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Elementary Function Generators for Neural-Network
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Abstract—Piece-wise first- and second-order approximations ~ The elementary functions can be implemented using lookup
are employed to design commonly used elementary function taples [8]-[10], direct computations, e.g., using polynomial
generators for neural-network emulators. Three novel schemes power series evaluations [11], hybrid approaches [12], [13],

are proposed for the first-order approximations. The first scheme iterati h 14 d bi - mati
requires one multiplication, one addition, and a 28-byte lookup iterative approaches [14] and piece-wise approximations

table. The second scheme requires one addition, a 14-byte lookup[3]—[6]. A lookup table is inexpensive to build and it may not
table, and no multiplication. The third scheme needs a 14-byte introduce additional errors except the error incurred due to the

lookup table, no multiplication, and no addition. A second-order jnput value representation. When the function precision re-
approximation approach provides better function precision; it o, irament increases, the requirement in the table size escalates

requires more hardware and involves the computation of one tiallv. A direct tati . I b f
multiplication and two additions and access to a 28-byte lookup exponentially. irect computation requires a largé number o

table. We consider bit serial implementations of the schemes Multiplications and additions, it is used when high precision
to reduce the hardware cost. The maximum delay for the four is required. In the iterative approaches one bit is generated in

schemes ranges from 24- to 32-bit serial machine cycles; theeach computation cycle [14]. The computation delay for this
Seco”d'grder apprrc]mmatll)on ap;l)_rodach has the 'ar%eSt dle'ay- The scheme is higher than other schemes. The hybrid approaches
proposed approach can be applied to compute other elementary provide a tradeoff for the requirement of lookup table and

function with proper considerations. - . .
_ _ numerical computations. It can be used for the computation of
Index Terms—Elementary function generators, hardwired neu- high precision sigmoid function [12], [13]
roemulators, neural-network functions, piecewise approximation, ' )

square root implementation, trigonometric functions. In this study we primarily investigate inexpensive high-per-

formance hardwired implementations of elementary functions
with an average error in the order of 1band a maximum error
. INTRODUCTION in the order of 162. A very important aspect of our proposal is
NEXPENSIVE high-performance hardwired emulatorthe following: all of the schemes we present here can accommo-
with acceptable function precision are highly desirable [1flate an arbitrary number of functions with no hardware changes.
Even though precision may have important consequencesTime only requirement is the storing in the memory of appro-
the neural paradigm it is only recently that such a question haigate values for the functions to be computed with the com-
been under investigation [1]-[2]. In the absence of a genemltational hardware and the memory unchanged. Furthermore
guideline regarding the notion of “acceptable precision” iwe note that precision can be improved with the use of more
neural computations, we assume the precision achieved thgn eight segments for the approximation with the additional
other high-performance low-cost designs proposed for sigmagspenses of memory.
generators [3]-[5], and propose schemes that improve bothThis paper is organized as follows. In Section I, we define
speed and precision. We consider a number of widely used alee number system used for the computation of both the first-
mentary functions which include: sigmoid functiosigm(«), and second-order approximation. In Section Ill, we study
sigmoid function derivativeigm’(w), logarithm functiorin(x), three first-order approximation schemes with the hardware
exponential functiore™", trigonometric functionsin(x) and requirement from one multiplication and one addition to no
cos(u), hyperbolic tangent functiontanh(w), square root multiplication and no addition. In Section 1V, a second-order
function /u, and inverse and inverse square functidns approximation scheme is proposed which requires one multi-
and 1/42. Most of these elementary functions relate to thglication and two additions. The performance for a bit serial
neural activation and the neural-network learning and they aneplementation of the schemes is discussed in Section V and an
required to compute the network parameters. evaluation of a sigmoid generator using the proposed schemes
is presented in Section VI. We conclude this paper with some
remarks in Section VII.

_ _ _ _ [I. INTERNAL NUMBER SYSYTEM AND NOTATIONS
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The most significant bit3 of the internal number system is a| H (u;) — F'(uw;)|. The squares of these errofsR(A, C), over
sign bit; “0” and “1” represent a positive and negative numbely inputs are defined to be
respectively. The choice of the length of the representation re- N1
lates to an evaluation we conducted on ideal computations con- ER(A, C) = Z (H (u) — F (1))
sidering only the method error. Our evaluation indicates that the
method error alone is in the order of 10to 10~* suggesting an \here
internal representation limited to ten fractional bits which pro- { D= (b-a)/N

=0

duces a representation error®® which is in the order of 10°. wi=a+tisD i=0,1,---,N-1

A larger number of bits in the internal number system will not ) . o

reduce substantially the error since the method error is the dofnfi(4, C) is a function of4 and C. The minimum value of
inant error. Our scheme is applicable to both sign magnitude afid(4, €) can be found by setting the derivativestoR(A, C)
two=s complement notations. The maximum value to be repi¥ith respect ta4 andC’to be zero. Consequently, we have that

sented by the internal number systemds-22-19 = 7.999 for N-1

both sign magnitude and two’s complement notations. OER _ 2 Z (H (w;) — F (w;))
In the internal number system, in a number of occasions, a 04 i=0

numbera can be expressed as a set of known binary valued bits 9ER N—1

followed by a number of bits having unknown values denoted B0 =2 Z (H (u;) = F (us))u

as the changing bits. For exampte:= 0000.101z zxxz zx. i=0

The first seven bits ofv have the fixed binary value 0000.101for H (v;) = A + C * u; we have that

while the remaining bits are changing bits;""is used to de- o _
note a changing bit. Furthermore we denote by “&” the bit N+A4+N«CxX-N=+Y =0
by bit “and” of two internal numbers. For example,df = N+AX+N+CxX2-NxXY =0

