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A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion,
in which the effective adhesion parameter is optimized by a variational principle for the free energy.
An analytical approach to the second virial coefficient is first outlined by balancing the repulsive
electrostatics against part of the bare adhesion. A theory similar in spirit is developed at nonzero
concentrations by assuming an appropriate Baxter model as the reference state. The first-order term
in a functional expansion of the free energy is set equal to zero which determines the effective
adhesion as a function of salt and protein concentrations. The resulting theory is shown to have
fairly good predictive power for the ionic-strength dependence of both the second virial coefficient
and the osmotic pressure or compressibility of lysozyme up to about 0.2 volume fraction. ©2004
American Institute of Physics.@DOI: 10.1063/1.1786915#

I. INTRODUCTION

It has been intimated that the solution properties of
globular proteins may bear relation with their crystallization
properties.1,2 Since the characterization of proteins com-
mands ever more attention, such a contention is of consider-
able interest, so much work has been carried out on this topic
recently.3–8

The difficulty of setting up a predictive theory of protein
suspensions based on what is known about the interaction
between two proteins has been acknowledged for some
time.9 Best fitting of the osmotic pressure of, for instance,
bovine serum albumin up to 100 g/1, leads to effective ex-
cluded volumes whose behavior as a function of salt is
enigmatic.10

In recent years, there has been a tendency to forget about
all details of the protein interaction altogether—both attrac-
tive and repulsive—and to introduce a single adhesion
parameter.10–14 Despite the electrostatic repulsion which is
substantial, the data are often merely rationalized in terms of
the bare protein diameter within the context of an adhesive
sphere model and such an approach seems to have merit.10–14

This empiricism has prompted us to develop a theory of
screened charged protein spheres that have a constant sticki-
ness, but where the electrostatic interaction is compensated,
in part, by the adhesive forces. Thus, we argue that, effec-
tively, the spheres are assigned a hard diameter identical to
the actual diameter provided the remnant adhesive interac-
tion now depends on the electrolyte and protein concentra-
tions in a manner to be determined variationally. Our primary
aim is to formulate a liquid state theory of protein solutions
with the Baxter model as reference state. First, however, we

analyze the second virial coefficient as such, for this will
point toward a way of dealing with the osmotic pressure at
nonzero concentrations. We focus on experiments with
lysozyme, a protein which is reasonably spherical and has
been well studied for a long time.15 In particular, we show
that there are enough measurements of the second virial of
lysozyme to determine an adhesion parameter with some
confidence.

II. SECOND VIRIAL COEFFICIENT

A. Theory

1. Second virial coefficient

The second virial coefficientB2 describes the first-order
correction to Van’t Hoff’s law

P

rkBT
511B2r1O~r2!. ~1!

Here, P is the osmotic pressure of the solution,r is the
particle number density,kB is Boltzmann’s constant, andT is
the temperature. From statistical mechanics we know that,
given the potential of mean forceU(r ) between two spheri-
cal particles whose centers of mass are separated by the vec-
tor r , one can calculateB2 from

B252
1

2 EV
dr f ~r !, ~2!

where f (r )5e2U(r )/kBT21 is the Mayer function. In prin-
ciple, the interactionU(r ) may be determined from experi-
mental data on the second virial coefficient by suitable
Laplace inversion. This has been done for atoms and spheri-
cally symmetric molecules,16,17 for which the second virial
coefficient has been measured over a broad enough range of
temperatures. One might think of formulating a procedurea!Mailing address.
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similar in spirit and applicable to protein solutions, but with
the ionic strength as independent variable instead of the tem-
perature. However, to be able to determine the interaction by
inversion, the experimental data have to be known fairly ac-
curately, which is not the case at hand, as will become clear
further on. We are therefore forced to adduce presumptions
about the interaction.

We assume the protein to be spherical with radiusa, its
charge being distributed uniformly on its surface. For conve-
nience, all distances will be scaled by the radiusa of the
sphere and all energies will be in units ofkBT. Because
monovalent ions~counterions and salt ions! are also present
in solution, there will be a screened Coulomb repulsion be-
tween the proteins, here given by a far-field Debye-Hu¨ckel
potential. We compute the effective chargeqZeff in the
Poisson-Boltzmann approximation whereq is the elementary
charge. For now, we let the attraction between two proteins
be of short range, and we model it by a potential well of
depth UA and width d!1. The total interactionU(x) be-
tween two proteins is of the form

U~r !5H `, 0<x,2

UDH~x!2UA , 2<x,21d

UDH~x!, x>21d,

~3!

x[
r

a
,

with Debye-Hückel potential18

UDH~x!52j
e2m~x22!

x
. ~4!

Here,j[(Q/2a)(Zeff/11m)2, k21 is the Debye length de-
fined byk258pQI, I is the ionic strength,Q5q2/ekBT is
the Bjerrum length, which equals 0.71 nm in water at 298 K,
e is the permittivity of water, andm[ka53.28aAI , if a is
given in nanometers andI in mol/1. We suppose 1-1 electro-
lyte has been added in excess, soI is the concentration of
added salt.

In order to evaluateB2 analytically, we have found it
expedient to split upB2 into several terms:

B25B2
HS~11 3

8J!, ~5!

whereB2
HS516pa3/3 is the second virial coefficient if the

proteins were merely hard spheres and we introduce the fol-
lowing integrals to facilitate analytical computation:

J[E
2

`

dx x2~12e2U~x!![J12~eUA21!J2 , ~6!

J1[E
2

`

dx x2~12e2UDH~x!!, ~7!

J2[E
2

21d
dx x2e2UDH~x!. ~8!

Here, J1 is the value ofJ in the absence of attraction and
may be simplified by Taylor expanding the Boltzmann factor
in the integrand for small values ofUDH to second order.
However, to increase the accuracy of the expansion, we ad-

just the coefficient of the second order term so that the ap-
proximation to the integrand coincides with its actual value
at x52, i.e., we approximatex(12e2UDH(x)).2je2m(x22)

22aj2e22m(x22), with a5@e2j2(12j)#/j2, resulting in

J1.
4S m1

1

2D j

m2 S 12
a

2
j D , ~9!

where we have neglected the small termaj2/2m2. For in-
stance, in the case of lysozyme, the deviation of the approxi-
mation Eq.~9! from the exact result is smaller than about 3%
for I>0.05M and smaller than about 1% forI>0.2M . Since
d!1, J2 may be simplified by using the trapezoid approxi-
mation*2

21ddxg(x).1/2d@g(2)1g(21d)#, which leads to

J2.2dFe2j1S 11
d

2D 2

e@j/~11d/2!#e2mdG . ~10!

