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Atheory is set up of spherical proteins interacting by screened electrostatics and constant adhesion,
in which the effective adhesion parameter is optimized by a variational principle for the free energy.
An analytical approach to the second virial coefficient is first outlined by balancing the repulsive
electrostatics against part of the bare adhesion. A theory similar in spirit is developed at nonzero
concentrations by assuming an appropriate Baxter model as the reference state. The first-order term
in a functional expansion of the free energy is set equal to zero which determines the effective
adhesion as a function of salt and protein concentrations. The resulting theory is shown to have
fairly good predictive power for the ionic-strength dependence of both the second virial coefficient
and the osmotic pressure or compressibility of lysozyme up to about 0.2 volume fractio200®
American Institute of Physics[DOI: 10.1063/1.1786915

I. INTRODUCTION analyze the second virial coefficient as such, for this will
point toward a way of dealing with the osmotic pressure at

It has been intimated that the solution properties ofnonzero concentrations. We focus on experiments with
globular proteins may bear relation with their crystallizationlysozyme, a protein which is reasonably spherical and has
properties:? Since the characterization of proteins com-been well studied for a long tini€.In particular, we show
mands ever more attention, such a contention is of considethat there are enough measurements of the second virial of
able interest, so much work has been carried out on this topilysozyme to determine an adhesion parameter with some
recently®~® confidence.

The difficulty of setting up a predictive theory of protein
suspensions based on what is known about the interactioh SECOND VIRIAL COEFFICIENT
between two proteins has been acknowledged for somﬁ Theor
time? Best fitting of the osmotic pressure of, for instance,” y
bovine serum albumin up to 100 g/1, leads to effective ex-1. Second virial coefficient
cluded volumes whose behavior as a function of salt is  The second virial coefficier, describes the first-order
enigmatic'® correction to Van't Hoff’s law

In recent years, there has been a tendency to forget about
all details of the protein interaction altogether—both attrac-
tive and repulsive—and to introduce a single adhesion pkeT

parametet’* Despite the electrostatic repulsion which is Here, I1 is the osmotic pressure of the solution,is the
substantial, the data are often merely rationalized in terms gbarticle number densitkg is Boltzmann’s constant, artlis

the bare protein diameter within the context of an adhesivghe temperature. From statistical mechanics we know that,
sphere model and such an approach seems to have'féfit. given the potential of mean forde(r) between two spheri-
This empiricism has prompted us to develop a theory ofal particles whose centers of mass are separated by the vec-
screened charged protein spheres that have a constant stickr r, one can calculatB, from

ness, but where the electrostatic interaction is compensated,

in part, by the adhesive forces. Thus, we argue that, effec- B,= — Ef drf(r), )
tively, the spheres are assigned a hard diameter identical to 2 )v

the actual diameter provided the remnant adhesive interag,\-,heref(r):eftJ(r)/kBT_1 is the Mayer function. In prin-

tion now depends on the electrolyte and protein concentrggipje  the interactior (r) may be determined from experi-
tions in a manner to be determined variationally. Our primaryental data on the second virial coefficient by suitable

aim is to formulate a liquid state theory of protein SOI“tionSLapIace inversion. This has been done for atoms and spheri-
with the Baxter model as reference state. First, however, Weally symmetric moleculet®!7 for which the second virial

coefficient has been measured over a broad enough range of
dMailing address. temperatures. One might think of formulating a procedure

=1+B,p+0(p?). (1)
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similar in spirit and applicable to protein solutions, but with just the coefficient of the second order term so that the ap-
the ionic strength as independent variable instead of the tenproximation to the integrand coincides with its actual value
perature. However, to be able to determine the interaction bgt x=2, i.e., we approximate(1l—e YoH®)=2ge~#(X=2)
inversion, the experimental data have to be known fairly ac— 2a£%e2#=2) with a=[e™ ¢—(1—¢&)]/£2, resulting in
curately, which is not the case at hand, as will become clear
. 1

further on. We are therefore forced to adduce presumptions 4(M+ _) &
about the interaction. 3= (1_ Ef) 9)

We assume the protein to be spherical with radipgs ! e 2°)
charge being distributed uniformly on its surface. For conve

nience, all distances Wi" b? Sca'?d by_ the radausf the stance, in the case of lysozyme, the deviation of the approxi-
sphere and .aII energies willbe in u_nlts kET. Because mation Eq.(9) from the exact result is smaller than about 3%
monovalent iongcounterions and salt iopare also present for 1=0.05V and smaller than about 1% foE0.2M. Since

in solution, there will be a screened Coulomb repulsion be-5<1 J, may be simplified by using the trapezoid approxi-

tween the proteins, here given by a far-field Debyeské mation 2 °dxa(x) = 1/28Ta(2) + a(2+ 8)1. which leads to
potential. We compute the effective charg&.; in the I2 9(x) [a(2)+9( )]

Poisson-Boltzmann approximation wheyés the elementary
charge. For now, we let the attraction between two proteins
be of short range, and we model it by a potential well of
depthU, and width §<1. The total interactioJ(x) be-
tween two proteins is of the form

Where we have neglected the small tearé®/22. For in-

2

e &t lé/(1+612))e™ 0

1-‘1—6
2

J,=24 . (10

It is important to note thattd may be greater than unity even
if 6<1. Again, for lysozyme, this approximation deviates
less than about 3% from the exact value fer0.2M and
o, 0=x<2 6=<0.5 and less than about 1% for0.2M and §<0.15.

U(r)=4 Upu(X)—Up, 2=x<2+4 ()

Upu(X), x=2+96,
2. Effective attractive well

, We next present a discussion Bf in terms of equiva-
lent interactions and their Mayer functions even though the
with Debye-Hickel potential® analysis of the preceding section is self-contained. Sections
(x—2) I_IA2 and II_A3_ may be viewed as preludes to the formula-
UDH(X)=2§e . (4) tion of the liquid-state theory developed in Sec. lll. At large
X separations>2+ 6), the interaction between the particles

Here, £=(Q/2a)(Zo/1+ )2 «* is the Debye length de- is purely repulsive, leading to a positive contribution to the
fined'by K2=877Q|9ﬁ| is the,ionic strengthQ = g2/ ekgT is second virial coefficient. If, at a certain ionic strength, the

the Bjerrum length, which equals 0.71 nm in water at 298 Ksecond virial coefficient is smaller than the hard-core value
cis the permittivity, of water andLE. ca=3.28\1, if ais (B,<BY®), this positive contribution is necessarily canceled

given in nanometers aridn mol/1. We suppose 1-1 electro- py only_ part of the negativ_e contribution of the attractive
lyte has been added in excess,Isis the concentration of interaction at small separgtlons, the part, say, betwee@
added salt. +e€y; and x=2+6 (see Fig. 1L The remaining potential,

which we will call an effective attractive well, then consists
of a hard-core repulsion plus a short-range attraction of range
€o. The value ofey is determined by noting that the free
B,=B4S(1+2)), (5)  energy of the suspension must remain invariant, which, in
the asymptotic limit of low densities, leads to the identity

