An Epistemological Assessment of Tensions between Expert Evaluations and Qualitative Judgment in Architectural Competitions

Carmela Cucuzzella
An Epistemological Assessment of Tensions between Expert Evaluations and Qualitative Judgment in Architectural Competitions

Carmela Cucuzzella, PhD
Assistant Professor, Design and Computation Arts, Concordia University, Montreal, Quebec
Researcher, L.E.A.P (Laboratoire d’étude de l’architecture potentielle)
http://leap.concordia.ca carmela.cucuzzella@concordia.ca

Contribution to the theme:
What is the relation between competition form and innovations? Addressing the role of the client, jury, and design teams in competitions in relation to the outcomes.

Keywords:
expert evaluation, judgment, qualitative debate, expertise, risk society, architectural competition

Introduction
How do expert evaluations and expertise impact the outcome of the architectural competitions? What do they bring to the judgment process? This study of experts and expertise in the judgment process originated from our previous study that showed that environmental management tools are shifting the definition of quality in the architectural competition today (Cucuzzella, 2013b). Environmental management tools and certifications are some of the many outcomes of what we refer to today as risk society. This is a society that began in the early 1980’s, focused on the assessment and quantification of an array of risks, each with their corresponding set of experts. Among these today, the environmental experts are prominent newcomers in the competition.

This paper has three main parts. In the first part, we will circumscribe the various issues related to qualitative judgment in the architectural competition today, specifically with the growing imperatives of sustainability. Here we will also introduce the methodology adopted. Second, we present a series of competitions in order to categorize the types of expert evaluations in the competition today, identify how these impact the jury deliberation and the conflicts they introduce. In the third and largest section, we place this work in the general theory of judgment where we highlight the differences between the expert evaluation of specific project criteria and general qualitative judgment. A critique of the prescriptive and restrictive character of expertise is conducted through a wider theoretical framework. Here we examine the series of observed tensions from a broader epistemological and historical perspective, by looking at the theories of risk society. Here we will reflect on how the emergence of a risk society has changed the way humans deal with uncertainty and how this has led to a rethinking of how we judge the built environment.
1. Identifying Tensions in the Judgment Process of Competitions

The specific focus of this paper is to understand how the various forms of architectural expertise are having an impact on the way the jury judges the competitor projects in order to identify the project with the best overall qualities. There are many tools or processes to help define the many dimensions of quality of an architectural project, of which the competition process is an important device. The jury process is ideally meant to collectively find the project with the overall best qualities through a constructive deliberation. We contend that experts confront this construction with the prescriptive measures and restrictive visions resulting from their assessment tools. Is the growing expertise in the competition leading to a fragmented vision of the project intentions?

We compared a variety of Canadian competitions where the reliance on expertise was a dominating factor in the jury deliberation process. We found that this situation arose most frequently when an environmental certification was a strict requirement and explains why there was a focus on such competitions. In addition we have been increasingly observing in competitions today that proving a building is environmentally sustainable through the acquisition of some green building certification has become a goal in itself. In a previous research, we have observed that these certifications actually become the main competition prize for the client in the Canadian context (Cucuzzella, 2012).

In Canada, the emerging norm used to address sustainability, particularly environmental sustainability is the LEED (Leadership in Energy and Environmental Design) rating system. This rating system is increasingly required as part of the criteria in Canadian competitions. It was introduced in Canada in 2003, but has gathered traction in competitions, specifically since 2008. We complemented some of the Canadian competition analyses with examples of competitions from around the world in order to better understand the phenomena.

We conducted a comparative discourse analysis of the competition brief, competitor textual proposals, and the jury report. We also conducted a comparative analysis of the visual dimensions of the competitor panels, i.e. drawings, schemas, tables, and renderings. Our results are presented in a two-fold manner. We first present a categorization of various expert-types within the competition. We then present some brief analyses of the impacts of experts and expertise on the competition process within this categorization. For purposes of brevity we will only present the results of a few competitions in this second part. We conclude this paper with a reflection of these observations through the lens of the contemporary Western condition of risk society in order to contextualize their implication.
2. Experts, Expert Evaluation and Qualitative Judgment in the Architectural Competition

Who are the experts in the competition process today? Although one could consider that most of the actors engaged in a competition are experts in one way or another, in this research we propose to distinguish between explicit experts, implicit experts and another category that can be referred to as the meta-experts.