It is important to note thatmd may be greater than unity even
if d!1. Again, for lysozyme, this approximation deviates
less than about 3% from the exact value forI>0.2M and
d<0.5 and less than about 1% forI>0.2M andd<0.15.

2. Effective attractive well

We next present a discussion ofB2 in terms of equiva-
lent interactions and their Mayer functions even though the
analysis of the preceding section is self-contained. Sections
II A 2 and II A 3 may be viewed as preludes to the formula-
tion of the liquid-state theory developed in Sec. III. At large
separations (x.21d), the interaction between the particles
is purely repulsive, leading to a positive contribution to the
second virial coefficient. If, at a certain ionic strength, the
second virial coefficient is smaller than the hard-core value
(B2,B2

HS), this positive contribution is necessarily canceled
by only part of the negative contribution of the attractive
interaction at small separations, the part, say, betweenx52
1e0 and x521d ~see Fig. 1!. The remaining potential,
which we will call an effective attractive well, then consists
of a hard-core repulsion plus a short-range attraction of range
e0 . The value ofe0 is determined by noting that the free
energy of the suspension must remain invariant, which, in
the asymptotic limit of low densities, leads to the identity

B2,e0
5B2 , ~11!

where B2 is the second virial coefficient of the preceding
section andB2,e0

is the second virial coefficient pertaining to
the effective attractive well. Using Eq.~2!, we rewrite Eq.
~11! as

E
V
d3rD f 50, ~12!

in terms of the difference in the respective Mayer functions,

D f [ f 2 f e0
, ~13!

wheref is the Mayer function of the original interaction and
f e0

is the Mayer function of the effective attractive well. In
dimensionless units, Eq.~12! is equivalent to the condition
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E
21d

`

dx x2~12e2UDH~x!!5E
21e0

21d
dx x2~eUAe2UDH~x!21!,

~14!

where, using the same approximation that led to Eq.~9!, we
write

E
21d

`

dx x2~12e2UDH~x!!

>
2je2md

m S 12
a

2
je2mdD S 21d1

1

m D ~15!

and, using*21e0

21d dx x2D f (x).2(d2e0)@D f (21d)1D f (2

1e0)#, we have

E
21e0

21d
dx x2~eUAe2UDH~x!21!

.2~d2e0!@221eUA~e2@j/~11d/2!#e2md

1e2@j/~11e0/2!#e2me0!#. ~16!

To leading order, we then find an explicit relation fore0

d2e0.
je2md

meUA
eje2md

, ~17!

which works well at high ionic strengths~i.e., at low values
of j!, e.g., wheneverI>1M in the case of lysozyme atpH
4.5. A more accurate value ofd2e0 is obtained by equating
Eqs. ~15! and ~16!, and then iteratively updating the factor
(d2e0), starting with the initial valuee05d.

Sometimes, it may be convenient to introduce an equiva-
lent square well. The second virial coefficient pertaining to
the original potentialU(x) @Eq. ~3!# is now rewritten as

B25B2,e0
5B2

HSS 11
3

8 E2

21e0
dx x2~12eUAe2UDH~x!! D .

~18!

The depthUA2UDH(x) does not vary strongly though, since
e0!1. To simplify things computationally, we approximate
the interaction by a square well potential,

USW~x!5H `, 0<x,2

2US , 2<x,21e0

0, x>21e0.

~19!

We chooseUS in such a way thatB25B2
SW or, equivalently,

E
2

21e0
dx x2~eUS2eUAe2UDH~x!!50. ~20!

To leading order ine0 , we have

E
2

21e0
dx x2eUS.4e0eUS, ~21!

and, using the approximation*2
21e0dxx2g(x).2e0@g(2

1e0)1g(2)#, we write

E
2

21e0
dx x2eUAe2UDH~x!

.2e0eUA@e2j1e2@j/~11e0/2!#e2me0#. ~22!

The depthUS of the potential is then given by

eUS. 1
2e

UA~e2j1e2@j/~11e0/2!#e2me0! ~23!

in terms of the original variables. Finally, we point out that
the two attractive wells that we have introduced are physi-
cally meaningful only ifB2,B2

HS .

3. Attractive well in the Baxter limit

We have shown that one may simplify the statistical
thermodynamics of the protein suspension at low densities
considerably, by replacing the original interaction, consisting
of an electrostatic repulsion and a short-range attraction, by a
single attractive well of short range. The electrostatic inter-
action may be substantial but it is compensated by part of the
original attractive well which is quite strong (UA.1). An-
other useful interaction expressing attractive forces of short
range consists of a hard-sphere repulsion and an attraction of
infinite strength and infinitesimal range, namely, the adhesive
hard sphere~AHS! potential of Baxter:19

UAHS~x!5H `, 0<x,2

ln
12tv

21v
, 2<x<21v

0, x.21v,

~24!

wheret is a constant and the limitv↓0 has to be taken after
formal integrations. The second virial coefficient remains fi-
nite,

FIG. 1. The integrand of Eq.~2! vs the distancer. As shown by the shaded
regions, the repulsive tail is compensated by part of the attractive interaction
providedB2,B2

HS .
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B2
AHS5B2

HSS 12
1

4t D . ~25!

Because much is known about the statistical mechanics of
the Baxter model, one often definest in terms of someB2

and naively assumes there is a one-to-one correspondence
between the original and Baxter models. For instance, in our
case,B2

AHS5B25B2,e0
5B2

SW. Since we have

B2
SW5B2

HSH 12~eUS21!F S 11
e0

2 D 3

21G J
.B2

HS@12 3
2~eUS21!e0#, ~26!

we thus identify

1

t
.6e0~eUS21!, ~27!

whereUS is given by Eq.~23!. However, it is important to
realize that this procedure is legitimate at small densities
only. At finite concentrations, the optimal representation of
the real suspension of proteins by a Baxter model has to be
derived and we will show in Sec. III that the simple-minded
identification oft via B2

AHS(t)[B2 no longer applies.