0000.1111 110000 and3 = 0000.1000000011 thena& 3 =
0000.1000 0000 00. We also denote maék, m) as an internal Where

number whose:th to mth fraction bits are “1” and all other N1 N-1 N1
bits are “0.” For example magk 1, —4) = 0000.1111 0000 00 Z U Z uf Z F (ui)
and mask3, —10) = 1111.1111 1111 11. With the notation of X = =0 Yz — =0 y — =0
masKn, m), the truncation of an internal numbeto nth frac- N N N
tion bit can be easily be expressed @a&mask(3, —n). =

For an elementary functiafi(w) andu € [Ag, A1), if F(u)is Z ui * F ()

approximated by (u), then the average and maximum errors ~ XY = ‘=2

of this estimation are defined to be the average and maximum N
values of|H (u) — F'(u)| for « uniformly sampled o0 points Thus
in the domain of \g, A1) X+Y -XY
Letw; = Ao + 4 A whereA = (A\; — X\o)/10°. Then ¢= X2_ X2
and
& XY+ X - X2+7
— — * — *
> 1H (ui) = Fw)] A=Y -0+X=""fr s @)
Average Error= —=2 . (2.1) _ N
10 Clearly,A andC are function ofV, and the segment parameters

Maximum Error= | max |H (wi) = F (u;)]. (2.2) o andB. The largerN is, the more precise thd and C' are
e estimated. In this pape¥ is chosen to be 0
We will use the average and maximum errors to evaluate the
precision of the elementary function generators. B. First-Order Approximation: Scheme-2

In this scheme the multiplication requirement is substituted
with a power of two multiplication. The equation for this linear

lII. FIRST-ORDER APPROXIMATIONS approximation is given by the following:

A. First-Order Approximation: Scheme-1 H(u)= A+Cxu where|C| = 27" andn is an integer
In a segment, denoted Ky, 3], a linear approximation func- (3.2)

tion H(w) can be used to compute the elementary function usin% o o

the following equationH (u) = A + C * u. To compute this The square errors of this first-order approximation denoted as

equation one multiplication and one addition is required. THeft(4, C) are defined to be

two linear parametersl and C are computed using the least N-1
squares method. Fare [«, /3], the ideal function outpuf’(w) ER(A, C) = Z (H (u;) — F (w;))* where|C| =27".
and its linear approximation& (») are computed over tha’ i=0

inputsw; (0 < ¢ < N), the error of the linear approximation is (3.3)
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When(C is fixed, the parametes can be determined using the 1) Determine the first changing bit for the segmerity, 3).

least squares method by setting 2/9 A to zero, implying that Setn = 0, Copy = 1, ERyiy = 1000, N = 105, A =
OER N-1 (b—a)/N whereC,,,; is the optimal value of” such that
o1 =2 > (H (ui) = F(u;)) = 0. (3.4) ER(A, C)is minimum.
i=0 2) LetC=42"" A=Y —CxX andAA = 2~ (n+m-1)
Consequently 3) LetA = A&mask3, —(n +m — 1)) — 10 * AA and
N—1 count= 1. .
> A+Csu; —F(u)=0 A=Y -CxX 4) A = A+ AA ER(A, O) = YV M A+ O s u—
=0 F(U,Z))Q If ER(A, C) < FER., then ER,;, =
where ER(A, O), Ay = A, Cypy = C, count= count+1.
|C| =277 (3.5) 5) if (count<11) go to Step 4).

6) n =n+ 1.

7) if n < 20 go to Step 2.
/ ere we chose for this presentation the number of sample points
X to be 16.

The parametef is not known, and it should be chosenin such a
way that|C| = 27" andER(A, C)is minimum. The following H
steps summarize the procedure to determine the paraméte
andC for the segmenf, 3.
1) Setn = 0, Copy = 1, ERyiy = 1000, N = 10°, D. Implementations of the Linear Approximation Schemes
A = (b— a)/N whereC,, is the optimal value of”
such thatE R(A, C,,¢) takes minimum value.
2) LetC = £2 " andA =Y — C % X, compute the square
sum of the error over the segment

Since the function inputs may have a very wide dynamic
range, many segments may need to be divided in order to have
a good function approximation. Parameterand C (used in
Scheme-1) can be stored in the memory (e.g., ROM) for all

= ) segments. The more segments we divide the input domain, the
ER(A, C) = Z (A+Cxui — F (u;)) larger ROM size is required. In order to reduce the large ROM
=0 size requirement, we perform a transformation of the function
where input so that the function input domain is significantly reduced.
{D =( _.“)/N i=0,1,---,N—1. For example, we express the function inpufor the loga-
up=a+ixD rithm function as: = 2w wherew € [1, 2) then we have that
3) If ER(A, C) < ERuym thenER,;, = ER(A, C), In(u) = In(2"w) = m * In(2.0) + In(w). The multiplication
Copt = C. of m x In(2.0) can be computed either by one multiplication or
Hn=n+l by lookup table with the number of word entries to-he For
5) if n < 20 go to Step 2). o o all other elementary functions Table | shows the transformations
6) ForC = C,pr computed =Y — O, x X for the function inputs. In Table I, the symbol “Int” is used to

express the integer portion of inputfor the exponential func-

tion ¢e*. As it can be observed in Table I, the domain of the
In this scheme we proceed further and eliminate also the ailgmoid function for the linear approximation is reduced to in-

dition. This can be achieved by rounding the parameterd’ of terval (—4, 4). For inputs beyond this range, an output of “0” or

in scheme-2 ta4 in such a way that all the changing bits of‘'1” is generated depending on the sign bit of the inputs. If the