Q| =

X=

In order to evaluatéB, analytically, we have found it
expedient to split ul, into several terms:

where BYS=167a’3 is the second virial coefficient if the
proteins were merely hard spheres and we introduce the fol- 32,50: B,, (12)

lowing integrals to facilitate analytical computation: . - - .
g g y P where B, is the second virial coefficient of the preceding

J=focd R(1—e-YK) =3, _ (eUA_1)] ® section and, . is the second virial coefficient pertaining to
), xx(1-e =Ji~(e 2 the effective attractive well. Using E@2), we rewrite Eq.
(12) as
J sf dxx(1—e Yon®)), 7
1= ], Bt ) " fd3rAf:o, (12)
\
2+6
JZEJ dx x2e Yor(X), (8)  interms of the difference in the respective Mayer functions,
2
Af=f—f (13

Here, J; is the value ofd in the absence of attraction and o

may be simplified by Taylor expanding the Boltzmann factorwheref is the Mayer function of the original interaction and
in the integrand for small values &y to second order. 1‘5O is the Mayer function of the effective attractive well. In
However, to increase the accuracy of the expansion, we adlimensionless units, Eq12) is equivalent to the condition
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Sometimes, it may be convenient to introduce an equiva-
lent square well. The second virial coefficient pertaining to
the original potentialJ (x) [Eq. (3)] is now rewritten as

3 [2+¢
B,=B,,=B3° 1+§f2 dx x?(1—eYae™Yor)) |

(18

The depthU ,— Upy(X) does not vary strongly though, since
€0<<1. To simplify things computationally, we approximate
the interaction by a square well potential,

o, 0=x<2
_Us, 2$X<2+60
O, X>2+€0.

Usw(x)= (19

We chooseJg in such a way thaB,=B3" or, equivalently,

2+e€
J *dx X2(eVs—elae™YoH¥) =0, (20)
2
To leading order irey, we have
2+¢€g
f dx x2eYs=4¢qes, (21)
2

. . L2+
FIG. 1. The integrand of Eq2) vs the distance. As shown by the shaded and, using the apme'mat'Osz Edeng(x):2'50[9(2
regions, the repulsive tail is compensated by part of the attractive interaction- €0) +9(2)], we write

providedB,<B%'S.

o

245
dx Xz(l—equ“(X)):f dx x3(eYaeYon —1),
2+¢g
(14

where, using the same approximation that led to (Bg.we
write

2+6

0

dxx2(1—e You)
2+46

_2ge™#?
—
and, usingfgifodxszf(x):z(é—eo)[Af(2+5)+Af(2

+¢€p)], we have

(19

a 1
1- —ge#ﬁ)(2+ o+ —
2 M

2+06
f dx x*(eYre™YoH(¥—1)

2+¢€q

=2(6—€g)[ — 2+ eYa(e [E(1TaDle

+ e [t egi]e 0y (16)
To leading order, we then find an explicit relation fgy
ge_l‘(s e—uéd
5— €g= ¢ 1
€0 /.LeUA ’ ( 7)

which works well at high ionic strengthge., at low values
of ¢, e.g., whenevet=1M in the case of lysozyme qH
4.5. A more accurate value @f- ¢q is obtained by equating

Egs. (15 and (16), and then iteratively updating the factor

(86— €), starting with the initial valugey= 5.

2+¢€g
f dx x2eYag™Yor
2

zzeerA[eferef[§/(1+eo/2)]ewfo]_ 22)
The depthUg of the potential is then given by
eUS: %eUA(eff_i_ e*[f/(lJrEO/Z)]e*/‘EO) (23)

in terms of the original variables. Finally, we point out that
the two attractive wells that we have introduced are physi-
cally meaningful only ifB,<B5>.

3. Attractive well in the Baxter limit

We have shown that one may simplify the statistical
thermodynamics of the protein suspension at low densities
considerably, by replacing the original interaction, consisting
of an electrostatic repulsion and a short-range attraction, by a
single attractive well of short range. The electrostatic inter-
action may be substantial but it is compensated by part of the
original attractive well which is quite strondJ,>1). An-
other useful interaction expressing attractive forces of short
range consists of a hard-sphere repulsion and an attraction of
infinite strength and infinitesimal range, namely, the adhesive
hard spheréAHS) potential of Baxter:®

o, 0=x<2

127w
Upans(X) = In2+w, 2sx<2+w (24)
0, x>2+w,

whereris a constant and the limib | 0 has to be taken after
formal integrations. The second virial coefficient remains fi-
nite,
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1
AHS_ pHS| 1 _
BAMS=BY (1 e

. (29

Because much is known about the statistical mechanics of
the Baxter model, one often definesn terms of someB,

and naively assumes there is a one-to-one correspondenc g
between the original and Baxter models. For instance, in our g
case,B5"°=B,=B,. =B3". Since we have

€ 3
B§W=B;'S(l—(eUS—1) 1+§° —1 ]
=By 1-3(es— 1) &), (26)
we thus identify *
1 0.25 0.5 0.75 1 1.25 15 1.75
7 =Beole”—1), 27 W)

. . o FIG. 3. Afit of Eq.(5) to the experimental data of Fig.(2xcept for those
whereUs is given by Eq.(23). However, it is important to of Refs. 25 and 2B On the right-hand side of the figure, the upper solid line

realize that this procedure is legitimate at small densitieSorresponds td,=0.19, 5=0.564, andJ = 1.48; the upper dotted line to
only. At finite concentrations, the optimal representation ofi ,=0.20, 6=0.468, andU,=1.70, and the middle solid line t,=0.21,

the real suspension of proteins by a Baxter model has to b@:0'379* andJ,=1.95, all at an effective chargé,;. The mlddl_e dotted
derived and we will show in Sec. Il that the simple-minded line corresponds tb,=0.19, 5§=0.25, andU = 2.4; the lower solid one to