B. Application to lysozyme

1. Experimental data

Lysozyme is, by far, the best studied protein with regard
to solution properties. This is one of the reasons for using
this protein to test theory, another being its moderate aspect
ratio of about 1.5 so that it may be fairly well approximated

by a sphere. Bovine Serum Albumin~BSA! has also been
well studied, but is considerably more anisometric with an
aspect ratio of about 3.5. Numerous measurements of the
second virial coefficient of lysozyme have been published. In
fact, there are quite a few sets of experiments pertinent to our
analysis.14,20–28

It turns out that there is appreciable scatter in the data if
we plot all measurements ofB2 at a pH of about 4.5 as a
function of ionic strengthI @NaCl1small amount of Na ac-
etate; we have set the ionic strength arising from the latter
equal to 0.63concentration~Ref. 21!# ~see Fig. 2!. Several
sets of data25,28appear to be way off the general curve within
any reasonable margin of error. An important criterion is how
well the u point ~i.e., whenB250) is established since then
attractive forces—which we would like to understand—are
well balanced against electrostatics—which we purportedly
understand well. Experimentally speaking, it ought to be
possible to monitorB2 accurately about theu point; large
negativeB2 values atI @I u are more difficult to determine
because the proteins may start to aggregate or nucleate, in
principle. Various polynomial fits for all data close to theu
point yield I u5(0.2060.01)M . Hence, we have regarded
data sets25,28markedly disagreeing with this ionic strength as
anomalous so we have not taken them into consideration.
Figure 3 displays all data we have taken into account.
Clearly, the composite curve yields a fairly reliable basis to
test possible theories of the attractive force. On the other
hand, it is unclear at present how the scatter in data in Fig. 3
translates into bounds for attractive interactions inferred by
inverting Eq.~2!.

2. Theory

a. Electrostatics. Next, it is important to ascertain the
actual and effective charges of lysozyme under conditions

FIG. 2. Experimental data of the second virial coefficientB2 of lysozyme as
a function of the ionic strengthI at a pH of about 4.5. The second virial
coefficient is scaled by the hard sphere valueB2

HS . Black squares: Bonnete´
et al. ~Ref. 27!, pH 4.5, 20 °C. Gray triangles: Curtiset al. ~Ref. 23!, pH
4.5, 20 °C. Gray squares: Muscholet al. ~Ref. 24!, pH 4.7, 20 °C. Black
stars: Curtiset al. ~Ref. 22!, pH 4.5, 25 °C. Black diamonds: Bonnete´ et al.
~Ref. 27!, pH 4.5, 25 °C. Black triangles: Velevet al. ~Ref. 21!, pH 4.5,
25 °C. White squares: Rosenbaumet al. ~Ref. 20!, pH 4.6, 25 °C. White
diamonds: Rosenbaumet al. ~Ref. 14!, pH 4.6, 25 °C. Gray stars: Bloustine
et al. ~Ref. 26!, pH 4.6, 25 °C. White stars: Piazza and Pierno~Ref. 25!, pH
4.7, 25 °C. White triangles: Behlke and Ristau~Ref. 28!, pH 4.5. Gray
diamonds: Bloustineet al. ~Ref. 26!, pH 4.7. In all cases, the electrolyte is
NaCl, often with a small amount of Na acetate added.

FIG. 3. A fit of Eq. ~5! to the experimental data of Fig. 2~except for those
of Refs. 25 and 28!. On the right-hand side of the figure, the upper solid line
corresponds toI u50.19,d50.564, andUA51.48; the upper dotted line to
I u50.20, d50.468, andUA51.70, and the middle solid line toI u50.21,
d50.379, andUA51.95, all at an effective chargeZeff . The middle dotted
line corresponds toI u50.19,d50.25, andUA52.4; the lower solid one to
I u50.20, d50.167, andUA52.87; and the lower dotted one toI u50.21,

d50.079, andUA53.70, all at a lowered effective chargeZ̄.
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relevant to the present work. Kuehneret al.29 performed
hydrogen-ion titrations on hen-egg-white lysozyme in KCl
solutions. By interpolation, we obtain the actual chargeZ of
the protein as a function of the 1-1 electrolyte concentration
I ~see Tables I and II!. Experiments onB2 are usually carried
out with NaCl ~and some Na acetate! as the supporting
monovalent electrolyte but here we assume KCl and NaCl
behave identically in an electrostatic sense. We solve the
Poisson-Boltzmann equation to get the effective chargeZeff

in the Debye-Hu¨ckel tail ~for more detail, see Appendix A!.
The dimensionless radius is set equal tom53.28aAI
55.58AI and Eq.~A7! is used to compute the renormalized
or effective charge.~Settinga51.7 nm for lysozyme as in
Refs. 20 and 23; the Bjerrum lengthQ50.71 nm for H2O at
room temperature!. The other dimensionless parameter is
given by j50.209(Z̄/(11m))2, where Z̄5Zeff21 ~see
below!.

b. Attractive well. We have assumedUA and d to be
independent of the ionic strengthI. It is possible to show that
this does not contradict the data displayed in Figs. 2 and 4. In
Appendix B, we prove that if the interaction between the
proteins is given by Eq.~3! but nowUA5UA(x) is a general
attraction, thendB2 /dm,0 andd2B2 /dm2.0, the last in-
equality being valid ifj,1. We recall thatm is proportional
to AI so that Figs. 3 and 4 indeed bear out these inequalities
after due rearrangement.

Next, we determine the optimal values ofUA and d
yielding exact, numericalB2(I ) curves given by Eq.~5!
which are the best fits to the data of Fig. 3. We require that
I u50.2060.01 is predicted absolutely which fixesUA , say,
andd is then determined by a nonlinear minimization proce-

dure. We thus obtainUA51.7060.25 andd50.46870.097
but we note that the quantityd expUA52.5660.10 is much
more narrowly bounded. Now, it can be argued that the
Debye-Hückel potential with effective chargeZeff overesti-
mates the real potential in magnitude so we have repeated
this numerical procedure with a slightly lower effective

charge, viz.,Z̄5Zeff21 ~see Tables I and II!. This yields the
revised estimatesUA52.8760.65, d50.16770.086, and
d expUA52.9560.21. The numerically computed curves are
displayed in Fig. 3. We therefore conclude that the variables
UA and d as such are difficult to ascertain unambiguously,
though the variabled expUA is quite robust. This is also
borne out if we use our approximations, Eqs.~9! and ~10!,
instead of the exact numerical computations. There are again
wide variations inUA and d but the quantityd expUA is
strictly bounded: d expUA52.7060.11 (effective charge
5Zeff) and d expUA53.0260.21 (effective charge5Zeff

21).
We now argue whyd expUA is indeed a relevant quan-

tity, to a good approximation. At theu point we haveB2

50 so thatJu528/3 from Eq.~5!. From Tables I and II, we
see that generallym@1 and aj!1; hence, we haveJ1

