beating human champions in chess (Silver et al., 2017a) or go (Silver
et al., 2017b), reinforcement learning is a natural solution for many real­world problems like closed­loop
controlling physical systems or recommending content online. Some people even suggest that rein­
forcement learning­based techniques are the next milestone on the way to general artificial intelligence
(Rocha et al., 2020). While deep reinforcement learning is not yet mature (Ray et al., 2019) it is already
extensively used in healthcare (Hochberg et al., 2016), autonomous driving (Shalev­Shwartz et al.,
2016) and for trading on financial markets (Nevmyvaka et al., 2006).

The research community focuses on plenty of domains where practical applications of RL can arise.
One of the exciting fields is robotics: traditionally, robots are controlled by handcrafted controllers,
constructed based on mathematical models using control theory. Reinforcement learning provides
a viable alternative to replace classical controllers by policies trained using the toolset of machine
learning. Although being a promising approach, to achieve state­of­art results in the field, several
challenges need to be tackled, before one can exploit its full potential.

First, robots usually have to make decisions based on high­dimensional and high­resolution sensors
like cameras, thermometers, and positional encoders. The used sensors may only provide information
with significant delays and noise due to their physical properties and measurement technology. Envi­
ronments where the observations show similar issues are considered partially observable, contrary to
fully observable environments where all relevant state variables are revealed to the agent.

Second, the action space in the robotic domain is challenging to handle due to its possible high
dimensionality – for example a, robotic arm may have at least 7 degrees of freedom with the corre­
sponding control signals – and the fact that it is usually continuous – like the voltage applied to a motor.

Moreover, the consequences of actions may appear only on a longer time horizon, which makes
it hard to connect an outcome to its determining action. It is also natural that an agent receives only
a subset of the important features as observation, rather than the full state of the system during the
interaction andmay have to take a sequence of observations into account for optimal decisionmaking. It
is especially the case in real­world environments because several state variables are not, or not directly
measurable contrary to simulations where those are mostly stored in the simulator’s memory. For
example, the speed of a rotating wheel sometimes can only be measured by differentiating its position,
while in labyrinths, several corridors may appear similar. Of course, in the former example of speed
estimation, manual preprocessing can significantly make the agent’s job easier, but such an algorithm
is not trivial to build for more advanced applications like self­driving cars, where the observation space

1

2 1. Introduction

consists of hundreds of features in every single timestep. In problems where multiple observations
need to be processed, the agent usually needs internal memory to find an optimal policy.

Finally, agents in real­world environments usually need to maintain safety during the operation: a
robot should never harm equipment or humans, while RL­based trading systems should not unneces­
sarily risk clients’ investments. There are several approaches for safety in reinforcement learning.

For safety­critical environments, where minimal violation of the safety constraints is not permitted,
preliminary knowledge is necessary to keep exploration safe. For example, a heuristic can override
the agent’s action when it tries to act with possible negative consequences.

An alternative method is defining a cost function – similarly to the reward function – and letting the
cost­aware agent explore its own environment. Still, in general, depending on the characteristics of the
environments, safety constraint violations may appear. It is especially the case at the beginning of the
training procedure when the agent has minimal knowledge about the environment.

This work studies safe reinforcement learning methods for long­horizon partially observable en­
vironments with continuous high­dimensional observation and action spaces. Complex, continuous
environments are usually solved by deep reinforcement learning (DRL) techniques, algorithms using
deep neural networks (DNNs) as non­linear function approximators to estimate value functions and
policies. Contrary to the fully observable setup where a single observation is sufficient for optimal de­
cision making, in partially observable cases, the agent needs to process a sequence of observations,
possibly even full episodes. Acting safely can also be more challenging, due to safety­related features
and state variables, possibly missing from the observation, making representation learning necessary.
To tackle the challenges introduced by partial observability, previous RL work tends to feed short se­
quences of observation frames into dense feedforward networks. When the input space consists of
high­resolution images, convolutional layers are used beforehand (Mnih et al., 2015).

However, while the approach generally shows good performance on environments with short­term
temporal dependencies like Atari games, it is likely that in real­world environments, the approach
has only limited usage opportunities due to important features’ possible spread across hundreds of
timesteps. In the small game environments, only three timesteps need to be processed, and the agent
has to look back for a limited time interval. Nonetheless, in real­world environments, certain events
can occur at any time, affecting all upcoming timesteps. In this context, the feedforward network would
require learning the same features for all possible time intervals. However, achievements in deep
learning showed that practical applications of feedforward networks are limited in sequence process­
ing (Sutton and Barto, 2018) and proposed recurrent and attention­based networks for natural language
processing (NLP) and its subdomains.

Therefore, intuitively, deep reinforcement learning methods are also likely to benefit using ad­
vanced, sequence processing architectures for more complex, partially observable tasks. There are
two popular techniques for sequential input processing. Traditionally, recurrent architectures (Sutskever
et al., 2014) like long short­term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recur­
rent unit (GRU) networks Cho et al. (2014) dominated the NLP field. Later, recurrent models augmented
with attention mechanisms proved to be more performant. The recurrent architectures were recently
replaced by the self­attention­based transformer (Vaswani et al., 2017) and its variants, powering cur­
rent state­of­art models like GPT­3 (Brown et al., 2020). Some attempts were made to make use of
these approaches in RL (Heess et al., 2015), however, there is still a lack of extensive research in the
field, contrary to the high potential of the mentioned architectures.

1.1. Problem definition
In this work, we solve safety­constrained reinforcement learning problems in partially observable en­
vironments. The environments are made challenging by the fact that a long history of observations
contains relevant information about the environment. An agent acts in an environment in discrete time
steps. On each step, the agent receives an observation, a reward, and a cost from the environment.
Then, it picks an action according to its policy and a set of past observations. The environment exe­
cutes the action, then the process is repeated until the episode ending in several steps. The episode
may end either due to reaching a terminating state or because a time limit is exceeded. The agent’s
goal is to maximize the (discounted) sum of the reward while sticking to the cost limits provided. The
agent is considered to be safe if the expected cost regret for a full episode remains below a given
threshold.

1.2. Research questions 3

1.2. Research questions
We base our research work on our remark about many potential real­world application fields of rein­
forcement learning. For advanced control tasks (consider a self­driving car or several challenges on
the smart­grid), taking a long history of past observations into account is essential. Specifically, for
the former example, a car should remember and predict the trajectory of a pedestrian, even if it tem­
porarily gets behind a car. The smart grid controller algorithm also has to focus on trends, besides the
actual state. Naturally, safety is also crucial in the context. Our research goal is to examine deep rein­
forcement learning techniques that could get us closer to achieving a breakthrough for the mentioned
problem context.

Based on our goal, we formulate our main question as follows:
How can deep reinforcement learning agents learn safe policies in long­horizon partially observable

environments?
We answer the main research question by developing and evaluating deep reinforcement learning

agents. Our first sub­research question focuses on the selection of a deep neural network architecture
for the problem context.

Which novel deep learning models are the best suited for use with deep reinforcement learning
algorithms to process long sequences of observations in partially observable environments?

In our second subquestion the safety­related requirement is considered.
How to make the selected algorithms safer to minimize risks of taking damaging actions?
The final subquestion concerns the environments and research tools required for evaluating our

agents’ performance.
How to conduct a reproducible evaluation of agents designed for safe reinforcement learning in

partially observable environments?

1.3. Contributions

Real world environment
● Continuous
● Complex
● Partially observable

● State is not known by the agent
● Dangerous: costs must be limited,

unnecessary risk must be avoided

Agent
● Goal 1: maximize reward in the environment

● Find why it receives reward
● Decude considering long observation history

● Goal 2: keep cost below given threshold

Simulated environments
● Simpler tasks
● Focus: long time horizon

Soft actor-critic agent

For constrained, partially
observable environments

Constraints
● Minimum entropy
● Maximum cost

Deep networks
Policy Q Safety-Q

Architectures for sequential input
● Feedforward
● Recurrent
● Multi-head self-attention

Figure 1.1: Overview of our work

A visual overview of our work is available in figure 1.1. The contributions of our research are three­
fold.

First, we introduce a novel problem setup in the deep reinforcement learning research. Earlier work
was concernedwith fully observable environments and partially observable environments where shorter
sequences of observations are enough to learn an optimal policy. Contrary, we explicitly focus on long
sequences. To gain insights on how the characteristics of an environment affects the performance of
agents, we introduce four environments as the part of a new benchmark suite.

To solve our environments we develop deep reinforcement learning agents based on the soft actor­
critic method and sequence processing architectures like recurrent networks and self­attention mech­
anisms. While recurrent networks have already been used in deep reinforcement learning, they were
used with simpler algorithms like deep recurrent Q­networks. Additionally, to the best of our knowledge,

4 1. Introduction

self­attention mechanisms only had minimal application in reinforcement learning so far, with no work
focusing on its design choices like the number of attention heads and the position encoding options.

In our experimental evaluation we focus on the effects of sequence lengths and conduct an in­depth
analysis of the variants of the introduced network architecture.

1.4. Outline 5

1.4. Outline

1. Introduction

2. Literature review

3. Problem statement

4. Background

5. Method

6. Benchmark suite

7. Experiments

8. Conclusion

Figure 1.2: Outline

The rest of this work is set up the following way: we formally introduce our problem in chapter
3. Chapter 2 presents the background literature followed by the most the baseline algorithms and ap­
proaches this work bases upon, presented in chapter 4. Chapter 5 presents the proposed reinforcement
learning method. Chapter 6 continues with the introduction of a new benchmark suite with sequential
problems. Then, we present a framework for reproducible experiments and evaluation in section 7.3.
In the remaining sections of chapter 7 the empirical evaluation of the proposed methods follows, with
some discussion about the outcome of the experiments and analysis of the proposed methods com­
pared to the baseline algorithms from earlier work. Finally, chapter 8 concludes the work and provides
outlook for further research opportunities. The appendix provides an overview of the hyperparame­
ters used during the final experiments, as well some details about the practical implementation of the
project.

2
Literature review

This chapter introduces the basic definitions, elementary algorithms in the research area of (deep)
reinforcement learning, followed by an overview of the latest relevant papers from the literature. In
general, the chapter is based on peer­reviewed literature of conference and journal papers and some
books. However, there are a few exceptions: since we can observe unprecedented evolution of the
field in the past years, with new methods and papers appearing on a daily basis, it is important to
consider parallel works and include (possible preprint) papers that appeared after the literature study
phase of the project.

While now we give a comprehensive review of previous research, the highlighted papers we directly
build our work upon, are presented in chapter 4.

2.1. Reinforcement learning
In Reinforcement learning (RL), a software agent – usually without preliminary domain­specific knowl­
edge – interacts with the environment in discrete steps by taking actions based on the observation and
a scalar reward signal received from the environment. The interaction is usually split into episodes,
ending either when reaching a final state or after a given number of timesteps. The agent’s goal is to
maximize the return. The return is defined as the sum of the rewards collected by the agent in each
step of an episode. For some infinite horizon (non­episodic) problems, the return is defined as the
discounted sum of the reward collected in the future. In practice, we also use discounting in episodic
cases.

Reinforcement learning problems are usually modeled as Markov decision processes (MDPs) (Bell­
man, 1957). MDPs are defined by a quadruple (𝑆, 𝐴, 𝑇, 𝑅), where 𝑆 is the set of states, 𝐴 is the set of
actions. 𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → ℝ is the transition function representing probabilities of reaching a target state
𝑠′ from a state 𝑠 by taking an action 𝑎′. 𝑅 ∶ 𝑆 × 𝐴 → ℝ is the reward function returning a scalar reward
for a state­action pair and it can be stochastic. Also, a discount factor 𝛾 is usually used to encourage
short­term rewards and make infinite or long horizon problems tractable.

Exploration­exploitation trade­off plays an important role in RL problems. Exploration corresponds
to discovering actions that may result in higher rewards, while exploitation means taking actions that
are advantageous compared to others based on the current knowledge (Kaelbling et al., 1996).

Researchers proposed various approaches to solve RL problems. We can categorize RL algorithms
by several features: first, model­based algorithms build a model of the environment and solve it by
executing planning algorithms on the learned model. Contrary, model­free algorithms aim to maximize
the long­term reward without building an explicit model. In general, model­based algorithms tend to be
more sample efficient. However, model­free algorithms can be used in a broader range of environments
where it is not possible or not practical to build amodel. From another aspect, methods can be classified
as off­policy and on­policy algorithms. The former follows an alternative policy during training compared
to the behavior policy used when the goal is to maximize the reward for a single episode. On­policy
algorithms take actions during exploration based on the actual policy being learned to maximize the
return. Exploration is their natural behavior.

The classical tabular Reinforcement learning algorithms are aimed to be used in small environments

7

8 2. Literature review

with low­dimensional discrete observation and action spaces. Larger continuous environments can be
handled by deep reinforcement learning techniques. Next, we look at the essential methods.

The Bellman equation Bellman (1957) propose the well­known dynamic­programming algorithm
based on equation 2.1 which defines the relationship between the value of state 𝑠 (𝑣𝜋(𝑠)) and the
values of possible succeeding states 𝑠′. 𝑝(𝑠′, 𝑟|𝑠, 𝑎) defines the probability of transitioning from state 𝑠
to 𝑠′ while receiving reward 𝑟. The method can be used to compute the solution for stochastic optimal
control problems. The price of optimality and the biggest drawback of the algorithm is the curse of
dimensionality, so that the computation demands grows exponentially with the number of states.

𝑣𝜋(𝑠) =∑
𝑎
𝜋(𝑎|𝑠)∑

𝑠′ ,𝑟
𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠′)]for all 𝑠 ∈ 𝑆 (2.1)

Q­learning One of the most successful algorithms for solving Reinforcement learning problems is
Q­learning (Watkins and Dayan, 1992), which is the base of several current state­of­art deep rein­
forcement learning methods. It is a model­free temporal­difference (TD) algorithm – learning directly
from samples, without building a model – and employs bootstrapping during the learning process –
thus, samples can already be used before experiencing the final outcome (return of the full episode).
The Q­learning algorithm can be described by equation 2.2 with (𝑆𝑡 , 𝐴𝑡) being the learned action­value
function.

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾max
𝑎
𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)] (2.2)

Then, the agent selects action with the highest value. To explore the environment, we usually use
an 𝜖­greedy policy: the action with the highest value is selected with probability 1 − 𝜖, while a random
action is taken with a probability of 𝜖.

Notably, the algorithms presented above only work in the tabular case, when the state and action
space is discrete and sufficiently small so that filling a table for all state­action pairs is tractable concern­
ing the computational memory constraints. An additional drawback of tabular methods is that it may
not be advantageous to treat states showing a high level of similarity differently, due to the increasing
sample complexity involved. Therefore, for practical problems with larger and or continuous state and
or action space, the table representation is usually replaced by function approximators, such as deep
neural networks.

2.2. Deep learning
Deep learning (Goodfellow et al., 2016) is an artificial neural network­based machine learning method.
The term deep comes from the hierarchical structure of the networks. Deep learning models have sev­
eral layers of neurons built on top of each other. Higher­level layers aim to extract higher­level features
based on lower­level features outputted by previous layers. While traditional machine learning algo­
rithms depended on handcrafted feature extractors, deep neural networks learn representation through
multiple abstraction levels. Thus, the resulting models can be fed raw input data like pixels for image
and video processing or raw audio recordings for speech recognition. The mentioned tasks mainly
belong to the class of supervised learning, where the algorithm is presented with examples where the
expected outcomes corresponding to the raw input features are known. The model contains (possibly
millions of) trainable weights that are adjusted to minimize a loss function based on an optimization
objective. In the learning process, we compute the gradient for each weight with respect to the loss
and update the weights in small steps in the opposite direction – to minimize the error. Hundreds of
thousands to many millions of samples (training set) are needed to train deep networks to provide high
accuracy and generalize well.

Training multilayer architectures proved to be a challenging problem. Later, it was discovered that
backpropagation and stochastic gradient descent could be used successfully, given the layers represent
smooth functions with respect to their inputs and weights. Backpropagation across multiple layers is
the direct application of the chain rule. Interestingly, local minima did not prove to be a significant issue
when training deep networks, and studies concluded that the final performance of the trained network
seemed to be stable across multiple runs (LeCun et al., 2015).

2.2. Deep learning 9

In practice, to fit the networks to the expected outputs, variants stochastic gradient descent (SGD)
algorithm, more recently Adam (Kingma and Ba, 2014), Adagrad (Lydia and Francis, 2019) or RM­
SProp (Tieleman and Hinton, 2012) is used. First, the actual outputs of the network and the losses
are computed based on the targets (labeled examples). Then, based on the average gradient of the
weights for a set of training samples (batch) and an error (loss), the optimizer algorithm updates the
weights of the neural network.

During and after training, the performance is evaluated using a separate test set. Underfitting cor­
responds to the state where the network is not trained long enough to provide sufficient results, or the
parameters or architecture of the network prohibit learning the proper function. Overfitting appears
when training on a too­small data set compared to the number of parameters in the network, and the
network specializes for the presented examples instead of generalizing.

The layers consume the outputs of the previous layer(s) as input and are usually followed by non­
linear activation functions to simplify approximating non­linear functions. Popular choices are tanh,
sigmoid, and recently rectified linear unit (ReLU) (Glorot et al., 2011) that showed its superior perfor­
mance on image classification and sequence processing tasks by accelerating training speed.

For classification, the network predicts the probability distribution for a given input belongs and 𝑛
classes. In these cases, the head of the network (output) layers is usually a softmax function, defined
as

𝜎(z)𝑖 =
𝑒𝑧𝑖

∑𝐾𝑗=1 𝑒𝑧𝑗
for 𝑖 ∈ 1, ..., 𝐾 and z = (𝑧1, ..., 𝑧𝐾) ∈ ℝ𝐾 . (2.3)

In advanced supervised learning tasks in natural language processing (NLP) and image processing,
the models usually outperform simpler machine learning techniques by a high margin and reach state­
of­art performance (LeCun et al., 2015).

Convolutional neural networks (CNNs) are the prevailing models for processing images or video
frames.

2.2.1. Sequence modeling
Recurrent neural networks (RNNs) are architectures designed for sequential tasks like natural language
processing (translation, speech recognition) or predicting future data points of series. RNNs are usu­
ally capable of generalizing over variable (possibly unseen) sequence lengths, and the length of the
produced outputs can differ for input sequences of the same size. These advantageous properties are
reached by the fact that RNNs use the network parameterized by the same weights for each timestep.
Sequence­to­sequence models usually use encoder­decoder architecture. The encoder generates a
hidden state based on the input and the previous hidden state. Then, the decoder generates an out­
put and a hidden based on the previous output and hidden state (Goodfellow et al., 2016). However,
RNNs suffer from the vanishing or exploding gradient problem, prohibiting efficient learning for longer
sequence lengths.

This difficulty was overcome by gated architectures. These specialized RNNs like LSTM (Hochre­
iter and Schmidhuber, 1997) and GRU (Cho et al., 2014) networks have been developed to main­
tain longer­term dependencies in traditional sequence processing problems like machine translation.
However, while many state­of­art performing models used RNN­based architectures for long, recent
advancements showed their limitations for long sequences, due to their fixed­sized hidden state rep­
resentation (Pascanu et al., 2013). It is also known that the training procedure is hardly parallelizable
for efficient processing on GPUs, since the internal states depend on previous ones and can only be
computed sequentially. Moreover, the batch sizes are limited due to the high memory requirements for
maintaining data over long sequences (Vaswani et al., 2017).

Vaswani et al. (2017) proposed the Transformer model to address these shortcomings of RNNs.
In the novel model, temporal dependencies are being handled by attention mechanisms instead of a
recurrent network. The model is based on self­attention mechanisms establishing the representation of
a sequence by computing interaction between the elements in the sequence itself. Similarly to RNNs,
the transformer also follows an encoder­decoder architecture. However, contrary to RNNs, where a
sample consists of a whole input and output sequence, the transformer maps a series of inputs and
(masked) sequence of previous outputs to the next element of the output sequence.

The transformer model was initially designed for machine translation tasks, so it assumes a series
of words as source and target. The sentences are preprocessed with a tokenizer mapping them to

10 2. Literature review

a sequence of integers according to a word­to­number dictionary. Next, the tokenized are embedded
into low­dimensional vectors, where the words of similar meaning are represented as similar vectors.
Since, contrary to RNNs, the model does not have any information about the position of words in the
sentence, a positional encoding is added to the input vectors. The authors propose two solutions:
in the papers, sinusoidal functions are used, but it is mentioned that learned positional encoding is
also possible. Then, the encoder, consisting of 𝑁 similar blocks, processes the input. The first multi­
head attention sub­layer is summed with the residually connected input. The second sub­layer of the
encoder consists of a feedforward network and similarly summed with its input. Both sub­layers are
layer­normalized after the addition.

The decoder has a similar structure with an extra sub­layer with masked multi­head attention. The
masking filters out the future elements of the sequence, so only the valid elements can be attended.
The decoder is followed by a dense layer with the size of the output dictionary and softmax activation.
Thus, its outputs correspond to the probability of a word from the target language. One of the key inno­
vation points is using scaled dot­product attention that is efficiently computable using matrix operations,
and the scaling makes the softmax function more reactive by pushing the values to a range where its
gradient is higher. Additionally, multi­head attention makes it possible to focus on several parts of the
input by executing more attention functions in parallel. To keep the mode computationally tractable,
the dimensions of the heads are reduced with different projections to the key, query and value vectors.

The model was trained with the Adam optimizer (Kingma and Ba, 2014) with a dynamic learning
rate consisting of a warm­up period followed by slow decay. To regularize the model, a dropout of
rate 0.1 is added after each sub­layer and to the sums of embedding and positional encodings in both
the encoder and the decoder. The model showed superior performance on standardized machine
translation datasets compared to the state­of­art approaches of the time, with significantly less training
cost and time.

The recent state­of­art models in the NLP research field are dominated by Transformer­based ar­
chitectures like the BERT (Devlin et al., 2018), Transformer­XL (Dai et al., 2019) and GPT­3 (Brown
et al., 2020).

2.3. Deep reinforcement learning
Traditional RL algorithms rely on learning a model or value and transition functions for each state or
state­action pair of the environment. However, this approach quickly becomes intractable for large
state space in real­world problems. The intractability comes from multiple sources: for example, in en­
vironments with continuous and or high­dimensional observation spaces creating a state­action table
is not more feasible due to memory and time constraints. In fact, if all distinct states are considered
separately, the whole state space must be traversed at least once to ensure full exploration. For con­
tinuous input spaces – like measurements coming from high­resolution sensors as raw camera frames
– and continuous action spaces – robot control problems with analog reference signals for actuators
– or their combinations, it would require infinite tables and exploration time. Also, we can assume in
most environments that similar states will lead to similar outcomes. Thus with proper generalization,
it is enough to visit only a representative subset of states. Quantization is proven to be useful for
models with limited features. However, the exponential growth of the state space with feature number
limits its usage to simple problems with small dimensionality – we call this phenomenon the curse of
dimensionality.

To handle large input spaces, function approximators can be employed instead of tables. Advances
in deep learning promise to fill the role of the function approximators by a deep neural network (DNN),
leading to the approach of deep reinforcement learning (Arulkumaran et al., 2017). DRL algorithms
are usually based on traditional RL algorithms like Q­learning or Sarsa, but use deep artificial neural
networks for function approximation and possibly feature detection (if applicable for the input space).
However, using DNNs in RL is challenging. Tsitsiklis and Van Roy (1997) experimentally illustrated
the problem of possible divergence for non­linear function approximators in RL context. Also, the
application of deepmodels raises theoretical issues like the violation of the independence of the training
samples and the continuously changing targets that depend on the network itself.