(27" % u) do not overlap with the nonzero bits df The equa- inputis less thar-4 then the sigmoid function output is forced

tion we consider has the form af+C'«u where|C| = 27" and to zero, if the input is greater than four then the function output

the changing bits of2~" « «) do not overlap with the nonzerois forced to one. Using the linear approximation described pre-

bits of A. viously denoted as scheme-1, and assuming that the number of
The easiest way to obtain the paramedes using scheme-2 sample pointsV used to estimate the linear parameterss,

to find an optimum solution foA’ andC(|C| = 27 ) from the the parameterd andC can be obtained for each segment.

procedures given in the last section. We find the first changingFor simplicity of discussion, we consider thelomain for the

bit of « in the segment. If the changing bits efbegin from elementary functiod’(«) to be the transformed domain given

the mth fraction bit then the changing bits & "« initiate by the third columnin Table |, denoted@s, A:]. The choice of

from then + mth fraction bit. Consequently if we round’ the number of segments depends on the implemented function.

to m 4 n — 1th fraction bits in the following wayA = (4’ +  Since the width of the w for the trigonometric functiosia(w)

2-(ntm=1)&mask3, —(n +m — 1)) thenA and2 — nC do  andcos(u) is 3.14 which is not a number in power of two, we

not have overlapping changing bits. chose the total number of segments to be seven for the segment
The first changing bit of4’ is determined according to thewidth to be 0.5. The width of a segmentds® « A whereA =

segment inputs belongs to.A andC' = £+27" values which (A; — Xo) is the width of thex domain. For the Scheme-1 the

give the minimum average error of function estimation in thestimated parameteré and C using 1¢ uniformly sampled

segment can be obtained using a heuristic search. The heuridéita in each segment are shown in Table 1.

search operates on thé and C values which are located in In Table Il, the first line in each box is parametdrand

the vicinity of the initial estimatel’. For a segmerity, 3) the the second line is parametér. It should also be pointed

“optimal” solutions forA andC' are denoted ad,,, andC,,, out that Table Il describes the general rule for the closure

by the following. of the segment. There are some special cases, for example

C. First-Order Approximation: Scheme-3
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TABLE |
TRANSFORMS OFFUNCTION INPUT
Function Transforms ® domain Internal representation of ®
sigm(u) N/A (-4.4) XXXX. XXXX XXXX XX
sigm’(u) ®=Ju| [0,8) 0xxXX. XXXX XXXX XX
sin(u) @O=u+kmn [0, 3.14) 00XX. XXXX XXXX XX
cos(u) o=u+kn [0, 3.14) 00XX. XXXX XXXX XX
In(u) @=2My [1,2) 0001. xXXX XXXX XX
U o=u-Int [0,1) 0000. XXXX XXXX XX
tanh(u) o=|u} [0,8) OXXX. XXXX XXXX XX
1 ©=2My [1,2) 0001. XXXX XXXX XX
«\/;, w=2My [0,1) 0000. XXXX XXXX XX
' ®=2My [1,2) 0000. XXXX XXXX XX
TABLE I
PARAMETERS A AND C' FOR SCHEME-1
Segments
Functi u A [, [Aot+A, | [Ao+24, | [Ao+34, | [AoH44, | [Ao+5A, | [Ag+64, | [Ao+7A,
unction interval
Ao+A) | Apt24) | Ao+3A) | Ag+4A) | Ao+5A) | Ag+64) | AgtT7A) | Ag+8A)
sigm(u) 1 | 0.1321 | 0.2561 | 0.4106 | 0.4962 | 0.5038 | 0.5894 | 0.7439 | 0.8679
(-4,4) 0.0290 | 0.0711 | 0.1495 | 0.2326 | 02326 | 0.1495 | 0.0711 | 0.0290
sigm (1) 1 | 02586 | 02890 | 0.2210 | 0.1247 | 0.0602 | 0.0260 | 0.0115 | 0.0048
[0,8) -0.0550 | -0.0929 | -0.0597 | -0.02722 | -0.0109 | -0.0041 | -0.0015 | -0.0006
sin(w) 0.5 | 0.0041 | 0.1292 | 0.5474 | 1.2838 | 2.1746 | 2.9037 | 3.1323
[0,3.14) 09629 | 0.7271 | 03134 | -0.1771 | -0.6243 | -0.9185 | -0.9970
cos() 0.5 | 1.0203 | 1.2321 | 1.4909 | 1.5348 | 1.1181 | 0.1283 | -0.7796
[0,3.14) 02459 | -0.6774 | -0.9431 | -0.9779 | -0.7732 | -0.3793 | -0.0707
In(w) 0.125 | -0.9407 | -0.8292 | -0.7289 | -0.6378 | -0.5543 | -0.4773 | -0.4057 | -0.3390
[1,2) 09418 | 0.8426 | 0.7623 | 0.6959 | 0.6402 | 0.5928 | 0.5519 | 0.5162
ot 0.125| 0.9988 | 0.9851 | 0.9608 | 0.9287 | 0.8908 | 0.8490 | 0.8047 | 0.7591
[0,1) -0.9398 | -0.8294 | -0.7319 | -0.6459 | -0.5700 | -0.5030 | -0.4439 | -0.3918
tanh(u) 1.0 | 0.0479 | 0.6005 | 0.9113 | 0.9838 | 0.9973 | 0.9996 | 0.9999 | 1.0000
0,8) 0.7717 | 0.1938 | 0.0292 | 0.0040 | 0.0005 | 0.0001 | 0.0000 | 0.0000
1/u 0.125| 1.8854 | 1.6864 | 1.5254 | 1.3925 | 1.2810 | 1.1860 | 1.1041 | 1.0328
(12) -0.8877 | -0.7103 | -0.5813 | -0.4845 | -0.4100 | -0.3515 | -0.3046 | -0.2666
N 0.125] 0.0943 | 02126 | 02777 | 03296 | 0.3743 | 0.4140 | 0.4503 | 0.4838
[0,1) 22628 | 1.1647 | 0.8972 | 0.7571 | 0.6673 | 0.6034 | 0.5550 | 0.5166
12 0.125| 26679 | 2.1341 | 1.7460 | 14549 | 1.2310 | 1.0551 | 09144 | 0.8001
(1,2) -1.6744 | -1.1983 | -0.8870 | -0.6748 | -0.5253 | -0.4169 | -0.3364 | -0.2753