.4j/m and J2.4d exp2j for often md.1. This would
lead to d expUA.4.4. On the other hand, at very highI,
J1 and j tend to zero and, becauseUA@1, the scaled
virial coefficient B2 /B2

HS reduces to 23/8J2 expUA

.23/2d expUA leading tod expUA.3 estimated from Fig.
3. Hence, the two estimates at the respective extremes are
fairly consistent. To summarize, we may propose a crude
approximation to the second virial coefficient which is a uni-
versal function ofd expUA ,

TABLE I. Values of the actual chargeZ of hen-egg-white lysozyme~from Ref. 29!, the renormalized or

effective chargeZeff @from Eq. ~A7!#, the lowered effective chargeZ̄5Zeff21, and dimensionless interaction
parametersj andm, ande0 , US , andt as a function of the ionic strengthI. ThepH equals 4.5 andj has been

calculated using the lowered effective chargeZ̄. Values ofUS andt have been computed using Eqs.~23! and
~27!, respectively, ande0 has been calculated using the procedure described immediately after Eq.~17!.

I (M ) 0.05 0.1 0.15 0.2 0.25 0.3 0.45 1 1.5 2

Z 9.5 9.8 10.0 10.1 10.2 10.2 10.3 10.4 10.4 10.4
Zeff 8.8 9.2 9.4 9.6 9.7 9.8 10.0 10.2 10.3 10.3

Z̄ 7.8 8.2 8.4 8.6 8.7 8.8 9.0 9.2 9.3 9.3

j 2.52 1.84 1.48 1.27 1.10 0.984 0.752 0.409 0.295 0.229
m 1.25 1.76 2.16 2.50 2.79 3.06 3.74 5.58 6.83 7.89
e0 0.0208 0.0466 0.0585 0.0644 0.0720 0.0773 0.0782 0.0785
US 2.26 2.52 2.70 2.82 3.05 3.37 3.47 3.53
t 0.933 0.314 0.205 0.164 0.115 0.0767 0.0684 0.0642

TABLE II. Same as Table I, but now with apH equal to 7.5.

I (M ) 0.05 0.1 0.15 0.2 0.25 0.3 0.45 1 1.5 2

Z 6.9 7.0 7.1 7.2 7.2 7.3 7.3 7.1 6.9 6.8
Zeff 6.6 6.8 6.9 7.0 7.0 7.1 7.2 7.0 6.9 6.8

Z̄ 5.6 5.8 5.9 6.0 6.0 6.1 6.2 6.0 5.9 5.8

j 1.3 0.920 0.728 0.616 0.524 0.473 0.357 0.174 0.119 0.0889
m 1.25 1.76 2.16 2.50 2.79 3.06 3.74 5.58 6.83 7.89
e0 0.0493 0.0640 0.0695 0.0725 0.0741 0.0764 0.0784 0.0787 0.0788
US 2.83 3.03 3.14 3.23 3.28 3.39 3.56 3.61 3.63
t 0.212 0.132 0.108 0.0943 0.0877 0.0758 0.0623 0.0590 0.0574
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B2

B2
HS.11

3j

2m
2

3

2
e2jdeUA. ~28!

The third term on the right is exact in the limitd→0,
whereas the absolute error in the second term is smaller than
0.25 whenI>0.1M . Using Eq.~28! to fit the data leads to
d expUA54.2 when we use the effective chargeZeff ,
whereasd expUA53.7 when we use the lower effective
chargeZ̄ ~see Fig. 5!.

In Fig. 3 we see that the curves at low values ofd fit the
data at high ionic strengths better. In the remainder of this
paper, we therefore employ the valuesd50.079 andUA

53.70, corresponding to the lowered effective chargeZ̄ and
I u50.21M . In Fig. 6 we show a comparison between experi-
mental data at apH of about 7.5 and the theoretical curve
computed numerically with the same parameters.

c. AHS potential. Values of e0 , US , and t at several
ionic strengths are given in Tables I and II. Figure 7 displays
the ionic-strength dependence of the adhesion parametert.
Near theu point, t decreases quickly with increasingI. At
high ionic strength,t approaches the limiting value of
@6d(eUA21)#21, which, upon the use of our choiced
50.079 andUA53.7, is equal to 0.0535. We note that atpH
4.5 and at ionic strengthsI 50.05M and I 50.1M , the com-
puted values ofe0 , US , andt become nonsensical. In that
case, the attractive potential is simply not strong enough to
compensate the electrostatic repulsion completely so our
analytical approach breaks down. This can also be seen in
Fig. 2, where we haveB2.B2

HS for these two values of the
ionic strength. The same effect occurs atpH 7.5 when I
50.05M .

FIG. 4. Experimental data of the second virial coefficientB2 of lysozyme as
a function of the ionic strengthI at a pH of about 7.5. The second virial
coefficient is scaled by the hard sphere valueB2

HS . Black stars: Rosenbaum
and Zukoski~Ref. 20!, pH 7.4, 25 °C. Black triangles: Velevet al. ~Ref. 21!,
pH 7.5, 25 °C. Black squares: Rosenbaumet al. ~Ref. 14!, pH 7.8, 25 °C.

FIG. 5. Fits of Eq.~28! to experimental data of Fig. 3. Full line (Zeff and

d expUA54.2); dotted line (Z̄ andd expUA53.7).

FIG. 6. Comparison between the experimental data atpH 7.5 and full
theory, Eq. ~5!. Parameters as in the lower dotted curve in Fig. 3 (d
50.079 andUA53.70).

FIG. 7. Ionic-strength dependence of AHS parametert at pH 4.5 andpH
7.5. The dotted line denotes the limiting value oft as I→`.
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III. LIQUID STATE THEORY AT HIGHER DENSITIES

A. Theory

1. Density dependent attractive well
in the Baxter limit

In Sec. II, we introduced the AHS potential as a conve-
nient first approximation to the interaction between proteins.
We determined the adhesion parametert by matching values
of the second virial coefficient which is methodologically
correct only in the asymptotic limit of very low densities. In
this section we propose a procedure of choosingt, which is
valid at higher concentrations butt now depends on the pro-
tein density. We extend a method originally proposed by
Weeks, Chandler, and Anderson30 for repulsive interactions.
They variationally determined an effective hard sphere diam-
eter for a soft, repulsive potential of short range, but we
argue that their scheme is more generally applicable as long
as the full interaction—attractive and repulsive—remains of
short range, which is the case here.

