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Abstract—Piece-wise first- and second-order approximations
are employed to design commonly used elementary function
generators for neural-network emulators. Three novel schemes
are proposed for the first-order approximations. The first scheme
requires one multiplication, one addition, and a 28-byte lookup
table. The second scheme requires one addition, a 14-byte lookup
table, and no multiplication. The third scheme needs a 14-byte
lookup table, no multiplication, and no addition. A second-order
approximation approach provides better function precision; it
requires more hardware and involves the computation of one
multiplication and two additions and access to a 28-byte lookup
table. We consider bit serial implementations of the schemes
to reduce the hardware cost. The maximum delay for the four
schemes ranges from 24- to 32-bit serial machine cycles; the
second-order approximation approach has the largest delay. The
proposed approach can be applied to compute other elementary
function with proper considerations.

Index Terms—Elementary function generators, hardwired neu-
roemulators, neural-network functions, piecewise approximation,
square root implementation, trigonometric functions.

I. INTRODUCTION

I NEXPENSIVE high-performance hardwired emulators
with acceptable function precision are highly desirable [1].

Even though precision may have important consequences in
the neural paradigm it is only recently that such a question has
been under investigation [1]–[2]. In the absence of a general
guideline regarding the notion of “acceptable precision” in
neural computations, we assume the precision achieved by
other high-performance low-cost designs proposed for sigmoid
generators [3]–[5], and propose schemes that improve both
speed and precision. We consider a number of widely used ele-
mentary functions which include: sigmoid function1 ,
sigmoid function derivative , logarithm function ,
exponential function , trigonometric functions and

, hyperbolic tangent function , square root
function , and inverse and inverse square functions
and . Most of these elementary functions relate to the
neural activation and the neural-network learning and they are
required to compute the network parameters.
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1Sigmoid functions:sigm(u) = 1=(1 + e ) andsigm (u) = e =(1 +
e ) .

The elementary functions can be implemented using lookup
tables [8]–[10], direct computations, e.g., using polynomial
power series evaluations [11], hybrid approaches [12], [13],
iterative approaches [14] and piece-wise approximations
[3]–[6]. A lookup table is inexpensive to build and it may not
introduce additional errors except the error incurred due to the
input value representation. When the function precision re-
quirement increases, the requirement in the table size escalates
exponentially. A direct computation requires a large number of
multiplications and additions, it is used when high precision
is required. In the iterative approaches one bit is generated in
each computation cycle [14]. The computation delay for this
scheme is higher than other schemes. The hybrid approaches
provide a tradeoff for the requirement of lookup table and
numerical computations. It can be used for the computation of
high precision sigmoid function [12], [13].

In this study we primarily investigate inexpensive high-per-
formance hardwired implementations of elementary functions
with an average error in the order of 10and a maximum error
in the order of 10 . A very important aspect of our proposal is
the following: all of the schemes we present here can accommo-
date an arbitrary number of functions with no hardware changes.
The only requirement is the storing in the memory of appro-
priate values for the functions to be computed with the com-
putational hardware and the memory unchanged. Furthermore
we note that precision can be improved with the use of more
than eight segments for the approximation with the additional
expenses of memory.

This paper is organized as follows. In Section II, we define
the number system used for the computation of both the first-
and second-order approximation. In Section III, we study
three first-order approximation schemes with the hardware
requirement from one multiplication and one addition to no
multiplication and no addition. In Section IV, a second-order
approximation scheme is proposed which requires one multi-
plication and two additions. The performance for a bit serial
implementation of the schemes is discussed in Section V and an
evaluation of a sigmoid generator using the proposed schemes
is presented in Section VI. We conclude this paper with some
remarks in Section VII.

II. I NTERNAL NUMBER SYSYTEM AND NOTATIONS

The representation used for the computations to generate the
elementary function employs a fixed point fractional number
system, denoted as the internal number system, with four integer
bits and ten fraction bits as shown below:

radix point
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The most significant bit of the internal number system is a
sign bit; “0” and “1” represent a positive and negative number,
respectively. The choice of the length of the representation re-
lates to an evaluation we conducted on ideal computations con-
sidering only the method error. Our evaluation indicates that the
method error alone is in the order of 10to 10 suggesting an
internal representation limited to ten fractional bits which pro-
duces a representation error 2 which is in the order of 10 .
A larger number of bits in the internal number system will not
reduce substantially the error since the method error is the dom-
inant error. Our scheme is applicable to both sign magnitude and
two=s complement notations. The maximum value to be repre-
sented by the internal number system is 2 for
both sign magnitude and two’s complement notations.