2.1 Observations

What we will call the explicit experts in a competition are those actors that deal with areas like energy or material efficiency, technical or structural feasibility, performance measures, and acoustics among others. They are referred here to as ‘explicit’ since in most cases, their titles include their area of expertise. The growing plethora of measurement tools or software to assist in the task of performance evaluation today calls for increasingly improved performance and therefore more explicit-experts. This precise quantitative assessment comes into conflict, at times, with the more qualitative debate of the overall project. These experts usually have no deciding power in the jury since they are typically called in before the jury takes place. However, we are witnessing that some of these explicit experts are at times invited as jurors.

We will also identify a category of implicit experts, since: the client is an expert of the requirements; the advisor is an expert of the competition process; the architect of the jury is an expert in architectural quality; and the competitors are obviously experts in design. We refer to these actors as ‘implicit’ since their professional titles do not state their area of expertise. For example, the client, who is the representative of the user, understands the project in a general sense and within this, has a rich understanding of the requirements. Another example is the architect. The architect is above all, an expert in the conception and construction of projects. As part of this area of expertise, they are inherently experts in qualitatively judging the diverse dimensions of quality.

What about the meta-expert? This is an expert whose claims remain on the most part unchallenged since he/she is perceived as the ultimate expert in his/her field at large. A meta-expert can be either an explicit expert, for example, the world-renowned expert on energy assessments. In this case, the meta-expert has worked at an international level on questions related to energy efficiency and energy systems and where their work is cited worldwide. A meta-expert can also be an implicit expert. In this case, an example could be a world-renowned architect that has won competitions internationally. He is respected as a professional who inherently understands the essence of winning projects. Both of these types of meta-experts are important to our observations, as they have demonstrated their capacity to short-circuit the debate in the jury process.
One wonders how we can maintain the balance necessary for a qualitative judgment in this ‘market’ of experts. Today, this is aggravated by the need to refer to environmental experts – be it a person or an environmental certification system, before a final judgment can be made. In this sense, tensions are abundant, since architects and jurors are caught between a will to protect the planet through prescriptive rules and expectations for innovation and excellence.

Of course, tensions and conflicts occur is many complex projects that have substantial technical requirements. Nevertheless, the fact that competitions nowadays include an evaluation of performance appears to increase the conflicts of expertise and as such, may explain why more and more, competitions are seen as exhibiting a difficult ‘crab mentality’ – where the actors in this process, rather than working together to collectively define the best project, seem to draw out the entire process to a halt through their competing points of view. How do these experts impact the jury deliberation?

2.1.1 Explicit expert in the jury: The environmental expert

A burgeoning situation in the competition today, with the imperative of sustainable development, is when an expert of a green building rating system is included in the jury rather than used only for consultation. This new situation changes the deliberation process significantly. Because they are explicit experts, their voice can heavily drive the jury deliberation, leaving an imbalance in the weight given to the more qualitative arguments. These explicit experts are not experts of overall architectural project quality, but rather experts of a very specific and fragmented part of the project limiting their vision of the overall project.

This situation increasingly occurs in Canada. A library competition in Montreal emphasized this conflict. In this case, even if the jury\(^1\) conferred that all teams could achieve the LEED requirement, of the two last teams left competing for the winning prize, the safest project regarding the ability to achieve LEED Gold rating was selected. The jury claimed that the runner up was too risky in terms of attaining LEED, yet the team’s discourse was the most encompassing regarding how they addressed sustainability. The winning project did not have any encompassing sustainability strategy, rather only an enumeration of technologies to address performance issues. This specific situation was further aggravated by the fact that for the mayor, the LEED ranking was the most important criteria of architectural quality. The explicit expert in the jury biased the decision, pushing the qualitative architectural dimensions aside so as to ensure a predictable LEED certification was secured. This has occurred in a series of competitions in Canada, particularly where the LEED certification is high.