) ificati £ via BAHS( 1) = | i 1,=0.20, 6=0.167, andU,=2.87; and the lower dotted one tg=0.21,
identification ofr via B> (7)=B no longer applies. 6=0.079, andJ ,=3.70, all at a lowered effective charg@e

B. Application to lysozyme

1. Experimental data by a sphere. Bovine Serum Albumi{BSA) has also been
Lysozyme is, by far, the best studied protein with regardwell studied, but is considerably more anisometric with an
to solution properties. This is one of the reasons for usingsSpPect ratio of about 3.5. Numerous measurements of the
this protein to test theory, another being its moderate aspegecond virial coefficient of lysozyme have been published. In
ratio of about 1.5 so that it may be fairly well approximated fact, there are quite a few sets of experiments pertinent to our

A
4
4 . A
N
o* A

2 * A A
B, .
BY |Tagx

&)
0 %é w
s,
Ce W
* , Amp T ‘ﬁ’@ ¥ N
% %
. A Q w
*AO "
a
x
0.25 0.5 0.75 1 125 1.5 1.75
1(M)

FIG. 2. Experimental data of the second virial coefficiBatof lysozyme as
a function of the ionic strength at a pH of about 4.5. The second virial
coefficient is scaled by the hard sphere veﬂlﬁ. Black squares: Bonnete
et al. (Ref. 27, pH 4.5, 20 °C. Gray triangles: Curtist al. (Ref. 23, pH
4.5, 20 °C. Gray squares: Muschel al. (Ref. 24, pH 4.7, 20 °C. Black
stars: Curtiset al. (Ref. 22, pH 4.5, 25 °C. Black diamonds: Bonneg¢ al.
(Ref. 27, pH 4.5, 25 °C. Black triangles: Veleet al. (Ref. 21, pH 4.5,
25 °C. White squares: Rosenbawhal. (Ref. 20, pH 4.6, 25 °C. White
diamonds: Rosenbauet al. (Ref. 14, pH 4.6, 25 °C. Gray stars: Bloustine
et al. (Ref. 26, pH 4.6, 25 °C. White stars: Piazza and PiefRef. 25, pH
4.7, 25°C. White triangles: Behlke and RistéRef. 28, pH 4.5. Gray
diamonds: Bloustinet al. (Ref. 26, pH 4.7. In all cases, the electrolyte is
NaCl, often with a small amount of Na acetate added.

analysist*20-28

It turns out that there is appreciable scatter in the data if
we plot all measurements &, at apH of about 4.5 as a
function of ionic strength [ NaCl+small amount of Na ac-
etate; we have set the ionic strength arising from the latter
equal to 0.& concentrationRef. 21)] (see Fig. 2 Several
sets of dat®?®appear to be way off the general curve within
any reasonable margin of error. An important criterion is how
well the 6 point (i.e., whenB,=0) is established since then
attractive forces—which we would like to understand—are
well balanced against electrostatics—which we purportedly
understand well. Experimentally speaking, it ought to be
possible to monitoB, accurately about the point; large
negativeB, values atl>1, are more difficult to determine
because the proteins may start to aggregate or nucleate, in
principle. Various polynomial fits for all data close to the
point yield | ,=(0.20=0.01)M. Hence, we have regarded
data set®®markedly disagreeing with this ionic strength as
anomalous so we have not taken them into consideration.
Figure 3 displays all data we have taken into account.
Clearly, the composite curve yields a fairly reliable basis to
test possible theories of the attractive force. On the other
hand, it is unclear at present how the scatter in data in Fig. 3
translates into bounds for attractive interactions inferred by
inverting Eq.(2).

2. Theory

a. Electrostatics Next, it is important to ascertain the
actual and effective charges of lysozyme under conditions
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TABLE |. Values of the actual chargg of hen-egg-white lysozyméfrom Ref. 29, the renormalized or
effective chargeZq [from Eq. (A7)], the lowered effective chargé=Z.—1, and dimensionless interaction
parameterg andu, andey, Ug, andras a function of the ionic strengthThe pH equals 4.5 and has been
calculated using the lowered effective chaEgeVaIues ofUg and r have been computed using E¢83) and
(27), respectively, and, has been calculated using the procedure described immediately aft€r7Eq.

I(M) 0.05 0.1 0.15 0.2 0.25 0.3 0.45 1 15 2

z 95 98 100 10.1 10.2 10.2 10.3 10.4 10.4 10.4

Lot 88 9.2 9.4 9.6 9.7 9.8 10.0 10.2 10.3 10.3

Va 7.8 82 8.4 8.6 8.7 8.8 9.0 9.2 9.3 9.3

I3 252 1.84 1.48 1.27 1.10 0.984 0.752 0.409 0.295 0.229
o 125 176 216 2.50 2.79 3.06 3.74 5.58 6.83 7.89

€ 0.0208 0.0466  0.0585 0.0644 0.0720 0.0773 0.0782 0.0785
Us 2.26 2.52 2.70 2.82 3.05 3.37 3.47 3.53

T 0.933 0.314 0.205 0.164 0.115 0.0767  0.0684  0.0642

relevant to the present work. Kuehnet al?® performed dure. We thus obtait) ,=1.70+0.25 andé= 0.468+ 0.097
hydrogen-ion titrations on hen-egg-white lysozyme in KClbut we note that the quantit§ expU,=2.56+0.10 is much
solutions. By interpolation, we obtain the actual chaZgef  more narrowly bounded. Now, it can be argued that the
the protein as a function of the 1-1 electrolyte concentratiorDebye-Hickel potential with effective chargg.s overesti-

| (see Tables | and )l Experiments oiB, are usually carried mates the real potential in magnitude so we have repeated
out with NaCl (and some Na acetateas the supporting this numerical procedure with a slightly lower effective
monovalent electrolyte but here we assume KCI and NaCJ:harge, viz.Z= Zei—1 (see Tables | and ) This yields the
behave identically in an electrostatic sense. We solve thgevised estimated) ,=2.87+0.65, 5=0.167+0.086, and
Poisson-Boltzmann equation to get the effective chaige  sexpu,=2.95+0.21. The numerically computed curves are
in the Debye-Hakel tail (for more detail, see Appendix)A  displayed in Fig. 3. We therefore conclude that the variables
The dimensionless radius is set equal t0=3.28\ U, andé as such are difficult to ascertain unambiguously,
=5.58/1 and Eq.(A7) is used to compute the renormalized though the variablesexpU, is quite robust. This is also