We start by introducing a functional expansion of the
excess Helmholtz free energyDA in terms of the Mayer
function of the interactionU,

r21A~r,T;ws!

5r21A~r,T;wAHS!1
h

2

3

4p E dxBAHS~x!

1
h2

2 S 3

4p D 2 a3

V E dx1dx2dx3

3BAHS~x12!BAHS~x13!JAHS
~3! ~x1 ,x2 ,x3!1¯ . ~29!

Here V is the volume of the system,A52DA/V, ws(x)
5e2U(x), wAHS(x)5e2UAHS(x), h54pa3r/3 is the volume
fraction of particles,JAHS

(3) (x1 ,x2 ,x3) is a complicated func-
tion depending on two- and three-particle correlation func-
tions ~see Ref. 30!, x125x12x2 , etc. We define the quantity

BAHS~x![yAHS~x!@ws~x!2wAHS~x!#, ~30!

in terms of the so-called cavity functionyAHS(x)
[gAHS(x)/wAHS(x)5(2/r2)(dA/dw(x)) and radial distri-
bution functiongAHS(x) pertaining to an appropriate AHS
potential which is the reference state. Both these functions
depend onr, T, and the effective adhesive parametert, the
latter to be determined variationally. From now on, we omit
the subscript AHS inBAHS(x), gAHS(x), etc., for the sake of
brevity.

We next chooset by requiring that the first-order correc-
tion to the excess free energy vanishes,

E dx B~x!50. ~31!

This is the analog of Eq.~12!. Hence, in the spirit of the
preceding section, we split up this integral into two parts.
The first indicates that the tail of the electrostatic interaction
is compensated by part of the original square well attraction,

E
21e

`

dx x2B~x!50 ~32!

(0,e<d), and yieldse. The second determines the density
dependent strengtht of the AHS interaction,

E
2

21e

dx x2B~x!50. ~33!

This expresses the fact that the reference potential has to
compensate for the remaining part of the original interaction.
We note that this scheme is only consistent if the attraction is
sufficiently strong~t may never be negative!.

2. Approximate radial distribution function
for the Baxter potential

In order to be able to determinet from Eqs. ~32! and
~33!, we need to knowg(x), the radial distribution function
of the reference interaction, the AHS potential. In the Percus-
Yevick approximation developed by Baxter,g(x) has a sin-
gular contributiongv(x) which, after the limitv→0, acts
like a d function and results from the stickiness of the inter-
action at the surfaces of two touching spheres. We thus as-
sume the functional expansion given by Eq.~29! exists after
the limit v→0. This is obviously very difficult to prove in
general although we investigate the bilinear term in Appen-
dix C. We splitg(x) into gv(x) and a regular termg̃(x):19

g~x!5ḡ~x!1gv~x! ~34!

with

gv~x!5H 0, x,2

l~21v!

12v
1O~1!, 2<x<21v

0, x.21v,

~35!

analogous to Eq.~24!, where the amplitudel is the smaller
of the two solutions of

t5
11h/2

~12h!2

1

l
2

h

12h
1

h

12
l. ~36!

For x,2, g̃(x) equals zero owing to the hard-core repul-
sion, whereasg̃(x) tends to unity for largex. For proteins, it
turns out thatws(x)2wAHS(x) is often appreciably nonzero
only near the surface of the sphere so we approximateg̃(x)
in the interval 2<x<4 by the first two terms of its Taylor
expansion,

g̃~x!.H 0, x,2

G@11H~x22!#, 2<x<4

1, x.4.

~37!

The constantsG andH may be computed with the help of the
auxiliary function F(t) introduced by Bravo Yuste and
Santos31 @see their Eqs.~3.19! and ~3.21!; note that the first
derivative we need in the Taylor expansion ofg̃(x) is taken
after the limitv→0]. The Laplace transforms of the radial
distribution and other functions which were computed by
Baxter19 @see his Eq.~30!# are related toF(t) by their Eq.
~3.12!. Expansions at hight then lead to

G5lt ~38!

and
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H5
h

2t~12h! S h~12h!

12
l2

2
1111h

12
l1

115h

12h
2

9~11h!

2~12h!2

1

l D . ~39!

Numerical work32 bears out that Eqs.~37!–~39! are quite
reasonable forx22!1. In the case of proteins, the range of
both attractive and electrostatic forces is much smaller than
the diameter.

3. Determination of the effective adhesion

We next determinet from Eq. ~33!, first using Eq.~32!
to obtaine. From Eqs.~24!, ~30!, and~34!, the functionB(x)
can be shown to have the following form~repressing terms
that ultimately disappear in the limitv→0):

B~x!5B̃~x!2gv~x!, ~40!

where the regular term is given by

B̃~x!5H 0, 0<x<2

~e2U~x!21!g̃~x!, x.2.
~41!

Equation~32! may be conveniently expressed as

E
21e

`

dx x2B~x!5E
21e

21d
dx x2B̃~x!1E

21d

`

dx x2B̃~x!50.

~42!

Using *21e
21ddx f(x).1/2(d2e)@ f (21d)1 f (21e)# and ne-

glecting terms of orderd2 ande2, we write the first integral
as

E
21e

21d
dx x2B~x!.G~d2e!K1~d,e!, ~43!

with

K1~d,e![2~eUAe2@j/~11d/2!#e2md
21!@11~11H !d#

12~eUAe2@j/~11e/2!#e2me
21!@11~11H !e#.

~44!

Again, we stress that, althoughd!1 ande!1, md and me
may be of order unity. Furthermore, we note that if we take
the limit h↓0, thenl→t21 and G→1, so we recover Eq.
~16! if we neglect terms of orderd and e. We tackle the
second integral by adopting the following approximation:

12exp@2U~x!#512exp~2jx21e2m~x22!!

.2jx21e2m~x22!22j2x22e22m~x22!

12j3x22e23m~x22!/3

~note that in this Taylor expansion of the exponential we
have replaced one factorx21 by 221 in the last term!. We
then write

2E
21d

`

dx x2B~x!.G@~11dH !P11HP2# ~45!

with

P15E
21d

`

dxx2~12e2U~x!!

.
8

m2 ~11md!M1
16

m
M S 12M1

8

9
M2D ~46!

and

P25E
21d

`

dxx2~x222d!~12e2U~x!!

.
8

m3 ~21md!M1
16

m2 S M2
1

2
M21

8

27
M3D . ~47!

Here, M[je2md/4. Using the approximations 12M
18M /9.(11M )21 and M2M2/218M3/27. ln(11M),
we arrive at

P1.
8

m2 ~11md!M1
16

m

M

11M
~48!

and

P2.
8

m3 ~21md!M1
16

m2 ln~11M !. ~49!