the sigmoid function, the inputs may be negative. The defi- To implement the scheme-1 in hardware, tables im-
nitions for segments residing on the negative axis with siglemented by ROM can be used to store the two linear
magnitude notation is different from the one with two'parametersA and C, the address of the table is gen-
complement notations in order to express the input in eaehated directly from the function inputs. For the func-
segment with the same number of changing bits for botion input expressed in the internal number system as
number systems. We note that a difference between the sige= z3z2x120.0 12 2% _3%_4%_50_6¢T_7Z_sT_o9x_10, the
magnitude and two’s complement notation is on the closuraddress bits areszsxzixox 12 2z 3 for all the elementary

of the intervals. The sign magnitude procedures operate faaction. Each elementary function uses only part of these bits
wanted if the closure of the interval is on the right-hantb decode the table entries. The number of table entriesifor
side, e.g.,(—4, —3], (-3, —2], (-2, —1], (-1, 0) for the andC are both seven for the trigonometric functions, and eight
negative number. To the contrary the two’'s complemefdr the other elementary functions. Consequently, the total
notation requires the closure to be on the left-hand side, efmgble size ford andC is 7 %« 2 * 14 = 196 bits =25 bytes for
(-4, —3), [-3, —2), [-2, —1) and [-1, 0). Even though the trigonometric functions an& = 2 * 14 = 224 bits = 28
Table Il can be used for both notations, for ease of descriptibgtes for the other elementary functions. The block diagram of
the interval notation is the two’s complement notation as weplementation of scheme-1 is shown in Fig. 1.

use for the description of Table Il onlpro, Ao + A) rather For the first-order approximation scheme-2 where no mul-
than both notations. tiplication is required, the parametersand C(|C| = 27™)
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bits of the input and merging, thus eliminating the need of ad-
dition/subtraction. This procedure can be applied to all entries
with proper consideration.

X3 X2 X Xp X X2 X3 Xq4X5X6X7X8X9X g0

| Table C

1 1 1 T 1 I I

| Table A

One example to design a sign magnitude logarithm generator
from Table IV is given in Table V. The first column of Table V is
the data format of the function inputs in sign magnitude notation
for the eight segment we divide the input domain [1, 2). The
second column of Table V is the function output data format in
sign magnitude notation. It can be observed from Table V that

.~ each bit of the function output can be obtained either directly
are needed for each segment. For the segments we definegdf, the function input bit or its bit inverse or a constant zero
scheme-1, the parametetsandC’ can be determined as showry o depending on the segment the input belongs to.

in Table 1l following the procedures given in Section 1l1-B. . B
In Table I1I, the first line in each box is parametdrand the ~ FOF the internal number system assumed to be two=s com-

second line in the box is paramet&r As can be observed from plement notation, the input and the output of the functions can

Table Ill, |C| = 2= which satisfies the constrain we impose i?® "€gative. Two of the four cases, namalyC’ andw all pos-
equation (3.3). itive, and A andw are positive and” is negative, are covered

For the Scheme-2, only the parametemeed to be stored by S_iQ” magn_itude pr_ocedure._The ‘?t_hef two cademndC are
itive and. is negative, and\ is positive and” andw are neg-

in the ROM, the shifter control parameter can be generated B X e I
combinational logic which can be decoded from the address bRSVe: are fully presented in [22] where it is shown that similar

The address bits for accessing the table for the scheme-2 are'thif'® Sign magnitude notation, the final outcome for the two’s
same as in scheme-1 for the elementary functions we have §i&MPlement notation is that the approximatiéw) can be ac-
cussed. The number of table entries for storihgs seven for complished using fixed valued bits followed by changing bits or

trigonometric functions and eight for the other elementary funBY the bit inversion of the changing bits of the input. Using the
tions. The total table size requirementis 14 = 98 bits~ 13 Same method for the above examples, the data output formats

bytes for the trigonometric functions afe 14 = 112 bits= 14 for the sigmoid are obtained and shown in Table VI; two’s com-

bytes for the other elementary functions. The block diagram BEMeNt notation is used.
the implementation of scheme-2 is shown in Fig. 2. As shown A general block diagram of the Scheme-3 is shown in Fig. 3.
in Table 111, the value ofC(|C| = 27™) may be negative, the In Fig. 3, the bit inverse control logic determines if the input
designed “Shifter” should be able to change the sign bit for sidpits should be inverted. For example, the input bits are inverted
magnitude notation and provide the proper inversion for twofer input in segments 1, 2, 3, 5, 7, 8 to compute the logarithm
complement notation of its output depending on the input sefgnction. Referring to Fig. 3, the numbers in Table | and Table
ment. Il determine if the output bits after the shifter are set to one or