\(^{1}\) The jury consisted of 7 members: 2 architects, 1 environmental expert/architect, 2 representatives of the client, 1 academic, 1 cultural representative
2.1.2 Explicit nonhuman expert in the jury: Rigid environmental prescriptions

So an explicit expert is not the only element to perturb the qualitative debate. A rigid environmental certification requirement could also sharply sway the jury. For example, the New Montreal Planetarium competition, launched in 2008 had a LEED Platinum certification requirement – the highest rating of LEED – and the only explicit criterion for sustainable development. The most redeeming quality for the winning project was not its symbolism as the jury stated: “Further exploration of the symbolism of the cones in terms of iconography and the materiality” (Ville de Montréal, 2009, p.7)

From the media perception, the most conventional of the projects submitted won, yet it met the strictest LEED standards mainly from ‘tried and true’ technical solutions that were easily understandable by the jury and visible to the public (extensive green roof). The multitude of press releases and documents connected to the project emphasized the importance of the project for strengthening Montreal’s position as a leader in sustainable development. This would also be an example for the next category, which is the invisible member in the jury.

Another example of a competition that was rigidly driven by the measurable requirements of low carbon performance was the Concours EDF Architecture Bas Carbone 2011. This was the 4th edition of this competition, organized by EDF on the premise that “the low carbon performance stimulates architectural innovation on all levels and processes of design towards a quality that privileges comfort and the habitat.” (Caille and Francois, 2011, p.15, author’s translation). In spite of the fact that the jury consisted of mostly architects, the jury’s comments regarding the winning project were very divided on this outcome since there was much concern about the lack of overall architectural quality. It is clear that technical solutions won this project. In fact, the state architect/urbanist, and member of the minister of ecology of sustainable development as well as member of the jury, voiced profound concern about the project saying that, “I have some fears with regards to the image, as part of a larger whole, and with the omissions it may encourage. I think that we must one day give ourselves the means to analyse the existent correlation between the technical solutions and the urban form and to measure these on the architecture.” (p.29, Caille and Francois, 2011, p.29, author’s translation). In this competition, the rigid environmental requirements can be considered as the invisible ‘member of the jury’, driving the entire deliberation process down the path of reducing the debate of architectural quality to a decision of the best project based on the best quantifiable result (lowest carbon).

---

2 The jury consisted of 9 members: 3 architects, 1 environmental expert/architect, 3 representatives of the client, 1 set-designer, 1 academic
3 The jury consisted of 12 members: 4 architects, 2 urbanists, 2 politicians, 3 representatives from EDF, 1 environmental expert
2.1.3 Meta-expert in the jury: The elephant in the room
Yet, there is another problematic scenario that can be related to either explicit or implicit experts – the meta-experts. These actors are perceived as world-renowned specialists of a profession, field of expertise, or domain. They are similar to the explicit experts in a jury, specifically in the way they are seen to set an imbalance in the jury deliberation.

An example of this situation in Montreal was a competition for a cultural center launched in 2010. Here the meta-expert was the jury president. There were four finalist, all projects equally strong. As an observer in this competition's jury deliberation process, it could be seen that there was a deliberate swaying of the jury members' perception of the four finalist projects by this expert. In other words, the jury president's comments regarding the four finalists were intentional in that they were deliberately seeking to eliminate all the finalists, except that finalist that this meta-expert wanted as the winner. The way in which this was done was through a combination of the jury president's comments followed immediately by a vote. In this case, the meta-experts comments directly influenced the voting by the jury and in turn, the selection of the final winner.

Another exemplary case illustrating this situation was the competition for the Centre Georges Pompidou. It is well known that the influence of Jean Prouve was instrumental in ensuring that Piano-Foster's proposal for the Centre Georges Pompidou would be selected as the winning project. There was no room for further discussion within the jury after he presented his point-of-view. In this case, the story ended well, as the winning project is now a historically praised building. But how many big-name architects have influenced juries? In such cases, it becomes a selection of the meta-expert where the competition is transformed into a co-optation process rather than a judgment process. We can say that the meta-expert is essentially the ‘elephant in the room’. Everyone is aware of his huge presence, yet no one wants to explicitly acknowledge him or the way in which his point-of-view redirects the judgment.

