Print Email Facebook Twitter Incremental sequentially linear analysis to control failure for quasi-brittle materials and structures including non-proportional loading Title Incremental sequentially linear analysis to control failure for quasi-brittle materials and structures including non-proportional loading Author Yu, C. (TU Delft Applied Mechanics) Hoogenboom, P.C.J. (TU Delft Applied Mechanics) Rots, J.G. (TU Delft Structural Design & Mechanics; TU Delft Applied Mechanics) Date 2018 Abstract Quasi brittle materials, such as un-reinforced masonry or concrete are difficult to analyse because often the traditional Newton–Raphson (N-R) procedure fails to converge. Many solutions have been proposed such as Sequentially Linear Analysis (SLA), but these may fail in case of non-proportional loading with a large prestress. In this paper a new method is proposed that is based on a combination of the Newton–Raphson method and Sequentially Linear Analysis. The method is incremental; each increment starts and ends with an equilibrium state. The solution search path follows damage cycles sequentially with secant stiffness. The proposed method is demonstrated to be robust and accurate. It has been tested on prestressed concrete beams. It can be naturally extended to other types of analyses (e.g. geometrically non-linear analysis and transient analysis) due to the incremental procedure. In addition, it is shown that high prestress values can transform the behaviour of a concrete beam from softening to hardening. Subject ExplicitImplicitIncrementalIterativeMasonryNewton-Raphson (N-R) methodSequentially linear analysis (SLA)Structural analysisUnreinforced concrete To reference this document use: http://resolver.tudelft.nl/uuid:86d89831-55d2-4316-96a3-65fb0ec8e82e DOI https://doi.org/10.1016/j.engfracmech.2018.07.036 Embargo date 2020-11-05 ISSN 0013-7944 Source Engineering Fracture Mechanics, 202, 332-349 Part of collection Institutional Repository Document type journal article Rights © 2018 C. Yu, P.C.J. Hoogenboom, J.G. Rots Files PDF Incremental_Sequentially_ ... ersion.pdf 2.62 MB Close viewer /islandora/object/uuid:86d89831-55d2-4316-96a3-65fb0ec8e82e/datastream/OBJ/view