Deep reinforcement learning is currently dominated by model­free algorithms. Value­based meth­
ods aim to learn a value function and establish a policy based on the learned action­value function, for
example, by picking the highest value action in a given state.

2.3. Deep reinforcement learning 11

A major breakthrough in DRL was presented by Mnih et al. (2013) (Mnih et al., 2015). Based on
Q­learning, the authors introduce deep Q networks (DQNs) – a model­free, off­policy method – to solve
environments with larger input spaces, where using traditional Q­tables would not be tractable due to
the complexity of the curse of dimensionality. Deep neural networks are used for both feature extrac­
tion from raw sensory input (high­resolution images) and approximation of the action­value function
(Q­function). The resulting agents show superhuman performance on several Atari games, while not
using any handcrafted game­specific information and being trained with the same hyperparameters.
The input frames from the Atari simulators are preprocessed by cropping the relevant region and con­
version to grayscale. Since a single frame usually does not reveal the full state of the environment –
movements of objects cannot be estimated – the Atari environments can mostly be considered par­
tially observable. To deal with this issue, four stacked frames (84x84) are fed into the network as input.
According to Hausknecht and Stone (2015), all games investigated in the experiments become fully
observable in this case. The introduced DQN architecture is built up as follows: the inputs are fed to
convolutional layers for object detection, followed by a densely connected layer with 256 neurons and
rectifier activation function. There is a single neuron for each action in the output layer corresponding
to the estimated Q­value of the state­action pair. An assumption in the training process of deep neural
networks is that the training samples are independent and identically distributed. In the reinforcement
learning setting, this assumption does not hold since a single agent exploring the environment provides
experiences only about a small of states, so the training samples tend to correlate. To overcome the
issue, the authors introduce an experience replay buffer collecting state, action, reward, next state tu­
ples. The network is trained in every step based on a randomly selected set samples from the buffer.
The replay buffer stabilizes the learning and makes more sample efficient by re­using past experiences.
However, it adds an extra hyperparameter, the size of the replay buffer. After filling the buffer, the older
experiences are removed. Schaul et al. (2015) also showed that prioritizing experiences in sampling
can improve the convergence speed of the network. Another issue is that the target values depend on
the weights of the network – contrary to supervised learning problems with fixed targets. To reduce the
correlation Mnih et al. (2013) use a separate target network, which is updated after a fixed number of
steps based on the weights of the trained network.

Although employing experience replay and target networks makes it possible to use deep neural
networks as function approximators, approximation errors like overestimation bias and temporal differ­
ence error accumulation persist with DQNs. Fujimoto et al. (2018) shows that double deep Q networks
are less effective in the actor­critic setting to solve these issues. They propose the twin delayed deep
deterministic policy gradient (TD3) method that takes a minimum value predicted by two critic networks
making overestimation slightly less likely. Delayed corresponds to the delay introduced in updating
the actor. Finally, action smoothing is applied by adding noise to the generated actions, so single
approximation errors do not take the learning in a wrong direction for a long term.

The generally known issue of overfitting in deep learning raises the question if it is also a problem
in the RL context. Compared to supervised learning, where the set of examples is usually split into a
training and a validation set, it is less trivial to investigate overfitting for RL models. Zhang et al. (2018)
conducted experiments on a maze environment and conclude that large state­of­art models like A3C
may fail to generalize properly. Agents acting in deterministic environments are more vulnerable to
overfitting since, in this case, optimizing for open­loop action sequences may result in optimal policies
(Kearns et al., 1999). It is also mentioned that there is a lack of protocols that are able to detect
overfitting. Nevertheless, it would be crucial to develop such methods to ensure the safety of RL­
agents acting in real­world environments.

2.3.1. Policy gradient methods
Policy­based methods aim to directly learn a parameterized policy function. In deep reinforcement
learning, we use a deep neural network as the policy, with raw observations as its inputs. The policy
function is optimized in the direction of improvement with respect to a given performance measure.
The advantages of policy­based methods are the capability of learning optimal policies in environ­
ments, where estimating the value functions is not tractable. Additionally, policy gradient methods
learn stochastic policies naturally. Given a discrete action space with 𝑛 actions, the softmax function
is applied to the 𝑛­neuron output layer, providing probabilities for taking each action. Thus a large vari­
ety of policies can be reached, ranging from near­deterministic ones to stochastic policies with similar
probabilities for several actions. In the case of continuous action spaces, the head of the network usu­

12 2. Literature review

ally represents parameters of probability distributions (for example, a normal distribution with a mean
or standard deviation). Then, taking an action corresponds to sampling from the probability distribution
with the predicted parameters.

It is important that there are stronger convergence guarantees for policy gradient methods com­
pared to value­based methods, since the policy changes smoothly, while in the latter value­based
case, an arbitrarily small change to an action value can lead to taking an entirely different path if its
value becomes minimally higher.

However, policy gradient methods tend to be less sample efficient since the experiences are not
incorporated in the long term as the policy is continuously changing. (Sutton and Barto, 2018)

Policy gradient methods can still use value­functions. However, contrary to value­based methods,
they are not directly used for action selection.

Next, the basics of policy optimization are introduced. Let 𝜋𝜃(𝑎|𝑠) = 𝑃𝑟{𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃} be
the probability of taking action 𝑎 in the 𝑡­th timestep, given 𝑠 is the state of the environment and the
policy is parameterized by 𝜃 ∈ ℝ𝑑 (where 𝑑 is the number of the parameters of the policy). Then, we
aim to find an optimal 𝜃 that maximizes the performance of the policy for a given performance measure
𝐽 ∶ 𝜃 → ℝ.

The policy is updated using gradient ascent: 𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇𝐽(𝜃𝑡), where ∇𝐽(𝜃𝑡) is approximated
based on a batch of random samples.

Policy gradient theorem In order to update the policy in the right direction, the performance gradient
needs to be estimated. However, changing the policy effects the state distribution, which is an unknown
and encapsulated in the environment. Thus, it also affects which actions are taken, and the reward
obtained. Nevertheless, the policy gradient theorem (equation 2.4, for episodic case), provides a way
to update the policy parameters without knowing the mentioned state distribution.

∇𝐽(𝜃) ∝∑
𝑠∈𝑆
𝜇(𝑠)∑

𝑎∈𝐴
𝑞𝜋(𝑠, 𝑎)∇𝜋(𝑎|𝑠, 𝜃) (2.4)

Hereby, we work with a standard MDP with the set of states 𝑆, the set of actions 𝐴, and the param­
eters of the policy 𝜃. 𝜇 is the on­policy distribution under policy 𝜋 and ∇𝐽(𝜃) is the gradient of the policy
parameters 𝜃 with respect to the performance measure 𝐽, thus exactly what we looked for.

2.3.2. Actor­critic methods
Actor­critic algorithms (Konda and Tsitsiklis, 2000) combine value­ and policy­based methods. The
function learned by the critic is used as a baseline to improve the actor. Notable actor­critic algorithms
using deep networks as function approximators are (asynchronous) advantage actor­critic by Mnih et al.
(2016) and deep deterministic policy gradient (DDPG) by Lillicrap et al. (2015).

Sample efficient actor­critic with experience replay (ACER) by Wang et al. (2016) is an off­policy
actor­critic algorithm for RL problems for both continuous and discrete action spaces. ACER was
developed aiming a universal algorithm that has the same performance as the deep Q networks on
discrete action spaces but can also handle continuous action spaces more sample efficiently compared
to A3C.

Schulman et al. (2015) present trust region policy optimization (TRPO), a theoretical method that
guarantees improvement when training policies based on nonlinear function approximators, like deep
neural networks. The proposed surrogate objective is the following:

𝐿𝐶𝑃𝐼(𝜃) = 𝔼̂𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

𝐴̂𝑡] = 𝔼̂𝑡 [𝑟𝑡(𝜃)𝐴̂𝑡] (2.5)

The algorithm – adapted to practical use using approximations – show a solid performance in several
robotic control domains.

Achiam et al. (2017) present constrained policy optimization (CPO), an extension of TRPO for
CMDPs to incorporate safety constraints during training and convergence.

2.3.3. Deep reinforcement learning in continuous action spaces
The introduced deep reinforcement learning algorithms like the discussed DQN and A3C are designed
for environments with discrete action spaces. However, several domains, especially in the physi­

2.3. Deep reinforcement learning 13

cal world (like robotics), have continuous action space. Similar to high­dimensional continuous input
spaces, discretization does not provide a general solution for environments accepting a float vector as
an action.

Lillicrap et al. (2015) present deep deterministic policy gradient (DDPG), an off­policy learning
algorithm that optimizes the actor­network. It uses a deterministic policy mapping, possibly high­
dimensional continuous states to a float vector corresponding to the action, using an actor­critic ap­
proach. Similarly to DQNs, target networks are employed to stabilize learning (although slowing down
the training procedure), and the experiences are collected in replay buffers and reused during the train­
ing procedure. The critic is trained based on Bellman­updates, similarly to Mnih et al. (2015). Some
environments provide an observation space with measures of several units and numerical values of dif­
ferent scales. To improve training performance, batch normalization (Ioffe and Szegedy, 2015) is used
on the state input when learning from low­dimensional observation spaces. Obviously, when learning
from images, it is not necessary since the values of pixels are in a bounded range. Exploration – one of
the most challenging part when dealing with continuous action space – is guaranteed by an exploration
policy adding noise to the action provided by the actor­network. To guarantee exploration, the authors
used an Ornstein­Uhlenbeck process to sample noise as it fits the characteristics of inertial control
problems. We have to note that the noise function should be chosen considering the characteristics of
the environment the agent acts in. The approach was tested on challenging environments backed by
the physics engine MuJoCo using both low­dimensional state description and stacked images as input.

2.3.4. Proximal policy optimization
Schulman et al. (2017) proposes proximal policy optimization (PPO) algorithm. Its later variant uses
the clipped surrogate objective in equation 2.6, to discouraging undesired large changes of 𝑟𝑡(𝜃) during
the training process, with 𝜃 the parameters of the policy, 𝑟𝑡 the probability ration between the new and
old policies, 𝜖 threshold and 𝐴̂𝑡, the advantage.

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼̂𝑡 [𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂𝑡 , clip(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)] (2.6)
Alternatively, an adaptive KL divergence penalty is proposed leading to the following surrogate loss:

𝐿𝐾𝐿𝑃𝐸𝑁(𝜃) = 𝔼̂𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

𝐴̂𝑡 − 𝛽KL [𝜋𝜃𝑜𝑙𝑑(⋅|𝑠𝑡), 𝜋𝜃(⋅|𝑠𝑡)]] (2.7)

where 𝛽 is computed on each update by using the 𝛽 value from the last iteration:

𝛽 = {
𝛽
2 if 𝑑 < 𝑑𝑡𝑎𝑟𝑔/1.5
𝛽 ⋅ 2 if 𝑑 > 𝑑𝑡𝑎𝑟𝑔 ⋅ 1.5

(2.8)

𝑑 = 𝔼̂𝑡 [KL [𝜋𝜃𝑜𝑙𝑑(⋅|𝑠𝑡), 𝜋𝜃(⋅|𝑠𝑡)]] (2.9)
The clipped surrogate objective is proven to outperform the KL­divergence based on the benchmark
set investigated in the paper.

The algorithm can be implemented in an actor­critic framework with layer sharing between the policy
and value function. In that case, the proposed loss function 𝐿𝐶𝐿𝐼𝑃 is extended with the loss of the value
function (𝐿𝑉𝐹𝑡 : mean squared error) and optionally an entropy bonus to encourage exploration. Then,
the surrogate loss is defined using 𝑐1 and 𝑐2 weight coefficients:

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆𝑡 (𝜃) = 𝔼̂ [𝐿𝐶𝐿𝐼𝑃𝑡 (𝜃) − 𝑐1𝐿𝑉𝐹𝑡 (𝜃) + 𝑐2𝑆 [𝜋𝜃] (𝑠𝑡)] (2.10)
Proximal policy optimization (with clipping) outperformed TRPO and advantage actor­critic algo­

rithms in nearly all continuous control environments on the MuJoCo benchmark suite. On the Atari
domains (discrete action space) PPO outperformed the ACER algorithm in the metric ”average reward
over all of the training”, but showed slightly worse performance when only comparing rewards for the
last 100 episodes. Both PPO and ACER algorithms significantly outperformed A2C.

2.3.5. Soft actor­critic
Haarnoja et al. (2018a) introduce the soft actor­critic (SAC), an off­policy actor­critic algorithm for con­
tinuous action spaces. Since soft actor­critic (SAC) plays an important role in this work, it is more
extensively introduced in section 4.1.

14 2. Literature review

2.3.6. Deep reinforcement learning in partially observable environments
Handling long­term temporal dependencies proved to be challenging with deep neural networks. The
field was dominated by recurrent neural network based solutions like LSTMs (Hochreiter and Schmid­
huber, 1997) and GRUs (Cho et al., 2014) for long, though it was known that these approaches are
limited in modeling long­term dependencies by the single internal state vector needs to store contextual
information. Several DRL algorithms employ the discussed solutions to handle partial observability by
encoding information about previous states in the internal state of the recurrent network.

Heess et al. (2015) apply the DDPG algorithm on partially observable environments by replacing a
feedforward layer with an LSTM layer directly after the input, to process the input observations.

Hausknecht and Stone (2015) introduce deep recurrent Q­learning, attempting to handle partially
observable environments without making them fully observable by stacking observations as input. The
authors propose an architecture where the first fully connected layer after the convolutional layers is
replaced by a fully connected LSTM layer. Then, a fully connected layer outputs the Q­values pre­
dicted for each possible action in the discrete action space. Similarly to DQNs, an experience replay
buffer is used to train the network with decorrelating samples. However, backpropagation for recurrent
neural networks requires several input timesteps to be stored in memory during the training process.
Two similar methods have been proposed for selecting experience from the buffer during the training
process of the network. Both of them use a target Q­network that is kept fixed for a single batch.
Firstly, bootstrapped sequential updates select a random episode from the replay memory and use the
whole episode from beginning to end for training. In this case, the hidden state of the RNN can clearly
be carried forward from step to step. The alternative method called bootstrapped random updates
picks a random point from the selected episode and train the network based on a single backward
iteration, while the initial hidden state of the RNN is zeroed before the update making harder to learn
long­term dependencies. The latter method has the advantage of fully random sampling (satisfying
the assumption made for training DQNs) while handling the hidden state is more straightforward in the
former case. Based on experiments, the paper concludes that both strategies can work but use the
method starting in a random state for further experiments. Experiments were conducted using a game
developed for this specific purpose by making the environment partially observable by blanketing input
frames with a probability of 0.5. The recurrent variant of the network was implemented with a single
frame as input, meaning that velocities can not be detected by convolutional layers but only with the
LSTM layer. It was trained with backpropagation through 10 last frames. The LSTM based implemen­
tation was compared to the standard DQN receiving 4 frames and the DQN receiving 10 last frames
as input – so having access to the same input sequence as the recurrent neural network­based. The
presented results show the significant advantage of the recurrent architecture on the flickering pong
game, while concluding that overall the architectures provide similar performances on other Atari envi­
ronments. Discussing the computational tractability, the authors conclude that the backward pass for
LSTMs when unrolling for multiple time steps significantly slows down the training process, making the
problem possibly intractable.

Lample and Chaplot (2017) scales up the problem and attempts to solve a more realistic environ­
ment, a first person shooter (FPS) game in Lample and Chaplot (2017). Two agents have been trained
to handle different scenarios in the game: exploring the environment to discover enemies and fighting
them. The model is based on the one presented in Hausknecht and Stone (2015): convolutional layers
followed by a fully connected LSTM and one more dense layer before the output (one neuron for each
action). Initial experiments showed that the agent was not able to detect enemies based solely on the
input frames thus it was never or constantly firing. Therefore, the authors also extend the observation
space during training with a boolean array representing whether some game features (enemy, health
pack, weapon, etc.) are present on the screen. This information was not available at test time. Also
the LSTM itself had no direct access to this information: the presence of the game features were incor­
porated as target values, and only shared the convolutional layers with the LSTM. Overall, the solution
significantly improved the performance of the agent and solved the previously introduced problem of
constant firing. An attempt to extend the pure DQN (without recurrence) with the game features was
also made, however since in this setting multiple frames need to be fed in as inputs, while the game
features should only be predicted for the last frame, the authors observed a significant drop in per­
formance. Summarizing the results, the final agent consisted of 2 separate networks, a DQN without
the extra game feature information for exploration, and a DRQN for the action scenarios. To boost
training speed, a frame­skip technique was used, similar to the one in Mnih et al. (2015): the agent

2.3. Deep reinforcement learning 15

only observers every 𝑛­th frame, and all actions are performed 𝑛 times consecutively. For this method,
the trade­off between training speed and performance must be considered, since the agent may not be
able to perform accurate movements this way. During training, only the states with longer history are
backpropagated to eliminate inaccuracies at the beginning of sequences caused by the reinitialization
of the hidden state of the LSTM. Experimental results show that the agent is able to outperform human
players. However we have to note that human reaction time and targeting accuracy gives unfair advan­
tages to the agent. Comparing agent performance with different training parameters, we can conclude
that adding game features to the DRQN saves several hours of training. The number of LSTM updates
also affects agent performance: increasing the number of updates makes samples correlated while
convergence to a high­performing policy is less likely with only a small number of backpropagation
steps.

Transformer networks and self­attention in reinforcement learning Considering the drawbacks
of RNN observed in the supervised deep learning setup, Fang et al. (2019) introduce the transformer
model Vaswani et al. (2017) in RL context by using its adoption to add memory to a deep Q network
constructed to perform advanced robotic tasks. The model receives a high­resolution image of the
environment, the pose of the agent, and the last action as an observation. The first maj0or block of the
architecture, the scene memory stores embeddings of observations for all timesteps of an episode, so
it is possible to maintain dependencies over nearly arbitrary sequence lengths. However, its storage
requirement grows linearly with episode length. Embeddings allow storing full episodes without violat­
ing memory constraints of devices executing the policy. The policy network receives the observation
and the scene memory as input. The content of the scene memory is fed to the encoder, process­
ing all elements in the context of the others with attention mechanisms. Then, the decoder receives
the output of the encoder and the current observation and outputs Q­values for all actions. Applying
softmax function to this output results in a stochastic policy used by the agent that also guarantees
exploration. The model proposed by Vaswani et al. (2017) has a quadratic computational complexity
with respect to the number of observation embeddings in the scene memory. Since this is undesired for
longer sequences, a memory factorization procedure is used to reduce the complexity to linear by using
attention over a compressed memory. The training process involves two stages: first, the embedding
is trained separately. Then, the weights of the embedding network are frozen and the rest of the net­
work is trained while keeping only the embedded observations instead of the original full frames. The
algorithm outperforms the compared LSTM implementations in three simulated robotic tasks (roaming,
coverage, search).

Shen et al. (2019) combine the asynchronous advantage actor critic (A3C) algorithm (Mnih et al.,
2016) with self­attention in a network that receives a high­resolution image as input, applies convolu­
tional layers, and feeds the convolved output to a multi­head attention mechanism. There is a residual
connection between the input and output of the multi­head attention. The output of the multi­head at­
tention module is fed into a fully connected layer, followed by an output for the policy and the value (thus
all but the output layers are shared between the actor and the critic). The model uses ReLu activation
functions at the outputs of the convolutional and dense layers with RMSProp (Tieleman and Hinton,
2012) optimizer. Tests were conducted on parts of the StarCraft learning environment, and the agent
showed state­of­art performance on one minigame.

2.3.7. Deep reinforcement learning with parallel agents
As an alternative to creating batches of uncorrelated samples by random sampling from the experi­
ence buffer, Mnih et al. (2016) presents asynchronous versions of widely used algorithms in Mnih et al.
(2016). Their novel idea is gathering samples from agents running in parallel, distinct instances of
the environment. The approach makes several on­policy algorithms usable in the deep reinforcement
learning context and makes the already dominating off­policy algorithms more robust. It is shown that
the parallelized approaches can outperform earlier GPU­optimized architectures on multi­core CPUs
for several Atari game domains. In general, multiple agents collect samples in separate instances of
the environment running on a single machine. To obtain less correlated samples, agents can run differ­
ent exploration policies. Asynchronous one­step Q­learning computes the gradient of the Q­learning
loss in each environment separately, step­by­step, based on the target model. Gradients are accu­
mulated to mini­batches before updating the model, so distinct learners do not eliminate each other’s
update. An 𝜖­greedy exploration policy with 𝜖 values periodically changed by random sampling from a

16 2. Literature review

set of possible values proved to improve the robustness of the learning algorithm. As an alternative,
the target values can be updated based on the Sarsa approach, leading to the algorithm asynchronous
one­step Sarsa. Finally, the asynchronous advantage actor critic (A3C) algorithm is presented. An
LSTM based agent was also trained beside the standard feedforward version of A3C in a 3D maze
environment. The algorithms were evaluated on a wide variety of domains: Atari 2600 games, con­
tinuous action control problems, and 3D environments. The experiments showed that all approaches
reached significant speedup – at least proportional to the additional resources accessed – compared to
their single­threaded implementations. Moreover, a superlinear speedup can be observed at one­step
Q­learning and Sarsa algorithms, probably caused by the positive effect of separate threads on the
bias of the methods.

2.4. Safe reinforcement learning
Reinforcement learning has already succeeded in a wide variety of domains ranging from video games
to board to games. However, most of its famous applications are in environments where obtaining
samples has negligible cost (for example they can be simulated). The results promise successes in
other domains like robotics, where the introduction of new technologies (like self­driving cars) requires
extremely complex controllers that usually cannot be created by hand. Also, it is suspected that Re­
inforcement learning can be competitive – and with time it could outperform – for traditional control
tasks that usually use simple handcrafted algorithms. Still, real­world deployment opportunities are
limited, since agents with low­quality policies during (the initial phases of the) exploration process may
take risks that are unacceptable due to damage it may cause. Therefore, a minimum quality should be
guaranteed before the execution of a policy in the real world.

Safety itself has a wide variety of interpretations in the reinforcement learning context: hard safety
constraints are usually dominant in environments where suboptimal decisions may result in irreversible
consequences like directly harming people or devices. In applications with soft safety constraints,
some risk can be taken in the hope of long­term improvement, keeping an eye on a budget constraint
for an episode or a minimal reward that the agent is expected to deliver during a period of an episode,
possibly with a given probability. The goal of safe reinforcement learning is to tackle these issues by
analyzing and improving algorithms to consider the safety aspects of the problems, thus avoiding risky
situation or keeping the exploration costs within a specific budget. Modifying the optimization criterion
can incorporate safety features like the variance of the return. Alternatively, exploration algorithms can
also be adapted based on externally obtained knowledge of the domain or the experiences of the agent
(García and Fernández, 2015).

Some work focuses on transfer learning Taylor and Stone (2009) which is based on the assumption
that learning agents should be able to generalize between different but somewhat related tasks and
agents mastering a rewarding behavior in a specific environment will be able to exploit their knowledge
in solving other problems as well. For example, models can be trained in simulated environments
(safety constraints may be violated) and then deployed with pre­trained policies to real­world. While
simulations help to tackle the issue in several cases, it is not always possible to properly simulate all
environments where Reinforcement learning would potential be applied, either due to the computational
complexity it would require, or the simple lack of the information to build a model (like user interaction
domains). Therefore, it is important to make exploration in real­world environments possible.