For the first-order approximation using scheme-3, the para@ero. Table | and Table Il store two internal numbers. For a given
etersA andC(|C| = 27™) are determined by the steps given ibit position if the set bit is one and the reset bit is zero, then the
Section 1lI-C, these values are shown in Table IV. corresponding output bit is one, otherwise if the set bit is zero

We express the parametdrin Table IV in hexadecimal no- and the reset bit is one the output bit is reset to zero. If the set
tation. In performing4 4= 2" x % in sign magnitude notation and the reset bits are both zero, then the output bits of the flip
the operation can be either effective addition or effective sufbep are the same as the corresponding input bits to the shifter.
traction [15]. As can be seen from Table 1V, the valuksire The set and reset bits cannot be one at the same time, this can be
always positive in all the segments we consider. For the caaghieved by designing the table without two ones in the same bit
allowed by the values oft, C and the inpu{x) there are two position. The number of entries for the two words in the tables
distinct operations (effective addition and effective subtractiory the number of segments we divide the input. For elementary
that result for the sign magnitude operations [15]. function to be the trigonometric functiein(w) andcos(w), the

The procedure used to perform the approximation can bember of segments is seven, then the number of table entries is
easily explained using an example of effective addition. For sigeven as well. Each word stores 14 bits, thus the total ROM size
moid functionsigm(w) with « € (—4, —3], u can be expressedis 7 * 2 * 14 = 196 bits = 25 bytes. For the other elementary
in the internal number system as = 1011.zzzz zzzrxz. function, the number of word entries is eight and the total table
From Table IV it is observed that = 0000.0000 0000 00 and Size is8x 2 x 14 = 224 bits = 28 bytes. The following example

Fig. 1. Block diagram for Scheme-1.

C = —277, thus shows the method to determine the numbers in Table | and Table
Huw) =A+2 Tu II. Additional e%ample-s a-re f0L-|nd in [22].
— 0000.0000 0000 00 - 0000.0000 011z 2z For the Iogarlthm with input in the segment of [1, 1.;25), the
output format is 0000.0000 111, then two numbers in Table |
=0000.0000011z zz. (3-6)  and Table I are: Table + 0000.0000 1110 00 and Table-H
An example covering and explaining the second case can1il1.1111 0000 00. What is performed is forcing changing bits
found in [22]. of output format to zero for both Table | and Table Il entries,

The final outcome is that for the example the approximatidhen passing and inverting the nonchanging bits to the Table |
H(u) can be accomplished using bit inversion of the changiremd Table Il entries, respectively.
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TABLE Il
PARAMETERS A AND C'(C' = 27™) FOR SCHEME-2
Segments
Function u A [A0, [Ao+4, | [Ao+24, | [Ao+34, | [Ao+4A, | [Ao+5A, | [Mo+64, | [Ao+74,
interval Ao+A) | Ap+24) | Ap+3A) | Ag+4A) | AgtSA) | Ag+6A) | Ao+TA) | Agt+8A)
sigm(u) 1 0.1398 | 02346 | 03738 | 0.5049 | 0.4951 06262 | 07654 | 0.8602
(-4,4) 25 24 >3 52 22 23 o4 25
sigm (w) 1 0.2623 0.2435 0.2280 0.1388 0.0465 0.0257 0.0143 0.0079
[0.8) 24 24 24 25 27 28 29 210
sin(u) 0.5 | -0.0052 | 02996 | 0.6266 | 1.1925 1.8950 | 3.1277 | 3.1415
[0,3.14) 20 21 22 23 21 20 20
cos(u) 0.5 | 10214 [ 1.0991 1.5621 15736 | 1.6284 | 04603 | -0.8047
[0,3.14) 22 21 20 20 20 2l 24
In(w) 0.125| -1.0025 | -1.0161 | -1.0409 | -0.3562 | -0.3352 | -0.3207 | -03117 | -0.3075
[1,2) 20 20 20 21 2l 21 51 5l
= 0.125| 10025 | 1.0171 | 08883 | 08648 | 08514 | 0.8469 | 08503 | 0.3606
[0,1) 20 20 21 2l 2 21 o 21
tanh(u) 1.0 | 00662 | 05162 | 09062 | 09842 | 09953 | 09946 | 09937 | 09927
0.8) 20 22 25 28 210 510 2-10 210
1/u 0.125| 20048 | 1.4366 | 14187 1.4148 14216 1.0147 1.0051 1.0007
[1 ,2) _20 _2'1 .2'1 _2'1 _2" _2'2 _2'2 _2'2
\/; 0.125| 0.1107 | 02435 | 02456 | 02234 | 04684 | 04851 04949 | 0.4993
[0,1) 21 20 20 20 5l 21 21 51
12 0.125 | 30139 | 1.8986 | 1.8943 12036 | 1.1915 11954 | 07579 | 0.7510
1,2) 2l 20 20 21 21 21 22 22

based on the FOoutputs for input uniformly sampled in the do-
main of (8, 8).