In the internal number system, in a number of occasions, a
number can be expressed as a set of known binary valued bits
followed by a number of bits having unknown values denoted
as the changing bits. For example: .
The first seven bits of have the fixed binary value 0000.101
while the remaining bits are changing bits; “” is used to de-
note a changing bit. Furthermore we denote by “&” the bit
by bit “and” of two internal numbers. For example, if

and then &
. We also denote mask as an internal

number whose th to th fraction bits are “1” and all other
bits are “0.” For example mask
and mask . With the notation of
mask , the truncation of an internal numberto th frac-
tion bit can be easily be expressed as:&mask .

For an elementary function and , if is
approximated by , then the average and maximum errors
of this estimation are defined to be the average and maximum
values of for uniformly sampled on points
in the domain of

Let where . Then

Average Error (2.1)

Maximum Error (2.2)

We will use the average and maximum errors to evaluate the
precision of the elementary function generators.

III. FIRST-ORDER APPROXIMATIONS

A. First-Order Approximation: Scheme-1

In a segment, denoted by , a linear approximation func-
tion can be used to compute the elementary function using
the following equation: . To compute this
equation one multiplication and one addition is required. The
two linear parameters and are computed using the least
squares method. For , the ideal function output
and its linear approximations are computed over the
inputs , the error of the linear approximation is

. The squares of these errors, , over
inputs are defined to be

where

is a function of and . The minimum value of
can be found by setting the derivatives of

with respect to and to be zero. Consequently, we have that

for we have that

where

Thus

and

(3.1)

Clearly, and are function of , and the segment parameters
and . The larger is, the more precise the and are

estimated. In this paper is chosen to be 10.

B. First-Order Approximation: Scheme-2

In this scheme the multiplication requirement is substituted
with a power of two multiplication. The equation for this linear
approximation is given by the following:

where and is an integer

(3.2)

The square errors of this first-order approximation denoted as
are defined to be

where

(3.3)
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When is fixed, the parameter can be determined using the
least squares method by setting to zero, implying that

(3.4)

Consequently

where

(3.5)

The parameter is not known, and it should be chosen in such a
way that and is minimum. The following
steps summarize the procedure to determine the parameters
and for the segment .

1) Set , , , ,
where is the optimal value of

such that takes minimum value.
2) Let and , compute the square

sum of the error over the segment

where

3) If then
.

4) .
5) if go to Step 2).
6) For compute .

C. First-Order Approximation: Scheme-3

In this scheme we proceed further and eliminate also the ad-
dition. This can be achieved by rounding the parameters of
in scheme-2 to in such a way that all the changing bits of

do not overlap with the nonzero bits of. The equa-
tion we consider has the form of where and
the changing bits of do not overlap with the nonzero
bits of .

The easiest way to obtain the parameteris using scheme-2
to find an optimum solution for and from the
procedures given in the last section. We find the first changing
bit of in the segment. If the changing bits ofbegin from
the th fraction bit then the changing bits of initiate
from the th fraction bit. Consequently if we round
to th fraction bits in the following way:

mask then and do
not have overlapping changing bits.

The first changing bit of is determined according to the
segment input belongs to. and values which
give the minimum average error of function estimation in the
segment can be obtained using a heuristic search. The heuristic
search operates on the and values which are located in
the vicinity of the initial estimate . For a segment the
“optimal” solutions for and are denoted as and
by the following.

1) Determine the first changing bit for the segment .
Set

where is the optimal value of such that
is minimum.

2) Let and .
3) Let mask and

count .
4)

If then
, count count 1.

5) if (count 11) go to Step 4).
6) .
7) if go to Step 2.

Here we chose for this presentation the number of sample points
to be 10.