Robotic domains – a promising application field of deep reinforcement learning – are especially
challenging due to their large dimensional observation space (possibly high­resolution images and
unprocessed sensor data) and multi­dimensional continuous action space. Peters and Schaal (2008)
propose the usage of policy gradient methods in the context, due to their natural support of continuous
domains and advantageous convergence properties. Papini et al. (2018) introduces a method for safe
exploration with policy gradient methods, aiming to find a balance between safety and exploration for
environments with soft safety constraints where conservative approaches may suffer from long­term
losses due to their slow learning process caused by the over­limiting exploration. They consider a
continuous MDP to be solved by a Gaussian­policy 𝜋𝜃(𝑎|𝑠) = 𝒩(𝜇𝜃(𝑠), 𝜎2𝜃) parameterized by 𝜃. The
state space is assumed to be bounded respectively to each feature. The policy is optimized through
gradient ascent on a performance measure 𝐽(𝜃).

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 ⋅ ∇𝜃𝐽(𝜃𝑡) (2.11)

∇𝜃𝐽(𝜃) = 𝔼𝜏𝑝0 [∇𝜃 log𝑝𝜃(𝜏)ℛ(𝜏)] (2.12)

2.4. Safe reinforcement learning 17

Instead of traditional gradient ascent, the greedy coordinate ascent is used, since Papini et al. (2017)
concluded its superior performance. ∇𝜃𝐽 is approximated based on the experienced trajectories. To
ensure the safety of a policy update (i.e., with a specified probability the performance of the new policy
is minus the performance of the old policy is higher than a given threshold), the step size 𝛼 is computed
considering the volume of the action space, the discount factor, and the current variance. The variance
is updated, keeping required exploration in mind since a purely greedy update would tend to decrease
variance the policy’s behavior changes towards exploitation.

Dalal et al. (2018) present a safety­layer based approach for environments with continuous state
and action space. They formulate safety constraints on safety signals in constrained Markov deci­
sion processs (CMDPs) (Altman, 1999), corresponding to observable (measured) values of physical
processes. Assuming the environment is a physical system with dynamics dominated by processes
describable with first­order differential equation systems, the authors exploit that state values change
continuously and suggest that effect of performing actions can be observed after a relatively short in­
terval. To ensure safety from the beginning, a safety layer is trained based on data logs before deploy­
ment, assuming linear behavior of the system (proportional to performed actions). The layer is trained
by fitting a linear function directly, so hyperparameter tuning is not required for this step. Before the
training process, data logs are generated considering real­world circumstances, where usually human
controllers or handcrafted algorithms act until reaching a critical region where an emergency policy is
automatically activated. The agent is placed in the environment randomly and performs random action
until constraint violation. Then, the experiences are used to train the safety layer. Before performing an
action that would predictably result in the violation of a constraint, the safety layer modifies the action
(aiming to minimize the distance between the original and modified action) to keep the systemwithin the
safe region. The approach is tested on top of a DDPG model and shows superior discounted returned,
compared to the unmodified DDPG algorithm, as well as negligible constraint validations.

Chow et al. (2018) propose a Lyapunov method with safety guarantees to solve RL problems mod­
eled by CMDP. CMDPs can be solved the Lagrangian method by introducing penalties on constraint
violation in the reward function and using usual RL methods. Drawbacks of Lagrangian method based
algorithms numerical stability issues caused by saddle points and lack of strict safety guarantees. Chow
et al. (2018) method extends existing general RL methods to incorporate safety constraints during ex­
ploration using an algorithm that formulates a Lyapunov function using a linear programming algorithm
from the safety constraints. In CMDPs, safety is defined as a cumulative constraint cost for an arbitrary
trajectory, so it does not solely belong to individual states. A policy is considered safe it the cumulative
cost constraint is within a given budget.

Chow et al. (2019) extend the method is extended to continuous action spaces and applied with
DDPG and PPO algorithms.

Ray et al. (2019) propose a standardization of safety specifications. First, the reward should still
relate to task completion and be independent from safety. Second, they propose safety specifications
to be encoded as constraints, using CMDPs introduced by Altman (1999). To standardize benchmark­
ing, they develop Safety Gym1 and propose to evaluate agents based on the the following metrics:
performance and constraint satisfaction of the final policy, safety (constraint violation) costs during the
training procedure. In CMDPs, the optimal policy is defined by

𝜋∗ = argmax
𝜋∈Π𝐶

𝐽𝑟(𝜋) (2.13)

with Π𝐶 = {𝜋 ∶ 𝐽𝑐𝑖(𝜋) ≤ 𝑑𝑖 , 𝑖 = 1, ..., 𝑘}, the feasible set of policies and 𝐽𝑟(𝜋), 𝐽𝑐𝑖(𝜋) the reward based
objective function and the cost­based constraint functions, respectively. 𝑑𝑖 is a safety threshold (hy­
perparameter).

2.4.1. Safe RL in partially observable environments
Bagnell and Schneider (2001) present a POMDP model of a helicopter control problem. They employ
policy search limited to a class of controllers. The approach is motivated by the fact that exact planning
in POMDPs is computationally intractable, previous research in robotics that showed the near­optimal
behavior of simple controllers and that controllers with limited complexity are already regularized. To
control the helicopter, they set up a PD controller like neural network decoupled for the roll and pitch
axis (10 parameters, 5 per axis) which shows linear behavior around the equilibrium. The hidden
1https://github.com/openai/safety­gym

https://github.com/openai/safety-gym

18 2. Literature review

layer helps to efficiently tackle use cases where a non­linear control signal is required. The controller
is optimized with the Bayesian Stationary Performance criterion and is tested on multiple simulators
before it is deployed to an unmanned aircraft.

3
Problem statement

We assume an environment modeled by a partially observable Markov decision process (POMDP)
where the observations received and actions taken from the start of the episode are sufficient to de­
termine the actual state of the environment (thus MDP assumptions hold when the agent gets a long
sequence of frames). The POMDP is formally defined as a 6 tuple (𝑆, 𝐴, 𝑇, 𝑅, 𝐶, Ω, 𝑂). Similarly to a
Markov decision process (MDP),

• 𝑆 is the set of states,

• 𝐴 is the set of actions,

• 𝑇 ∶ 𝑆 ×𝐴×𝑆 → ℝ represent the transition probabilities from a state by taking an action to a target
state,

• 𝑅 ∶ 𝑆 × 𝐴 → [𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥] is the reward function.

• Constraint satisfaction evaluated based on 𝐶 ∶ 𝑆 × 𝐴 → [𝑐𝑚𝑖𝑛 , 𝑐𝑚𝑎𝑥], the cost function.

• 𝛾 conventionally represents the discount factor for infinite horizon problems.

However, in the case of POMDPs, the agent has no direct access to the state. Therefore, we add

• Ω: the set of observations,

• 𝑂 ∶ 𝑆 × Ω → ℝ the conditional observation probabilities.

Figure 3.1 presents the setup. The agent interacts with the environment in discrete timesteps. In
each timestep 𝑡, it receives an observation 𝜔 ∈ Ω based on the actual state 𝑠 ∈ 𝑆 of the environment
and 𝑂. Next, it performs an action 𝑎 ∈ 𝐴, receives a reward 𝑟 according to 𝑅 and proceeds to the next
timestep. Upon reaching a terminal state, the agent starts a new episode beginning in an arbitrary state
in a new instance of the environment.

The goal of the agent is to maximize the expected return (equation 3.1) from each state 𝑠 in time
step 𝑡 such that the safety constraint violation costs remain below a given threshold (equation 3.2):

max
𝜋∈Π

𝔼𝜌𝜋 [
𝑇

∑
𝑡=0
𝑟(s𝑡 ,a𝑡)], (3.1)

𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [
𝑇

∑
𝑡=0
𝑐(s𝑡 ,a𝑡)] ≤ 𝑑 ∀𝑡. (3.2)

We consider environments with a possible multi­dimensional, continuous, bounded observation and
action space.

19

20 3. Problem statement

Agent
γ

Environment
st → st+1

aatt

rrt+1t+1

ωωt+1t+1

cct+1t+1

ωωtt

rrtt

cctt
for timestep t
● ct: cost
● rt: reward
● ωt: observation
● at: action

Figure 3.1: Partially observable problem setup with safety violation cost. The environment presents an observation 𝜔𝑡, a reward
𝑟𝑡 and a safety constraint violation cost 𝑐𝑡 on each timestep 𝑡 to the agent. Next, the agent performs an action 𝑎𝑡 ∈ 𝐴 in the partial
observable environment. As a result, the state of the environment changes from 𝑠𝑡 to 𝑠𝑡+1. The whole procedure is repeated
until the end of the episode is reached.

In POMDPs, a single observation may correspond to multiple states of the environment. Therefore,
using traditional Reinforcement learning (RL) algorithms designed with MDP assumptions (state = ob­
servation) can give arbitrary bad solutions. Therefore, we feed a long sequence of frames as input to
the network and assume that to be enough for optimal decision making.

4
Problem context

This chapter provides a more extensive introduction to the previous work that is a direct base of the
proposed framework.

As previously introduced in section 3, we consider a partially observable environment with multi­
dimensional, continuous, bounded state and action spaces and a bounded reward.

The proposed method is based on soft actor­critic, a recent work of Haarnoja et al. (2018b). This
off­policy algorithm has proven to be sample efficient and more stable compared to previous state­of­art
methods, which makes it a good candidate for safe reinforcement learning. In fact, the algorithm was
already applied in such environment Ha et al. (2020).

4.1. Soft actor­critic
Soft actor­critic can be classified as a maximum entropy reinforcement learning method.

A maximum­entropy RL algorithm trains a stochastic policy that acts as random as possible by
optimizing for a combination of long­term return and the entropy of the actor. Table 4.1 presents the
augmentation of the objective for the maximum entropy case. The entropy term is introduced with a
temperature coefficient 𝛼 denoting the relative importance compared to the reward (where it is unit).
Similarly to the classical RL framework, introducing a discount factor of 𝛾 makes optimization possible
for infinite horizon problems. The maximum­entropy opens up further opportunities when compared to
the conventional objective. It encourages more explanation near the already promising paths, and it is
able to capture multiple optimal. Moreover, experiments showed improved learning speed compared
to the traditional approach.

∑𝑡 𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [𝑟(s𝑡 ,a𝑡)] ∑𝑡 𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [𝑟(s𝑡 ,a𝑡) + 𝛼ℋ(𝜋(⋅|s𝑡))]
Standard RL Maximum­entropy RL (Ziebart, 2010)

Table 4.1: Objectives in Reinforcement learning. The maximum­entropy goal generalizes the standard goal with an entropy term,
with a relative importance 𝛼.

The authors derive the soft actor­critic algorithm from soft policy iteration, which is proven to con­
verge to an optimal policy.

Soft policy iteration consists of policy evaluation and policy improvement steps, applied iteratively.
The former, evaluation step calculates the value of the policy with respect to the maximum­entropy
objective defined in equation 4.1, using a modified Bellman backup operator 𝒯𝜋 and the soft value
function 𝑉(s𝑡).

𝒯𝜋𝑄(s𝑡 ,a𝑡) ≜ 𝑟(s𝑡 ,a𝑡) + 𝛾𝔼s𝑡+1∼𝑝[𝑉(s𝑡+1)], (4.1)

𝑉s𝑡 = 𝔼a𝑡∼𝜋 [𝑄(s𝑡 ,a𝑡) − 𝛼 log𝜋(a𝑡|s𝑡)] (4.2)

21

22 4. Problem context

With equations 4.1 and 4.2 the soft Q­function can be computed for an arbitrary policy by applying
𝑇𝜋 iteratively to 𝑄0 ∶ 𝒮 × 𝒜 → ℝ: 𝑄𝑘+1 = 𝑇𝜋𝑄𝑘 and 𝑄𝑘 is the desired function when 𝑘 → inf (Haarnoja
et al., 2018b).

The policy improvement step updates the policy in a way that guarantees performance improvement
(equation 4.3).

𝜋𝑛𝑒𝑤 = argmin
𝜋′∈Π

D𝐾𝐿 (𝜋′(⋅|s𝑡)||
exp (1𝛼𝑄

𝜋old(s𝑡 , ⋅))
𝑍𝜋old(s𝑡)

) (4.3)

The soft policy iteration algorithm is proved to converge to the optimal policy. However, practically
it can only applied in tabular cases.

To make the algorithm suitable for continuous state and action spaces, approximations are needed,
resulting in the soft actor­critic algorithm. Both the policy and Q­functions are replaced with function ap­
proximators, and since running to convergence is intractable, the algorithm iterates between optimizing
the Q function and the policy using stochastic gradient descent.

We have to note that there more alternatives have been presented as soft actor­critic algorithm.
Hereby, we consider the one in Haarnoja et al. (2018b) that has no separate value function but soft
Q­functions 𝑄𝜃(s𝑡 ,a𝑡) and a policy 𝜋𝜙(a𝑡|s𝑡) with trainable parameters 𝜃 and 𝜙, respectively.

The objective 𝐽𝜋 (in table 4.1) considers the entropy termℋ, with a relative importance (temperature)
of 𝛼.

For the soft Q function, the goal is to minimize the Bellman residual, defined in 4.4. The network is
updated according to equation 4.5.

𝐽𝑄(𝜃) = 𝔼(s𝑡 ,a𝑡)∼𝒟 [
1
2 (𝑄𝜃(s𝑡 ,a𝑡) − (𝑟(s𝑡 ,a𝑡) + 𝛾 𝔼s𝑡+1∼𝑝 [𝑉𝜃(s𝑡+1)]))

2
] (4.4)

∇̂𝜃𝐽𝑄(𝜃) = ∇𝜃𝑄𝜃(a𝑡 ,s𝑡) (𝑄𝜃(s𝑡 ,a𝑡) − (𝑟(s𝑡 ,a𝑡) + 𝛾 (𝑄𝜃(s𝑡+1,a𝑡+1) − 𝛼 log (𝜋𝜙 (a𝑡+1|s𝑡+1)))) (4.5)

In equations 4.4, 4.5, 𝜃 corresponds to the target Q function which is known to stabilize convergence
(Mnih et al., 2015). The target network is a moving average of the actual networks. Additionally, two
separate Q networks (and corresponding target networks) have been used to avoid overestimation
bias.

The policy is trained to minimize:

𝐽𝜋(𝜙) = 𝔼s𝑡∼𝒟 [𝔼a𝑡∼𝜋𝜙 [𝛼 log (𝜋𝜙 (a𝑡|s𝑡)) − 𝑄𝜃(s𝑡 ,a𝑡)]] (4.6)

The temperature 𝛼 can either be a constant or be tuned automatically. The latter is advantageous
because an optimal constant value depends on the environment and needs manual tuning for each
one. The proposed method adaptively changes the entropy term by decreasing its value where there
is less uncertainty about the most advantageous behavior, while encouraging more exploration in other
regions. Haarnoja et al. (2018b) introduce a practical method for adjusting the temperature, based on
the reformulation of the maximum entropy problem as a constrained optimization problem:

max
𝜋0∶𝑇

𝔼𝜌𝜋 [
𝑇

∑
𝑡=0
𝑟(s𝑡 ,a𝑡)] , (4.7)

such that 𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [− log(𝜋𝑡(a𝑡|s𝑡))] ≥ ℋ ∀𝑡. (4.8)

An upper constraint on the entropy was not introduced, because optimal policies for MDPs tend to
be deterministic (Haarnoja et al. (2018b), also verified on figure 7.5). Then, the objective is rewritten
as constrained iterated maximization,

max
𝜋0

(𝔼 [𝑟(s0,a0)] +max
𝜋1

(𝔼 […] +max
𝜋𝑇

𝔼 [𝑟(s𝑇 ,a𝑇)])) , (4.9)

such that 𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [− log(𝜋𝑡(a𝑡|s𝑡))] ≥ ℋ ∀𝑡. (4.10)

4.2. Constrained optimization using the Lagrange multiplier method 23

The authors evaluate the approach against following state­of­art deep reinforcement learning algo­
rithms: deep deterministic policy gradient (Lillicrap et al., 2015), proximal policy optimization (Schulman
et al., 2017), twin delayed deep deterministic policy gradient and soft Q learning (Haarnoja et al., 2017)
algorithms. Experiments in the MuJoCo benchmarks of OpenAI gym (Brockman et al., 2016) con­
cluded that SAC performs similarly to the mentioned reference algorithms. In general, it outperforms
the DDPG algorithm by a high margin on all environments and solves environments where the DDPG
fails. Regarding the PPO algorithm, the difference in the final policy is less significant. However, SAC
requires slightly less samples and learns faster. The latter observation can be supported by the fact
that SAC is an off­policy algorithm, thus it can reuse the collected samples contrary to PPO which is
on­policy and needs enormous batch sizes to be stable. Interestingly, SAC also shows to outperform
the concurrently developed TD3 algorithm, which even fails to converge on some benchmarks.

4.1.1. Real­world training of a walking robot
Ha et al. (2020) present practical application of the SAC algorithm by training a four­legged robot in
a real­world environment. Since the experiments are executed directly in the real world it is crucial to
guarantee that the procedure takes place without human intervention as much as possible. To that and,
a fallback controller is deployed to the robot that can make it stand up if it falls. Additionally, multiple
policy networks (for all directions of movement) are being trained by alternating between the policy to
train to keep the robot near the center of the training area. To avoid continuous falling of the robot, the
SAC algorithm is modified to incorporate constraints. Thus, the problem is formulated as a CMDP as
follows:

max
𝜋∈Π

𝔼𝜏∼𝜌𝜋 [
𝑇

∑
𝑡=0
𝑟(s𝑡 ,a𝑡)]

s.t. 𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [𝑓𝑠(s𝑡 ,a𝑡)] ≥ 0, ∀𝑡 (4.11)

The safety constraint, 𝑓𝑠 is defined as

𝑓𝑠(s𝑡 ,a𝑡) =min(𝑝̂ − |𝑝𝑡|, 𝑟̂ − |𝑟𝑡|) (4.12)

where 𝑝̂ and 𝑟̂ correspond to the physical tilt limits of the servo motors and 𝑝𝑡 and 𝑟𝑡 are the actual
values. The problem is rewritten to the following form with a Lagrangian multiplier 𝜆:

ℒ(𝜋, 𝜆) = 𝔼𝜏∼𝜌𝜋[
𝑇

∑
𝑡=0
𝑟(s𝑡 ,a𝑡) + 𝜆𝑓𝑠(s𝑡 ,a𝑡)]. (4.13)

Then, the policy and the Lagrangian multiplier is optimized by alternating with the dual gradient
method.

4.2. Constrained optimization using the Lagrangemultipliermethod
Constrained optimization problems can usually be solved by the Lagrange­multiplier method (Bert­
sekas, 1982). In our work, the constraints will the take form of inequalities, thus we focus on that case.
Let

𝑓(𝑥1, 𝑥2, ..., 𝑥𝑛) (4.14)

be the 𝑛­variable function to be minimized. Constraints are given in the form of 𝑚 inequalities:

𝑐𝑖(𝑥1, 𝑥2, ..., 𝑥𝑛) ≤ 0, 𝑖 ∈ {1, 2, ..., 𝑚}, (4.15)

resulting in the following Lagrange function:

ℒ = 𝑓(𝑥1, 𝑥2, ..., 𝑥𝑛) +
𝑚

∑
𝑖=1
𝜆𝑖 ⋅ 𝑐𝑖(𝑥1, 𝑥2, ..., 𝑥𝑛) (4.16)

24 4. Problem context

with the Karush­Kuhn­Tucker conditions

𝜕𝐿
𝜕𝑥𝑖

= 0, ∀𝑖 ∈ {1, 2, ..., 𝑛}, (4.17)

𝑐𝑖(𝑥1, 𝑥2, ..., 𝑥𝑛) ≤ 0, ∀𝑖 ∈ {1, 2, ..., 𝑚}, (4.18)
𝜆𝑖 ≥ 0, ∀𝑖 ∈ {1, 2, ..., 𝑚}, (4.19)

𝜆𝑖 ⋅ 𝑐𝑖(𝑥1, 𝑥2, ..., 𝑥𝑛) = 0, ∀𝑖 ∈ {1, 2, ..., 𝑚}. (4.20)

Maximization problems can be solved with the method by negating the target function and applying
minimization.

4.3. Constrained Reinforcement learning
Ray et al. (2019) introduced Safety Gym, a benchmark suite for safe reinforcement learning, along with
recommendations on standardization of measuring scientific progress in the field.

4.3.1. Formulation
The authors formulate the problems to be solved in the constrained Reinforcement learning framework.
The goal is to find the optimal policy 𝜋∗ such that:

𝜋∗ = argmax
𝜋∈Π𝐶

𝐽𝑟(𝜋) (4.21)

where Π𝐶 is the set of constraint­satisfying policies and 𝐽𝑟(𝜋) is the general (reward­based) objective
function. The set of feasible policies in terms of constraint satisfaction is defined according to the CMDP
framework (Altman, 1999):

Π𝐶 = {𝜋 ∶ 𝐽𝐶𝑖(𝜋) ≤ 𝑑𝑖 , 𝑖 = 1, ..., 𝑘} (4.22)

The constraint functions are generalized for long or infinite horizon problems similarly to the reward
function, so an 𝐽𝐶𝑖 represents an average metric or an per­episode expected cost. An upper limit 𝑑𝑖 is
specified for each cost constraint with the exploration budget needed to be kept below that limit. Notably,
the constraint functions and the reward function are independent of each other, and the reward is kept
with its original purpose. Thus, it solely represents task fulfillment.

Based on previous work, it is suggested that a constant trade­off parameter defining the importance
of the unsafe penalty cannot be chosen before execution. Additionally, if improperly selected, the agent
may fail to learn anything or, depending on the environment, it may learn unsafer behavior compared
to an unconstrained agent. Constrained RL is recommended to overcome these difficulties.

Finally, the authors note that the key difference between multi­objective and constrained RL is that
in the latter, if the costs are below the specified threshold, further cost decrease is not a requirement.
Contrary, in multi­objective RL no such limit exists, and higher returns in any objective are always
preferred.

4.3.2. Standardizing benchmarking
The second goal of the paper by Ray et al. (2019) is to provide a framework that makes the outcomes
of experiments from multiple authors comparable. Besides providing safety aware reinforcement learn­
ing environments across multiple difficulties, methods have been proposed on the way of evaluating
performance.

The authors provide a highly­customizable framework based on theMuJoCo physics engine (Todorov
et al., 2012) with pre­defined challenges. The interface is compatible with OpenAI gym (Brockman
et al., 2016) with a safety signal provided in the info dictionary.

Evaluation criteria The authors use an aggregate cost function and define the optimization problem
as provided in equation 4.24.

4.4. Recurrent networks 25

max
𝜋𝜃

=𝔼𝜏∼𝜋𝜃 [
𝑇

∑
𝑡=0
𝑟𝑡] (4.23)

s.t. 𝔼𝜏∼𝜋𝜃 [
𝑇

∑
𝑡=0
𝑐𝑡] ≤ 𝑑 (4.24)

During the training process the following measures are recorded:

• 𝐽𝑟(𝜃): the average episodic return
• 𝐽𝑐(𝜃): the average episodic cost sum
• 𝜌𝑐 the average cost over the entire training procedure

The cost rate for a training run is preferred over the sum cost because this way, it is easier to compare
multiple training runs with different episode lengths. Still, the cost rate has several drawbacks. For
example, it is not possible to differentiate between training runs with a constantly low cost and training
runs with an oscillating, possibly many times very high cost, which is less advantageous.