2.1.4 Nonevaluable by experts: When proposals escape quantifiable evaluation
Architects seem to be aware of this inflation of experts in competitions today and tend to produce fuzzy and open-ended projects. Such projects escape any definitive expert assessment and can only be qualitatively judged because of their ambiguous details. In these cases the competitor proposals are meant to depict a striking idea that is not yet quite crystallized in terms of constructability. In these cases, it is not clear what the expert evaluations can bring, specifically because the images are meant to represent an intention more than constructive details. There are many examples of this, such as the FRAC competition of Marseilles, where Kengo Kuma’s winning project was starkly different from what was depicted in the competition

---

4 The jury consisted of 10 members: 4 architects, 1 environmental expert/architect, 1 representative of the client, 1 artistic director dance and resident of borough, 2 cultural/political representatives, 1 municipal urbanist
Whether it is the rendering technologies available today, the lack of constructive details in the original competitor proposals, or the compromises taken during the construction phase after the competition, it is very difficult for explicit experts to make any conclusive quantifiable evaluations in cases where projects are open-ended. We know that a certain amount of transformation will inevitably occur because of unforeseen constraints. In the case of this example, one could say that the built project was a non-recognizable representation of the competition proposal.

2.2 Analysis

Our research on competitions show that environmental experts and certifications are not only problematic for the jury process, but they also seem to impact the design phase, shifting the designer’s focus to technological solutions (Chupin and Cucuzzella, 2011). Our research has also shown that it is not only environmental experts that deliberately sway jury decisions, but any of the expert-types identified can also purposefully bias jury decisions. So, we can see that the conflicts related to experts in a competition are complex. We have observed at least three problems. The following is an analytical summary of the above-observed situations.

First, in the case where an explicit expert, such as an environmental expert, is a member of the jury, the difficulty in the jury deliberation arises because the expert is not usually versed or has ‘whole’ project experience since his/her expertise lies within the question of performance optimization of buildings. We can counter-argue that experts of environmental certifications may also be architects, who have project experience. Yet observations in the jury have shown that, in their role as environmental experts, their arguments are systemically those related to the certification system. Such an expert opens up a discursive gap in the jury deliberation, leading to deadlock, since a project may not meet the quality ideals of an architect in the jury, who has a whole project vision, yet the same project may meet the quality ideals of an explicit expert in the jury (Cucuzzella, 2013a).

Second, in the case of the explicit nonhuman expert in the jury – where environmental management tools are very strictly adopted – the main difficulty lies in the double-edged situation where there is the questionable validity of such preliminary environmental claims on one end, yet there is a perceived accuracy of these results, accompanied with their strict use, on the other end. This presents a daunting inconsistent and contradictory situation for the jurors. Our previous studies have shown that the timing of these environmental evaluations in the competition are counter-productive as they occur far too early in the design process – in other words, much uncertainty exists since the project is not yet concretized and constructed (Cucuzzella, 2013). In addition, research has already begun to show that energy estimates conducted early in the design project, which often use ideal scenarios, are far from the post-occupancy use, so they do not guarantee better building performance (Burnett, 2007, Newsham et al., 2009, Scofield, 2009, Carassus, 2011). The question of validity and reliability of these expert evaluations arises. Yet the boroughs that run the competitions would prefer to have this early
'stamp of approval'. Even if the timing seems paradoxical, in Canada, this is fast becoming the norm.

Third, in the case where a meta-expert is the president or even simply, a member of the jury, the jury is often swayed in the direction that this expert intends – similar behavior as in the explicit expert. In this case however, the arguments are seen as 'black box' arguments since they are perceived to come from the expert’s extensive and exceptional experience, rather than from a series of quantified results, which are more ‘white box’ arguments. Here the debate typically fades quickly as it converges to the meta-expert’s advice. On the one hand, this can be problematic since the fairness and democratic nature of the competition process is diluted in such an intervention. Yet, on the other hand, because of the extensive project vision of a meta-expert, their arguments and choices may be the most appropriate. This is not always the case however.

Some of the conflicts related to expert evaluations in these three situations are then directly related to (1) the value systems embedded within each jury member and the expertise that each one brings to the deliberation; and/or (2) the valorization given to systematic methods of quantifiable evaluation. These values dictate a worldview that to some extent, define what is designated as ‘quality’.