or effective charge(Settinga=1.7 nm for lysozyme as in  horne out if we use our approximations, E¢8) and (10),
Refs. 20 and 23; the Bjerrum leng@=0.71 nm for HO at  instead of the exact numerical computations. There are again
room temperatuje The other dimensionless parameter iswide variations inU, and & but the quantitysexpU, is
given by £=0.209@/(1+ u))? where Z=Z.4—1 (see strictly bounded: §expU,=2.70+0.11 (effective charge

below). =Zs) and dexpU,=3.02+0.21 (effective chargeZq
b. Attractive well We have assumetd, and § to be  —1).
independent of the ionic strengthlt is possible to show that We now argue whys expU, is indeed a relevant quan-

this does not contradict the data displayed in Figs. 2 and 4. Itity, to a good approximation. At th@ point we haveB,
Appendix B, we prove that if the interaction between the=0 so thatl,= —8/3 from Eq.(5). From Tables | and Il, we
proteins is given by Eq.3) but nowU ,=U,(X) is a general see that generally>1 and aé<1; hence, we have;
attraction, therdB,/du<0 andd?B,/du?>0, the last in- =4&/u and J,=48exp—¢ for often w6>1. This would
equality being valid if¢<1. We recall thaj is proportional lead to §expU,=4.4. On the other hand, at very hidgh
to /I so that Figs. 3 and 4 indeed bear out these inequalitied; and ¢ tend to zero and, becaudd,>1, the scaled
after due rearrangement. virial  coefficient 52/55'5 reduces to —3/8],expU,
Next, we determine the optimal values bfy, and § =—3/26expU, leading tosexpU,=3 estimated from Fig.
yielding exact, numericaB,(l) curves given by Eq(5) 3. Hence, the two estimates at the respective extremes are
which are the best fits to the data of Fig. 3. We require thafairly consistent. To summarize, we may propose a crude
| ,=0.20=0.01 is predicted absolutely which fixék,, say, approximation to the second virial coefficient which is a uni-
and dis then determined by a nonlinear minimization proce-versal function ofé expU,,

TABLE II. Same as Table |, but now with pH equal to 7.5.

(M) 0.05 0.1 0.15 0.2 0.25 0.3 0.45 1 15 2

Z 6.9 7.0 7.1 7.2 7.2 7.3 7.3 7.1 6.9 6.8

it 6.6 6.8 6.9 7.0 7.0 7.1 7.2 7.0 6.9 6.8

zZ 5.6 5.8 5.9 6.0 6.0 6.1 6.2 6.0 5.9 5.8

I3 13 0.920 0.728 0.616 0.524 0.473 0.357 0.174 0.119 0.0889
) 125 1.76 2.16 2.50 2.79 3.06 3.74 5.58 6.83 7.89

€ 0.0493 0.0640 0.0695 0.0725 0.0741 0.0764 0.0784 0.0787 0.0788
Us 2.83 3.03 3.14 3.23 3.28 3.39 3.56 3.61 3.63

T 0.212 0.132 0.108 0.0943 0.0877 0.0758 0.0623 0.0590 0.0574
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FIG. 4. Experimental data of the second virial coefficiBptof lysozyme as  FIG. 6. Comparison between the experimental datgpldt7.5 and full

a function of the ionic strength at a pH of about 7.5. The second virial theory, Eq.(5). Parameters as in the lower dotted curve in Fig. 8 (
coefficient is scaled by the hard sphere vaaffes. Black stars: Rosenbaum =0.079 andU,=3.70).

and ZukoskiRef. 20, pH 7.4, 25 °C. Black triangles: Velest al.(Ref. 21),

pH 7.5, 25 °C. Black squares: Rosenbaatral. (Ref. 14, pH 7.8, 25 °C.

B 3¢ 3 c. AHS potential Values ofe,, Ug, and 7 at several
—stzl*' = e €5eYa, (2g)  ionic strengths are given in Tables | and II. Figure 7 displays
B> 2u 2 the ionic-strength dependence of the adhesion parameter
The third term on the right is exact in the limi#—0, Near thed point, 7 decreases quickly with increasingAt
whereas the absolute error in the second term is smaller thgHgh ionic strength, 7 approaches the limiting value of
0.25 whenl =0.1M. Using Eq.(28) to fit the data leads to [68(€”A=1)]"", which, upon the use of our choicé
SexpU,=4.2 when we use the effective charggy, - 0-079andJa=3.7,is equal to 0.0535. We note thafe
whereas 5expU,=3.7 when we use the lower effective 4.5 and ationic strengthis=0.09M and!=0.1M, the com-
chargef(see Fig. 5. puted values ofsQ, Ug, andr_bec_ome nonsensical. In that
In Fig. 3 we see that the curves at low valuessdit the case, the attractive potential is simply not strong enough to

data at high ionic strengths better. In the remainder of thigomlp?nslate the (:]Ie;trosktat:jc repu_lril_on com;l)letily SO our
paper, we therefore employ the valués-0.079 andU, analytica’ approach breaks down. This can also be seen in

" ) _ — Fig. 2, where we hav®,>B}'® for these two values of the
=3.70, corresp_ondmg to the lowered e_ffectwe chafgand _ionic strength. The same effect occursi 7.5 whenl
[ ,=0.2IM. In Fig. 6 we show a comparison between experi-

i =0.09\.

mental data at @H of about 7.5 and the theoretical curve
computed numerically with the same parameters.

0.9

0.6 pH4.5

T
03 pH 7.5
0 ‘ : —
025 05 0.75 1 125 15 1.75 0 05 1 15 2
I (M) (M)

FIG. 5. Fits of Eq.(28) to experimental data of Fig. 3. Full lin€{s and  FIG. 7. lonic-strength dependence of AHS parametat pH 4.5 andpH
SexpUx=4.2); dotted line Z and § expU,=3.7). 7.5. The dotted line denotes the limiting valueods| — .
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lll. LIQUID STATE THEORY AT HIGHER DENSITIES (0<e=< ), and yieldse. The second determines the density
dependent strength of the AHS interaction,
A. Theory