Hence, the variablee, which depends on the density by vir-
tue of the density dependence ofH, is determined iteratively
from

d2enew5
~11dH !P11HP2

K1~d,eold!
. ~50!

One starts witheold5d and iterates until a stationaryenew is
reached.

The next step is to calculatet from Eq.~33!, which, with
the help of Eq.~40!, is equivalent to the expression

E
2

21e

dx x2B̃~x!5
2l

3
. ~51!

We have taken the limitv→0. Again using the approxima-
tion *2

21edx f(x).1/2e@ f (21e)1 f (2)#, we write

E
2

21e

dx x2B̃~x!.2Ge@~eUAe2@j/~11e/2!#e2me
21!

3~11~11H !e!1~eUAe2j21!#.

~52!

Together with the expressions~51! and G5lt @Eq. ~38!#,
this leads to

1

t
.3e@~eUAe2@j/~11e/2!#e2me

21!@11~11H !e#

1~eUAe2j21!#. ~53!

Accordingly,t may be determined iteratively if we recall that
bothH ande also depend ont. A way of quickly determining
t and e is choosing a starting value for both (e5d and t
50.2 say!, and then alternately using Eqs.~50! and~53! until
the iterates become stationary.
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B. Application to lysozyme

We have already determined the interaction in Sec.
II B 2b (d50.079 andUA53.70). We next computet itera-
tively from Eqs.~39!, ~44!, ~48!–~50!, and~53!. They depend
on both the density of protein and the ionic strength~see
Table III!.

Thermodynamic properties such as the osmotic com-
pressibility kT are then also simply obtained fromt. For
instance, in the Percus-Yevick approximation,kT is given
by19

~rkBTkT!21[
1

kBT

]P

]r
5

@112h2lh~12h!#2

~12h!4 , ~54!

where l is the smaller of the two solutions of Eq.~36!.
Figure 8 compares the predicted density dependence of the

~scaled! inverse osmotic compressibility at various ionic
strengths with experimental data from Refs. 13 and 14.

IV. DISCUSSION

One difficulty in comparing our computations with ex-
periment has been the substantial margin of error in the os-
motic measurements. By contrast, in the case of other
biomacro-molecules such as rodlike DNA, it has been pos-
sible to obtain the second virialB2 at better than 10%
accuracy.33–35 One possibility for the occurrence of discrep-
ancies inB2 is the variety of lysozyme types. Poznanski
et al.36 have established that popular commercial lysozyme
preparations such as Seikagaku and Sigma exhibit significant
differences under dynamic light scattering. Nevertheless, the
variation in B2 at, say, about 0.5M NaCl ~see Fig. 3! is so
large that it needs to be explained. At nonzero concentra-
tions, the difference between the osmotic data of Refs. 13
and 14 is also substantial.

The relatively large variation in the experimental mea-
surements ofB2 makes it difficult to falsify stringently other
models of attractive forces like that of van der Waals type,
for instance. It proves feasible to get satisfactory agreement
with the experimental data displayed in Fig. 3 if we let the
dispersion interaction be given by the nonretarded Hamaker
potential18 for spheres of dimensions appropriate for
lysozyme, with an adjustable Hamaker constant of orderkBT
though with a very short cutoff at around 0.1–0.2 nm. How-
ever, the necessity of such a cutoff, which is already beyond
the limit of validity of continuum approximations, may be
viewed as positing the equivalent of a short-range interaction
like that of Eq.~3!, in large part. It is well to note that the
long-range dispersion interaction beyond some distance
much smaller than the radiusa plays only a minor role.

Stell37 has criticized the Baxter limit because diver-
gences in the free energy appear at the level of the 12th
virial. Therefore, the most straightforward way to interpret
our liquid state theory is to stress that our zero-order theory
describes the reference state only up to and including the
11th virial within the Percus-Yevick approximation. The

TABLE III. The scaled rangee of the effective attractive well and the strength of the effective adhesive
interactiont at pH 4.5 as a function of the ionic strengthI and volume fractionh. The values ofe andt have
been evaluated from Eqs.~50! and ~53!.

h 0.15M 0.2M 0.25M 0.3M 0.45M 1M 1.5M 2M

0 t 0.829 0.295 0.194 0.156 0.110 0.0735 0.0656 0.0616
« 0.0230 0.0483 0.0596 0.0653 0.0725 0.0775 0.0782 0.0786

0.05 t 0.712 0.289 0.193 0.155 0.110
« 0.0266 0.0492 0.0600 0.0655 0.0725

0.1 t 0.620 0.283 0.192 0.155 0.110
« 0.0303 0.0502 0.0603 0.0656 0.0725

0.15 t 0.544 0.276 0.191 0.155 0.110
« 0.0342 0.0514 0.0607 0.0657 0.0724

0.2 t 0.482 0.268 0.190 0.155 0.110
« 0.0383 0.0528 0.0611 0.0658 0.0723

0.3 t 0.380 0.251 0.186 0.154 0.110
« 0.0477 0.0563 0.0624 0.0663 0.0722

0.4 t 0.300 0.228 0.179 0.152 0.110
« 0.0600 0.0619 0.0651 0.0677 0.0724

FIG. 8. Inverse osmotic compressibility as a function of the volume fraction
h at various ionic strengths. Experimental data: black squares,I 50.18M ;
black triangles, I 50.23M ; black stars, I 50.28M ; black diamonds,I
50.33M ; open squares,I 50.48M . All data from Rosenbaumet al. ~Ref.
14!, except for those atI 50.23M ~black triangles! @Piazzaet al. ~Ref. 13!#.
Curves computed from Eq.~54! with d50.079,UA53.70, and the lowered

effective chargeZ̄; t has been determined from Eq.~53!. From top to bot-
tom: I 50.18M , I 50.23M , I 50.28M , I 50.33M , andI 50.48M .
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analysis of phase transitions must be viewed with caution
~for a comparison of recent simulations—taking the limit of
zero polydispersity after the limit of vanishing well depth—
with Percus-Yevick theory, see Ref. 38!. A second problem is
here that, at large ionic strengths, a considerable electrostatic
repulsion is balanced against a significant attraction~see Fig.
1! and it is difficult to see how good such a compensatory
scheme should work at high concentrations near dense pack-
ing.