However, in the fourth case, when proposals are nonevaluable by experts, this presents a contradiction. In a contemporary competition context when experts are increasingly sought after, this is a situation when the limits of such expertise are made evident. Are we witnessing a situation where architects produce images of buildings that remain intentionally open to interpretation and to future developments because they want their projects to remain supple to the forgoing process? Tostrup suggests that the visual and verbal competition material presented by competitors, communicate the value systems that are embodied in their proposals (1999). Even if architects say this is done in the spirit of openness of their work and suppleness to process, can it also be that they want to escape any expert evaluation?

3. Theoretical Implications: Expert Evaluation, Qualitative Judgment, and Risk Society
How should the question of expert evaluations in competitions then be studied? Ideally, in a competition the winning selection is made through a collective deliberation process (Strong, 1996). Qualitative debate in the competition is the means to collectively construct and finally choose the best overall project (Chupin and Cucuzzella, 2011, Van Wezemael et al., 2011). However as Nasar has stated, the jury deliberation process is not a given (1999). Let us emphasize that without a qualitative debate the final choice of the winning project is reduced to a vote rather
than remain a collectively constructed judgment. From this perspective, it is difficult to circumvent the general theory of qualitative judgment.

3.1 Distinguishing Expert Evaluation and Qualitative Judgment

According to the American pragmatist James Dewey, judgment is defined as criticism and further states that: “Judgment has to evoke a clearer consciousness of constituent parts and to discover how consistently these parts are related to form a whole. Theory gives the name of analysis and synthesis to the execution of these functions” (Dewey, 1934, p.310). Dewey, however, prefers to refer to these functions as discrimination and unification, and claims that the unifying phase (synthesis) is in fact the creative response of the individual who judges and that without a unifying view, criticism (and therefore judgment or emergence) ends in the enumeration of details. Dewey says that discord, conflict, disagreement, or dissonance induce reflection of a situation, experience or object of observation. One cannot ignore the reflection necessary to comprehend this discord or conflict, and by doing so, can resist from oversimplifying a given problem. For Dewey (1910 (ed 1933)) reflective thinking is judgment suspended during further inquiry, where a state of doubt is maintained until some conclusion can be finally reached. A judgment therefore arises when there are different meanings, rival interpretations, points of contention regarding some matter at stake, in short, when there is doubt and controversy. Evaluation, on the other hand, is the specific analysis of constituent parts of a whole, an inevitable activity in the criticism of a whole.

The author of «How We Think» (1910 (ed 1933)) claims that there are three main characteristics of judgment: (1) a controversy, consisting of opposite claims; (2) a process for defining and elaborating claims and of sifting through facts; and (3) a final decision, therefore arriving at closure. In order to arrive at a judgment, a series of inquiries where elements such as evidential facts, principles, and tacit knowledge, may all be necessary (Dewey, 1910 (ed 1933), Lera, 1981, Guba and Lincoln, 1989). Evidential facts are a result of the evaluation of empirical data – an objective perspective. Principles provide the worldview – a normative perspective. Tacit knowledge is the knowledge acquired through experience and is considered subjective, where experience is the natural stimuli for reflective inquiry. These three can be related to what Habermas (1985) has termed the cognitive-instrumental (objective), the moral-practical (normative), and the aesthetic-expressive (subjective); all three dimensions of modern culture that have become increasingly detached as they have become increasingly expert driven (Habermas, 1985).

Furthermore, Schön (1983) has stated that the complexity, uncertainty, uniqueness, and value-conflict so prevalent in real world situations, such as in architectural design situations, do not fit the model of ‘technical rationality’, since in this perspective they are reduced to problem-solving exercises. According to Schön (1983), when knowledge taken from a technical rationality is placed within the broader context of reflective inquiry, then the link between the uncertainty and
uniqueness prevalent in practice and the more quantitative approaches to
evaluation are made possible. This critical perspective is what Schön (1983) refers
to as reflection-in-action, a necessary activity during the conceptualization or
judgment of a project whose constituent parts are evaluated using methods that lie
within the quantitative, measurable, provable doctrine relying on the quantitative
rigidity of the experts. We have seen in some competitions that the problem-solving
approach is given precedence, a puzzling anomaly when judging architectural
projects that have qualitative dimensions that are not measurable.