2+e
J dx X°B(x)=0. (33
1. Density dependent attractive well 2

in the Baxter limit This expresses the fact that the reference potential has to

In Sec. Il, we introduced the AHS potential as a conve-compensate for the remaining part of the original interaction.
nient first approximation to the interaction between proteinsWe note that this scheme is only consistent if the attraction is
We determined the adhesion parametey matching values sufficiently strong(r may never be negatiye
of the second virial coefficient which is methodologically
cqrrect o_nIy in the asymptotic limit of very low .dens.itie.s. In o Approximate radial distribution function
this section we propose a procedure of choosinghich is  for the Baxter potential
valid at higher concentrations bainow depends on the pro- .
tein density. We extend a method originally proposed by In order to be able to determlpefrpm.Eq.s.(32) apd
Weeks, Chandler, and Anders8rior repulsive interactions. (33), we need to. knovg('x), the radial dlstrlputlon function
They variationally determined an effective hard sphere diam®f the reference interaction, the AHS potential. In the Percus-

eter for a soft, repulsive potential of short range, but weYEV'Ck approximation developed by Baxtgix) has a sin-

argue that their scheme is more generally applicable as Ion%i"ar contrlb_utlongw(x) which, after th_e I|_m|tw—>0, ac_ts
11 e a ¢ function and results from the stickiness of the inter-

as the full interaction—attractive and repulsive—remains o i tth ; £ two touchi h We th
short range, which is the case here. ac 'Ontﬁ ¢ € StL.” acles ot two touc 'n% SP e)res._ te ftus as-
We start by introducing a functional expansion of the SUMe the functional expansion given by Ifl_ ) exists a er
the limit w—0. This is obviously very difficult to prove in

excess Helmholtz free energyA in terms of the Mayer ) ) . .
function of the interactiort general although we investigate the bilinear term in Appen-

. . dix C. We splitg(x) into g,(x) and a regular terrj(x):°
PP Tie 600 =G0+ ,(x) 34
:pflA(p,T;quHS)Jrg%J dxBayg(X) with
2/ 32,3 0, x<2
%(E Vf dxydxz0xs 9.,(x)= %n@(l), 2<x<2+w (35)
X Baps(X12) Bans(X19) I (X1, Xa , Xa) ++ - . (29 0, x>2+w,

Here V is the volume of the systemd=—AA/V, ¢4(X)  analogous to Eq(24), where the amplituda is the smaller
=e V&), oans(X)=e Yansw, »=47a3p/3 is the volume of the two solutions of

fraction of particles Jxio(X1,X2,X3) is a complicated func 1492 1 . .

tion depending on two- and three-particle correlation func- = - 2 36
i i i T (1=pPN 1 12" (36
tions (see Ref. 3D x;,=X;—X,, etc. We define the quantity (1=m°N 1-9

Bans(X)=YanusX)[@s(X) — eans(X)], (30) Forx<2,9(x) equals zero owing to the hard-core repul-

_ _ ) sion, wherea§j(x) tends to unity for large. For proteins, it
in terms of the so-galled cavity functionyans(X)  turns out thatp(x) — eans(X) is often appreciably nonzero
=0ans(X)/eans(X)=(2/p°)(6.Al 6¢(x)) and radial distri-  only near the surface of the sphere so we approxifgéxe

bution functiongans(x) pertaining to an appropriate AHS i the interval 2<x<4 by the first two terms of its Taylor
potential which is the reference state. Both these functiongypansion,

depend orp, T, and the effective adhesive parametethe

latter to be determined variationally. From now on, we omit 0, x<2
the subscript AHS iIBaug(X), gans(X), etc., for the sake of F(x)=1{ G[1+H(x—2)], 2sx<4 (37)
brevity. 1 x>4
We next choose by requiring that the first-order correc- ’ '
tion to the excess free energy vanishes, The constant& andH may be computed with the help of the
auxiliary function F(t) introduced by Bravo Yuste and
f dx B(x)=0. 31)  Santod! [see their Eqs(3.19 and(3.2; note that the first
derivative we need in the Taylor expansionggik) is taken

This is the analog of Eq(12). Hence, in the spirit of the after the limitw—0]. The Laplace transforms of the radial
preceding section, we split up this integral into two parts.diSUibUgion and other functions which were computed by
The first indicates that the tail of the electrostatic interactionBaxter'® [see his Eq(30)] are related td=(t) by their Eq.
is compensated by part of the original square well attraction(3.12. Expansions at highthen lead to

- G=\7 (39

dx x°B(x)=0 (32
2+e and
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7 n(1-n) \2

T2r(1—p) | 12
1+11 1+57 9(1+7) 1
3 U 7 9 77)2_. 39
12 1-n 2(1-7m)°\

Numerical work? bears out that Eqe37)—(39) are quite

reasonable fok—2<1. In the case of proteins, the range of
both attractive and electrostatic forces is much smaller than

the diameter.

3. Determination of the effective adhesion

We next determine- from Eq. (33), first using Eq.(32)
to obtaine. From Eqgs(24), (30), and(34), the functionB(x)
can be shown to have the following for(repressing terms
that ultimately disappear in the limi—0):

B(x)=B(X)—g,(X), (40)
where the regular term is given by
- 0, O=x=2
BOO)= (e YN -1)F(x), x>2. “1
Equation(32) may be conveniently expressed as
o 2+46 - o -
f dx XZB(X):f dx X°B(x)+ dx x¥*B(x)=0.
2+e 2+e 2+6
(42)

Using [31%dxf(x)=1/2(6— €)[f(2+ )+ f(2+€)] and ne-
glecting terms of ordes? and e?, we write the first integral
as

J;:jdx XB(X)=G(5— €)K,(6,€), (43
with
K1(8,€)=2(eVae [+ a21e " _ 1)1 4 (14 H) 5]
+2(eVae (#1111 4+ (1+H)e].
(44)

Again, we stress that, although<l ande<1, ué and pe

may be of order unity. Furthermore, we note that if we take

the limit |0, then\— 7! and G—1, so we recover Eq.
(16) if we neglect terms of ordep and e. We tackle the
second integral by adopting the following approximation:

1—exg —U(x)]=1—exp2&x e #x72)
~ ngfle*,u(X*Z) _ 2§2X*2e*2,u.(xf2)

+2&3x 2 3mx=2)3

(note that in this Taylor expansion of the exponential we

have replaced one factor ! by 271 in the last term We
then write
—J dx X¥*B(x)=G[(1+ SH)P;+HP,] (45)
2+6

with

P. Prinsen and T. Odijk

Pi= f dxx®(1—e VW)
2+6

8(1+ 5)M+16M(1 |\/|+8|v|2) (46)
P M 9
and
P2=f dxx(x—2—8)(1—e Y™)
2+46
82+ 6M+16M 1M2+8M3 4
—;g( wo) Z\M73 =M. (47

Here, M=¢e #%94. Using the approximations -1M
+8M/9=(1+M)" ! and M—M?/2+8M327=In(1+M),
we arrive at

P 8 1 )M 16—M 48
1—F( + o) +;1+M (48)
and
8 16
PZZF(Z‘F,U,&)M‘F?M(J."‘M). (49

Hence, the variable, which depends on the density by vir-
tue of the density dependenceldf is determined iteratively
from

(1+ 8H)P1+HP,
K1(6,€014)

One starts withey = 6 and iterates until a stationagy,,, is
reached.