D. Implementations of the Linear Approximation Schemes

Since the function inputs may have a very wide dynamic
range, many segments may need to be divided in order to have
a good function approximation. Parametersand (used in
Scheme-1) can be stored in the memory (e.g., ROM) for all
segments. The more segments we divide the input domain, the
larger ROM size is required. In order to reduce the large ROM
size requirement, we perform a transformation of the function
input so that the function input domain is significantly reduced.

For example, we express the function inputfor the loga-
rithm function as where then we have that

. The multiplication
of can be computed either by one multiplication or
by lookup table with the number of word entries to be. For
all other elementary functions Table I shows the transformations
for the function inputs. In Table I, the symbol “Int” is used to
express the integer portion of inputfor the exponential func-
tion . As it can be observed in Table I, the domain of the
sigmoid function for the linear approximation is reduced to in-
terval ( 4, 4). For inputs beyond this range, an output of “0” or
“1” is generated depending on the sign bit of the inputs. If the
input is less than 4 then the sigmoid function output is forced
to zero, if the input is greater than four then the function output
is forced to one. Using the linear approximation described pre-
viously denoted as scheme-1, and assuming that the number of
sample points used to estimate the linear parameters is,
the parameters and can be obtained for each segment.

For simplicity of discussion, we consider thedomain for the
elementary function to be the transformeddomain given
by the third column in Table I, denoted as . The choice of
the number of segments depends on the implemented function.
Since the width of the w for the trigonometric functions
and is 3.14 which is not a number in power of two, we
chose the total number of segments to be seven for the segment
width to be 0.5. The width of a segment is where

is the width of the domain. For the Scheme-1 the
estimated parameters and using 10 uniformly sampled
data in each segment are shown in Table II.

In Table II, the first line in each box is parameter and
the second line is parameter. It should also be pointed
out that Table II describes the general rule for the closure
of the segment. There are some special cases, for example
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TABLE I
TRANSFORMS OFFUNCTION INPUT

TABLE II
PARAMETERSA AND C FOR SCHEME-1

the sigmoid function, the inputs may be negative. The defi-
nitions for segments residing on the negative axis with sign
magnitude notation is different from the one with two’s
complement notations in order to express the input in each
segment with the same number of changing bits for both
number systems. We note that a difference between the sign
magnitude and two’s complement notation is on the closures
of the intervals. The sign magnitude procedures operate as
wanted if the closure of the interval is on the right-hand
side, e.g., for the
negative number. To the contrary the two’s complement
notation requires the closure to be on the left-hand side, e.g.,

and . Even though
Table II can be used for both notations, for ease of description
the interval notation is the two’s complement notation as we
use for the description of Table II only rather
than both notations.

To implement the scheme-1 in hardware, tables im-
plemented by ROM can be used to store the two linear
parameters and , the address of the table is gen-
erated directly from the function inputs. For the func-
tion input expressed in the internal number system as

, the
address bits are for all the elementary
function. Each elementary function uses only part of these bits
to decode the table entries. The number of table entries for
and are both seven for the trigonometric functions, and eight
for the other elementary functions. Consequently, the total
table size for and is bits 25 bytes for
the trigonometric functions and bits 28
bytes for the other elementary functions. The block diagram of
implementation of scheme-1 is shown in Fig. 1.

For the first-order approximation scheme-2 where no mul-
tiplication is required, the parametersand
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Fig. 1. Block diagram for Scheme-1.

are needed for each segment. For the segments we defined in
scheme-1, the parametersand can be determined as shown
in Table III following the procedures given in Section III-B.
In Table III, the first line in each box is parameterand the
second line in the box is parameter. As can be observed from
Table III, which satisfies the constrain we impose in
equation (3.3).

For the Scheme-2, only the parameterneed to be stored
in the ROM, the shifter control parameter can be generated by
combinational logic which can be decoded from the address bits.
The address bits for accessing the table for the scheme-2 are the
same as in scheme-1 for the elementary functions we have dis-
cussed. The number of table entries for storingis seven for
trigonometric functions and eight for the other elementary func-
tions. The total table size requirement is bits 13
bytes for the trigonometric functions and bits 14
bytes for the other elementary functions. The block diagram of
the implementation of scheme-2 is shown in Fig. 2. As shown
in Table III, the value of may be negative, the
designed “Shifter” should be able to change the sign bit for sign
magnitude notation and provide the proper inversion for two’s
complement notation of its output depending on the input seg-
ment.