For the other elementary functions considered in this paper,
the AVE-ERR and the MAX-ERR are computed for the input
u in the domain given by the second column of Table | for
y the 1@ outputs for inputs uniformly sampled in thedomain.
output The average and maximum errors are found for the elementary

functions using the three schemes as shown in Table VII using
computer simulations. The table size requirements for the three
schemes for the elementary functions are also shown in the table
(note that the computation for scheme-3 assume a single table

We note here that one of the two tables is not necessary ii@iplementation).
an implementation at the expense of control and inverting logic,
this reduces the table size by half.

The errors of the elementary function generators have three  |\/ SEcoND-ORDER APPROXIMATION: SCHEME-4
sources: method error, representation error and what we denote
as a “partitioning” error. The method error is the error generatedThe function inputs are divided into segments and a second-
from the first-/second-order polynomial series evaluations. Tleder approximation is used to compute the elementary func-
representation error is generated due to the finite word lendtbns in each segment. For a segmgnt 3], if an inputw €
of the internal number representation. The multiplication arid, 3], a second-order approximation for the sigmoid function
the bit shifting may generate representation errors due to #8n be computed ag +c; xu+ co*u? = co+ux*(c1 +caxu).
truncation. The “partitioning” error relates to the elementary requires two multiplications and two additions for the compu-
functionssigm(u), sigm’(u) and tanh(«) when the function tation. In order to reduce computing delay and complexity, we
output is force to one or zero when the input is beyond thopose an approximation method that requires computations of
piecewise approximation range. To evaluate the performanceoofy one multiplication and two additions
the three linear approximation schemes the average and max-
imum error for each scheme is computed for all the elemen- H(u) = A+ C * (u+ B)? where|C| =2"". (4.1)
tary function we have discussed. For the elementary functions
sigm(u), sigm’(u) andtanh(wu), the “partitioning” errors must Since we constraifd’ to be a value with a power of two, multi-
be considered for the function generator precision. The avergdieation with C can be computed by bit shifting consequently
error denoted as AVE-ERR and the maximum error denoted@sy one multiplication is required to compute (4.1).

MAX-ERR are computed using (2.1) and (2.2) with considera- We compute the ideal function output'(v;) and its
tion of finite length word length of the internal number systersecond-order approximatio («;) on N uniformly spaced

X3 X2 X Xp X1 X2 X3 X4 X5 X6 X7 X8 X9 Xo10

| I A I |
Shift Controller

mput u

I I I I I I I

| Table A

Fig. 2. Block diagram for Scheme-2.
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TABLE IV
PARAMETERS A AND C'(|C| = 27™) FOR SCHEME-3
Segments
F . u A [*0, [Ao+4, | [Ao+24, | [Ao+34, | [Ao+44, | [Ap+5A, | [Ag+64, | [Ag+T7A,
unction int 1
Interva Ap+A) | Ap+24) | Ao+34) | AgH4A) | Ag+5A) | Apt6A) | Ag+T7A) | Ag+84)
i 1 0.000 0.400 0.600 0.800 0.800 0.a00 0.c00 0.fc0
g (-4,4) 27 24 23 22 22 273 24 277
> 1 0.400 0.400 0.280 0.400 0.0c0 0.0c0 0.020 0.020
sigm () [0,8) 24 24 25 o4 27 27 210 210
; 0.5 0.000 0.400 0.a00 1.300 3.000 00 0.¢00
0 0,3.14) A B e e S e I
0.5 1.000 1.800 1.800 1.800 0.800 0.800 0.800
cos() [0,3.14) 22 20 20 20 2l 2l 2l
In(w) 0.125 | 0200 0.c00 0.980 0.000 0.240 0.180 0.9 0.c80
(1,2) 24 2 22 22 23 22 26 24
u 0.125 | 1.000 1.000 0.€00 0.€00 1.200 0.500 0.a80 0.200
€ [0,1) 20 20 2 2l 20 22 22 272
tanh(u) 1.0 | 0000 0.800 0.¢80 0.fc0 0.fec 1.014 1018 1.01c
0.8 20 22 25 28 210 210 210 510
174 0.125| 1.700 1.700 1.700 1.100 1.080 1.700 1.000 1.000
[ 1 ,2) _2'1 _2'1 _2'1 _2'2 _2'2 _2’1 _2'2 _2'2
N 0.125| 0300 0.400 0.400 0.700 0.c00 0.800 0.800 0.800
[0,1) 22 20 20 2l 22 271 271 2l
5 0.125| 3.000 1.¢00 1.¢00 1.300 1.300 1.300 0.c00 0.c00
/v [1 ,2) _21 _20 _20 _2-1 _2-1 _2-1 _2-2 _2-2
TABLE V and
A LOGARITHM GENERATOR USING SCHEME-3 9ER N-1
W =4C ) (H(w) - F (w)) (ui + B) =0 (4.4)
input u logarithm output i=0
0001.000x xxxx XX 0000.0000 111X xx by SUbStltUtlng (Deflnltlon 41)H(U/z) =A+ C * (U'z + B)2
0001.001% XxX%x XX 0000.0010 Xxvx x (Def|n|t|or] 4.1) and computations (the explicit derivation can
_____ be found in [23]). It can be concluded that
0001.010x xxxx XX 0000.0100 0Oxxx xx% — L
0001.011X XXXX XX 0000.0101 1xxx xx N+xA4+ NxCxX242N+«BxCxX
2 Y —
0001.100% XXXX XX 0000.0111 00%% x=x +N_*C*B —N_*Y—O o (4.5.1)
0001.101x XXXX XX 0000.1000 0xxx xx N+AX+N+xCxX34+2N+BxCx*X?
0001.110x xxxx XX 0000.1001 0111 1x —N*C*BQ*Y—N*XYIO (452)
0001.111x xxxx xx 0000.1010 100% xx where
N-1 N-1 N-1
; 2 3
inputs 4;(0 < ¢ < N) in the segmenfc, 3], whereu,; is ; i ; i ; i
defined to be C=—x X?P=— X3=—rr
D=({-a)/N . N-1 N-1
i=0,1,---, N—1. 4.2
{uw:a+i*1) T (4.2) E:f%uﬁ E:IH*F(W)
The error between the ideal and the estimated function is Yy = &=° XY = =¢
|H(w;) — F(u;)| and the square sum of the second-order , N
approximation error ovelV sample inputs in segmeht, g]is >°Ving (4.5).4 and B can be determined to be
N-1 , Y*Y—XY—}—C*(F—F*Y)
ER(A, B, C) = (H (w;) — F(u))” . (4.3) B = S —
Z; ’ ’ 2*0*(X2—A?)
The least squares method can also be used to find the parametrcs
A, B and C so thatER(A, B, C) is minimum. WhenC' is A=Y —OX2—9B+C+X — C + B2, (4.6)