In summary, we have presented a fairly good theory of
the ionic-strength dependence of the osmotic properties of
lysozyme in terms of a sticky interaction which is indepen-
dent of charge or salt concentration. This conclusion, by it-
self, is not new for it has been reached earlier by formulating
numerical work incorporating short-range forces and
screened electrostatics and comparing it with x-ray
scattering39,40 and liquid-liquid phase separation.41–43 The
merit of the current analysis is its transparency because it is
analytical and it is based on a nonperturbative variational
principle for general short-range potentials, so it may be
readily generalized.

APPENDIX A: EFFECTIVE CHARGE

For the repulsive tail of the two-particle interaction, we
use the Debye-Hu¨ckel potential, which is the far-field solu-
tion of the Poisson-Boltzmann equation. In our case, the~di-
mensionless! potential at the surface is often merely of order
unity, so the Debye-Hu¨ckel potential slightly overestimates
the solution to the Poisson-Boltzmann equation. To remedy
this, we use a renormalized charge within the Debye-Hu¨ckel
potential, chosen in such a way that, at large distances, the
Debye-Hückel potential coincides with the tail of the solu-
tion of the Poisson-Boltzmann equation determined by the
real charge.44 This will result in an underestimation of the
potential at small separations, but the form of the Debye-
Hückel potential we use here@Eq. ~4!# is in fact only accurate
at large separations and overestimates the interaction at small
separations appreciably, i.e., when overlap of the two double
layers occurs~by about 20%, see Ref. 18!. The two effects
thus partly cancel, although the latter effect is larger than the
former.

The Poisson-Boltzmann equation for the dimensionless
potential c(r )5qf(r )/kBT of a single sphere of radiusa
and total chargeqZ, assumed positive for convenience, im-
mersed in a solvent with Bjerrum lengthQ, at a concentra-
tion of ions leading to a Debye lengthk, is written as

1

r 2

d

dr
r 2

d

dr
c~r !5k2 sinhc~r !, ~A1!

with boundary conditions

d

dr
c~r !U

r 5a

5
ZQ

a2 ; lim
r→`

c~r !50. ~A2!

Linearizing Eq.~A1! (c!1), we find the Debye-Hu¨ckel so-
lution

c05
ZQ

11m

e2k~r 2a!

r
. ~A3!

We next derive the first-order correction to this solution. Put-
ting c(r )5c0(r )1c1(r ), with uc1(r )u!uc0(r )u, results in
the following linear differential equation forc1 :

1

r 2

d

dr
r 2

d

dr
c1~r !5

1

6
k2c0

3~r !. ~A4!

Keeping in mind thatc1(r )5o„c0(r )…, as r→`, we inte-
grate the differential equation once to obtain

d

dr
c1~r !52

k2

6 S ZQem

11m D 3 E1~3kr !

r 2 ~A5!

and a second time to derive

c1~r !52
k3

6 S ZQem

11m D 3Fe23kr

kr
2S 31

1

kr DE1~3kr !G ,
~A6!

where E1(x) is the exponential integral defined byE1(x)
5*x

`dtt21e2t. Using the first of the two boundary condi-
tions, we then determine the renormalized chargeZeff ,

Zeff5
a2

Q

d

dr
c~r !U

r 5a

5
a2

Q

d

dr
c0~r !U

r 5a

1
a2

Q

d

dr
c1~r !U

r 5a

5Z2
m

18S Q

a D 2S Z

11m D 3

F~m!, ~A7!

where

F~m![3me3mE1~3m!;12
1

3m
1

2

9m22¯ . ~A8!

Recapitulating, we have calculated, to leading order, the
chargeZeff which has to be inserted into the Debye-Hu¨ckel
potential @Eq. ~4!# so that this has the correct asymptotic
behavior at larger, coinciding with the tail of the Poisson-
Boltzmann solution.

APPENDIX B: DEPENDENCE OF B 2
ON IONIC STRENGTH

Here, we prove some simple inequalities describing the
behavior of the second virial coefficient as a function of the
ionic strength for an interaction consisting of a Debye-
Hückel repulsionUDH(x) and a general attractive potential
UA(x), the latter not depending on the ionic strength. If we
let U(x)5UDH(x)1UA(x), thenB2 is given by Eq.~5! with

J5E
2

`

dx x2~12e2U~x!!. ~B1!

Then, we have

dJ

dm
5E

2

`

dx x2
dUDH~x!

dm
e2U~x!

5E
2

`

dx x2S d ln j

dm
2~x22! DUDH~x!e2U~x!. ~B2!

In Fig. 9 we see that in the regime of interestd ln j/dm,0, so
we conclude that
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dB2

dm
5

3

8
B2

HS dJ

dm
,0. ~B3!

In the same way it is clear from the second derivative

d2J

dm2 5E
2

`

dx x2Fd2 ln j

dm2 1S d ln j

dm
2~x22! D 2

3@12UDH~x!#GUDH~x!e2U~x! ~B4!

and the fact thatd2 ln j/dm2*0 in the regime of interest that

d2B2

dm2 5
3

8
B2

HS d2J

dm2.0, ~B5!

if UDH(2),1, i.e., if j,1 ~a sufficient condition!.

APPENDIX C: CORRECTIONS TO THE FREE ENERGY

In Sec. III, we viewed a suspension of proteins as a
system of spheres with an AHS interaction and we chose the
parameterr of the AHS potential such that the first-order
correction in the functional expansion of the free energy@Eq.
~29!# vanishes@see Eq.~31!#. In an attempt to justify this
approximation and explore its regime of applicability, we
estimate the size of the second-order correction to the free
energy@from Eq. ~29!# which is either positive or negative
definite,

D[
h2

2 S 3

4p D 2

a3V21E dx1dx2dx3B~x12!B~x13!h~x23!

5
9

4
h2Y. ~C1!

It is convenient to rewrite the integral in such a way that the
angular integration can be performed explicitly~see below!:

Y[E
0

`

dt t2B~ t !E
0

`

ds s2B~s!

3E
0

p

dq sinqh~As21t222st cosq!

52E
0

`

dt tB~ t !E
t

`

ds sB~s!E
s2t

s1t

du uh~u!. ~C2!

Here we have used the Kirkwood superposition approxima-
tion JBM

(3) (x1 ,x2 ,x3)5h(x23),
30 whereh(x)5g(x)21 is the

pair correlation function. We have employed the substitution
u25s21t222st cosq, with q the angle betweenx12 and
x13. Using the expression forg(x) @Eq. ~34!# and defining
h̃(x)5g̃(x)21, we splitY into three parts,

Y5Y01Y11Y2 , ~C3!

where we have introduced the limitv→0 and where

Y0[
2l

3 E
2

`

dt tB~ t !E
t

t12

ds sB~s!