The next step is to calculatefrom Eq.(33), which, with
the help of Eq.(40), is equivalent to the expression

(50

0~ €new™

fHEdX x2~B(x)=2—)\. (51)

2 3

We have taken the limitv— 0. Again using the approxima-
tion [37<dx f(x)=1/2¢[ f(2+ €) + f(2)], we write

2+e - e
f dx X°B(x)=2G e[ (eVne LE/(1T/2)]e 57
2

X(1+(1+H)e)+(eAe ¢—1)].
(52

Together with the expressior§1) and G=\r7 [Eq. (38)],
this leads to

1 e
— =3¢ (eVre (IR 1)1+ (14 H)e]

+(eYre ¢-1)]. (53)

Accordingly, may be determined iteratively if we recall that
bothH ande also depend om. A way of quickly determining

7 and e is choosing a starting value for botle § and =
=0.2 say, and then alternately using Eq50) and(53) until
the iterates become stationary.
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TABLE lll. The scaled rangee of the effective attractive well and the strength of the effective adhesive
interactionr at pH 4.5 as a function of the ionic strengttand volume fractiory. The values of and 7 have
been evaluated from Eq&0) and (53).

7 0.1V 0.2m 023V 0.3V 0.48M M 1.5M 2M
0 T 0.829 0.295 0.194 0.156 0.110 0.0735  0.0656  0.0616
& 0.0230  0.0483  0.0596  0.0653  0.0725 0.0775 0.0782  0.0786
0.05 r 0.712 0.289 0.193 0.155 0.110
& 0.0266  0.0492  0.0600  0.0655  0.0725
01 r 0.620 0.283 0.192 0.155 0.110
& 0.0303  0.0502 0.0603  0.0656  0.0725
015 r 0.544 0.276 0.191 0.155 0.110
& 0.0342  0.0514  0.0607  0.0657  0.0724
02 r 0.482 0.268 0.190 0.155 0.110
& 0.0383  0.0528 0.0611  0.0658  0.0723
03 r 0.380 0.251 0.186 0.154 0.110
& 0.0477  0.0563  0.0624  0.0663  0.0722
04 r 0.300 0.228 0.179 0.152 0.110
& 0.0600  0.0619  0.0651  0.0677  0.0724
B. Application to lysozyme (scaled inverse osmotic compressibility at various ionic

We have already determined the interaction in Sec_strengths with experimental data from Refs. 13 and 14.

[I1B2b (6=0.079 andU ,=3.70). We next compute itera-
tively from Eqgs.(39), (44), (48)—(50), and(53). They depend |V. DISCUSSION

on both the density of protein and the ionic strengtke e . . . .
Table I1I). One difficulty in comparing our computations with ex-

mPeriment has been the substantial margin of error in the os-
pressibility xt are then also simply obtained from For Egacacr:oe%s:lreirglzgts;u;yagorgtéﬁig [I)r:\lAt\h?t r?::ebeﬂn optggr
g\ySltgance, In the Percus-Yevick approximatiory is given sible to obtain the second virigB, at better than 10%
accuracy>~*One possibility for the occurrence of discrep-
ancies inB, is the variety of lysozyme types. Poznanski
kB_Tﬁ_ (1—p)* et al3® have established that popular commercial lysozyme
. . preparations such as Seikagaku and Sigma exhibit significant
\'/:\{here)\ is the smaller of the two solptlons of E¢36). differences under dynamic light scattering. Nevertheless, the
igure 8 compares the predicted density dependence of t%riation inB, at, say, about 0@ NaCl (see Fig. 3 is so
large that it needs to be explained. At nonzero concentra-
tions, the difference between the osmotic data of Refs. 13
16 — and 14 is also substantial.
14 — N The relatively large variation in the experimental mea-
-~ 4 surements oB, makes it difficult to falsify stringently other
12 e w " - models of attractive forces like that of van der Waals type,
- - At _—— ] for instance. It proves feasible to get satisfactory agreement
Fak g with the experimental data displayed in Fig. 3 if we let the

£ x * : D : .
%J?"f‘a;*.,u A dispersion interaction be given by the nonretarded Hamaker

REFI S potential® for spheres of dimensions appropriate for
06 o T - lysozyme, with an adjustable Hamaker constant of okgar
0.4 ] though with a very short cutoff at around 0.1-0.2 nm. How-
h ever, the necessity of such a cutoff, which is already beyond
the limit of validity of continuum approximations, may be
‘ ‘ ‘ ‘ viewed as positing the equivalent of a short-range interaction
0025 005 0075 01 0425 045 0475 02 like that of Eq.(3), in large part. It is well to note that the
n long-range dispersion interaction beyond some distance
FIG. 8. Inverse osmotic compressibility as a function of the volume fractionmuch smaller than the radisplays only a minor role.
7 at various ionic strengths. Experimental data: black square8,18V; Stelf’ has criticized the Baxter limit because diver-
black triangles,|=0.23M; black stars,|=0.28V1; black diamonds,| gences in the free energy appear at the level of the 12th

=0.33M; open squared,=0.48V. All data from Rosenbauret al. (Ref. - - .
14), except for those di—0.23M (black triangles[Piazzaet al. (Ref. 13], virial. Therefore, the most straightforward way to interpret

Curves computed from Eq54) with 5=0.079,U,=3.70, and the lowered OUr liquid state theory is to stress that our zero-order theory

effective chargeZ; = has been determined from E@3). From top to bot- describ_e_s th(—:_‘ r?ference state Onl)_’ up to an(_j in(_?'Uding the
tom: 1=0.18M, 1=0.23M, 1=0.28V, =0.33V, and| =0.48\. 11th virial within the Percus-Yevick approximation. The

Thermodynamic properties such as the osmotic co

1 910 [1+27—\Ap(1—7)]?