given, the minimum value oF R(A, B, C) can be found by o . .
setting the derivatives aER(A, B, C) with respect tod and FOr|C| = 27" with n being an integer, the larger the number

B to be zero. Then we have that

N-1
> H(w)-F

IER _,
9A ~ 7 4

of samplesV is, the more precise thd and B are estimated.
In this investigation, we chos¥ to be 10. A set of 4, B, C
andER(A, B, C) are obtained fon changing from zero to 20.

(ui) =0 ,
’ Forn greater than 20, sinée™ < 272° < 1, the second-order
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TABLE VI
OUTPUT FORMAT FOR THE SIGMOID AND ITS DERIVATIVE IN 8 SEGMENTS

Segments input format sigm(u) sigm'(u)
[-4.-3) 1100.xxxx XXX XX | 0000.0000 011X %% | 0000.0000 011X xx
{-3,-2) 1101.xXXX XXXX XX 0000.0001 xxxx XX 0000.0001 Oxxx xx
[-2,-1) 1110.XXXX XXXX XX 0000.001x xxxXx Xx 0000.0010 xxXxx XX
[-1,0) 1111.xXXXX XXXX XX 0000.01xx XXXX XX 0000.0011 XXXX XX
[o,1) 0000.xXXX XXXX XX 0000.10%XxX XXXX XX 0000.0011 xxzx %%
[1,2) 0001.xxXxX XXXX XX 0000.110x XXXX XX 0000.0010 Xxx% %X
[2,3) 0010.xXXXX XXXX XX 0000.1110 xxxx XX 0000.0001 Oxxx% ==
[3.4) 0011.xxxx XXXX XX | 0900.1111 011X %% | 0000.0000 Xxxx XX

is parameter”’ whose absolute value is a power of two which
can be seen from the Table VIII.

For some of the elementary functions, for example,
sigm(w), sigm’(u), In(u), - - -, the internal representation of
(v + B)? may be greater than the maximum value of the our
internal number systen2? — 271° ~ 7.999. This represents

| X3 X2 X Xp X1 X2 X3 X4 Xo5 Xeg X7 Xg X9 Xq0 |
| I T N I | inpul u
Bit inverse control logic
1 i 1 1§ 1§ L L

| Shift controller
1T T T T T 1

[ — TA]?LEII — | P set Flin Fi an overflow in the internal representation. This difficulty of
| TABLE 2 | reset 1p ¥lop generating a nonrepresentable number when the number of
integer bits in the internal number system is not large enough
output” $ can be overcome by modifying (4.1) to the following form:
—M (o—K 2
Fig. 3. Block dagram of Scheme-3 H(“) =A+£2 (2 “u+ D) (4-7)

— — — —k
term2-" » (u + B)? can be neglected compared to the reprd!N€reM =nmod 2, K = [n/2], andD = B+ 277,
sentation error of our internal number system. We exhaustivelyThe function|-| used above is a floor function it truncates
search the minimal value #R(A, B, C) for C = £2-"with the fraction bits and retain only the integer bits. It is verified for

n varying from zero to 20 to identify the numbét,,,; such that each segment by estimating the maximum intermediate number
ER(A, B, Copy) is minimum. in computation that all the intermediate numbers in the compu-

tation of (4.7) are representable in our internal number system
for all the elementary functions. An example of using modified
second-order approximation equation (4.7) is to compute a sig-
1) Letn = 0, C,py = 1, ERpin = 1000, N = 103, moid function for inputs in the segmefity + 4A, A+ 5A] =
A = (b—a)/N. [0, 1), the parametersl, B, C are given in Table VIII to be
2) LetC = +27" computeA, B according to (4.6.1) and 1.0556,—4.2220 and-27", respectively. The parameters for
(4.6.2) and the square sum of the er®R(A, B, ¢) the modified equation (4.7) ard = 1.0556, M = (5 mod
overthe segmenER(A, B, C) = SN ot (A+Cx(u+  2) =1, K =[5/2] = 2,andD = B 272 = —1.0555 and

The procedure to determing B andC,,;,; in segmentc, J]
is given by the following five steps:

B)? — F(u))2. the modified equation for sigmoid generator for input in the seg-
3) If ER(A, B,C) < ERuyum then ERy = ER ment[0, 1) becomed (u) = 1.0556 — 271(27%u — 1.0555)°.