For the first-order approximation using scheme-3, the param-
eters and are determined by the steps given in
Section III-C, these values are shown in Table IV.

We express the parameterin Table IV in hexadecimal no-
tation. In performing in sign magnitude notation
the operation can be either effective addition or effective sub-
traction [15]. As can be seen from Table IV, the valuesare
always positive in all the segments we consider. For the case
allowed by the values of , and the input there are two
distinct operations (effective addition and effective subtraction)
that result for the sign magnitude operations [15].

The procedure used to perform the approximation can be
easily explained using an example of effective addition. For sig-
moid function with , can be expressed
in the internal number system as .
From Table IV it is observed that and

, thus

(3.6)

An example covering and explaining the second case can be
found in [22].

The final outcome is that for the example the approximation
can be accomplished using bit inversion of the changing

bits of the input and merging, thus eliminating the need of ad-
dition/subtraction. This procedure can be applied to all entries
with proper consideration.

One example to design a sign magnitude logarithm generator
from Table IV is given in Table V. The first column of Table V is
the data format of the function inputs in sign magnitude notation
for the eight segment we divide the input domain [1, 2). The
second column of Table V is the function output data format in
sign magnitude notation. It can be observed from Table V that
each bit of the function output can be obtained either directly
from the function input bit or its bit inverse or a constant zero
or one depending on the segment the input belongs to.

For the internal number system assumed to be two=s com-
plement notation, the input and the output of the functions can
be negative. Two of the four cases, namely, and all pos-
itive, and and are positive and is negative, are covered
by sign magnitude procedure. The other two cases,and are
positive and is negative, and is positive and and are neg-
ative, are fully presented in [22] where it is shown that similar
to the sign magnitude notation, the final outcome for the two’s
complement notation is that the approximation can be ac-
complished using fixed valued bits followed by changing bits or
by the bit inversion of the changing bits of the input. Using the
same method for the above examples, the data output formats
for the sigmoid are obtained and shown in Table VI; two’s com-
plement notation is used.

A general block diagram of the Scheme-3 is shown in Fig. 3.
In Fig. 3, the bit inverse control logic determines if the input
bits should be inverted. For example, the input bits are inverted
for input in segments 1, 2, 3, 5, 7, 8 to compute the logarithm
function. Referring to Fig. 3, the numbers in Table I and Table
II determine if the output bits after the shifter are set to one or
zero. Table I and Table II store two internal numbers. For a given
bit position if the set bit is one and the reset bit is zero, then the
corresponding output bit is one, otherwise if the set bit is zero
and the reset bit is one the output bit is reset to zero. If the set
and the reset bits are both zero, then the output bits of the flip
flop are the same as the corresponding input bits to the shifter.
The set and reset bits cannot be one at the same time, this can be
achieved by designing the table without two ones in the same bit
position. The number of entries for the two words in the tables
is the number of segments we divide the input. For elementary
function to be the trigonometric function and , the
number of segments is seven, then the number of table entries is
seven as well. Each word stores 14 bits, thus the total ROM size
is bits 25 bytes. For the other elementary
function, the number of word entries is eight and the total table
size is bits 28 bytes. The following example
shows the method to determine the numbers in Table I and Table
II. Additional examples are found in [22].

For the logarithm with input in the segment of [1, 1.125), the
output format is 0000.0000 111, then two numbers in Table I
and Table II are: Table I 0000.0000 1110 00 and Table II
1111.1111 0000 00. What is performed is forcing changing bits
of output format to zero for both Table I and Table II entries,
then passing and inverting the nonchanging bits to the Table I
and Table II entries, respectively.
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TABLE III
PARAMETERSA AND C(C = 2 ) FOR SCHEME-2

Fig. 2. Block diagram for Scheme-2.

We note here that one of the two tables is not necessary for
an implementation at the expense of control and inverting logic,
this reduces the table size by half.