Agents and training runs are compared as follows: firstly, a constraint satisfying agent is always
preferred to an agent that fails to meet the constraints. Second, an agent is considered to outperform
another if it is strictly better in either in cost or return, and at least as good in the other measure.

To compare algorithms across multiple environments and or random seeds, the normalized return
and normalized constraint violation metrics have been computed based on the values from the training
runs.

4.4. Recurrent networks
Recurrent neural networks (RNNs) are designed for sequential input processing. The generalization
to unseen or variable sequence lengths and parameter sharing across multiple timesteps are their
most important features, making them prevailing in sequential tasks. Advanced RNN architectures
represent state of the art for many natural language processing problems, although recently, they have
been mostly overtaken by attention­based methods.

long short­term memory (LSTM), which is the number one option for processing long sequences
along with gated recurrent unit (GRU) and their variants. Notably, GRUs tend to be computationally
cheaper. The GRU and LSTM cells are presented in table 4.2.

4.5. Self­attention
Recently, the natural language processing field is dominated by transformer­based architectures, based
on self­attention mechanisms. Attention is a mapping of 3 vectors – called query, key and value – to an
output vector. Scaled dot­product attention is defined by equation 4.25. There is also additive attention
and dot­product attention, which devises only by the scaling factor from the scaled dot­product attention.
The scaling factor is required to keep the values in a range where the gradient of the softmax value
does not vanish.

Attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾
𝑇

√𝑑𝑘
)𝑉 (4.25)

Its advantage is efficient computation using matrix multiplication operations, while the scaling factor
makes it less prone to the vanishing gradient problem of the softmax function for large values.

Vaswani et al. (2017) introduced self­attention, an attention mechanism where an input sequence
represents the queries (𝑄), keys (𝐾) and values (𝑉):

𝑄 = 𝐾 = 𝑉. (4.26)

Thus, self­attention computes a representation of the input sequence. In equation 4.27 𝑊{𝑄,𝐾,𝑉,𝑂}
𝑖 are

trainable projection matrices for the query, key, value and output vector.

26 4. Problem context

ht-1

ht

tanhσ

· +

1-
··

σ

xt

Ct-1 Ct

· +

σ σ

ht

ht

ht-1

tanh

·

σ σ

·

tanh

xt

ztrt ht
ft

it

otCt

GRU (gated recurrent unit) LSTM (long short­term memory)
𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡]) 𝐶𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)
𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡]) 𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡
ℎ𝑡 = tanh(𝑊 ⋅ [𝑟𝑡 ⋅ ℎ𝑡−1, 𝑥𝑡]) 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)
ℎ𝑡 = (1 − 𝑧𝑡) ⋅ ℎ𝑡−1 + 𝑧𝑡 ⋅ ℎ𝑡 𝑖𝑡 = 𝜎 ⋅ (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡)

Table 4.2: The GRU and the LSTM cells

head𝑖 = Attention(𝑄𝑊𝑄
𝑖 , 𝐾𝑊𝐾

𝑖 , 𝑉𝑊𝑉
𝑖) (4.27)

The purpose of multi­head attention is that multiple attention heads can focus on different positions
and representation subspaces in the input sequence. The heads are concatenated afterwards:

MultiHeadAttention(𝑄, 𝐾, 𝑉) = Concat(head1, ..., headℎ)𝑊𝑂 . (4.28)

In the model presented by Vaswani et al. (2017), the projection matrices transform the input vec­
tors into new vectors of lower dimensionality, so that the computational complexity of the multi­head
attention is comparable to single head attention with the original query, key and value vectors.

In general, self­attention is invariant to the order of elements in the input sequence. Therefore, in
order to use position information in the model, a positional encoding needs to be added to the input
sequence.

5
Safe reinforcement learning framework
for partially observable environments

In this chapter, we present our method for constrained deep reinforcement learning in partially observ­
able environments.

First, we discuss the selection criteria of the base algorithm we build upon. To minimize exploration
costs, a relatively sample­efficient algorithm was selected. From the class of model­free algorithms,
on­policy algorithms are generally less sample efficient compared to the off­policy alternatives, since
new samples need to be collected for each training iteration. Thus, an off­policy method is preferable.
Still, Reinforcement learning is a trial and error method, so the complete avoidance of risk is not possi­
ble unless we have preliminary knowledge about the environment to explore. An additional advantage
of the off­policy method is that the policy and Q­networks can theoretically be pre­trained on experi­
ences collected in the past by running the system on alternative controllers. Tuning hyperparameters
of the deep models and the algorithm may also result in increased costs. Therefore methods having
fewer hyperparameters or providing automatic tuning opportunities are prioritized when meeting other
necessary criteria. The soft actor­critic (Haarnoja et al., 2018a) showed to be a promising candidate,
since it is off­policy, shows stable convergence (Haarnoja et al., 2018b) and already proved in safety
constrained environments (Ha et al., 2020).

Given the partially observable problem setup, we need to process multiple observations for optimal
decision making. Three deep neural network classes have been selected for this purpose. Our first
choice is feedforward network with dense linear layers, each followed by an activation like ReLu. Cur­
rently, feedforward networks are the number one option for DRL problems, therefore using them as a
baseline is sensible. Additionally, two sequence processing models, namely RNN and self­attention
based networks have been selected due to their successful applications in supervised deep learning,
especially natural language processing.

To accommodate safety requirements, the soft actor­critic algorithm needs an augmentation, since
it was designed to solve unconstrained Reinforcement learning problems. A popular method for con­
strained optimization that already proved its usefulness in previous safe reinforcement learning meth­
ods is converting the problem to its Lagrangian. Then, the policy and the Lagrangian multiplier can be
optimized by dual gradient descent (Paternain et al., 2019). Theoretically, the method is suitable to en­
sure that exploration stays within the budget limit with high probability given a number of assumptions
hold.

Next, the proposed method’s details will follow, first by introducing the deep neural network archi­
tectures. Later, we continue with the constrained soft actor­critic algorithm.

5.1. Sequence processing for partially observable environments
To tackle partial observability of the environments, three network architectures are being considered.
The first option is the dense feedforward network. Although they can theoretically approximate arbitrary
functions, in natural language processing and other domains where sequential inputs dominate, they
tend to be impractical, since they may need to learn the representation of a single features for each

27

28 5. Safe reinforcement learning framework for partially observable environments

distinct timestep. Therefore, we also investigate architectures specialized for sequence processing,
namely recurrent neural networks and self­attention layers.

Sequence length In a partially observable environments, we usually have to rely on multiple obser­
vations from the past. Sequence length is defined as the number of observations from the history, that
the agent has access to. In general, the last 𝑁 frames can be fed to the network, but in special cases,
it can be beneficial to use another way of sampling to make the modified observation space smaller
and still provide information to the agent from a long horizon. The recurrent neural network and the
self­attention based architectures are designed for processing sequential inputs, and naturally handle
multiple observation in our case. These networks receive an input of shape (𝑁×𝐿×𝐻) where 𝑁 is the
batch size, 𝐿 is the maximal sequence length and 𝐻 is the number of input features. For the dense­
feedforward architecture, the two dimensions are flattened into a single dimension, and it receives an
input of size (𝑁 × 𝐿 ⋅ 𝐻).

1
..
H

1
..
H

L

1

..

Sequential
input

H x L

Dense layers ∕ ReLu

σ
μ

Q

QC

Policy

Flatten
H·L

Action
only for Q-networksonly for Q-networks

Figure 5.1: Basic multilayer­perceptron (MLP) network with dense layers

1
..
H

1
..
H

L

1

..

Sequential
input

H x L

Dense
layers
 ∕ ReLu

σ
μ

Q

QC

Policy

LSTM
- or -
GRU

Action
only for Q-networksonly for Q-networks

Figure 5.2: Recurrent (LSTM / GRU) based network

Networks We use similar network architecture for the actor (policy), critic (Q) and cost­critic (cost­Q)
networks, since they all need process the same observation sequence. Naturally, the network heads
differ for the policy and the value networks. For the actor, a normal distribution with a mean and
variance is parameterized, while the value networks have a single float output. Additionally, for the Q­
network, the recurrent and self­attention based architectures process only the state history, the action
is concatenated after the sequence processing layers. Notably, there is no layer sharing between the

5.1. Sequence processing for partially observable environments 29

policy and Q­networks (the dashed lines in the figures about the network architecture only represent
the possible options that our implemented for the networks), because some preliminary experimental
analysis showed no advantage of the approach.

5.1.1. Feedforward network with dense layers
The architecture employs a sequence of dense layers followed by ReLU activation function. Naturally,
it receives (a batch of) multiple observation frames concatenated after each other. Theoretically, fully
connected networks can approximate arbitrary functions, so as the required policy and Q­functions
given there are enough layers and neurons. To be successful in partially observable context, the feed­
forward model is augmented with extra layers compared to a well­performing model on the fully observ­
able problem. The number of additional layers highly depends on the characteristics of the problem
and the partial observability. For example, in simpler cases where the velocity is emitted from the ob­
servation, but the position is still present, an extra layer can be sufficient to compute the velocity in the
first layer and then in the remaining layers build a model comparable to the fully observable variant.
Still, we mainly use this architecture as a baseline, as many famous papers used a similar approach
with alternative algorithms to solve partially observable environments.

5.1.2. Recurrent Neural Network (LSTM or GRU­based)
We also investigate recurrent network­based solutions. Hereby, the first dense layer is replaced with
the an LSTM or a GRU layer. They are intended to process the sequential input and encode a state
based on the observations received. The output vector from the last time step is fed into a feedforward
network, ending in the required heads for either the policy or the value functions. We still make use of
the ReLU activation after each hidden dense layer in the feedforward part (figure 5.2).

5.1.3. Self­attention­based network
In natural language processing, self­attention based architectures are taking over the role of recurrent
neural networks. Intuitively, these novel models can also be beneficial in reinforcement learning, es­
pecially for image processing or in the partially observable context. In our work, the latter use case is
investigated. Similarly to our recurrent model, the self­attention layer replaces the first dense layer of
the feedforward model, so it directly processes the input observations.

Observation embedding In our experiments, we deal with low dimensional state­space represen­
tation. Thus, an embedding for the observation is not necessary. Therefore, in the networks, we use
wide multi­head attention, so the dimensionality of the projected vectors used as input for a single self­
attention head is equal to the input features (𝐻). Contrary, for a high dimensional (for example image)
input space, or after applying convolutional layers, the size of the input vector can still be relatively
large. Therefore, to keep the possibly large number of self­attention blocks tractable, scaling down the
input vector with the projections can be considered.

Positional embedding The self­attention mechanisms are known to be permutation invariant with
respect to the order of elements in the input sequence. Therefore, an additional positional embedding
must be employed to ensure that the network can distinguish the order of frames. Otherwise it would be
impossible to predict themoving direction of a car, for example. Vaswani et al. (2017) used trigonometric
functions for positional encoding. In chapter 7, we compare the performance of architectures with
learned a fixed (sinusoidal) position embeddings.

The network architecture is presented in figure 5.3. The input consists of a sequence of observation
with dimensionality 𝐿 × 𝐻 with 𝐻 the number of input features and 𝐿 the input sequence length. We
have to note that at the beginning of the episodes in the first 𝐿−1 steps, the sequence of observations
is actually shorter. In natural language processing the practice is usually using masking on the input
sequences. However, in our case, it is not necessary. We use an alternative solution to fill up the
remaining values with zeros. First, since episodes are usually longer than the sequence length, the
number of samples involved in reduced sequence length is limited. Additionally, the 0 values can
provide extra useful information for the network, so it knows that it is at the beginning of the episode.
The position embedding matrix has the same dimensionality as the input matrix. Consequently, they
can be summed together by element­wise addition.

30 5. Safe reinforcement learning framework for partially observable environments

only for Q-networksonly for Q-networks1
..
H

1
..
H

L

1

..

+

H x L
Learned /
Sinusoidal

Sequential
input

Position
embedding

H x L

Q = K = V Self-attention block

PK

PQ

PV

softmax(
Q K T

√d k
)V

Self-attention block

Self-attention block

..
Self-attention block

Multi-head attention block

Dense
layers
∕ ReLu

σ
μ

Q

QC

Policy

PU

Action

only for
Q-networks

Figure 5.3: Architecture of the self­attention based network. The input sequence is embedded with a learned position embedding
before the self­attention layer. The linear layers are followed by a ReLu activation function. The policy and Q­networks use the
same underlying architecture except the network heads, however they do not share weights.

In the next step, the multi­head scaled dot­product self­attention is applied. We use wide self­
attention. Hence, each attention head’s dimension will have the same size as the (embedded) obser­
vation vector. This is in contrast to the NLP domain, where the input vector is usually scaled down to
a dimension 𝑙, where 𝑙 = 𝑑/𝑛 and 𝑑 is the input dimension and 𝑛 is the number of attention heads. In
our case using wide self­attention does not lead to computational intractability, since the state repre­
sentation consists only of relatively few values. Again, we note that for environments with raw image
frames as input, the output dimensions of the convolutional layers can be high dimensional. In this
latter case, the multi­head attention can possibly work with downscaled inputs. First, the per time step
inputs of dimensionality 𝐻 are projected into an 𝐻 × 𝐶 query, key, value matrices where 𝐶 is the count
of attention heads with a linear projection of parameters 𝑃𝑄 , 𝑃𝐾, and 𝑃𝑉.

The multiple heads provide the opportunity to focus on different parts of the input sequence in
parallel. Notably, too few heads lead to faster training, but less accuracy, why too many heads slow
down, or even make the training process diverge, due to overfitting.

Residual connection in self­attention based network The original transformer model (Vaswani
et al., 2017), where self­attention mechanisms were initially used, has residual connections around
the attention layer to preserve useful features from the input or lower layers. Similarly, in our case, a
residual link was added from the sequence of input observation around the multi­head attention layer,
concatenated to the input of the first linear layer. However, in the later phase of our research, it was
omitted during the hyperparameter tuning since it did not improve the performance.

5.2. Maximum­entropy reinforcement learningwith safety constraints
Now, we present the augmentation of the soft actor­critic algorithm with a constraint on costs.

We formulate our maximum­entropy constrained reinforcement learning problems as

max
𝜋∈Π

𝔼𝜌𝜋 [
𝑇

∑
𝑡=0
𝑟(s𝑡 ,a𝑡)], (5.1)

such that 𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [log(𝜋𝑡(a𝑡|s𝑡))] ≤ −ℋ ∀𝑡, (5.2)

𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [
𝑇

∑
𝑡=0
𝑐(s𝑡 ,a𝑡)] ≤ 𝑑 ∀𝑡. (5.3)

Hereby, equation 5.1 corresponds to the goal of maximizing the episodic return, with 𝑇 the length
of the episode and 𝑟(s𝑡 ,a𝑡) the reward function. Equation 5.2 constrains the entropy of the soft actor­

5.2. Maximum­entropy reinforcement learning with safety constraints 31

critic algorithm according to the maximum­entropy reinforcement learning framework (section 4.1). The
safety constraint is represented by equation 5.3, and 𝑐 is the aggregate cost function, thus the linear
combination of the possibly multiple cost functions. 𝑑 is the cost limit, and ℋ is the minimum required
entropy of the policy. While in POMDPs the entropy of on optimal policy can be arbitrarily large, the
policy tends to be deterministic in environments where MDP assumptions apply. In our case, the en­
vironment is partially observable, but taking sequences of observations as input makes it considered
fully observable. Therefore, we expect the policy’s entropy to decrease with learning (Haarnoja et al.,
2018b). Therefore, similarly to the original soft actor­critic, no upper bound constraint is needed on the
entropy (verified on figure 7.5).

We have to emphasize the usage of more permissive safety constraints and their implications. The
agent has no preliminary knowledge about the environment, so predicting the outcomes of actions
based on a model is not possible. Therefore, during the exploration, strict safety constraints cannot
be fulfilled. To keep the problem tractable, instead of strict constraints, we constrain the expected cost
below a given threshold, allowing violations as long as the average safety­related performance of the
agent is sufficient. Still, it is likely that in the initial phases of the exploration, when the cost­Q function
is inaccurate, many violations may occur.

The problem in equation 5.1 ­ 5.3 can be rewritten to its Lagrangian

ℒ(𝜋, 𝛼, 𝜎) = 𝔼𝜌𝜋 [
𝑇

∑
𝑡=0
𝑟(s𝑡 ,a𝑡)] − 𝛼 ⋅ (𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [log(𝜋𝑡(a𝑡|s𝑡))] +ℋ) − 𝜎 ⋅ (𝔼(s𝑡 ,a𝑡)∼𝜌𝜋 [

𝑇

∑
𝑡=0
𝑐(s𝑡 ,a𝑡)] − 𝑑)

with the dual variables 𝛼 ≥ 0 and 𝜎 ≥ 0, the importance of the entropy and safety, respectively.
Based on the Lagrangian in equation 5.4, the dual function is defined as

𝒟(𝛼, 𝜎) =max
𝜋∈Π

ℒ(𝜋, 𝛼, 𝜎), (5.4)

and provides an upper bound on the optimal objective value in equation 5.1. The tightest upper bound
can be found by minimizing the dual function (equation 5.5).

𝐷∗ = min
𝛼≥0,𝜎≥0

𝒟(𝛼, 𝜎) (5.5)

Thus, we reach a min­max optimization problem

𝐷∗ = min
𝛼≥0,𝜎≥0

max
𝜋∈Π

ℒ(𝜋, 𝛼, 𝜎) (5.6)

and use the dual gradient descent (Boyd and Vandenberghe, 2004) to update the primal 𝜃 – the param­
eters of the policy network – and the dual variables 𝛼 and 𝜎. In the practical implementation, instead of
solving for optimality, which is obviously intractable in the introduced RL context, we use approxima­
tion. The primal and dual variables are updated iteratively, based on batches of samples and stochastic
gradient descent.

With 𝜆𝛼 and 𝜆𝜎 the learning rates for the update of entropy and safety importance, respectively, the
dual variables are updated according to the loss functions in equations 5.7 and 5.8.

𝐿(𝛼) = − log(𝛼) ⋅ (log(𝜋𝑡(a𝑡|s𝑡)) +ℋ) (5.7)

𝐿(𝜎) = 𝜎 ⋅ (𝑑 − 𝑄𝑐(s𝑡 ,a𝑡)) (5.8)

The Q­networks simply learn the Lagrangian function value, incorporating the reward, cost and entropy
values for a batch of samples, and the next state­action pair’s value from the target network for boot­
strapping. The cost­Q­networks aim to learn the discounted cost for a state­action pair (𝑄𝐶), so it can
be learned similarly to the reward for a non­constrained RL problem.

The policy is optimized with respect to the Lagrangian (equation 5.4).

𝐿(𝜋) = −𝑄(s𝑡 ,a𝑡) + 𝛼 ⋅ log(𝜋𝑡(a𝑡|s𝑡)) + 𝜎 ⋅ 𝑄𝐶(s𝑡 ,a𝑡) (5.9)

32 5. Safe reinforcement learning framework for partially observable environments

Finally, we reach an update similar to the one for the soft actor­critic (Haarnoja et al., 2018b) with
the additional constraint on safety and the second dual variable to optimize. Algorithm 1 presents the
pseudocode of our method.

For practical reasons, it is easier consider a safety bonus instead of a safety violation cost. We get
the former by the negation of the latter. After negation, similarly to the reward, the larger value is more
favorable, meaning that the same code can be used to train the cost­related Q­networks as for training
the original Q­networks, including the parts of the algorithm that aim to avoid overestimation.

Algorithm 1 Safety Aware Soft Actor­Critic (adapted from Haarnoja et al. (2018b))
Input: 𝜃1, 𝜃2, 𝜙, Σ1, Σ2 Initial parameters
𝜃̄1 ← 𝜃1, 𝜃̄2 ← 𝜃2, Σ̄1 ← Σ1, Σ̄2 ← Σ2 Initialize target network weights
ℳ ← ∅ Initialize an empty replay pool
for each iteration do

for each environment step do
a𝑡 ∼ 𝜋𝜙(a𝑡|s𝑡) Sample action from the policy
s𝑡+1 ∼ 𝑝(s𝑡+1|s𝑡 ,a𝑡) Sample transition from the environment
ℳ ←ℳ ∪ {(s𝑡 ,a𝑡 , 𝑟(s𝑡 ,a𝑡), s𝑡+1, 𝑐(s𝑡 ,a𝑡))} Store the transition in the replay pool

end for
for each gradient step do

sample experience from replay poolℳ
𝜃𝑖 ← 𝜃𝑖 − 𝜆𝑄∇̂𝜃𝑖𝐽𝑄(𝜃𝑖) for 𝑖 ∈ {1, 2} Update the Q­function parameters
𝜃𝑖 ← Σ𝑖 − 𝜆𝑆∇̂Σ𝑖𝐽𝑆(Σ𝑖) for 𝑖 ∈ {1, 2} Update the safety Q­function parameters
𝜙 ← 𝜙 − 𝜆𝜋∇̂𝜙𝐽𝜋(𝜙) Update policy weights (primal)
𝛼 ← 𝛼 + 𝜆𝛼(log(𝜋𝑡(a𝑡|s𝑡)) +ℋ) Adjust entropy temperature (dual 1)
𝜎 ← 𝜎 + 𝜆𝜎(𝑄𝑐(s𝑡 ,a𝑡) − 𝑑) Adjust safety importance (dual 2)
𝜃̄𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃̄𝑖 for 𝑖 ∈ {1, 2} Update target network weights
Σ̄𝑖 ← 𝜏Σ𝑖 + (1 − 𝜏)Σ̄𝑖 for 𝑖 ∈ {1, 2} Update safety target network weights

end for
end for

Output: 𝜃1, 𝜃2, Σ1, Σ2, 𝜙, 𝛼, 𝜎 Optimized parameters

6
Benchmark set of partially observable
environments with safety constraints

While several popular benchmarks sets are available for fully observable environments modeled by
MDPs, there is a lack of standardized suites for POMDP­modeled environments. By searching with
popular web search engines, the results mostly provide wrapper frameworks1 around the OpenAI gym
(Brockman et al., 2016) suite or are too simple and have only discrete state and action spaces 2.

Still, in the initial phases of this research, a similar approach is taken to make results comparable to
the state­of­art in the fully observable setup. Initial experiments were conducted with the Pendulum­v0
and HalfCheetah­v2 environments, as presented in chapter 7.

However, our problem statement and research goals require alternative environments. First, it
became clear that partially observable environments are significantly harder to solve. Even for the
mentioned simple problems, it required significantly more time to train, which places the problems to
the limits of computation tractability, making experimenting with novel architectures and several hyper­
parameters hard. Furthermore, running large batches of reproducible experiments takes significantly
longer time (multiple days) than desired. Second, the current benchmarks sets have significantly dif­
ferent focus compared to this work. The environments in OpenAI gym (Brockman et al., 2016) and
similar suites are fully observable with respect to their observation space – or can be treated as fully
observable by neglecting minor details. Therefore, when our wrapper removes the velocity component
in the half cheetah environment, it can be easily reconstructed from 2 frames. Although estimating the
velocity from the position is theoretically relatively simple, it proves to be challenging in practice (sec­
tion 7.5). Additional changes, like removing more features or adding random noise, can be made to
reach an even more challenging environment, but the general goal of the problems remain the same.
Therefore they are not suitable for experiments where the focus is on sequence processing.