(pkeTr) *= ., (54

08

0.2
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analysis of phase transitions must be viewed with cautioWe next derive the first-order correction to this solution. Put-
(for a comparison of recent simulations—taking the limit of ting (1) = ¢o(r) + 1(r), with |¢1(r)|<|o(r)|, results in
zero polydispersity after the limit of vanishing well depth— the following linear differential equation fay, :

with Percus-Yevick theory, see Ref.)38 second problem is d d 1

here that, at large ionic strengths, a considerable electrostatic — —r2—yy(r)== szg(r). (A4)
repulsion is balanced against a significant attracts@e Fig. redr dr 6

1) and it is difficult to see how good such a compensatoryKeeping in mind thaty; (r)=o0(y(r)), asr—o=, we inte-
scheme should work at high concentrations near dense paclrate the differential equation once to obtain

ing.
In summary, we have presented a fairly good theory of il/fl(r): K [ZQet)? E1(32Kf) (5)

the ionic-strength dependence of the osmotic properties of dr 611+u r

lysozyme in terms of a sticky interaction which is indepen-5n4 a second time to derive

dent of charge or salt concentration. This conclusion, by it-

K2

3

self, is not new for it has been reached earlier by formulating ) _ «*(ZQe\ e > A (3xr)
numerical work incorporating short-range forces and ! 6 \1+u KT kr) 1 '
screened electrostatics and comparing it with x-ray (AB)
scattering®*® and liquid-liquid phase separati6h.** The \yhere E,(x) is the exponential integral defined & (x)

merit of the current analysis is its transparency because it is- j=qtt~1e~t. Using the first of the two boundary condi-
analytical and it is based on a nonperturbative variationaions, we then determine the renormalized chage,
principle for general short-range potentials, so it may be

readily generalized. a? d

Zeﬁzaa W(r)

r=a
2

APPENDIX A: EFFECTIVE CHARGE a
Q

+
r=a
2

d
a'/’l(r)

a’d
. , o . =5 gy Yolr)
For the repulsive tail of the two-particle interaction, we Qdr
use the Debye-Hkel potential, which is the far-field solu-
tion of the Poisson-Boltzmann equation. In our case (the =7 Ll
mensionlesspotential at the surface is often merely of order 18
unity, so the Debye-Hikel potential slightly overestimates \here
the solution to the Poisson-Boltzmann equation. To remedy
this, we use a renormalized charge within the Debyekdl F(u)=3ue3E,(3u)~1— i+ i_
potential, chosen in such a way that, at large distances, the . 3 9u’

Debye-Hickel potential coincides with the tail of the solu- Recapitulating, we have calculated, to leading order, the

tion of the Poisson-Boltzmann equation determined by th%hargezeﬁ which has to be inserted into the DebyédHl

4 . . . . .
real chargé‘. This will resglt in an underestimation of the potential [Eq. (4)] so that this has the correct asymptotic
potential at small separations, but the form of the Debyeygapqyior at large, coinciding with the tail of the Poisson-
Huckel potential we use hef{&qg. (4)] is in fact only accurate  g,itzmann solution.

at large separations and overestimates the interaction at small

i;eparatlons agpregably, |.0e., when O\f/erlaphof the tV\;ro dOUb“iPPENDlx B: DEPENDENCE OF B,

ayers occurgby about 20%, see Ref. 18T e two effects N |ONIC STRENGTH

thus partly cancel, although the latter effect is larger than the

former. Here, we prove some simple inequalities describing the
The Poisson-Boltzmann equation for the dimensionles®€havior of the second virial coefficient as a function of the

potential ¢/(r)=q¢(r)/kgT of a single sphere of radius iopic strength_ for an interaction consisting _of a Deb_ye-

and total chargejZ, assumed positive for convenience, im- Huckel repulsionUp(x) and a general attractive potential

mersed in a solvent with Bjerrum leng@, at a concentra- Ua(X), the latter not depending on the ionic strength. If we

r=a
z
1+u

Q

= F(w), (A7)

(A8)

tion of ions leading to a Debye lengih is written as let U(x) =Upu(X) +Ua(X), thenB; is given by Eq(5) with
1d .d J’w _
12 y(r)=K2si J=| dxx¥(1—e V™). B1)
=2 g gy () = K7 sinhy(r), (A1) , ( ) (
with boundary conditions Then, we have
d ZQ dJ JOC dUDH(X) _
l _ER _ O[T gxe e —u
ar ") s rlTl P(r)=0. (A2) du J, 9% dp °
Li izing Eq.(A1 <1 find the D -F | so- * din
Learizng EQ(AL) (4=1). we i the Debyefaelso- _ [ o ANy e
2 du
_2Q e w(r-a) (A3) In Fig. 9 we see that in the regime of interddh &du<0, so
1t r we conclude that
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1 YEJ dttZB(t)f ds £B(s)
0 0
05
0 xf d9 sindh(\/s>+t?>—2stcosd)
0
-0.5 © 0 s+t
ng PR 4.5 =2f dttB(t)j dssE{s)J duuhu). (C2
- 0 t s—t
-15 pH7.5 Here we have used the Kirkwood superposition approxima-
_2 tion I (X1,X2,X3) = h(X,3),%° whereh(x)=g(x) —1 is the
pair correlation function. We have employed the substitution
-25 u?=s?+1t2—2stcosd, with & the angle betweew;, and
0 2 4 m 6 8 X13- Using the expression fag(x) [Eg. (34)] and defining
h(x)=9(x)—1, we splitY into three parts,
FIG. 9. Dependence of l&on x at pH 4.5 andpH 7.5. In both cases
dIn &du<0 andd? In &du?=0 if 1<u<8. Y=Yo+Y;+Y, (C3
where we have introduced the limit—0 and where
dB, 3 dJ
—=_BH*—<o0. B3 2\ (= t+2
du 8 2 du (B3) YoE?f dttB(t)f ds sRs)
2 t

In the same way it is clear from the second derivative 2\

=3 f;dttB(t)thds sBs)

d?J " X2d2In§+(dln§ ( 2))2
d d d o 2
gz a a =5U dttB(t)} , (c4)
3| )2
X[1=Upyx(x)]|Upp(x)e™ ™ (B4)

o t+2 s+t
Y Ezj dttB t)J dss s)f duthuh(u), (C5)
and the fact thati? In &du?=0 in the regime of interest that ! 2 ( t A s—t "

d3J and

d’B, 3
2 - ZBHS_—5>0, (B5)

du? 852 du?
o t+4 s+t .
YZEZJ dttB(t)J ds sE{s)J duuh(u)<Y;.
2 t+2 s—t
(C6)

if Uppy(2)<1,i.e., if ¢<1 (a sufficient conditioh

To simplify Eq. (C5), we substitute Eq(37) and note that
s+t=4 and Gss—t=<2. We then derive