From this definition, evaluation is then incomplete on its own to judge quality in an
architectural project. Yet we have seen how evaluations by the explicit experts in
some competitions provide quick conclusions, since they assume to have enough
evidence – knowing that this evidence rests on their fragmented or sliced vision of
the project. Architects (the implicit experts) in the jury, on the other hand, are
observed to be in a continual state of suspended conclusion and reflective thinking,
grounding the information from explicit experts within their overall project
experience – preferring qualitative debate rather than quick deductions.

In the competition cases described above, this debate was avoided based on three
major reasons: (1) a powerful and persuasive opinion by an implicit meta-expert
that biases the jury and forces an early convergence to a winner (2) a discursive gap
amongst the jurors because an explicit environmental expert in the jury pushes
decisions to lean heavily on the measurable data rather than the qualitative debate;
and (3) the environmental certification requirement heavily biases the jury
decisions as this must be unquestionably met.

In the first case, the qualitative debate is cut short because of a forceful and strategic
argument that seems incontestable to the other jurors. In this case, as the collective
construction of quality among the jurors and their judgment regarding the winning
project is cut short, has the meta-expert confiscated the definition of quality? And if
yes, then judgment in such situations, as elaborated by Dewey, may have been
controlled where the controversies were evaded, the elaboration of claims and the
sifting through of facts, were abandoned. Yet, in some cases this situation results in
great winning projects. Can it be that the meta-expert has embedded tacit
knowledge that can circumvent such shortcomings in the jury process?

In the second and third case, the deliberation gives priority to the arguments that
can be ‘proven’, or what Habermas (1985) refers to as the cognitive-instrumental or
objective realm, rather than those to those arguments that can be constructed
through questions of the moral-practical (normative) or the aesthetic-expressive
(subjective). In this case, we are increasingly observing, particularly through the
growing imposition of the use of environmental certifications for public buildings
today, an evaluation of quality emerging from the prescriptions of environmental
certifications. Are the environmental experts – the actors of risk society –
conditioning the definition of quality?
This question actually introduces a contemporary paradox where risk society and its plethora of environmental analysis or prescriptive tools are redefining quality in a general sense, and not only for architectural projects. This represents not only a practical but epistemological problem, since more and more today, quantifiable and empirical data is actually needed, not only to design an architectural project but also to judge its quality. Can a reflection on what constitutes a risk society help in untangling the question of experts in the competition?

3.2 Is Risk Society a Society of Experts?
Risk society emerged in response to the modern conditions of technology and uncertainty. It describes the way that modern society responds to risk. Giddens defines it as "a society increasingly preoccupied with the future (and also with safety), which generates the notion of risk" (Giddens, 1991, p.3). Risk society emerged specifically with the parallel emergence of: (1) the growing concerns of environmental risk, as these had come to be the predominant product of industrial society; and (2) the renewed interest of subjective Bayesian statistical methods of risk assessment. Obviously the question of environmental risk has been around since the emergence of the industrial revolution. However, since the 1980s, there has been much work done in the field of Bayesian statistical methods, specifically, in the discovery of the Monte Carlo methods with a rising interest for complex applications. At this important junction the hypothesis of risk society was put forth, particularly as has been theorized by Ulrich Beck and Anthony Giddens.

How is risk defined in this context? "Risk may be defined as a systematic way of dealing with hazards and insecurities induced and introduced by modernization itself" (Beck, 1992, p.21). Where society is increasingly threatened by potential risks that are a result of the modernization process. By modernization we mean the way humans increasingly seek technological mastery over nature. The prevention of these ‘manufactured’ risks through measurable, predictable means has become inadequate in a society where risks are being introduced faster than they could be understood, let alone quantified. In fact, Giddens (1991) has stated that the modern understanding of risk was supposed to help humans control their future, to normalize it. Yet according to Giddens (1991) and Beck (1992) things have not turned out that way. Even if this modern understanding of risk was supposed to help humans control their future or to normalize it, attempts to control the future through these measurable methods have led to the realization that humans need different approaches for relating with uncertainty.

A risk society is therefore focused on efforts for identifying and controlling risks, specifically through probabilistic expert knowledge, even in a global situation where many risks cannot be predicted in a reliable manner. The incarnation of this societal condition in the western world is attested through the development of the International Standards Organization (ISO) 31000 family of standards referred to as Risk Management (International Standards Organization, 2009). In these standards, the creation of uniform risk criteria and evaluation metrics is central for risk
management and reporting. The growing international power of insurance companies is another important testimony to the contemporary condition of risk society.