To address the mentioned issues, we develop a new benchmark suite focusing on learning se­
quence representation. It provides environments with various characteristics changing the observation
space and the number of observations that need to be processed in parallel to act optimally in the
environment. The framework also provides a cost, similarly to the Safety gym in (Ray et al., 2019),
and simple heuristics for each problem to collect experience to pre­train our policies on. Additionally,
the provided simple problem set corresponds to the use cases introduced in the problem statement.
Thus a heuristic corresponding to a middle­performance policy is provided for all problems to make
the pre­training of agents possible, based on experiences obtained by legacy controllers. Finally, the
suite significantly shortens development time with some problems only complex in terms of sequence
processing.

1https://github.com/stweigand/gym­pomdp­wrappers
2https://github.com/d3sm0/gym_pomdp

33

https://github.com/stweigand/gym-pomdp-wrappers
https://github.com/d3sm0/gym_pomdp

34 6. Benchmark set of partially observable environments with safety constraints

6.1. Requirements for the environments
Before the development of the benchmark suite, we defined several requirements to match our problem
statement and speed up the development process of the algorithms.

• To optimally solve the environment, the agent needs to understand long­term dependen­
cies: several real­world problems require establishing dependencies through a long time horizon.
From the earlier work in deep learning, it is known that processing long sequences is challenging,
therefore it is interesting to explore the opportunities in RL.

• The safety­related goals are clearly separable from the general goal: While modifying the
reward function to incorporate safety­related goals makes the problem solvable by general RL
algorithms, more sophisticated optimization is only possible the general goal and the safety re­
quirements a treated separately. This way, at the beginning of the exploration the agent can be
allowed to take more unsafe actions to find a rewarding policy. Later the importance of safety
can be increased, so the final policy will be less costly.

• Support pre­training: In safety critical environments, random exploration is rarely tolerated to
due its costs risk. Therefore, we should bundle a policy in the benchmark set, providing an
acceptable solution for the environments.

• Variable sequence lengths: To evaluate how the methods scale for longer sequences, there is
a need for environments with similar complexity level, but changeable time horizon. Therefore
the environments should be parameterizable with respect to the sequence length.

• Standardized action space: The action space can have arbitrary dimensions, but a meaningful
action should always be between ­1 and 1. The environments should crop the provided action
vector accordingly.

• Only free, open source libraries to build upon: Closed source and commercial framework
make both short­ and long­term reproducibility problematic. Additionally, parallelization across
multiple machines is not possible with single­user licenses. Therefore, only free software should
be used during the implementation.

6.2. Environments
For a start, four simple environments have been developed some with multiple complexity levels. The
project will be available on GitHub, with installation instructions using Python’s package manager pip.

All environments have several instances with multiple sequence lengths pre­registered. After in­
stalling the package, the following import makes them available:

import pogym

Alternatively, it is possible to register an environment with a custom sequence length or other parame­
ters:

from gym.envs.registration import register

register(
id=f’PO{envName}{L}­v0’,
entry_point=’pogym.env.{envName.lower()}:PO{envName}’,
max_episode_steps=1000, # set maximum steps per episode
kwargs=dict(seq_length=L) # set sequence length

)

Next, the introduction of the implemented environments will follow.

6.2. Environments 35

6.2.1. Canon

+1

-1

+2

Agent
x

y

Figure 6.1: The canon environment

A canon is firing balls in the direction of the agent periodically. The ball is visible for the agent until it
reaches the gray zone. A ball is fired when the previous one disappears from the observation because
of entering the gray zone and going invisible. The agent has to catch as many balls as possible. There
is no dense reward provided. The direction and velocity of the balls is determined randomly, the only
condition is that the ball has to reach the 𝑦 axis in maximum 𝐿 steps. 𝐿 is a parameter of the environment
and it defines the time horizon of the problem. The larger 𝐿 is, the more observations are needed for
optimal decision making.

The environment can be easily modified to add more extra canons with a different reward for catch­
ing its ball.

Parameters

• 𝐿: time horizon of the tasks, maximum number of steps for a ball to reach the 𝑦 axis.

Observation space

• 𝑥 position of the ball between the canon and the gray zone

• 𝑦 position of the ball between the canon and the gray zone

• 𝑦 position of the agent

Action space

• 𝑣𝑦: the 𝑦 direction velocity of the agent / step (max: 1, internally scaled down to 0.1)

Reward The agent receives a reward of 10 for each caught ball. There is no denser reward in the
environment, therefore a longer training time is expected.

Cost A penalty is applied when the agent tries to move over 1 or below ­1 on the 𝑦 axis.

Pre­configured environments

• POCanon𝐿 where 𝐿, the sequence length can take the following values: 16, 20, 24, 32, 40, 48,
64, 128

36 6. Benchmark set of partially observable environments with safety constraints

6.2.2. Sail

Ship

Wind sensor 1 Wind sensor 2 Wind sensor 3

Figure 6.2: The sail environments.

The goal of the sail environment is to keep an under­actuated ship between the dashed lines. There
are three wind sensors in front of the ships, sending real­time data (𝑥 and 𝑦 velocity of the air in their
position). The power of the wind gusts linear increase until reaching a peak value, followed by a linear
decrease to zero. The wind always blows from the direction of the sensors (𝑥 dimension), while in 𝑦
direction it can blow either up or downwards. The magnitude varies in both dimensions. Reward is
received for collecting objects flowing in the direction of the ship. Only the ship is affected by the wind,
the sensors and objects remain in place. The problem is continuing, however, after a 1000 timesteps
it is terminated.

Observation space The observation space contains

• the location of the ship on the 𝑦 axis,

• the 𝑥 and 𝑦 direction values from the 3 wind sensors,

• the relative position of the nearest two objects compared to the ship.

Action space 𝑎 ∈ [−1, 1] moves the ship along the 𝑦 axis.

Reward and cost To facilitate learning, the environment provides both sparse and dense reward.
100 points are awarded for collecting an object. 10 points are deducted if an object is not collected and
leaves the screen. The dense reward is received for getting closer to an object and is negative when
the agent moves away from it.
The cost increases when the ship touches the sides of the canal.

Discussion The goal and the safety related constraints are clearly separated in this environment.
The agent needs to be smart in order to keep away from the borders when high wind is approaching,
even though a rewarding object may be missed. The sampling of the simulation is relatively high, so
long­horizon thinking is necessary, since predicting wind gusts accurately is only possible from multiple
observations.

6.2. Environments 37

6.2.3. Growing flowers

Plant flowers Irrigate flowers Cut flowers

+

Keep water
level optimal

Figure 6.3: The flowers environments.

The environment simulates a flower­growing farm. The goal is to maximize the reward received
for grown as much flowers as possible, while keeping the costs of tap water below a given threshold.
Incoming rain irrigates the flowers automatically, and the collected rain water can also be used for
irrigation later, without incurring any costs. The environment is parameterized by the sequence length
𝐿 of the problem. The length of the episode also equals to 𝐿.

Observation space The observation space contains the following features:

• the number of living flowers,

• the amount of water in the rain water collector tank,

• the actual precipitation,

• the performed action.

Action space The action space has three components,

• flowers to be planted (in the first half of the episode),

• flowers to be cut (in the first half of the episode),

• water to be used for irrigation.

Reward and cost There is a dense reward for planting and growing the flowers. High amount of
extra reward is given for cutting mature flowers.

The cost is the price of tap water used for irrigation. As long as there is rain water in the reservoir,
the irrigation has no cost.

Levels There are two levels of the environment available. On the first level, only the maturity of
flowers is counted in the reward, while the advanced version also considers the amount of water the
flowers receive.

38 6. Benchmark set of partially observable environments with safety constraints

6.2.4. MoveNd

·

·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·
·

·

← Easy
fixed obstacles

Hard →
moving obstacles

Goal in random
position per episode

Figure 6.4: The move environments.

An agent and 𝑚 moving obstacles are placed in a continuous 𝑛­dimensional coordinate system
bounded by [0, 1] on both axes. The episode ends after 100 timesteps or when the agent gets closer
than 0.001 to the goal. In the easy version, the obstacles are at a fixed position, while in the hard
version, the obstacles are moving.

Parameters The environment is highly customizable. The following parameters can be used to set it
up:

• The number of dimensions.

• Goal position

– moving with constant speed
– moving in constant direction with periodically varying speed

• Cost

– Obstacle­based: getting closer to an obstacle is costly.
– Velocity­based: changing the velocity of the agent too quickly violates safety constraints.

• Stopping option: the goal stops periodically and the agent should only move to the goal position
when it is not moving.

• Inverted action option: every 𝑖­th action has inverted effect.

Observation space The observation space consists of the 𝑥 and 𝑦 coordinates of the agents and the
obstacles, as well as the goal coordinates where the agent should navigate.

Action space The action corresponds to acceleration or deceleration.

Reward and cost The reward in positive when the agent gets close to the goal, is negative when
it moves away and is proportional to the distance change in the distance. Reaching the goal gives a
one­time reward of 100 and terminates the episode.

The cost is the sum of the distances from all obstacles that are closer to the agent than 0.02.

6.3. Wrapper environments 39

6.3. Wrapper environments
To obtain further insights on the performance of the algorithm it is important to evaluate against state­
of­art algorithms on popular benchmark suites. As mentioned, for partially observable environments
there is a lack of widely used test sets. Therefore, the only remaining option is to adapt environments
by making them partially observable by hiding features from the observation space and adding a cost
function to be used with safety­aware constrained Reinforcement learning algorithms.

6.3.1. OpenAI gym / Pendulum­v0

Figure 6.5: Visualization of the pendulum environment

Definition
Visible in

fully observable
setup

Visible in
partially observable

setup
sin(𝛼) yes yes
cos(𝛼) yes yes
𝛼̇ yes no
action performed no yes

Table 6.1: The observation space of the pendulum environment.

The environment is included in one of the most popular benchmark suites, the OpenAI gym. In
general, this environment is not challanging anymore for state­of­art Reinforcement learning methods.
Being one of the simplest continuous environments, a simple dense network solves the problem in
some thousand steps and 10 minutes on a middle­grade GPU.

Due to its simplicity, adding a reasonable cost function was not possible, therefore we only the
environment for unconstrained tests.

40 6. Benchmark set of partially observable environments with safety constraints

6.3.2. OpenAI gym / HalfCheetah­v2

Figure 6.6: Visualization of the half cheetah environment

Identifier Type Unit Visible in fully
observable setup

Visible in partially
observable setup

rootx slider position (m) yes yes
rootz slider position (m) yes yes
rooty hinge angle (rad) yes yes
bthigh hinge angle (rad) yes yes
bshin hinge angle (rad) yes yes
bfoot hinge angle (rad) yes yes
fthigh hinge angle (rad) yes yes
fshin hinge angle (rad) yes yes
ffoot hinge angle (rad) yes yes
rootx slider velocity (m/s) yes no
rootz slider velocity (m/s) yes no
rooty hinge angular velocity (rad/s) yes no
bthigh hinge angular velocity (rad/s) yes no
bshin hinge angular velocity (rad/s) yes no
bfoot hinge angular velocity (rad/s) yes no
fthigh hinge angular velocity (rad/s) yes no
fshin hinge angular velocity (rad/s) yes no
ffoot hinge angular velocity (rad/s) yes no

Table 6.2: State space of the fully and partially observable variants of the half cheetah environment

To test the method in a simulated robotic environment, an additional wrapper was created for the half
cheetah environment from the MuJoCo (Todorov et al., 2012) benchmarks of OpenAI gym (Brockman
et al., 2016) . In general, the velocity components are removed from the observation space in the
partially observable case, which reduces the number of features from 18 to 9 (table 6.2).

The action space and the reward function remain unchanged. A cost function is added to limit the
velocity component rootx.

7
Experimental evaluation

The proposed methods have been evaluated on the introduced benchmark set. Since characteristics
of the environments (reward shaping, goal, dimensionality of observation and action spaces) differ,
we expect the performance of the agents with different network architectures to vary heavily across
multiple domains. Additionally, the evaluation can show whether there is a universal method that is
capable of learning acceptable policies for a wider range of problems.

We start by introducing the metrics used during the evaluation. Then, the experiments are split into
four main parts. First, the results from the fully and partially observable variant of the environments
in OpenAI gym (Brockman et al., 2016) are compared. Then, we investigate the satisfaction of safety
constraints in partially observable environments. Next, the proposed network architectures are evalu­
ated, with extra focus on the variants of the self­attention based architecture. Finally, we discuss how
pretraining with experiences obtained from the execution of alternative controllers affects the learning
process.

7.1. Evaluation metrics
The performance metrics are defined as follows:

1. cumulative return (𝑅) and cumulative cost (𝑍) regret during the training procedure,

𝑅 =
𝐸

∑
𝑒=0

𝑇𝑒
∑
𝑡=0
𝑟(𝑡) (7.1)

𝑍 =
𝐸

∑
𝑒=0

𝑇𝑒
∑
𝑡=0
𝑐(𝑡) (7.2)

where 𝐸 is the number of episodes the training lasted for, and 𝑇𝑒 is length of episode 𝑒,

2. average episodic return and cost regret of the mature policies, tested with 100 test runs on the
final policy,

3. wall clock time of the training.

The first metric helps us gaining insight into cumulative training costs and rewards. If these mea­
sures remain inside acceptable boundaries, the algorithm can be sufficient to be used in real safety­
constrained environments, given the appropriate values of the hyperparameters can be predicted be­
forehand.

In some environments, the length of the episodes may vary highly. Thus, per­step measures may
represent the performance of the agents more accurately. The charts with epochs on the 𝑥 axis present
these per­step values since the number of steps in an epoch is fixed. However, the test episode­based
charts do not take the length of the episode into account, only the return received and the cost of the
episode. These two approaches may provide different results for environments where the reward is

41

42 7. Experimental evaluation

awarded for fulfilling the goal while there is no or insignificant reduction for taking a step. However, in
environments, where accomplishing the single goal earlier is more valuable, there is usually a per­step
penalty in the reward function.

7.2. General setup
The presented set of experiments were executed on the Azure Cloud with the virtual machine configu­
ration NC6 (with NVIDIA K80 GPU) running Microsoft’s Ubuntu­based gen1 deep learning image and
the experimental framework introduced in chapter 7.3. Other tests were run on Google Cloud VM with
NVIDIA V100 GPUs and Google’s Deep Learning VM. Hyperparameter tuning was conducted on the
development computer or Google Colab.

Each configuration was executed with three seed values to reach sufficient confidence in the out­
comes of the experiments.

The samemachine and circumstances have been used for the final evaluation of each environment,
with no extra computational load at the time of execution, to make the computational cost of the different
architectures measurable.

Initially, many variants and hyperparameters were tested and presented. However, due to train­
ing time limitations, further experiments, for example, the constrained variants of the problems, only
involved the highest performing variant and hyperparameter combinations. When investigating the
network architectures, many charts and tables present results from unconstrained agents, since the
unconstrained agent can be trained significantly faster due to the lack of the safety network.

To keep visualizations interpretable, we use abbreviations for the network architectures. MLP stands
for the feedforward agent, and SA for the self­attention based network. The latter is also parameterized
with the number of heads in the multi­head attention and the type of positional encoding, which is fixed
in the case of sinusoidal encoding and learned otherwise. Naturally, GRU and LSTM stand for the
gated recurrent unit and long short­term memory based architectures, respectively.

For some visualization, the RAWGraphs (Mauri et al., 2017) library has been used.

7.3. Evaluation framework for gym­based environments
Reproducible experiments play an important role in deep reinforcement learning research (Hender­
son et al., 2017). Sharing source codes of implementations of models used for experimental evalua­
tion in papers becomes the case increasingly. Still, accurate reproduction of results usually remains
challenging, mainly due to technical questions: both popular benchmark suites and machine learning
frameworks are continually evolving, usually raising compatibility issues with obsolete runtimes. Even
months after there release of the source codes, it may become impossible to execute the same program
on an up­to­date system. Finally, the evaluation of the completed experiments is also problematic, as
collecting and plotting data can be a time­consuming procedure.

While there are several popular standardized benchmark suites, there are less universal frame­
works to help the tedious process of training and evaluating larger batches of executions. This chapter
presents the co­product of the research project, a solution providing practical tools to accelerate repro­
ducible research and evaluation for reinforcement learning problems.

The framework consists of three main components. The first is a Python library, providing a wrapper
for environments with the OpenAI gym (Brockman et al., 2016) interface that automates logging and
data collection. The second part is a web application for data collection, analysis and parallelization
across multiple machines. Finally, baseline Docker1 images help setting up containers to be deployed
across multiple computational nodes for a fast and reproducible training process.

7.3.1. Python library
The first building block of the evaluation framework is a wrapper for environments with the OpenAI
Gym interface. The environment creator takes aGym environment identifier and the length of a training
epoch as input and provides generator functions that can generate arbitrary logged instances of the
specified environment. The wrapper collects information like a reward, episode length, and elapsed
time from the agent’s interaction in each step. The data is collected per epoch, training episode, and
test episode. Test episodes are handled separately because people may want to use a different policy
1https://docker.io/

https://docker.io/

7.3. Evaluation framework for gym­based environments 43

Version control

Developer

source codesource code

CI tool
source codesource code

to buildto build

Container registry

built container imagesbuilt container images

Experiment manager system

Execution queue

image version,image version,
hyperparametershyperparameters

Result database

Worker nodes (cloud)

runnable container imagerunnable container image

experimentexperiment
datadata

Web interface for
plotting charts

plot, chart dataplot, chart dataqueuedqueued
experi-experi-
mentment

Figure 7.1: Components and data flow in the evaluation system. The developer pushes the new version of the code to the version
control system and the hyperparameters and image version for the experiments in the queue. The version control system triggers
a build on the continuous integration (CI) tool building a frozen image with the dependencies of the application. Next, the image
is pushed to the container registry, from where the worker node can fetch it.

there, for example, a greedy policy instead of an 𝜖­greedy policy for value­based methods. Custom
data collection – for example, the safety violation costs in our case – is also possible. At the end of a
training run, the data collected per episode or epoch is uploaded to a centralized database. Multiple
epochs and episodes are stored as an execution instance along with the hyperparameters and other
properties that make a specific experiment identifiable.

7.3.2. Web application
The web application is separated into a backend and a frontend. The backend provides an long (API)
to upload and query experiments. The frontend provides a list of experiments with sorting and filtering
capabilities.

The results are stored in a PostgreSQL database. Custom per­episode and per­run properties can
be added. Standard features like the obtained reward and the name of the environment are compulsory
to define.

Charts can be generated from the web­based user interface, with the automatic summation of mul­
tiple executions, if a given filtering condition fits multiple runs.

7.3.3. Process overview
The development and deployment process is explained in figure 7.1 and consists of the following main
stages.

1. The developer implements the algorithm and tests it locally.

2. The library is integrated with the algorithm by replacing the environment instantiation with the one
from our library. Additional options can also be set at this stage. Optionally, local test runs can
also be logged to make experimental analysis faster.

3. Once the codes and testable hyperparameters are finalized, the developer pushes the source
codes to a version control system and builds an image with the CI module.

4. Then, the image identifier and additional data about the experiments (hyperparameters, random
seeds) are registered on the web.

5. The (possible multiple) runner(s) pull the image and run the experiments with given hyperparam­
eters.

6. Once some instances are finished, the results can be evaluated online, or converted to a LATEXchart.

Thus, the whole pipeline is repeatable from execution to report generation.

44 7. Experimental evaluation

7.3.4. Summary
A proof­of­concept version of the framework was implemented during this project. In the later stages,
improvements and new features have been continuously added. Besides providing reproducibility,
the application considerably increases the development experience. It allows immediate evaluation
of experimental results directly after execution, automates data aggregation across large number of
experiments and enables writing re­usable code to (re­)generate charts for LATEX reports.

All charts and tables in this report have been generated using the prototype and directly imported
in the document. The experiments are automatically reproducible by running the corresponding script.

Next, we analyze our experimental results.

7.4. Implementation of the method
Our method was implemented in PyTorch, based on open source projects pytorch­soft­actor­
critic2, former3, and OpenAI gym (Brockman et al., 2016) .

7.5. Comparing fully and partially observable environments
We evaluate the performance of the agents on the wrapped environments to compare the performance
of our agents with earlier state­of­art results.

7.5.1. The pendulum environment
First, we compare the agents driven by the feedforward networks on the Pendulum­v0 environment
from OpenAI gym (Brockman et al., 2016) and its partially observable wrapper, POPendulum­v0. For
the latter, contrary to the fully observable setup, the agent has to compute the velocity feature, which
is essential for learning a policy of acceptable quality. Therefore, we expect the training to take more
epochs in the partially observable environment.

The episodic return for the test episodes (no exploration, deterministic actions) is presented in figure
7.2. The performance of the final policy shows comparable results to the official leaderboard 4 for both
the fully and partially observable case. Thus, we can conclude that the policy converges to optimality,
and the agents in the partially observable environments are capable of similar performance, after a
possibly longer training procedure. However, they do require more complex network architectures: our
experiments showed that the dense network with two hidden layers did not converge to the optimal
solution during the observed training epochs, while after adding an extra layer, the agent could easily
solve the task.

While the training procedure proves to be longer for the partially observable variant, the linear net­
work solves the problems easily with the extra layer added. This is evident from the fact that the omitted
components can be estimated from two observations, so advanced sequence processing is not nec­
essary. These preliminary results show the significance of our benchmark suite: for the wrapped envi­
ronments, there is no need to process a longer history. Therefore, the feedforward network maintains
high performance, and the usage of sequence­processing architectures is not necessary.

7.5.2. The half cheetah environment
Next, we focus on the HalfCheetah­v2 environment, which is a more complex simulation from the
robotic domain. It has an observation space with 18 features, where 9 of those are (angular) positions,
and the remaining 9 are (angular) velocities. Since the velocity components can be estimated from
the positions, they are truncated from the observation space in the partially observable variant. The
cost function limits the 𝑥 direction velocity to 200, which is closely related to the reward. Therefore the
safety constraint will prohibit a high reward.

The experimental results in figure 7.3. show that the agent in the partially observable environment
gets stuck in a local optimum – with both the feedforward and GRU network architectures – while for
the fully observable, it slowly converges to the state of art result 5. We can also observe that the GRU
agent shows more stable behavior across multiple seeds compared to the feedforward.

2https://github.com/pranz24/pytorch­soft­actor­critic
3https://github.com/pbloem/former
4https://github.com/openai/gym/wiki/Leaderboard
5https://www.endtoend.ai/envs/gym/mujoco/half­cheetah/

https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pbloem/former
https://github.com/openai/gym/wiki/Leaderboard
https://www.endtoend.ai/envs/gym/mujoco/half-cheetah/

7.5. Comparing fully and partially observable environments 45

0 50 100 150 200 250
−1,500

−1,000

−500

0

Episode

R
ew

ar
d

Partially observable, MLP network, unconstrained
Partially observable, GRU network, unconstrained
Fully observable, MLP network, unconstrained

0 50 100 150 200 250

0

50

100

150

Episode

C
os
t

Figure 7.2: Comparing agents on partially and fully observable unconstrained pendulum environments.

0 50 100 150

0

2,000

4,000

Episode

R
ew

ar
d

Fully observable, MLP network, unconstrained
Partially observable, MLP network, unconstrained
Partially observable, GRU network, unconstrained

0 50 100 150

0

2,000

4,000

6,000

Episode

C
os
t

Figure 7.3: Unconstrained agents on the partially and fully observable HalfCheetah­v2 environments

Constraints in the half cheetah environment By constraining the maximum velocity to 1500 (figure
7.4), all agents remain close to the threshold, however many violations occur, especially for the fully
observable agent, where the unconstrained cases see a significantly higher reward. To understand the
issue, we look at how the Lagrangian multipliers 𝛼 and 𝜎 change during the training procedure.