.
2l

3 E
2

`

dt tB~ t !E
t

`

ds sB~s!

5
l

3 F E
2

`

dt tB~ t !G2

, ~C4!

Y1[2E
2

`

dt tB~ t !E
t

t12

ds sB~s!E
s2t

s1t

duthuh̃~u!, ~C5!

and

Y2[2E
2

`

dt tB~ t !E
t12

t14

ds sB~s!E
s2t

s1t

du uh̃~u!!Y1 .

~C6!

To simplify Eq. ~C5!, we substitute Eq.~37! and note that
s1t>4 and 0<s2t<2. We then derive

E
s2t

s1t

du uh̃~u!5
2

3
~9G110GH212!1

1

2
~s2t !2.

~C7!

Next, using Eq.~31!, we integrate the nonconstant term lead-
ing to a product of two integrals,

E
2

`

dt tB~ t !E
t

t12

ds sB~s!~s2t !2

.E
2

`

dt tB~ t !E
t

`

ds sB~s!~s2t !2

5F E
2

`

dt tB~ t !GF E
2

`

ds s3B~s!G . ~C8!

Hence,Y1 is written in terms of one-dimensional integrals,

FIG. 9. Dependence of lnj on m at pH 4.5 andpH 7.5. In both cases
d ln j/dm,0 andd2 ln j/dm2*0 if 1<m<8.
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Y1.
2

3
~9G110GH212!F E

2

`

dt tB~ t !G2

1F E
2

`

dt tB~ t !GF E
2

`

ds s3B~s!G , ~C9!

and this is also the case forY

Y.
2

3 S 9G110GH2121
l

2D F E
2

`

dt tB~ t !G2

1F E
2

`

dt tB~ t !GF E
2

`

ds s3B~s!G . ~C10!

Our goal is to obtain explicit approximations for these
integrals by expediently using Eqs.~32! and ~33!. First, we
consider integrals on the interval@2,21e# which are domi-
nated by the singular part ofB(x). We substitute Eq.~40!
into Eq. ~33! and letv→0

E
2

21e

dt t2B̃~ t !5
2l

3
. ~C11!

We use this relation to rewrite part of one of the integrals in
Eq. ~C10! in two ways, noting thate!1:

E
2

21e

dt tB~ t !52
l

3
1E

2

21e

dt tB̃~ t !

52
1

2 E2

21e

dt~ t22!tB̃~ t !

.2
e

4 E2

21e

dt tB̃~ t !. ~C12!

We thus conclude that

E
2

21e

dt tB̃~ t !.S 12
e

4D l

3
~C13!

so the first equality in Eq.~C12! allows us to attain the ex-
plicit expression

E
2

21e

dt tB~ t !.2
le

12
. ~C14!

Similarly, we use Eqs.~40! and~C11! to evaluate part of the
other integral in Eq.~C10!:

E
2

21e

dt t3B~ t !52
4l

3
1E

2

21e

dt t3B̃~ t !

5E
2

21e

dt~ t22!t2B̃~ t !.
le

3
. ~C15!

We note that both integrals in Eqs.~C14! and~C15! areO(e)
because the integral in Eq.~C11! is independent ofe owing
to the singular part ofB(x). If B(x) had been completely
regular, the integrals in Eqs.~C14! and ~C15! would have
beenO(e2).

We next consider the remaining two integrals on the in-
terval @21e,`). We start by splitting Eq.~32! into two parts
since 21d demarcates two different regimes,

E
21e

21d
dt t2B~ t !1E

21d

`

dt t2B~ t !50. ~C16!

Using this equation and the approximationB(t)
.22je2m(t22)/t, we may simplify the two integrals, ulti-
mately omittingO(d) terms,

E
21e

`

dt tB~ t !5E
21e

21d
dt tB~ t !1E

21d

`

dt tB~ t !

.
1

2 S 12
d

2D E
21e

21d
dt t2B~ t !1E

21d

`

dt tB~ t !

5
d

4 E21d

`

dt t2B~ t !2
1

2 E21d

`

dt t~ t22!B~ t !

.
j

m2 e2md, ~C17!

E
21e

`

dt t3B~ t !5E
21e

21d
dt t3B~ t !1E

21d

`

dt t3B~ t !

.~21d!E
21e

21d
dt t2B~ t !1E

21d

`

dt t3B~ t !

52dE
21d

`

dt t2B~ t !1E
21d

`

dt t2~ t22!B~ t !

.24
j

m2 e2md. ~C18!

We remark that both expressions in Eqs.~C17! and~C18! are
O(m22) becauseB(t) is regular fort>21e. We then com-
bine Eqs.~C14! and ~C17!, and Eqs.~C15! and ~C18!,

E
2

`

dt tB~ t !.2
le

12
1

j

m2 e2md.2
1

4 E2

`

ds s3B~s!.

~C19!

Finally, using Eqs.~C1!, ~C10!, and ~C19!, we arrive at an
approximation for the correction to the free energy,

D5
9

4
h2Y.

9

2
h2S G1H261

l

6D F j

m2 emd2
le

12G2

.

~C20!

Despite the variety of approximations used, this expression
still retains its ‘‘definite’’ character~it turns out to be nega-
tive in the numerical calculations below!. However, the nu-
merical coefficients within the last quadratic factor are not
exact. Furthermore, the status of the present theory differs
from that of the Weeks-Chandler-Anderson theory.30 In
the latter,D is of fourth order in the perturbation whereas it
is basically quadratic here for the reason stated below
Eq. ~C15!.

To estimate the importance of this correction, we first
calculate the osmotic pressure resulting from the neglect of
second- and higher-order terms in the functional expansion
~29!. This amounts to determiningt from Eqs.~36!, ~50!, and
~53! and then computing the osmotic pressure from Ref. 19,
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P

rkBT

5

11h1h22lh~12h!S 11
1

2
h D1l3h2~12h!3/36

~12h!3 .

~C21!

Then, we evaluate the correction to the osmotic pressure due
to the second-order term in Eq.~29!. The osmotic pressure is
related to the free energy by

P

rkBT
52h

]~r21A!

]h
. ~C22!

BecauseY depends only weakly onh, we approximate the
correction to the osmotic pressure by

2h
]D

]h
.22D. ~C23!

We have compiled the pressure and its correction in Table IV
for the same sets of parameters as in Table I~omitting the
trivial case whereh50).
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