Beck has stated that risk has deepened the reliance on experts, since they have the very precise knowledge to make the authoritative evaluations based on unambiguous and measurable criteria (1997). In our paper, we refer to these individuals as explicit experts – those experts with exclusive knowledge that is only communicable through metrics and quantified results. In a world where uncertainty or danger are governed by risk managers, it is no surprise that there is an overcompensation of risk management experts entering the process in design competitions, where uncertainty and ambiguity are the rule rather than the exception.

Furthermore, according to Beck (1992) there is a paradoxical existence between progress and risk – risk is increasing because of the industrialization of technology and science, rather than being abated by technology and science. There is a disjunction between cultural production and their environmental and societal repercussions (Giddens, 1991). Giddens argues that there is a need to reshape our theoretical understanding of the modern project, in large part because environmental ecological questions lie within a framework of manufactured uncertainties. The emerging relevance of new ways of thinking of future consequences, such as the precautionary principle rests on the failure of traditional scientific approaches to deal with such uncertainty, but more importantly, on the myth of scientific progress which reduces the world to produced artefacts driven by the efficiency of technology (Larceneux and Boutelet, 2005, Latouche, 2006). However the critique of technology, expertise, and even efficiency is not new.

3.3 Risk Society and the Conflicts of Experts
As far back as 1954, in his original and seminal French publication, The Technological Society, Ellul identified a perplexing paradox with technology while critiquing the ideology of efficiency. He claimed that technology drives intention and so individuals have become the slaves of the technologic society, where "the multiplicity of means is reduced to one: the most efficient" (Ellul, 1964, p.21). He stated that:

"(...) the individual participates only to the degree that he is subordinate to the search for efficiency, to the degree that he resists all the currents today considered secondary, such as aesthetics, ethics, fantasy. Insofar as the individual represents this abstract tendency, he is permitted to participate in

the technical creation, which is increasingly independent of him and increasingly linked to its own mathematical law.” (Ellul, 1964, p.74)

For this author, technique is rigorously objective. He claims that all methods are rationally arrived at, are based on absolute efficiency, and this in turn has transcended the individual’s desire or ability to think and act outside this technological realm weakening humanity’s ability for creativity and reflection. He argued that:

"Technique, in the form of psychotechnique, aspires to take over the individual, that is, to transform the qualitative into the quantitative. It knows only two possible solutions: the transformation or annihilation of the qualitative” (Ellul, pp. 286-287).

If a thought cannot be transformed into the quantitative then, is it really annihilated, as Ellul has stated? Although this may be an extreme perspective of civilization in modernity, evidence has shown that there is a definite affinity towards the quantitative over the qualitative when explicit experts are members of the competition jury process.

In the same year that Ellul published The Technological Society, Heidegger published The Question Concerning Technology. Heidegger (1977 (1954)) refers to technology as both, a means to an end and as a human tool – being instrumental in the latter, and anthropological in the recent. The instrumental reveals more than it conceals. In the following quote, Heidegger (1977 (1954)) explains that technology involves securing various ends through means, but this does not necessarily indicate that we can control the ends.

“Everything depends on our manipulating technology in the proper manner as a means. We will, as we say, “get” technology “spiritually in hand.” We will master it. The will to mastery becomes all the more urgent the more technology threatens to slip from human control.” (Heidegger, 1977 (1954), p.5)

This reflection was further elaborated by Hannah Arendt with regards to technological innovation in modern society in her seminal book, The Human Condition, published in 1958 She realized the weakness of human action in modern society and identified a paradox with regards to the ecology of action in modern society – a situation where, as humans become more powerful through an increase in technological progress, the ability for humans to be able to control the consequences based on technological innovations decreases. This paradox is amplified, since the process of predicting potential risks in order to reduce them is ever more prevalent in modern society yet, uncertainty is the basic condition of the outcomes of technological innovations. She argued that:

“Modern natural science and technology, which no longer observe or take material from or imitate processes of nature but seem actually to act into it,
seem, by the same token, to have carried irreversibility and human unpredictability into the natural realm, where no remedy can be found to undo what has been done." (...) Nothing appears more manifest in these attempts than the greatness of human power, whose source lies in the capacity to act, and which without action’s inherent remedies inevitably begins to overpower and destroy not man himself but the conditions under which life was given to him.” (Arendt, 1998, first ed 1958, p.238).