The entropy and safety temperature values of a randomly picked training run are presented in figure
7.5. We can observe the importance of safety to increase when the cost constraints are violated. Then,
the costs are plunging due to the increased 𝜎 value. Thus, we observe an unstable behavior as it cannot
maintain a balance between collecting reward and safety.

46 7. Experimental evaluation

0 100 200 300 400

0

2,000

4,000

Test episode

R
ew

ar
d

Fully observable, MLP network, max cost = 1500
Partially observable, MLP network, max cost = 1500
Partially observable, GRU network, max cost = 1500

0 100 200 300 400

0

2,000

4,000

6,000

Test episode

C
os
t

Figure 7.4: Constrained agents the partially and fully observable HalfCheetah­v2 environments

For the partially observable variant, in the unconstrained case, we have seen the return converg­
ing to a suboptimal value. Interestingly, the partially observable agent remains more stable, possibly
because the tested combination of hyperparameters is more optimal for that case.

A possible workaround for the issue could be the tuning of the learning rate for 𝜎, the importance
of safety.

Concluding our comparison of agents acting in fully­ and partially observable environments, we
can observe that partial observability makes the problems more challenging, even when two frames
provide enough information for full observability. Therefore, investigating longer horizon environments
and multiple network architectures proves to be necessary.

7.5. Comparing fully and partially observable environments 47

0 50 100 150
0

2,000

4,000

Epoch

R
ew

ar
d

Fully observable, MLP network, max cost = 1500 (1)

0 50 100 150
0

2,000

4,000

Epoch

C
os
t

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20k 40k 60k 80k 100k120k140k160k180k
Training steps

E
n
tr

o
p
y
 t

e
m

p
e
ra

tu
re

 (
α

)
S
a
fe

ty
 t

e
m

p
e
ra

tu
re

 (
σ
)

(a) The entropy entropy and safety temperatures (𝛼, 𝜎) as the function of the training steps

Figure 7.5: A training run for the safety constrained agent on the HalfCheetah environment

48 7. Experimental evaluation

7.6. Comparing network architectures
In the previous section, the pendulum and half cheetah environments have been tested with the feedfor­
ward agent in the fully observable case, and with both the recurrent (GRU) and the feedforward agents
in the partially observable case. Since the estimation of velocity components are possible based on two
observations, the recurrent network showed no advantage over the feedforward on the half cheetah
environment. The performance in terms of reward was similar to the feedforward agent, but the GRU
based showed lower variance (figure 7.3).

Next, we visit our newly introduced environments, where corresponding to our problem statement
– long sequences of observations need to be processed. Most environments are parameterizable with
respect to the sequence length, while they are diverse in other characteristics like the density of the
reward function, and the shape of observation and action spaces.

7.6.1. Canon environment
First, the agents’ performance is analyzed on the variants of the canon environment with multiple se­
quence lengths. Besides partial observability, the sparsity of the reward also poses a challenge in
the environment, requiring the agent to look back for a long horizon to understand why it received
the reward. We present average return and costs for sequence lengths of 16, 24 and 40 on the un­
constrained POCanon­v0 environment in table 7.1. The self­attention based architectures use fixed
(sinusoidal) positional encoding in this case. The first two columns represent the average per­episode
return and cost collected training procedure, respectively. Notably, the test data is based on runs with
a deterministic agent. However, during the training, the action is drawn from a normal distribution, and
a minimum entropy for the policy network is maintained. Naturally, the higher reward and the lower
cost is preferred.

As a baseline (100% performance), we use the feedforward (MLP) network and present relative
performances in the tables.
For the shortest sequence length (16), the feedforward network shows convincing performance. The
self attention­based agents with more heads (over 10) show similar results. However, the gated re­
current unit network­based agent shows significantly worse performance compared to both alternative
architectures on this relatively short sequence length.

Network Tr. return Test return
GRU ­23.22% ­27.16%
MLP +0.00% +0.00%
SA(4) ­10.49% ­18.12%
SA(8) ­5.28% ­9.20%
SA(10) +10.13% +1.20%
SA(12) +3.36% ­4.38%
SA(16) ­0.46% ­5.10%
SA(20) +4.36% ­4.40%

(a) POCanon16­v0: canon environment with sequence length of 16

Network Tr. return Test return
GRU ­1.53% ­3.17%
MLP +0.00% +0.00%
SA(4) ­8.13% ­10.99%
SA(8) ­5.03% ­4.27%
SA(10) ­0.72% +1.91%
SA(12) ­0.62% +0.31%
SA(16) +5.88% +4.79%
SA(20) ­11.45% ­8.50%

(b) POCanon24­v0: canon environment with sequence length of 24

Network Tr. return Test return
GRU +27.39% +69.45%
MLP +0.00% +0.00%
SA(4) ­9.58% ­2.19%
SA(8) ­10.14% ­0.94%
SA(10) +4.94% +22.96%
SA(12) ­4.40% +9.73%
SA(16) ­0.54% +8.19%
SA(20) ­2.81% +4.20%
SA(28) +1.19% +22.40%
SA(32) ­2.36% +12.18%

(c) POCanon40­v0: canon environment with sequence length of 40

Table 7.1: Average return and cost for agents withmultiple network architectures on the variants of the POCanon­v0 environment.

7.6. Comparing network architectures 49

For 𝐿 = 24, the GRU based network performs nearly as high as the MLP with the 16­headed self­
attention agent dominating on this sequence length.
Finally, we benchmark a sequence length of 40. In this case, the GRU­based agent significantly out­
performs both alternatives. Additionally, with at least than 10 heads, the self­attention based agents
also outperform the MLP based agent on the test episodes, while collecting a similar amount of return
during training.
Notably, we did not conduct experiments on longer sequences due to extra­long training times. Since
the environment has a sparse reward function, training is relatively slow, so each cell in the table 7.1 is
based on three training runs for 400 000 steps. A single run takes several hours for the recurrent and
larger self­attention based agents even for the sequence length of 40.

7.6.2. Flower environment
Next, we continue evaluating the network architectures on the easy flower environment (figure 7.6 and
table 7.2). The environment has a dense reward function, making the agents easier to learn the optimal
policy. For the self­attention based network, using learned positional embedding proved to be fruitful.
We investigate four different sequence lengths for the environment: 20, 40, and the extreme long 160
and 320.

For shorter sequences, many agents get stuck in local optima. The GRU architecture shows the
most convincing performance, while the feedforward network has the worst performance of all. Next,
we focus on extra long sequences: 160 and 320. In this case, the clear dominance of the self­attention
based network can be observed with all of its variants converging to a high­quality policy quickly. The
feedforward agent also shows acceptable performance. However, for these sequence lengths, the
recurrent, GRU based network converges slowly and does not show convincing performance at all,
compared to the alternatives. Considering execution time for the longest sequence (320), the training
of the feedforward agent took about 800 seconds, while it was about 2100 seconds for the two­headed
self­attention agent and more than 8000 seconds for the recurrent agent.

Moving on to the hard version, still with the unconstrained agent (figure 7.7). We see similar trends
compared to the easy version. The feedforward network still fails to converge, and while the self­
attention based network outperforms the GRU on the longer sequence.

Concluding our observations of the flower environment, the recurrent network is the best option for
short sequences, contrary to the extra­long sequences where the self­attention based network should
be the primary choice.

Network Tr. return Test return
GRU +36.21% +90.32%
MLP +0.00% +0.00%
SA(2, ”fixed”) ­32.39% +10.14%
SA(2, ”learned”) +24.63% +31.30%
SA(4, ”fixed”) ­45.13% ­23.08%
SA(4, ”learned”) +11.00% +57.62%
SA(8, ”fixed”) ­51.41% ­91.66%
SA(8, ”learned”) ­44.78% ­13.36%

(a) Sequence length = 20

Network Tr. return Test return
GRU +120.54% +508.97%
MLP +0.00% +0.00%
SA(2, ”fixed”) ­2.25% +107.17%
SA(2, ”learned”) +72.42% +332.95%
SA(4, ”fixed”) +35.28% +137.44%
SA(4, ”learned”) +32.72% +213.92%
SA(8, ”fixed”) ­30.46% ­62.35%
SA(8, ”learned”) +39.92% +246.31%

(b) Sequence length = 40

Network Tr. return Test return
GRU ­21.16% ­4.79%
MLP +0.00% +0.00%
SA(2, ”fixed”) +2.88% ­6.52%
SA(2, ”learned”) +6.78% +3.26%
SA(4, ”fixed”) +8.54% +4.73%
SA(4, ”learned”) +2.43% ­0.00%
SA(8, ”fixed”) +6.34% +3.50%

(c) Sequence length = 160

Network Tr. return Test return
GRU ­31.11% ­20.75%
MLP +0.00% +0.00%
SA(2, ”fixed”) +23.55% +5.90%
SA(2, ”learned”) +29.90% +7.52%
SA(4, ”fixed”) +14.63% +3.96%
SA(4, ”learned”) +21.50% +5.85%
SA(8, ”fixed”) +11.49% ­12.20%

(d) Sequence length = 320

Table 7.2: Training and test return on flower environment

50 7. Experimental evaluation

(a) Sequence length = 20

0 500 1,000 1,500

0

500

1,000

1,500

Episode

R
ew

ar
d

Network: GRU
Network: Feedforward

Network: Self­attention (2 heads)
Network: Self­attention (4 heads)
Network: Self­attention (8 heads)

(b) Sequence length = 40

0 200 400 600 800

0

2,000

4,000

6,000

Episode

R
ew

ar
d

(c) Sequence length = 160

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2
⋅105

Episode

R
ew

ar
d

(d) Sequence length = 320

0 20 40 60 80 100

0

1

2

3

4

5 ⋅10
5

Episode

R
ew

ar
d

Figure 7.6: Analyzing network architectures for unconstrained agents on the flower environment

7.6.3. Sail environment

Looking at the unconstrained agents in the sail environment (figure A.3), only minor differences can
be observed across multiple architectures. All agents converge to a policy of similar quality. The only
noticeable difference is that the GRU­based agent does it faster, resulting in a higher return across the
training procedure.

7.7. Comparing recurrent architectures 51

(a) Sequence length = 40

0 200 400 600 800 1,0001,200
0

2,000

4,000

6,000

Episode

R
ew

ar
d

Network: Feedforward, Unconstrained
Network: GRU, Unconstrained

Network: Self­attention (2 heads, learned embedding), Unconstrained
Network: Self­attention (4 heads, learned embedding), Unconstrained

(b) Sequence length = 160

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2
⋅105

Episode
R
ew

ar
d

Figure 7.7: Various agent on the unconstrained flower environment (hard level)

7.6.4. Move environment
In the move environment, with the sequence length of five (figure 7.10), the one and two­headed self­
attention based agent show slightly higher performance on the two­dimensional tests compared to
the average. On the eight­dimensional tests run, a larger attention­based network proves to be more
optimal. Still, when starting with random exploration, the feedforward network­based agent seems to
show similar performance and considering its simplicity, it should be the first pick on the environment.

7.7. Comparing recurrent architectures
During the preliminary analysis, there was no significant difference between the LSTM and GRU­based
agents in terms of performance. Usually, the GRU­based agent slightly outperformed the LSTM based
(figure 7.10). Since the GRU layers are computationally more efficient, in many experiments, we opt
for it as the only recurrent architecture, due to their extremely high training costs caused by the back­
propagation through long sequences.

7.8. Comparing the self­attention based network
In this section, we focus on the variants of the self­attention based network and analyze how the choice
of the positional encoding and the number of attention heads affect the agent’s performance.

7.8.1. Attention heads
The most important hyperparameter of the multi­head attention network is the number of the heads,
which allows the model to attend on multiple representation subspaces in multiple positions of the input
sequence. Thus, we expect more attention heads showing higher performance on longer sequences.
Revisiting table 7.1, we conclude that the number of heads significantly affects performance. For the
shorter sequence length, 16, the ten­headed agent performs the highest, while for longer sequences, a
higher number of heads shown to be more performant. The four­, eight­, and twenty­headed networks
show poor performance on the benchmark, possibly due to issues related to under­ or overfitting.

In figure 7.10 where the multi­head attention based agents are evaluated on the POMove­v0 en­

52 7. Experimental evaluation

vironment. Clearly, the one­ and two­headed headed network­based agents show the highest perfor­
mance. We can explain this observation by the fact that the sequence length is relatively short, and
the environment itself is simple, with only a few input features for each timestep. Thus a larger network
unnecessarily slows down the training progress.

We conclude that the number of attention heads has a significant impact on the outcome of the
training procedure. Therefore, this hyperparameter also requires tuning before training in a real­world
safety­constrained environment.

7.8.2. Position embedding
During the preliminary tuning procedure, multiple environments were trained with both fixed and learned
embeddings. On the sail, canon, and move environments, it showed to outperform the learned imple­
mentation. Therefore, on these benchmarks, the final evaluation was conducted with fixed embed­
dings. An exception was the flower environment, which is a non­continuing problem with fixed­length
episodes. In this case, the agent with learned embeddings seemed to surpass the agent with fixed
(sinusoidal) embeddings (table 7.2).

7.9. Safety
After an introductory safety analysis in 7.5.2, we revisit the comparison of the unconstrained and
constrained agents. In figure 7.8, we present an unconstrained and two constrained runs on the
POCanon16­v0 environment. Notably, on the environment, a cost of 0 is possible with an optimal
policy. Therefore we expect that the constrained agent will show the same performance as the un­
constrained. We can observe that the unconstrained agent continuously violates the safety constraints
resulting in a cost higher than zero, even when it already converges to the optimal return. However,
if we set the maximum cost to 20, the constraints are not violated after the initial exploration phase
anymore, while the performance is only slightly affected, and the cost stays far below the limit set. Still,
when we maximize the per episodic cost in 1, the agent refuses to explore the environment, after a
significant peak in the costs initially. Also, the return of the agent does not converge to the optimal
value anymore. By looking at the values in table 7.3, we observe that the cost slightly drops for the
agent with a cost limit of 20, compared to the unconstrained one. Theoretically, a cost of 1 would also
be accessible if the agent would be allowed to do some initial exploration. For the agent with the max­
imum cost of 40, we can observe costs similar to the unconstrained version. However, it clearly stays
under the defined threshold.

As we have seen on both the half cheetah and cannon environments, constrained agents, the
safety requirements may prohibit proper exploration of the environment, leading to the lower return
or no convergence. Additionally, depending on the environment, the training and test costs can also
increase. However, it is not necessarily the case, because an agent can relatively quickly learn that if
it does not start the car, it will not crash it. If there is a higher cost budget for the exploration, which
is usually the case, since deep reinforcement learning is a trial­error method, some workarounds are
possible. To resolve this issue, we propose that the cost limit should be infinity at the beginning of the
exploration. Then, as the policy shows the signs of convergence, it can gradually be decreased to the
desired value. This way, the agent can behave safely in production, while it can sufficiently explore its
environment.

Next, we visit the flower environment with our constrained agents (figure 7.9). To see how safe ex­
ploration works in a real long­horizon environment, we choose the sequence length to be 160. We can
observe clear differences between the behavior of the constrained and the unconstrained implemen­
tation. In the case of the unconstrained agents, the reward rockets at the beginning, after the random
exploration phase. However, for the safe agents, the reward plunges to 0, and the agent only starts to

Maximum cost Tr. return Tr. cost Test return Test cost
∞ (unconstrained) 7.0713e+01 1.9763e+00 9.9956e+01 2.3737e+00
1 4.4155e+01 1.4140e+00 5.7575e+01 3.2258e­02
20 5.1800e+01 1.4540e+00 7.3899e+01 2.0684e+00
40 6.7985e+01 1.6225e+00 1.0214e+02 3.3621e+00

Table 7.3: Average per­episode metrics after random exploration on the POCanon16­v0 environment by the feedforward agent

7.9. Safety 53

0 500 1,000 1,500 2,000

50

100

150

Episode

R
ew

ar
d

Unconstrained
Constrained, max cost = 1
Constrained, max cost = 20
Constrained, max cost = 40

0 500 1,000 1,500 2,000

0

10

20

30

40

Episode

C
os
t

Figure 7.8: Constrained and unconstrained feedforward agent on the POCanon16­v0 environment

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2
⋅105

Episode

R
ew

ar
d

Network: Feedforward, Constrained, max cost = 32 000
Network: Self­attention (2 heads), Constrained, max cost = 32 000

Network: Feedforward, Unconstrained
Network: Self­attention (2 heads), Unconstrained

0 50 100 150 200

0

1

2

3

4

⋅104

Episode

C
os
t

Figure 7.9: Analyzing safety on the flower environment (sequence length = 160)

explore later carefully. For the self attention­based network, it finds a policy with similar performance
compared to the unconstrained edition but keeps the reward below the given threshold.

We conclude that safer learning requires sacrifices in terms of return. In critical cases, when the cost
limits are strict, or the cost function correlates with the reward, obtaining a stable, constraint satisfying

54 7. Experimental evaluation

is challenging and requires careful tuning of the agent’s parameters like the cost threshold and the
learning rate of the safety temperature 𝜎.

7.10. Pre­training with experiences obtained by legacy controller
In this section, we analyze whether replacing initial random exploration has a positive effect on the
learning procedure. The motivation of the approach is the following: in real­world environments, where
random exploration is prohibited, making use of a pre­existing controller to give hints may help to
significantly increase training return.

We consider the 2­ and 8­dimensional move environments: in the initial phase of the training pro­
cedure, the agent collects samples with a heuristic, instead of the random policy. We perform multiple
training runs with 10000, 20000, and 30000 steps of pre­training for each network ­ pre­train policy
combination. The environment has the stop parameter set to true, so the agent only gets a reward
when it moves over the steady­state goal.

The experimental results are presented in figures 7.10 (a) and (b), for the 2 and 8 dimensional
environments, respectively. The corresponding data is also available in tables A.6 and A.7. Contrary
to the rest of our report, we also present full return and costs (including the pre­training procedure) in
tables A.4 and A.5.

Overall, the agents seem to benefit more from pre­training with random policy at the beginning. If we
do not consider the random exploration itself, the return of the exploration process is significantly higher,
compared to the agent pre­trained with the heuristic. However, if random samples are unavailable, a
significant amount of return is lost with random exploration.

7.10. Pre­training with experiences obtained by legacy controller 55

-220,000

-200,000

-180,000

-160,000

-140,000

-120,000

-100,000

-80,000

-60,000

-40,000

-20,000

0

20,000

GRUGRU

LSTMLSTM

MLPMLP

R
e
tu

rn

Pretrained with heuristic Pretrained with random exploration

SA(1)SA(1)

SA(2)SA(2)

SA(4) SA(4)

SA(8) SA(8)

(a) 2­dimensional

R
e
tu

rn

Pretrained with heuristic Pretrained with random exploration

-450,000

-400,000

-350,000

-300,000

-250,000

-200,000

-150,000

-100,000

GRUGRU
LSTM LSTM

MLP
MLP

SA(1) SA(1)
SA(2) SA(2)

SA(4) SA(4)
SA(8)

ű

SA(8)

(b) 8­dimensional

Figure 7.10: Performance of agents in the move environment. The radius of the points is proportional the length of pretraining.

56 7. Experimental evaluation

7.11. Computational complexity
In this section, we discuss the tractability, training time, and computational complexity of the introduced
problems and architectures.

As we already concluded in section 7.5, by analyzing the half cheetah environment, partial ob­
servability imposes extra difficulty for the agent, even when two consecutive observations contain all
necessary information. It becomes the case increasingly for our newly introduced benchmark suite be­
cause longer sequence lengths imply that a more careful selection of the input features is necessary.
Depending on the environment, some features may need to be extracted from a single, usually the
last observation, while for other crucial features, representation learning through the whole sequence
may be necessary. Importantly, the mentioned environment has a sparse reward function, so an un­
trained agent receives a reward only 5­10 times each episode. Still, it is more than one could expect in
a real­world environment with no dense reward, where learning without initial demonstrations can be
intractable. With a well­tuned hyperparameter combination, the canon environment has been trained
for 400k steps (about 6 hours on a high­end GPU) with some agents still showing some improvement.
Therefore, a scalability analysis is essential to verify whether the proposed methods can serve in more
complex environments. To gain further insights, we run separate complexity tests on a gamer note­
book with an 8­core CPU, and amid­class general­purpose (not deep learning optimized) GPU (NVIDIA
GeForce GTX 960M).

First, regarding safety, the constrained agents train additional cost networks, resulting in an about
66% higher training time compared to the unconstrained version, where only the policy and Q networks
are trained. This component only adds a fixed overhead to the training time and is irrespective of the
sequence length and the number of features.

Comparing the feedforward, recurrent, and self­attention based architectures, we can draw more
conclusions from their applicability for large­scale problems. Figure 7.11 presents the training times for
the canon environments a time horizon of 2, 4, 8, 16, and 32, and all investigated network architectures.
Testing time was not taken into account. We can observe that the simplicity of the feedforward network
makes it computationally less expensive. Only slight fluctuations are present in the training time, without
any correlation with the sequence length.

On the other hand, both the self­attention and the recurrent architectures show significantly higher
training times on longer horizon problems. We can observe the runtime of both the training time of both
the LSTM­ and GRU­based architectures doubles with doubling sequence length. The self­attention
based architecture shows similar behavior, but with a lower growth rate. However, it is known that
with optimized hardware, more parallelization is possible compared to the recurrent architectures, and
there are also attempts to implement more efficient self­attention variants (Wang et al., 2020) with linear
complexity. The training times also grow linearly with the number of heads in the multi­head attention
module.

For larger models, the number of trainable weights also has to be considered, since it has to be kept
in the device (usually GPU or TPU)memory for the whole training procedure. Therefore we compare the
number of learned parameters for our network architectures with various sequence lengths. Similarly
to our experiments, the feedforward (MLP) architectures have 𝑘 = 3 dense layers, while the first layer
in the recurrent and self­attention based architectures is the sequence processing layer, followed by 𝑘−
1 = 2 layers. Since the recurrent network architectures use the same weight vector across multiple time
steps, the sequence length has no effect on their parameter count. The GRU network has fewer gates
compared to the LSTM. Therefore it also requires fewer parameters. Still, the recurrent architectures
have about twice as many parameters as the dense and self­attention based network, event for the
sequence length of 70. For the dense network, the number of parameters increases considerably,
since the number of parameters in the first layer grows with the larger inputs, the flattened sequence
observations. Similarly, the input projection has more parameters in the case of the self­attention based
network and longer sequences. However, the number of attention heads only has minimal effect on
the parameter count.

Concluding our observations, it is clear that the network selection procedure has to take computa­
tional andmemory constraints into account. Feedforward networks tend to be the primary, computation­
ally cheap option for environments where the sequence process architectures only slightly improve the
policy’s quality. When keeping the number of heads constant, self­attention based methods have more
favorable scaling properties in terms of computational complexity. However, they need more memory
for longer sequences, contrary to recurrent networks. The differences between LSTMs and GRU net­

7.11. Computational complexity 57

works are only significant in terms of memory consumption. Interestingly the GRU­based agent was
only slightly faster to train. In general, optimal selection between sequence processing architectures
can only be made when the environment’s characteristics are known.