In Sec. lll, we viewed a suspension of proteins as a B ) L
system of spheres with an AHS interaction and we chose the s TN~ _ T oe 2
parameter of the AHS potential such that the first-order L_t du uh(u) 3(96+1OGH 12)+ 2(S v*
correction in the functional expansion of the free endigy. (o9)]
(29)] vanishes[see Eq.(31)]. In an attempt to justify this
approximation and explore its regime of applicability, we Next, using Eq(31), we integrate the nonconstant term lead-
estimate the size of the second-order correction to the fre#@g to a product of two integrals,
energy[from Eg. (29)] which is either positive or negative

APPENDIX C: CORRECTIONS TO THE FREE ENERGY

definite, thtB(t)szds sBs)(s—t)?
2 2 ? t
=7]_ 3y/—1 o0 o0
A= 5 (477 a’v fdxldxzdx3B(xlz)B(xls)h(xZa) :f dtthj ds sEs)(s—1)2
9 i t
=2 7Y, (&) = *
4 = f dt tB(t) f ds SB(s)|. (C8
2 2

It is convenient to rewrite the integral in such a way that the
angular integration can be performed explicithee below: Hence,Y, is written in terms of one-dimensional integrals,

Downloaded 09 Apr 2008 to 130.161.132.98. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



6536 J. Chem. Phys., Vol. 121, No. 13, 1 October 2004

2 . 2
le§(96+1OGH—12)[ JZ dttB(t)}

+ f dt tB(t) st§’B(s), (C9)

2 2
and this is also the case for
2 M = 2
Y=—|9G+10GH—-12+ = jdttB(t)

3 2] J2

+ f dt tB(t) fdss’*B(s). (C10
2 2

Our goal is to obtain explicit approximations for these

integrals by expediently using Eq&82) and (33). First, we
consider integrals on the intervg2,2+ €] which are domi-
nated by the singular part @&(x). We substitute Eq(40)
into Eqg. (33) and letw—0

2+¢€ - 2\
f dt t?B(t)= = (C1)

2

We use this relation to rewrite part of one of the integrals in

Eqg. (C10 in two ways, noting thae<1:

2+e A 2+e€ -
J dttB(t)=——+J dt tB(t)
2

3 )
1 (2+€ -
=—= dt(t—2)tB(t)
2 )
€ [2+€ -
:——f dttB(t). (C12
4)>
We thus conclude that
2+e€ - e\ N
fz dttB(t)2<l— Z)g (C13

so the first equality in E¢(C12) allows us to attain the ex-
plicit expression

2+e Ne
J dttB(t)=— — (C14

2 12°
Similarly, we use Eqs40) and(C11) to evaluate part of the
other integral in Eq(C10):

2+e 4N\ 2+e€ -
f dtt3B(t):——+j dt t°B(t)
2 3 2

2+e - Ne
:f dt(t—2)t28(t):?. (C19

2
We note that both integrals in Eq€14) and(C15) areO(e)
because the integral in E¢C1]) is independent o& owing
to the singular part oB(x). If B(x) had been completely
regular, the integrals in Eq$C14) and (C15 would have
beenO(€?).

P. Prinsen and T. Odijk

2+06 o0
f dttzB(t)+f dt t?B(t)=0. (C16
+6

2+e 2

Using this equation and the approximatiomB(t)
=—2¢£e #1172t we may simplify the two integrals, ulti-
mately omittingO(8) terms,

0 2+6 o0
J dttB(t):f dttB(t)+f dt tB(t)
2+e 2+e 2+6

1 S\ r2+s o
:—(1— —)J dttZB(t)+J’ dt tB(t)
2 2))ote 245

o [

S 1
_° dtt?B(t)— = dtt(t—2)B(t)

4 )45 2)2+s
:=f%e*“§ (C17
o 2+6 o0
dtt3B(t)=J' dtt3B(t)+f dt t3B(t)
2+€ 2+€ 246
2+46 o)
=(2+) dt t?B(t)+ dt t°B(t)

2+e€ 2+6

oo

)

dt t?B(t)+ f dt t2(t—2)B(t)
2+06 2+6

(C19

We remark that both expressions in E¢S17) and(C18) are
O(un~?) becausd(t) is regular fort=2+ e. We then com-
bine Eqgs.(C14) and(C17), and Eqs{(C15 and(C18),

o _ Ne & _§~_E ®
L dttB(t)———+Fe PO~ 4f ds $°B(s).

12 2
(C19

Finally, using Egs(C1), (C10), and(C19, we arrive at an
approximation for the correction to the free energy,

& Ne
w2

A
G+H—6+—)

9 9
_Z oy 2 2
A=gmY=37 6

(C20

Despite the variety of approximations used, this expression
still retains its “definite” characte(it turns out to be nega-
tive in the numerical calculations belpwHowever, the nu-
merical coefficients within the last quadratic factor are not
exact. Furthermore, the status of the present theory differs
from that of the Weeks-Chandler-Anderson theBnjin
the latter,A is of fourth order in the perturbation whereas it
is basically quadratic here for the reason stated below
Eqg. (C15.

To estimate the importance of this correction, we first
calculate the osmotic pressure resulting from the neglect of

We next consider the remaining two integrals on the in-second- and higher-order terms in the functional expansion

terval[ 2+ €,%). We start by splitting Eq(32) into two parts
since 2+ 6 demarcates two different regimes,

(29). This amounts to determiningfrom Egs.(36), (50), and
(53) and then computing the osmotic pressure from Ref. 19,
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TABLE IV. The osmotic pressure from EGC21) and its correction from
Eq. (C23 as a function of the ionic strengthand the packing fraction.

n 0.15v 0.2V 0.23M 0.3M 0.45M

0.05 I 1.143 1.033 0.949 0.889 0.763

pksT

—2A 0.004 0.001 0.0004 0.0001 0.000 008
0.1 I 1.290 1.074 0.915 0.805 0.575

pkeT

—2A 0.019 0.006 0.002 0.0005 0.000 02
0.15 I 1.437 1.123 0.898 0.749 0.448

pksT

—2A 0.044 0.014 0.004 0.001 0.000 02
0.2 I 1.583 1.183 0.904 0.721 0.375

pksT

—2A 0.085 0.026 0.008 0.003 0.000 007
0.3 I 1.866 1.361 0.988 0.753 0.340

pkgT

—2A 0.228 0.068 0.022 0.008 0.000 02
0.4 I 2.17 1.659 1.231 0.960 0.470

pksT

—2A 0.488 0.143 0.046 0.016 0.0001
II

pkBT
2 1 3,2 3
1+ np+n—Anp(l—17) 1+§77 +N°np(1—7)°I136
(1-7)°

(C21
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