The errors of the elementary function generators have three
sources: method error, representation error and what we denote
as a “partitioning” error. The method error is the error generated
from the first-/second-order polynomial series evaluations. The
representation error is generated due to the finite word length
of the internal number representation. The multiplication and
the bit shifting may generate representation errors due to the
truncation. The “partitioning” error relates to the elementary
functions , and when the function
output is force to one or zero when the input is beyond the
piecewise approximation range. To evaluate the performance of
the three linear approximation schemes the average and max-
imum error for each scheme is computed for all the elemen-
tary function we have discussed. For the elementary functions

and , the “partitioning” errors must
be considered for the function generator precision. The average
error denoted as AVE-ERR and the maximum error denoted as
MAX-ERR are computed using (2.1) and (2.2) with considera-
tion of finite length word length of the internal number system

based on the 10outputs for input uniformly sampled in the do-
main of ( 8, 8).

For the other elementary functions considered in this paper,
the AVE-ERR and the MAX-ERR are computed for the input
u in the domain given by the second column of Table I for
the 10 outputs for inputs uniformly sampled in thedomain.
The average and maximum errors are found for the elementary
functions using the three schemes as shown in Table VII using
computer simulations. The table size requirements for the three
schemes for the elementary functions are also shown in the table
(note that the computation for scheme-3 assume a single table
implementation).

IV. SECOND-ORDER APPROXIMATION: SCHEME-4

The function inputs are divided into segments and a second-
order approximation is used to compute the elementary func-
tions in each segment. For a segment , if an input

, a second-order approximation for the sigmoid function
can be computed as .
It requires two multiplications and two additions for the compu-
tation. In order to reduce computing delay and complexity, we
propose an approximation method that requires computations of
only one multiplication and two additions

where (4.1)

Since we constrain to be a value with a power of two, multi-
plication with can be computed by bit shifting consequently
only one multiplication is required to compute (4.1).

We compute the ideal function output and its
second-order approximation on uniformly spaced
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TABLE IV
PARAMETERSA AND C(jCj = 2 ) FOR SCHEME-3

TABLE V
A LOGARITHM GENERATORUSING SCHEME-3

inputs in the segment , where is
defined to be

(4.2)

The error between the ideal and the estimated function is
and the square sum of the second-order

approximation error over sample inputs in segment is

(4.3)

The least squares method can also be used to find the parameters
and so that is minimum. When is

given, the minimum value of can be found by
setting the derivatives of with respect to and

to be zero. Then we have that

and

(4.4)

by substituting (Definition 4.1),
(Definition 4.1) and computations (the explicit derivation can
be found in [23]). It can be concluded that

(4.5.1)

(4.5.2)

where

Solving (4.5), and can be determined to be

and

(4.6)

For with being an integer, the larger the number
of samples is, the more precise the and are estimated.
In this investigation, we chose to be 10 . A set of , ,
and are obtained for changing from zero to 20.
For greater than 20, since , the second-order
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TABLE VI
OUTPUT FORMAT FOR THESIGMOID AND ITS DERIVATIVE IN 8 SEGMENTS

Fig. 3. Block dagram of Scheme-3

term can be neglected compared to the repre-
sentation error of our internal number system. We exhaustively
search the minimal value of for with

varying from zero to 20 to identify the number such that
is minimum.

The procedure to determine, and in segment
is given by the following five steps:

1) Let , , , ,
.

2) Let compute according to (4.6.1) and
(4.6.2) and the square sum of the error
over the segment:

.
3) If then

and .
4) , if go to Step 2).
5) For compute the optimum values of and ac-

cording to (4.6.1) and (4.6.2)

The number of segments chosen to implement this second-order
approximation is the same as the one used for the linear approx-
imation in scheme-1, scheme-2 and scheme-3.

For the second-order approximation, the parameters, ,
and are computed using sampled data for inputs uni-
formly spaced in each segment. The parameters, , and
are shown in Table VIII. In Table VIII, the first line in each box
is parameter , the second line is parameterand the third line

is parameter whose absolute value is a power of two which
can be seen from the Table VIII.

For some of the elementary functions, for example,
the internal representation of

may be greater than the maximum value of the our
internal number system, . This represents
an overflow in the internal representation. This difficulty of
generating a nonrepresentable number when the number of
integer bits in the internal number system is not large enough
can be overcome by modifying (4.1) to the following form:

(4.7)

where , and .