20 40 60 80 100 120 140 160 180 200

5

10

15

20

25

30

35

40

45

50

55

60

GRU

GRU

GRU

LSTM

LSTM

LSTM

MLP

MLP

MLP

SA(10)

SA(10)

SA(10)

SA(12)

SA(12)

SA(12)

SA(16)

SA(16)

SA(16)

SA(20)

SA(20)

SA(20)

SA(24)

SA(24)

SA(24)

SA(4)

SA(4)

SA(4)

SA(8)

SA(8)

SA(8)

Training time for 10 000 steps(s)

S
e

q
u

e
n

c
e

 le
n

g
th

Figure 7.11: Training time for 10000 steps versus sequence length.

5 10 15 20 25 30 35 40 45 50 55 60

Sequence length

N
u
m

b
e
r

o
f
p
a
ra

m
e
te

rs
 (

a
c
to

r
n
e
tw

o
rk

)

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

GRU GRU GRU GRU GRU GRU

LSTMLSTM LSTM LSTM LSTM LSTM

MLP MLP
MLP

MLP

MLP

MLP

SA(10)SA(10)
SA(10)

SA(10)

SA(10)

SA(10)

SA(12)SA(12)
SA(12)

SA(12)

SA(12)

SA(12)

SA(16)SA(16)
SA(16)

SA(16)

SA(16)

SA(16)

SA(20)SA(20)
SA(20)

SA(20)

SA(20)

SA(20)

SA(24)SA(24)
SA(24)

SA(24)

SA(24)

SA(24)

SA(4)SA(4)
SA(4)

SA(4)

SA(4)

SA(4)

SA(8)SA(8)
SA(8)

SA(8)

SA(8)

SA(8)

Figure 7.12: Parameter count versus sequence length.

8
Conclusion

8.1. Summary
In this work, we introduced a novel, partially observable reinforcement learning problem context: safety­
constrained, continuous environments, where agents have to learn representations of relevant features
from a long sequence of observations. A wide range of real­world tasks can be modeled by our problem
formulation, including robotic challenges and subsystems of self­driving cars.

Our research questions were defined as follows.

How can deep reinforcement learning agents learn safe policies in long­horizon partially observable
environments?

1. Which novel deep learning models are the best suited for use with deep reinforcement learning
algorithms to process long sequences of observations in partially observable environments?

2. How to make the selected algorithms safer to minimize risks of taking damaging actions?

3. How to conduct a reproducible evaluation of agents designed for safe reinforcement learning in
partially observable environments?

Next, we answer our research questions, starting with sub­research question three.
Our problem statement proved to be different compared to earlier research. Therefore, we intro­

duced a benchmark suite constructed for evaluating methods developed around our research goal.
We present four safety­constrained partially observable reinforcement learning environments, where
optimally solving the problems requires an understanding of long­term dependencies across tens or
hundreds of observations. The time horizon of three environments can be changed by parameteri­
zation. Using our benchmark set, we can evaluate problems with similar goals and complexity but
varying time horizons. Thus, in­depth research can be conducted on agents designed for handling
problems that require the encoding of long sequences of observations. We have also added wrapper
environments, to make results comparable to state­of­art results of the OpenAI gym (Brockman et al.,
2016) benchmark suite. Experiments showed that agents in the partially observable variants of the
environments could be capable of learning policies of similar quality, possibly after more exploration,
and adaption in the network architecture.

Now, we are moving towards sub­research question one. We analyzed multiple network architec­
tures, classified into three categories.

First, we looked at feedforward networks. Although they are not engineered for processing sequen­
tial input, they are the most widely used architectures for policy and value function estimation in most
current state­of­art deep reinforcement learning algorithms. As in previous literature concerning video
games, we observe that the feedforward network­based agents show high performance on problems
with shorter sequences, or where the agents have to look back to a fixed step in the past. In more

59

60 8. Conclusion

complex, longer horizon environments, their performance plunges compared to other architectures.
Still, feedforward agents are computationally more efficient, and on long sequences, the training only
takes a fragment of time used to train the sequence processing architectures.

Next, we visited recurrent architectures, namely the long short­term memory (LSTM) and the gated
recurrent unit (GRU) networks. Only slight differences are noticeable, both in terms of performance and
computational tractability between the two agents. On short sequences, they provide no or minimal
advantage compared to the feedforward architecture. We noticed the architectures to perform well on
mid­long sequences, providing the highest returns on environments with sequence lengths of about
20 and 40. However, they hardly scale to very long sequences. With a fixed hidden size, we observe
a huge drop in performance, although it happens on much longer sequences than in the case of the
feedforward network. Increasing the number of hidden units is an option; however, due to the extremely
high computational complexity and problems with parallelization, it is not an option after a while.

Finally, we analyzed the self­attention based architectures. We tested multiple options for position
embedding: the fixed, sinusoidal function­based, and the learned. Their applicability varies across en­
vironments. In some cases, we observed that more attention heads are required for longer sequences,
and the parameter has to be carefully tuned to maximize performance. On extremely long sequences,
the agents with the multi­head self­attention based network dominated, outperforming both the recur­
rent and feedforward agents. The idea of a residual connection was dropped in the initial phase of
development, and revisiting it in a later phase of research, it did not improve on the performance.

Concerning sub­research question two, the implemented Lagrangian safety approach was verified
to fulfill constraints in partially observable environments, when safety constraints did not contradict the
reward. The tuning of hyperparameters like the learning rate of the safety temperature also proved
decisive. However, partly due to the nature of model­free deep reinforcement learning, we cannot
state that the algorithm would be entirely safe. Constraints may limit exploration, even when a high­
performing policy is reachable within the cost budget. If we get lower quality policies, caused by safer
exploration, it usually leads to significantly lower training return. Long­term cost can also increase due
to the suboptimality of the policy, but it depends on the environment. Still, the behavior of the agent
with safety constraints mostly depends on the environment’s characteristics.

Exploring further approaches for safety should definitely be considered in the future.
We conclude our work by answering the main research question. With the presented network ar­

chitectures, we succeeded in training agents in long­horizon, partially observable environments. In
problems where the return and cost can be balanced reasonably, the constrained agents proved to act
more safely compared to the unconstrained ones.

8.2. Drawbacks of the method
Overall, the experimental evaluation showed that all three architectures are equally sensitive to hyper­
parameters. However, it is also the case for other state­of­art reinforcement learning methods, as it was
concluded in the initial phases of the project. In our case, it is an advantage that both the safety and
entropy temperatures are optimized on­the­fly and do not require tuning for a different environment.

Defining the reward and cost functions also remain in issue, because experiments showed that a
wrongly chosen reward function could be as harmful as suboptimal hyperparameters. Thus, for more
complicated problems, a well­designed dense reward function remains important.

For hyperparameter tuning, simulators may provide solutions, when the simulated environment only
negligibly differs from the real world. Additionally, simulations may help to test pre­trained policies
before they are executed in the physical systems.

A completely different issue is related to safety. While the safety feature showed promising results
for some environments, in some cases, it proved to be ineffective, and it even made the exploration
more costly by making the policies failing to converge to the optimal solution. We could observe this
behavior even though the constraints did not contradict the reward­related goal. Therefore, a more
robust safety approach could significantly improve the algorithm.

As long as the hyperparameter­related issues persist, the possibilities of real­world deployment are
limited, since the cost of hyperparameter tuning outweighs the costs of the final training procedure of
the agent.

8.3. Future work 61

8.3. Future work
While we aimed for a comprehensive study covering multiple architectures and experimental evaluation
of multiple environments, several interesting points have not been covered. This section presents future
research opportunities based on our work.

8.3.1. Experimental evaluation
First, we propose topics related to practical applications and further experiments.

Scaling up for larger environments In this work, the presented methods were evaluated based on
small environments that are relatively easy to solve in a fully observable setup, and the challenge lies in
the partial observability and proper encoding of the state based on a (long) sequences of observations.
This decision was driven by the fact that the complexity of more advanced benchmark suites requires
significantly more computation power than it was available. In state­of­art NLP models, advanced
versions of the transformer model use tens of layers with more than one billion parameters (Radford
et al., 2019) to produce state­of­art results. However, it also requires high­end training infrastructure
with state­of­art GPUs or TPUs to keep the problem computationally tractable. However, in our case,
large scale experiments were not conducted, due to the constraints in computational resources and the
fact that the introduced simple environments already required 400 thousand steps until convergence
on the canon environment. Therefore, it would be interesting to experiment on large­scale robotic
simulations, where both general and partial­observability related complexity is high, and using large,
multilayer models pay off.

Real­world experiments Partial observability and safety usually appear naturally in real­world envi­
ronments. Our experiments showed a prevalence of self­attention based agents in environments with
many input features and when the networks were pre­trained using experience from legacy policies.
While self­attention based architectures are computationally more expensive than basic networks for
dense layers, in physical systems, the neural network training costs can negligible compared to oper­
ating the plant to be controlled. Therefore, further experiments on complex, high­dimensional physical
systems can definitely form a subject of further research.

8.3.2. Method
Besides more experimenting, architectural changes can also improve performance, thus worth further
exploring.

Improving the self­attention based architecture The transformer model and its variants employ
many multi­head attention modules after each other, with dense layers in­between. To allow higher
abstraction levels in representation learning, a similar solution could be used on more complex envi­
ronments.

Network architectures While we have seen the advantages of self­attention based and recurrent
network architectures, some experiments showed that the simplicity of dense networks can lead to
faster learning. Still, recurrent and self­attention based architectures showed advantages on longer
sequence length. However, the computational complexity of the sequence processing architectures
can be prohibitive for real­world use cases with thousands of timesteps to be processed. Therefore
we propose to study computationally cheaper sequence processing architectures, like the linear self­
attention mechanism proposed by Wang et al. (2020).

Safety While the Lagrangian safety approach proved to be efficient in some of our application cases,
there are multiple novel approaches in the latest literature with more promising characteristics and per­
formance. Since the current method proved to cause unstable learning in multiple cases, we propose
the implementation of an alternative safety method before deployment to real­world environments.

Discrete action space Partial observability and long­range dependencies may occur in tasks with
discrete action space. For example, a 2D labyrinth environment can be a challenging context. The

62 8. Conclusion

agent moves in four directions, and it has to collect treasures in a specific order before leaving the
maze. In this case, both the walls and the already passed checkpoints must be remembered.

Storing encoded state in the replay buffer In the current approach, we store a sequence of ob­
servations in the state field of the replay buffer. While it is memory­wise tractable with our benchmark
suite, where the agent receives relatively few features, in real­world scenarios where agents have to
work with raw high­resolution data (like image frames), storage capacity problems can occur. As an
alternative, storing embedded observations can save a significant amount of memory, but important
encoding features before training is challenging.

Comparison with alternative algorithms Deep recurrent Q­network was designed for discrete ac­
tion spaces. Therefore they are not applicable in the current context. However, our method could be
compared to a recurrent network­based DDPG or a variant of the A3C algorithm.

Improving the batch reinforcement learning technique In the current implementation, we only
train from experiences obtained by alternative policies at the beginning. The experimental evaluation
showed that in many cases, replacing the initial exploration by training on experiences with previous
policies makes the training process more costly. Therefore, it can be considered to mix experience
from the random agent and a well­performing policy at the beginning.

Additionally, since the policies can get stuck in local minima, especially due to safety constraints,
demonstrating optimal behavior may help in the later stages of the training too.

We could use replay buffer sharing, where the replay buffer is split into two parts, and one is filled with
experience form the legacy controllers while the rest is filled with the on­policy samples. Alternatively,
we can alternate between training from two separate buffers by selecting the off­policy buffer to train
for a single epoch after periods of training.

A
Appendix

In the appendix, we provide supplementary material, including network hyperparameters and additional
tables used in the experimental analysis section.

A.1. Hyperparameters
This section lists the hyperparameters of the experiments we presented in chapter 7. Table A.1 presents
the common hyperparameters, applied to all experiments. Some hyperparameter values were cus­
tomized for each environment to optimize performance and shorten the training times, where it was
possible. The custom values are presented in table A.2.

Note that the temperatures 𝛼 and 𝜎 are learned, based on the constraint on the entropy and max
cost. The minimum entropy is defined as |𝒜|, the dimensions of the action space (Haarnoja et al.,
2018a), while the maximum cost is given for each constrained experiment and not treated as a hyper­
parameter.

Parameter Value Note
Replay buffer size Unlimited All experiences are kept
𝛾 0.99 Discount factor
𝜏 0.005 Target smoothing coeff.
Batch size 256
Epoch length 10000
Evaluation episodes after each epoch 20 With deterministic agent
Evaluation episodes after training 100 With deterministic agent

Table A.1: Hyperparameters applicable for all experiments

Parameter Pendulum POPendulum Half cheetah Flower MoveNd Sail Note

Size of hidden layers 64 64 256 128 32, 128 32 both for MLP
and recurrent layers

Count of MLP layers (FF network) 2 3 2 3 3 3
Count of MLP layers (SA, recurrent networks) ­ 2 1 2 2 2
Learning rate for policy and Q­functions 0.001 0.001 0.001 0.001 0.001 0.0005

Pre­training steps 6000 6000 10000 3000
10000
20000
30000

4000

Training steps 48000 48000 180000 50000
40000
50000
60000

30000

Table A.2: Hyperparameters values for the tested environments

63

64 A. Appendix

A.2. Supporting material for experimental evaluation
A.2.1. Sail environment

Network Max. cost Tr. return Tr. cost Test return Test cost

GRU

∞ ­1.2281e+02 3.7708e+02 ­1.0719e+02 1.4441e+02
500 ­1.5925e+02 1.2196e+03 ­1.7206e+02 1.8891e+03
2000 ­1.4491e+02 5.6828e+02 ­1.6541e+02 1.4000e+03
5000 ­1.3778e+02 4.4035e+02 ­1.2764e+02 7.5354e+01

MLP

∞ ­1.3677e+02 2.1311e+03 ­1.2404e+02 6.6215e+01
500 ­1.4028e+02 2.1585e+02 ­1.3796e+02 2.6958e+01
2000 ­1.3916e+02 2.2208e+02 ­1.3863e+02 4.0421e+01
5000 ­1.4024e+02 2.7301e+02 ­1.4333e+02 2.8340e+02

SA(12, ”fixed”) ∞ ­1.2640e+02 4.7951e+02 ­1.1149e+02 1.1155e+02
SA(16, ”fixed”) ∞ ­1.2943e+02 5.3267e+02 ­1.1766e+02 1.0981e+02
SA(1, ”fixed”) ∞ ­1.4023e+02 7.9312e+02 ­1.3168e+02 2.2177e+02

SA(2, ”fixed”)

∞ ­1.3588e+02 1.1427e+03 ­1.0283e+02 2.0099e+02
500 ­1.4497e+02 6.1271e+02 ­1.4147e+02 3.1121e+02
2000 ­1.5250e+02 9.4839e+02 ­1.5909e+02 1.0810e+03
5000 ­1.3986e+02 3.4527e+02 ­1.3455e+02 3.2456e+02

SA(4, ”fixed”) ∞ ­1.3117e+02 9.0629e+02 ­1.1220e+02 1.6098e+02

SA(8, ”fixed”)

∞ ­1.3069e+02 9.3723e+02 ­1.1343e+02 1.4111e+02
500 ­1.8797e+02 3.0616e+03 ­2.2168e+02 5.8235e+03
2000 ­1.4675e+02 6.6422e+02 ­1.3612e+02 9.5386e+01
5000 ­1.4075e+02 3.3319e+02 ­1.3673e+02 1.5349e+02

(a) Sequence length = 20
Network Max. cost Tr. return Tr. cost Test return Test cost

GRU

∞ ­1.1947e+02 4.9860e+02 ­1.0663e+02 3.8302e+02
500 ­1.8216e+02 6.0038e+03 ­1.7145e+02 1.9092e+03
2000 ­1.6723e+02 1.9929e+03 ­1.5705e+02 9.1221e+02
5000 ­1.7251e+02 2.5992e+03 ­1.5038e+02 9.6581e+02

MLP

∞ ­1.3568e+02 6.6343e+02 ­1.2889e+02 2.5469e+02
500 ­1.4015e+02 3.6891e+02 ­1.4731e+02 5.3026e+02
2000 ­1.3998e+02 3.2467e+02 ­1.4024e+02 2.5047e+02
5000 ­1.4466e+02 5.7133e+02 ­1.4315e+02 4.7993e+02

SA(12, ”fixed”) ∞ ­1.3756e+02 7.2933e+02 ­1.2438e+02 2.4582e+02
SA(16, ”fixed”) ∞ ­1.3465e+02 5.3031e+02 ­1.2525e+02 2.1479e+02
SA(1, ”fixed”) ∞ ­1.5283e+02 1.8283e+03 ­1.4378e+02 6.6107e+02
SA(20, ”fixed”) ∞ ­1.3348e+02 1.0120e+03 ­1.2244e+02 2.1875e+02

SA(2, ”fixed”)

∞ ­1.4727e+02 1.3280e+03 ­1.3038e+02 2.5456e+02
500 ­1.6630e+02 1.8966e+03 ­1.4681e+02 4.7253e+02
2000 ­1.7230e+02 2.3882e+03 ­2.0826e+02 4.6083e+03
5000 ­1.5869e+02 1.2123e+03 ­1.8655e+02 3.6353e+03

SA(3, ”fixed”) ∞ ­1.4192e+02 1.6004e+03 ­1.2943e+02 3.1312e+02
SA(4, ”fixed”) ∞ ­1.4313e+02 8.3036e+02 ­1.2766e+02 2.9752e+02
SA(5, ”fixed”) ∞ ­1.4051e+02 1.4262e+03 ­1.3051e+02 5.2873e+02

SA(8, ”fixed”)

∞ ­1.3517e+02 7.7064e+02 ­1.2321e+02 4.3121e+02
500 ­1.4774e+02 6.7096e+02 ­1.5812e+02 1.0673e+03
2000 ­1.4836e+02 6.7662e+02 ­1.4242e+02 4.3495e+02
5000 ­1.5802e+02 1.1849e+03 ­1.7945e+02 2.7072e+03

(b) Sequence length = 30
Network Max. cost Tr. return Tr. cost Test return Test cost

GRU

∞ ­1.4244e+02 1.5017e+03 ­1.2713e+02 1.0447e+03
500 ­1.7675e+02 3.4218e+03 ­1.7636e+02 2.2832e+03
2000 ­1.6077e+02 1.6046e+03 ­1.6727e+02 3.7667e+03
5000 ­1.7445e+02 3.0412e+03 ­1.6695e+02 1.9035e+03

MLP

∞ ­1.5320e+02 1.6825e+03 ­1.4345e+02 9.0544e+02
500 ­1.5599e+02 1.3019e+03 ­1.5234e+02 8.9940e+02
2000 ­1.5687e+02 1.3611e+03 ­1.5628e+02 1.0786e+03
5000 ­1.5619e+02 1.2946e+03 ­1.5697e+02 9.4109e+02

SA(12, ”fixed”) ∞ ­1.5096e+02 1.6610e+03 ­1.3780e+02 9.8865e+02
SA(16, ”fixed”) ∞ ­1.5661e+02 2.0107e+03 ­1.4261e+02 9.3721e+02
SA(1, ”fixed”) ∞ ­1.8601e+02 7.7902e+03 ­1.6123e+02 1.6863e+03
SA(20, ”fixed”) ∞ ­1.5497e+02 2.3089e+03 ­1.3760e+02 9.5491e+02

SA(2, ”fixed”)

∞ ­1.6832e+02 3.5195e+03 ­1.4677e+02 1.1182e+03
500 ­2.1413e+02 1.6729e+04 ­2.1909e+02 1.0898e+04
2000 ­1.5951e+02 2.0304e+03 ­1.5962e+02 1.1802e+03
5000 ­2.2449e+02 7.4829e+04 ­2.2539e+02 7.8792e+04

SA(3, ”fixed”) ∞ ­1.7647e+02 1.1614e+04 ­1.4640e+02 9.0482e+02
SA(4, ”fixed”) ∞ ­1.6932e+02 3.8428e+03 ­1.4798e+02 9.1565e+02
SA(5, ”fixed”) ∞ ­1.6918e+02 8.7313e+03 ­1.4501e+02 8.8220e+02

SA(8, ”fixed”)

∞ ­1.5270e+02 2.3883e+03 ­1.3600e+02 9.0719e+02
500 ­1.7598e+02 3.0834e+03 ­1.8794e+02 3.9074e+03
2000 ­2.1509e+02 5.1004e+04 ­1.7406e+02 2.4780e+03
5000 ­2.0594e+02 1.0382e+04 ­2.1479e+02 1.0296e+04

(c) Sequence length = 50

Table A.3: Training and test return on the sail environment

A.2. Supporting material for experimental evaluation 65

A.2.2. Flower environment

Network Start steps Pretrain policy FF layers Constr. Tr. return Tr. cost Test return Test cost

GRU
10000 heuristic 32 0.0 ­6.8776e+04 1.8951e+04 ­4.5394e+03 7.6501e+02
20000 heuristic 32 0.0 ­6.1862e+04 1.8977e+04 ­6.1306e+03 7.8620e+02
30000 heuristic 32 0.0 ­5.2610e+04 1.8998e+04 ­7.6627e+03 7.9186e+02

LSTM
10000 heuristic 32 0.0 ­8.4557e+04 1.8988e+04 ­4.3415e+03 7.4470e+02
20000 heuristic 32 0.0 ­6.8314e+04 1.8984e+04 ­5.4151e+03 7.6290e+02
30000 heuristic 32 0.0 ­6.4127e+04 1.9029e+04 ­7.0321e+03 7.8208e+02

MLP

10000 heuristic 32 0.0 ­1.1046e+05 1.9007e+04 ­6.2531e+03 7.5309e+02
128 0.0 ­1.0407e+05 1.9165e+04 ­5.2370e+03 7.8302e+02

20000 heuristic 32 0.0 ­7.6614e+04 1.9005e+04 ­8.0395e+03 7.5475e+02
128 0.0 ­7.8623e+04 1.9118e+04 ­7.8350e+03 7.8738e+02

30000 heuristic 32 0.0 ­5.8387e+04 1.9041e+04 ­6.6957e+03 7.5731e+02
128 0.0 ­5.4499e+04 1.9131e+04 ­8.0406e+03 7.9485e+02

SA(1, ”fixed”)
10000 heuristic 32 0.0 ­1.0835e+05 1.8926e+04 ­4.9739e+03 5.6301e+02
20000 heuristic 32 0.0 ­4.9830e+04 1.8838e+04 ­4.2309e+03 5.3147e+02
30000 heuristic 32 0.0 ­4.5505e+04 1.8921e+04 ­5.8656e+03 5.6030e+02

SA(2, ”fixed”)
10000 heuristic 32 0.0 ­4.1665e+04 1.8807e+04 ­1.5788e+03 4.0508e+02
20000 heuristic 32 0.0 ­2.9583e+04 1.8750e+04 ­2.6111e+03 5.0362e+02
30000 heuristic 32 0.0 ­3.2019e+03 1.8724e+04 ­2.6467e+03 4.3040e+02

SA(4, ”fixed”)
10000 heuristic 32 0.0 ­5.1363e+04 1.8670e+04 ­2.4170e+03 4.5060e+02
20000 heuristic 32 0.0 ­2.1551e+04 1.8724e+04 ­3.3727e+03 5.0195e+02
30000 heuristic 32 0.0 ­1.0566e+03 1.8617e+04 ­3.3339e+03 4.9270e+02

SA(8, ”fixed”)
10000 heuristic 32 0.0 ­4.7760e+04 1.8664e+04 ­1.8103e+03 3.2168e+02
20000 heuristic 32 0.0 ­2.3992e+04 1.8737e+04 ­2.5142e+03 4.2474e+02
30000 heuristic 32 0.0 ­6.2922e+03 1.8772e+04 ­3.7177e+03 4.9618e+02

Table A.4: Agents on the 2­dimensional move environment. The training return includes the reward of samples collected
off­policy way (by the heuristics or random exploration).