How is this paradox identified in the 1950’s relevant for the understanding the situation of expertise in the competition? We can say that the condition of risk society, with the plethora of risk experts, the need to predict as many risks as possible, the unchallenged relationship to the results of these evaluations, and the predominance of these risk evaluations in assessing a quality project is manifest in the competition processes (construction of brief, jury deliberation) at the expense of in-depth qualitative debates. We are not suggesting that such evaluations by explicit experts are excluded from the competition process but rather that these, as Dewey (1910 (ed 1933)) has suggested, remain in the deliberation until all claims have been debated and where judgment is suspended during further inquiry rather than oversimplifying a given problem.

The attraction of quantitative methods (even semi-quantitative methods) is that they have predictive powers where decisions based on computable data are simpler to rationalize; humans are very comfortable with this type of support for decision-making (Dewey, 1930, Ellul, 1964). A flagrant example of this is when competitions have a strict requirement of environmental certifications. We have seen in Canadian competitions that this has become a main protagonist of the impoverishment of qualitative debate, since judgment is driven by the prescriptive environmental guidelines. Can the drivers for innovation lie within a prescriptive environmental methodology, especially during the early phases of conceptualization? Is the instrumentality of the environmental certification as a means towards better performance in buildings redirecting the architect’s energy of fantasy or imaginary? Environmental certifications are a way to reduce known risk with regards to known impacts. They seek to control the outcomes of action – what Arendt so eloquently described. They are also embedded in risk society, as they are the exemplary of risk management tools.

How is risk society shifting the qualitative debate in architectural competitions? Can we say that architectural projects are slowly being reduced to any other development project, concerned more with the quantification and minimization of potential measurable risks rather than by an architectural intention and anticipative vision? In a risk society, qualities and outcomes that cannot be measured are harshly challenged. And this is one of the main reasons why environmental certifications for buildings have become so important – they allow for the utmost control (as far as humanity has been able to predict to date) of potential risks in buildings. This presents an obvious problem when assessing the quality of architectural projects.
Discussion

From an understanding of risk society as a society of experts to our engaging criticism of modernity through the paradoxes of conflicting technological experts, we have reflected on how deeply these issues are rooted in our contemporary western condition. We can already conclude by acknowledging that the conflict of experts in competitions stems, in part, by the discursive gaps between the two sets of experts – the explicit and the implicit experts. The explicit experts often have universalizing statements of a very fragmented vision of the project. It seems, at a first glance, that their arguments are real, concrete and incontestable. The implicit experts often have project specific arguments of an integrated project vision. Their arguments appear abstract and contestable since they cannot be easily proven with a measuring tool or software.

The dichotomy between performance measurements and the complexity of projects is a disciplinary problematic. This becomes quite evident in the competition and represents a point of fragility since some jury members prefer to measure quality from an objective perspective, while others will argue that the notion of architectural quality can only be debated in order to arrive at a collective construction.

Can we say that all that is left of the complexity of the project through the filter of the explicit experts are the technical details? In this light, the conflict of experts may then be summed up as the contradiction between the fact that explicit experts escape the complexity of design projects yet, clients require official expert advice to counter-balance the expertise of the architect. Explicit experts in this sense, appear to be rather remote to the very idea of a competition as a space for qualitative debate and judgment.

We are not suggesting the exclusion of the explicit experts in a competition process, or the total exclusion of rigid prescriptive green building rating systems, which, in their current use, may stifle creativity in the search for innovative solutions. Rather if we are asked, as experts on competition research, to provide a recommendation, we could formulate two. First, ironically, we would advise that the explicit experts should remain external to the jury process, since their project vision is limited at best, and fragmentary at worst and could have an counter-productive on the redefinition of quality. Second, environmental tools such as green building rating systems, can be used as guidelines by the competitors in order to guide them in their performance objectives, if necessary, without having to be part of the competition process at all.
Bibliography


Are Clients, Architects and Juries Becoming Environmental?

A Critical View on the Competition Briefs and the Juries’ Assessments in Relation to the Outcome in Ten School Competitions

Leif D. Houck