The function used above is a floor function it truncates
the fraction bits and retain only the integer bits. It is verified for
each segment by estimating the maximum intermediate number
in computation that all the intermediate numbers in the compu-
tation of (4.7) are representable in our internal number system
for all the elementary functions. An example of using modified
second-order approximation equation (4.7) is to compute a sig-
moid function for inputs in the segment

, the parameters , , are given in Table VIII to be
1.0556, 4.2220 and , respectively. The parameters for
the modified equation (4.7) are

, and and
the modified equation for sigmoid generator for input in the seg-
ment [0, 1) becomes: .

It can be verified easily that does not over-
flow in the fixed point representation with four integer bits we
used for . The block diagram of the implementation
of the modified second-order approximation given in (4.7) is
shown in Fig. 4; parameters and are stored in two tables.

From computer simulations with 10sampled function out-
puts assuming an input uniformly spaced in the input domain
of , we have examined the elementary functions we consid-
ered and computed the average error denoted as AVE-ERR and
maximum error denoted as MAX-ERR using the definitions of
(2.1) and (2.2). The computed average and maximum errors are
shown in Table IX. The last row of the table shows the required
table size in unit of bytes.
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TABLE VII
AVERAGE AND MAXIMUM ERROR OFFIRST–ORDER APPROXIMATION SCHEMES

TABLE VIII
PARAMETERSA, B, AND C

V. BIT SERIAL IMPLEMENTATION OF PIECE-WISE

APPROXIMATION SCHEMES

In neural computing, the number of neurons involved in the
computation can be large, and a parallel computing unit could
be very expensive. Due to the requirement of large neurons in an
implementation [9], [10], [16]–[21], a pipelined bit-serial com-

putation provides a cost effective solution for neural-network
computing. In bit serial computation and because our internal
number system has ten fraction bits and four integer bits, an
addition requires 14 machine cycles to compute and a multipli-
cation requires 28 machine cycles. In the bit serial computation
data are computed in a pipelined fashion. The worst case delay
of the computing is less than the total delay of each computing



VASSILIADIS et al.: ELEMENTARY FUNCTION GENERATORS 1447

Fig. 4. Block diagram for Scheme-4.

unit because the multiplier/adder can initiate the computation
without waiting for the all the input bits to be available.

In Scheme-1 the delay to generate the function output include:
thedelayofmemoryaccesstogenerateparametersand which
canbe restricted toonemachinecycle; thedelayofmultiplication

;andthedelayforaddition.Sinceweconsidertousepipelined
bit serial computations, the total delay for the function generator
is less than the summation of the delays of memory access, multi-
plicationandadditionbecausethebitserialaddercanstart tocom-
putewithoutwaiting for themultiplier toprovideall the inputbits.
Thebitserialaddercanstartcomputingaslongasthetenthfraction
bitof isavailablewhichtakes11machinecycles inour in-
ternal number system. To generate the 14-bit output for the bit se-
rial adder, 14 more machine cycles are needed. Consequently the
totaldelay togenerate the functionoutput is:1(memoryaccess)
11(multiplication) 14(addition) 26machinecycles.

In scheme-2, the computation of delay is similar to the
previous scheme. It is estimated that the maximum delay for
scheme-2 is 24 machine cycles. In scheme-3, the computation
delay includes the delays for the exclusive-or (XOR) logic,
shifter, and set–reset logic. The total delay for the scheme-3
has been estimated to be 25 machine cycles.

The delay for the second-order approximation involves the
delay of shifter representing the power of two multiplication of

. The integer is defined in(4.7) as . From
TableVIII, themaximumvalueof istenthusthemaximumvalue
of is five. Consequently the maximum delay for the shifter to
implement thepowerof twomultiplication is fivemachinecycles.
The worst case delay for scheme-4 is estimated to be 32 machine
cycles. The maximum computation delays for the four proposed
schemes are summarized as follows (the computation units are
designed in a pipelined bit serial fashion): Scheme-1(first order)

26,Scheme-2(firstorder)24,Scheme-3(firstorder)25,and
Scheme-4(secondorder)32.