Network Start steps Pretrain policy FF layers Constr. Tr. return Tr. cost Test return Test cost

GRU
10000 heuristic 128 0.0 ­2.7125e+05 7.7856e+04 ­1.4919e+04 3.1863e+03
20000 heuristic 128 0.0 ­1.8550e+05 7.7595e+04 ­1.5345e+04 3.1864e+03
30000 heuristic 128 0.0 ­1.5410e+05 7.7520e+04 ­1.4379e+04 3.1871e+03

LSTM
10000 heuristic 128 0.0 ­2.6602e+05 7.7775e+04 ­1.4027e+04 3.1843e+03
20000 heuristic 128 0.0 ­1.9218e+05 7.7557e+04 ­1.5237e+04 3.1844e+03
30000 heuristic 128 0.0 ­1.5311e+05 7.7420e+04 ­1.5900e+04 3.1841e+03

MLP
10000 heuristic 128 0.0 ­3.5421e+05 7.7846e+04 ­2.0295e+04 3.1885e+03
20000 heuristic 128 0.0 ­2.2293e+05 7.7443e+04 ­1.7584e+04 3.1880e+03
30000 heuristic 128 0.0 ­1.6914e+05 7.7241e+04 ­1.8403e+04 3.1881e+03

SA(1, ”fixed”)
10000 heuristic 32 0.0 ­2.0653e+05 7.7378e+04 ­1.1248e+04 3.1865e+03

128 0.0 ­2.7010e+05 7.7611e+04 ­1.6098e+04 3.1883e+03
20000 heuristic 128 0.0 ­1.7909e+05 7.7328e+04 ­1.5505e+04 3.1876e+03
30000 heuristic 128 0.0 ­1.1628e+05 7.7150e+04 ­1.4894e+04 3.1871e+03

SA(2, ”fixed”)
10000 heuristic 32 0.0 ­1.9793e+05 7.7401e+04 ­1.2301e+04 3.1844e+03

128 0.0 ­2.5585e+05 7.7552e+04 ­1.5298e+04 3.1867e+03
20000 heuristic 128 0.0 ­1.6622e+05 7.7292e+04 ­1.5151e+04 3.1852e+03
30000 heuristic 128 0.0 ­9.9393e+04 7.7114e+04 ­1.3588e+04 3.1846e+03

SA(4, ”fixed”)
10000 heuristic 32 0.0 ­1.9010e+05 7.7401e+04 ­1.5162e+04 3.1839e+03

128 0.0 ­2.6098e+05 7.7534e+04 ­1.5126e+04 3.1841e+03
20000 heuristic 128 0.0 ­1.3888e+05 7.7239e+04 ­1.3097e+04 3.1822e+03
30000 heuristic 128 0.0 ­1.0366e+05 7.7092e+04 ­1.3289e+04 3.1817e+03

SA(8, ”fixed”)
10000 heuristic 32 0.0 ­1.8912e+05 7.7367e+04 ­1.2299e+04 3.1778e+03

128 0.0 ­2.3046e+05 7.7471e+04 ­1.3120e+04 3.1804e+03
20000 heuristic 128 0.0 ­1.4113e+05 7.7226e+04 ­1.3198e+04 3.1787e+03
30000 heuristic 128 0.0 ­7.9245e+04 7.7071e+04 ­1.1862e+04 3.1788e+03

Table A.5: Agents on the 8­dimensional move environment. The training return includes the reward of samples collected
off­policy way (by the heuristics or random exploration).

66 A. Appendix

Network Start steps Pretrain policy FF layers Constr. Tr. return Tr. cost Test return Test cost

GRU
10000 heuristic 32 0.0 ­9.7888e+04 1.8932e+04 ­3.3215e+03 7.5024e+02
20000 heuristic 32 0.0 ­1.3238e+05 1.9011e+04 ­4.7636e+03 7.8021e+02
30000 heuristic 32 0.0 ­1.6172e+05 1.9093e+04 ­6.7287e+03 7.8982e+02

LSTM
10000 heuristic 32 0.0 ­1.1151e+05 1.8998e+04 ­2.8492e+03 7.1932e+02
20000 heuristic 32 0.0 ­1.4227e+05 1.9033e+04 ­3.1847e+03 7.4281e+02
30000 heuristic 32 0.0 ­1.8410e+05 1.9122e+04 ­4.8895e+03 7.7341e+02

MLP

10000 heuristic 32 0.0 ­1.4787e+05 1.8998e+04 ­4.4253e+03 7.3920e+02
128 0.0 ­1.3072e+05 1.9260e+04 ­3.9485e+03 7.7783e+02

20000 heuristic 32 0.0 ­1.5036e+05 1.9070e+04 ­6.9355e+03 7.3044e+02
128 0.0 ­1.6341e+05 1.9285e+04 ­7.1456e+03 7.7970e+02

30000 heuristic 32 0.0 ­1.7102e+05 1.9223e+04 ­4.3134e+03 7.3204e+02
128 0.0 ­1.6135e+05 1.9425e+04 ­7.2642e+03 7.9443e+02

SA(1, ”fixed”)
10000 heuristic 32 0.0 ­1.3360e+05 1.8828e+04 ­3.4142e+03 4.8361e+02
20000 heuristic 32 0.0 ­9.4466e+04 1.8666e+04 ­1.4854e+03 4.0221e+02
30000 heuristic 32 0.0 ­1.4145e+05 1.8887e+04 ­2.9915e+03 4.2974e+02

SA(2, ”fixed”)
10000 heuristic 32 0.0 ­5.3336e+04 1.8712e+04 ­2.6110e+02 2.6911e+02
20000 heuristic 32 0.0 ­5.8064e+04 1.8479e+04 ­5.8986e+02 3.4684e+02
30000 heuristic 32 0.0 ­5.6847e+04 1.8457e+04 ­1.2580e+02 2.2486e+02

SA(4, ”fixed”)
10000 heuristic 32 0.0 ­4.0919e+04 1.8404e+04 ­1.2504e+03 3.5453e+02
20000 heuristic 32 0.0 ­6.1924e+04 1.8486e+04 ­8.2360e+02 3.6366e+02
30000 heuristic 32 0.0 ­3.7786e+04 1.8158e+04 ­4.5052e+02 3.1321e+02

SA(8, ”fixed”)
10000 heuristic 32 0.0 ­3.7580e+04 1.8401e+04 3.6072e+01 1.5639e+02
20000 heuristic 32 0.0 ­5.6390e+04 1.8540e+04 ­1.1863e+02 2.5953e+02
30000 heuristic 32 0.0 ­7.1761e+04 1.8665e+04 ­1.5314e+03 2.9347e+02

Table A.6: Agents on the 2­dimensional move environment. The training return does not include the reward of samples collected
off­policy way (by the heuristics or random exploration).

Network Start steps Pretrain policy FF layers Constr. Tr. return Tr. cost Test return Test cost

GRU
10000 heuristic 128 0.0 ­3.4367e+05 7.8188e+04 ­1.3931e+04 3.1857e+03
20000 heuristic 128 0.0 ­3.4361e+05 7.8336e+04 ­1.4640e+04 3.1859e+03
30000 heuristic 128 0.0 ­3.5542e+05 7.8526e+04 ­1.2595e+04 3.1867e+03

LSTM
10000 heuristic 128 0.0 ­3.4500e+05 7.8069e+04 ­1.2275e+04 3.1831e+03
20000 heuristic 128 0.0 ­3.3115e+05 7.8132e+04 ­1.3126e+04 3.1830e+03
30000 heuristic 128 0.0 ­3.3835e+05 7.8175e+04 ­1.3325e+04 3.1824e+03

MLP
10000 heuristic 128 0.0 ­4.7516e+05 7.8222e+04 ­1.9327e+04 3.1884e+03
20000 heuristic 128 0.0 ­3.9003e+05 7.7964e+04 ­1.5740e+04 3.1878e+03
30000 heuristic 128 0.0 ­3.9436e+05 7.7876e+04 ­1.6706e+04 3.1882e+03

SA(1, ”fixed”)
10000 heuristic 32 0.0 ­2.6399e+05 7.7520e+04 ­9.1367e+03 3.1862e+03

128 0.0 ­3.6308e+05 7.7943e+04 ­1.3766e+04 3.1882e+03
20000 heuristic 128 0.0 ­3.1647e+05 7.7813e+04 ­1.2207e+04 3.1873e+03
30000 heuristic 128 0.0 ­2.6995e+05 7.7693e+04 ­1.0846e+04 3.1869e+03

SA(2, ”fixed”)
10000 heuristic 32 0.0 ­2.5292e+05 7.7598e+04 ­1.0003e+04 3.1830e+03

128 0.0 ­3.3811e+05 7.7872e+04 ­1.2923e+04 3.1865e+03
20000 heuristic 128 0.0 ­3.0243e+05 7.7768e+04 ­1.1907e+04 3.1847e+03
30000 heuristic 128 0.0 ­2.3318e+05 7.7608e+04 ­9.1135e+03 3.1842e+03

SA(4, ”fixed”)
10000 heuristic 32 0.0 ­2.4056e+05 7.7599e+04 ­1.4894e+04 3.1844e+03

128 0.0 ­3.3931e+05 7.7865e+04 ­1.2948e+04 3.1831e+03
20000 heuristic 128 0.0 ­2.4386e+05 7.7641e+04 ­9.1518e+03 3.1811e+03
30000 heuristic 128 0.0 ­2.3820e+05 7.7572e+04 ­8.3870e+03 3.1805e+03

SA(8, ”fixed”)
10000 heuristic 32 0.0 ­2.4557e+05 7.7563e+04 ­1.0125e+04 3.1769e+03

128 0.0 ­3.0210e+05 7.7741e+04 ­1.0471e+04 3.1788e+03
20000 heuristic 128 0.0 ­2.4951e+05 7.7630e+04 ­9.9974e+03 3.1768e+03
30000 heuristic 128 0.0 ­1.9065e+05 7.7522e+04 ­7.4970e+03 3.1783e+03

Table A.7: Agents on the 8­dimensional move environment. The training return does not include the reward of samples collected
off­policy way (by the heuristics or random exploration).

Bibliography
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. CoRR,
abs/1705.10528, 2017. URL http://arxiv.org/abs/1705.10528.

E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep reinforcement learning: A
brief survey. IEEE Signal Processing Magazine, 34(6):26–38, Nov 2017. ISSN 1558­0792. doi:
10.1109/MSP.2017.2743240.

J. A. Bagnell and J. G. Schneider. Autonomous helicopter control using reinforcement learning pol­
icy search methods. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164), volume 2, pages 1615–1620 vol.2, May 2001. doi: 10.1109/
ROBOT.2001.932842.

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684, 1957. ISSN
0022­2518.

Dimitri P. Bertsekas. Chapter 3 ­ the method of multipliers for inequality constrained and nondifferen­
tiable optimization problems. In Dimitri P. Bertsekas, editor, Constrained Optimization and Lagrange
Multiplier Methods, pages 158 – 178. Academic Press, 1982. ISBN 978­0­12­093480­5. doi: https:
//doi.org/10.1016/B978­0­12­093480­5.50007­6. URL http://www.sciencedirect.
com/science/article/pii/B9780120934805500076.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, USA,
2004. ISBN 0521833787.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/abs/
1606.01540.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert­Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, and Dario Amodei. Language models are few­shot learners, 05 2020.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder­decoder for statistical ma­
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

Yinlam Chow, Ofir Nachum, Edgar Duenez­Guzman, and Mohammad Ghavamzadeh. A lyapunov­
based approach to safe reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grau­
man, N. Cesa­Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 8092–8101. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8032­a­lyapunov­based­approach­to­safe­reinforcement­learning.pdf.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez Guzman, and Mohammad
Ghavamzadeh. Lyapunov­based safe policy optimization for continuous control. 2019. URL
https://arxiv.org/abs/1901.10031.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer­xl: Attentive language models beyond a fixed­length context. CoRR, abs/1901.02860,
2019. URL http://arxiv.org/abs/1901.02860.

67

http://arxiv.org/abs/1705.10528
http://www.sciencedirect.com/science/article/pii/B9780120934805500076
http://www.sciencedirect.com/science/article/pii/B9780120934805500076
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1406.1078
http://papers.nips.cc/paper/8032-a-lyapunov-based-approach-to-safe-reinforcement-learning.pdf
http://papers.nips.cc/paper/8032-a-lyapunov-based-approach-to-safe-reinforcement-learning.pdf
https://arxiv.org/abs/1901.10031
http://arxiv.org/abs/1901.02860

68 Bibliography

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerík, Todd Hester, Cosmin Paduraru, and Yuval Tassa.
Safe exploration in continuous action spaces. CoRR, abs/1801.08757, 2018. URL http://arxiv.
org/abs/1801.08757.

Jacob Devlin, Ming­Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre­training of deep bidi­
rectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL http:
//arxiv.org/abs/1810.04805.

Kuan Fang, Alexander Toshev, Li Fei­Fei, and Silvio Savarese. Scene memory transformer for embod­
ied agents in long­horizon tasks. CoRR, abs/1903.03878, 2019. URL http://arxiv.org/abs/
1903.03878.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor­
critic methods. CoRR, abs/1802.09477, 2018. URL http://arxiv.org/abs/1802.09477.

J. García and F. Fernández. A comprehensive survey on safe reinforcement learning. 16:1437–1480,
08 2015.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Ge­
offrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth Inter­
national Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL
http://proceedings.mlr.press/v15/glorot11a.html.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world with
minimal human effort, 02 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep
energy­based policies. CoRR, abs/1702.08165, 2017. URL http://arxiv.org/abs/1702.
08165.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor­critic: Off­policy maxi­
mum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018a.
URL http://arxiv.org/abs/1801.01290.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor­critic algorithms
and applications. CoRR, abs/1812.05905, 2018b. URL http://arxiv.org/abs/1812.05905.

Matthew J. Hausknecht and Peter Stone. Deep recurrent q­learning for partially observable mdps.
CoRR, abs/1507.06527, 2015. URL http://arxiv.org/abs/1507.06527.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory­based control with
recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. CoRR, abs/1709.06560, 2017. URL http://arxiv.
org/abs/1709.06560.

Irit Hochberg, Guy Feraru, Mark Kozdoba, Shie Mannor, Moshe Tennenholtz, and Elad Yom­Tov. En­
couraging physical activity in patients with diabetes through automatic personalized feedback via re­
inforcement learning improves glycemic control. Diabetes Care, 39(4):e59–e60, 2016. ISSN 0149­
5992. doi: 10.2337/dc15­2340. URL https://care.diabetesjournals.org/content/
39/4/e59.

Sepp Hochreiter and Jürgen Schmidhuber. Long short­term memory. Neural computation, 9(8):1735–
1780, 1997.

http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1903.03878
http://arxiv.org/abs/1903.03878
http://arxiv.org/abs/1802.09477
http://proceedings.mlr.press/v15/glorot11a.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1507.06527
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
https://care.diabetesjournals.org/content/39/4/e59
https://care.diabetesjournals.org/content/39/4/e59

Bibliography 69

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by re­
ducing internal covariate shift. In Proceedings of the 32Nd International Conference on International
Conference on Machine Learning ­ Volume 37, ICML’15, pages 448–456. JMLR.org, 2015. URL
http://dl.acm.org/citation.cfm?id=3045118.3045167.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A survey.
CoRR, cs.AI/9605103, 1996. URL http://arxiv.org/abs/cs.AI/9605103.

Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate planning in large pomdps via
reusable trajectories. In Proceedings of the 12th International Conference on Neural Information
Processing Systems, NIPS’99, page 1001–1007, Cambridge, MA, USA, 1999. MIT Press.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 12 2014.

Vijay R Konda and John N Tsitsiklis. Actor­critic algorithms. In Advances in neural information pro­
cessing systems, pages 1008–1014, 2000.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learning.
In Proceedings of the Thirty­First AAAI Conference on Artificial Intelligence, AAAI’17, pages 2140–
2146. AAAI Press, 2017. URL http://dl.acm.org/citation.cfm?id=3298483.3298548.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, May
2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR, 09 2015.

Agnes Lydia and Sagayaraj Francis. Adagrad ­ an optimizer for stochastic gradient descent. Volume
6:566–568, 05 2019.

Michele Mauri, Tommaso Elli, Giorgio Caviglia, Giorgio Uboldi, and Matteo Azzi. Rawgraphs: A visu­
alisation platform to create open outputs. In Proceedings of the 12th Biannual Conference on Italian
SIGCHI Chapter, CHItaly ’17, pages 28:1–28:5, New York, NY, USA, 2017. ACM. ISBN 978­1­4503­
5237­6. doi: 10.1145/3125571.3125585. URL http://doi.acm.org/10.1145/3125571.
3125585.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602,
2013. URL http://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc Bellemare, Alex
Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, DaanWierstra, Shane Legg, and Demis
Hassabis. Human­level control through deep reinforcement learning. Nature, 518:529–33, 02 2015.
doi: 10.1038/nature14236.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learn­
ing. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized trade execution.
In Proceedings of the 23rd international conference on Machine learning, pages 673–680. ACM,
2006.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Adaptive batch size for safe policy gradi­
ents. In Proceedings of the 31st International Conference on Neural Information Processing Sys­
tems, NIPS’17, page 3594–3603, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Matteo Papini, Andrea Battistello, Marcello Restelli, and A. Battistello. Safely exploring policy gradient.
2018.

http://dl.acm.org/citation.cfm?id=3045118.3045167
http://arxiv.org/abs/cs.AI/9605103
http://dl.acm.org/citation.cfm?id=3298483.3298548
https://doi.org/10.1038/nature14539
http://doi.acm.org/10.1145/3125571.3125585
http://doi.acm.org/10.1145/3125571.3125585
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1602.01783

70 Bibliography

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neu­
ral networks. In Proceedings of the 30th International Conference on International Conference
on Machine Learning ­ Volume 28, ICML’13, pages III–1310–III–1318. JMLR.org, 2013. URL
http://dl.acm.org/citation.cfm?id=3042817.3043083.

S. Paternain, M. Calvo­Fullana, L. F. O. Chamon, and A. Ribeiro. Learning safe policies via primal­dual
methods. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 6491–6497, 2019.

Jan Peters and Stefan Schaal. Natural actor­critic. Neurocomputing, 71(7):1180 – 1190, 2008.
ISSN 0925­2312. doi: https://doi.org/10.1016/j.neucom.2007.11.026. URL http://www.
sciencedirect.com/science/article/pii/S0925231208000532. Progress in Modeling,
Theory, and Application of Computational Intelligenc.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforcement
Learning. 2019.

Filipe Rocha, Vítor Costa, and Luís Reis. FromReinforcement Learning Towards Artificial General Intel­
ligence, pages 401–413. 06 2020. ISBN 978­3­030­45690­0. doi: 10.1007/978­3­030­45691­7_
37.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization. CoRR, abs/1502.05477, 2015. URL http://arxiv.org/abs/1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti­
mization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Shai Shalev­Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi­agent, reinforcement learn­
ing for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Xiangxiang Shen, Chuanhuan Yin, and Xinwen Hou. Self­attention for deep reinforcement learning.
In Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence,
ICMAI 2019, pages 71–75, New York, NY, USA, 2019. ACM. ISBN 978­1­4503­6258­0. doi: 10.
1145/3325730.3325743. URL http://doi.acm.org/10.1145/3325730.3325743.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan,
and Demis Hassabis. Mastering chess and shogi by self­play with a general reinforcement learning
algorithm. CoRR, abs/1712.01815, 2017a. URL http://arxiv.org/abs/1712.01815.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go
without human knowledge. Nature, 550:354–359, 10 2017b. doi: 10.1038/nature24270.

I Sutskever, O Vinyals, and QV Le. Sequence to sequence learning with neural networks. Advances
in NIPS, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. ISBN 0262039249.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
J. Mach. Learn. Res., 10:1633–1685, December 2009. ISSN 1532­4435. URL http://dl.acm.
org/citation.cfm?id=1577069.1755839.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5­rmsprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

http://dl.acm.org/citation.cfm?id=3042817.3043083
http://www.sciencedirect.com/science/article/pii/S0925231208000532
http://www.sciencedirect.com/science/article/pii/S0925231208000532
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://doi.acm.org/10.1145/3325730.3325743
http://arxiv.org/abs/1712.01815
http://dl.acm.org/citation.cfm?id=1577069.1755839
http://dl.acm.org/citation.cfm?id=1577069.1755839

Bibliography 71

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model­based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5026–5033, Oct 2012. doi: 10.
1109/IROS.2012.6386109.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal­difference learning with function approximation.
IEEE Transactions on Automatic Control, 42(5):674–690, May 1997. ISSN 2334­3303. doi: 10.
1109/9.580874.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http:
//arxiv.org/abs/1706.03762.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self­attention with
linear complexity, 2020.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor­critic with experience replay. CoRR, abs/1611.01224,
2016. URL http://arxiv.org/abs/1611.01224.

Christopher Watkins and Peter Dayan. Technical note: Q­learning. Machine Learning, 8:279–292, 05
1992. doi: 10.1007/BF00992698.

Chiyuan Zhang, Oriol Vinyals, Rémi Munos, and Samy Bengio. A study on overfitting in deep reinforce­
ment learning. ArXiv, abs/1804.06893, 2018.

Brian D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal En­
tropy. PhD thesis, USA, 2010.

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1611.01224

	Introduction
	Problem definition
	Research questions
	Contributions
	Outline

	Literature review
	Reinforcement learning
	Deep learning
	Sequence modeling

	Deep reinforcement learning
	Policy gradient methods
	Actor-critic methods
	Deep reinforcement learning in continuous action spaces
	ppo
	sac
	drl in partially observable environments
	drl with parallel agents

	Safe reinforcement learning
	Safe rl in partially observable environments

	Problem statement
	Problem context
	Soft actor-critic
	Real-world training of a walking robot

	Constrained optimization using the Lagrange multiplier method
	Constrained rl
	Formulation
	Standardizing benchmarking

	Recurrent networks
	Self-attention

	Safe reinforcement learning framework for partially observable environments
	Sequence processing for partially observable environments
	Feedforward network with dense layers
	Recurrent Neural Network (LSTM or GRU-based)
	Self-attention-based network

	Maximum-entropy reinforcement learning with safety constraints

	Benchmark set of partially observable environments with safety constraints
	Requirements for the environments
	Environments
	Canon
	Sail
	Growing flowers
	MoveNd

	Wrapper environments
	OpenAI gym / Pendulum-v0
	OpenAI gym / HalfCheetah-v2

	Experimental evaluation
	Evaluation metrics
	General setup
	Evaluation framework for gym-based environments
	Python library
	Web application
	Process overview
	Summary

	Implementation of the method
	Comparing fully and partially observable environments
	The pendulum environment
	The half cheetah environment

	Comparing network architectures
	Canon environment
	Flower environment
	Sail environment
	Move environment

	Comparing recurrent architectures
	Comparing the self-attention based network
	Attention heads
	Position embedding

	Safety
	Pre-training with experiences obtained by legacy controller
	Computational complexity

	Conclusion
	Summary
	Drawbacks of the method
	Future work
	Experimental evaluation
	Method

	Appendix
	Hyperparameters
	Supporting material for experimental evaluation
	Sail environment
	Flower environment