VI. EVALUATION

For our evaluations we consider two quantities: the average
error and maximum error.2 We consider the implementation of
the first-order approximation scheme proposed in [5], [6] and
implemented by Murtagh/Tsoi [4] and the second-/third-order

2Additional evaluations are reported in [23].

approximations proposed in [3]. For convenience of compar-
isons, we denote the first-order approximation scheme-1 used
for sigmoid generations as S1, and we denote S2, S3 and S4
for the sigmoid generators using the first-order approximations
scheme-2, scheme-3 and the second-order approximation
scheme-4, respectively. We also denote K2 and K3 as the
second– and third-order approaches, respectively, which are
proposed in [3], and we denote PS16 and PS8 for the existing
first-order approximation approach implemented in [7] for
the sigmoid generators. The estimated hardware requirements
(including multipliers and adders) and precision are shown in
Table X further discussion regarding PS16, PS8, K2 and K3
can be found in [22].

Based on the estimations of Table X, we derived Table XI
reporting the ratios of performance and hardware requirement
for our proposed sigmoid generators (denoted as schemes S1,
S2, S3 and S4) and the existing sigmoid generators (denoted
as schemes PS16, PS8, K2 and K3) in terms of average error,
maximum error, lookup table size and the worst case delay. In
Table XI, AVE-ERR is the average error, MAX-ERR is the max-
imum error, “Table” is the lookup table size and the delay is
the worst case computation delay. If the ratio is less than 1.00,
then the proposed scheme outperforms the existing scheme for
the corresponding parameter given on the left column of the
Table XI.

From the Table XI, it is noticed that all of our proposals for
the sigmoid generator have smaller average error than the ex-
isting schemes. In particular, the average error of the proposal
S1 is as small as 4% of the scheme denoted as K3 and as much as
41% of the scheme PS16 as shown in Table XI. The maximum
error and the worst case delay of the proposal S1 is less than
the existing schemes with a speed up that varies between 1.23
and 1.81. The proposal S1 requires larger lookup table size than
the schemes K2 and K3, however compared to the gain of the
implemented function average error (5% of the scheme K2 and
4% of the scheme K3), the cost of lookup tables is worthwhile.
The proposal S2 requires the least table size in our four pro-
posals and outperforms the existing schemes with a speedup up
to 1.96. The proposal S3 has the best performance and outper-
forms the existing schemes with a speedup from 1.28 to 1.88.
The proposal S4 have the least average and maximum errors
among all the proposals. The four proposals S1, S2, S3, and S4
provide different tradeoff between the average and maximum
errors, table size, and the worst case delay and outperform the
existing schemes.

VII. CONCLUDING REMARKS

We have presented four schemes for the generation of
elementary functions using first-order and second-order ap-
proximations. An important aspect of the proposed schemes
is the capability to accommodate the functions we propose
and possibly an arbitrary number of additional functions
with a common design to all functions. By loading the
values that are unique to individual functions, high perfor-
mance and very small cost can be achieved, making the
proposed schemes suitable for a large number of hardwired
neural application and extremely valuable for the design
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TABLE IX
AVERAGE AND MAXIMUM ERRORS OFSECOND-ORDER APPROXIMATION SCHEME-4

TABLE X
COMPARISONS OFSIGMOID GENERATORS

TABLE XI
RATIOS FORS1, S2, S3,AND S4 OVER SCHEMESPS16, PS8, K2,AND K3

TABLE XII
HARDWARE REQUIREMENT OF THESCHEMES

of neural emulators advancing them to a more general
purpose environment. We have established that under the
prespecified criteria of having an average error not exceeding
10 (i.e., a representation error of around 2) and a
maximum error of 10 , two schemes for all functions can
satisfy the requirement. The proposed schemes provide wide
tradeoff selections between the hardware requirement and
the achieved function precision. In addition to registers that
may be needed to hold input–output values, the required
hardware for the four schemes includes: multiplication,
addition, bit-shifter, exclusive-or, flip-flop, and lookup tables
as shown in Table XII.

The overall conclusion of the investigation is that the
second-order approximation and one of the first-order
schemes have the potential to be used as a general purpose
devices to accommodate potentially a larger number of func-
tions other than the ones we consider. The third first-order
approximation scheme can be used successfully for sigmoid
generators and the second scheme can be used for more
than half of the functions we considered. Finally we note
that the eight segment design was chosen to facilitate the
presentation. The proposed schemes are general and more
segments can be used to improve the precision, with proper
consideration, at the expense of additional memory.
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