(A, B, C) andC,,,; = C. It can be verified easily thd2 2« — 1.0555) does not over-
4) n=n+1,if n < 20goto Step 2). flow in the fixed point representation with four integer bits we
5) For C,,: compute the optimum values of and B ac- used foru € [0, 1]. The block diagram of the implementation

cording to (4.6.1) and (4.6.2) of the modified second-order approximation given in (4.7) is

. ] shown in Fig. 4; parameter$ and D are stored in two tables.
The number of segments chosen to implement this second-ordetom computer simulations with §Gampled function out-

f';\ppr_oxir_nation is the same as the one used for the linear apPrEits assuming an input uniformly spaced in the input domain
imation in scheme-1, scheme-2 and scheme-3. of w, we have examined the elementary functions we consid-

For the second-order approximation, the parameter®, ered and computed the average error denoted as AVE-ERR and
and C are computed using0® sampled data for inputs uni- maximum error denoted as MAX-ERR using the definitions of
formly spaced in each segment. The parameter®, andC'  (2.1) and (2.2). The computed average and maximum errors are
are shown in Table VIII. In Table VIII, the first line in each boxshown in Table IX. The last row of the table shows the required
is parameteri, the second line is parametBrand the third line table size in unit of bytes.
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TABLE VII
AVERAGE AND MAXIMUM ERROR OFFIRST-ORDER APPROXIMATION SCHEMES
Scheme-1 Scheme-2 Scheme-3
Scheme-1 Scheme-2 Scheme-3
Function AVE- MAX- Table AVE- MAX- Table AVE- MAX- Table
ERR ERR size ERR ERR size ERR ERR size
sigm(u) 3.5%10-3 | 1.8 X102 28 4.2 X103 | 2.0 X102 14 6.9 X103 { 2.4 X102 14
sigm'a) | 2.6X10 | 8.8x1073 28 2.1X10-3 § 1.6x1072 14 5.4X1073 | 2.1X10%2 14
sin(u) 51103 | 2.2x102 25 1.2X102 { 7.0x102 13 3.2x102 { 1.1x10" 13
cos(u) 4.7%1073 | 2.1X102 25 1.2X102 | 7.1X102 13 4.5x102 | 1.2x10! 13
In(u) 1.3X1073 | 3.1xX10°3 28 3.8X1073 | 1.5X1072 14 2.4%X102 | 9.7x102 14
e 7.1x103 | 1.9x10°3 28 3.4X1073 | 1.5X102 14 1.1X102 | 3.5X102 14
tanh(u) 5.0x103 | 5.7x102 28 1.0x102 | 1.7x10°! 14 1.2X10°2 | 2.4x10"! 14
1/u 1.5x10°3 | 2.4x103 28 2.8X1073 | 1.5x102 14 1.1X102 | 6.3X10-2 14
\Ju 2.6X103 | 9.5x102 | 28 | 5.1x102 | 1.1x10"! 14 | 2.1x102 | 2.0x10°! 14
12 1.7X1073 | 5.9x103 28 4.2X1073 | 2.6x10%2 14 1.1X102 | 4.0X102 14
TABLE VIII
PARAMETERS A, B, AND C'
Segments
Function | . % A (Ao [ho+4, | [Ao+24, | [Mo+34, | [Mo+4A, | [Ao+5A, | [Ao+64, | [Ao+7A,
interval AotA) | Aot2A) | Ap+3A) | Ag+4A) | Ap+SA) | Ag+6A) | Ag+TA) | Ag+8A)
0.0156 | 0.0353 0.0049 | -0.0556 | 1.0556 0.9951 09647 | 0.9844
sigm() -4,49) 1 4.4294 3.6378 3.8922 42220 42220 | -3.8922 | -3.6378 | -4.4294
g 26 5 55 25 25 25 25 26
0.2484 | -0.1269 | 0.0135 0.0163 0.0034 0.0019 0.0009 | 0.0004
o (0,8) 1 -0.0598 | -7.4432 | -44100 | 43712 | -5.8900 | -6.5539 | -7.2841 | -7.7896
sigm () 24 57 26 26 28 29 10 5°10
[03.14) 21017 1.2085 0.9986 0.9999 0.9753 12267 | -19174
: 3. 41015 | -22043 | -1.5634 | -1.5729 | -1.6257 | -09129 | -7.0587
sin(u) 0.5 3 52 > ol ) 22 23
0.9995 1.1882 | 2.0934 | -40025 | -1.2247 | -0.9971 | -1.0000
cos(u) [03.14) | 55 | -00041 | 06048 | 25223 | 95728 | 37964 | -3.1293 | -3.1415
) 2l 92 23 24 22 21 1
[12) 0.5042 0.8816 | 0.8529 | 08472 0.8562 1.2259 1.2038 1.1944
, 20043 | -2.8726 | -2.8370 | -2.8293 | -2.8429 | 4.0585 | -4.0199 | -4.0025
In(u) 0.125 p 2 2 2 ) 3 3 53
0.4978 0.4850 | 0.1961 0.2286 | 02449 | 02498 02467 | 02381
u [0.1) [g.125( 10023 | -1.0169 | -1.7763 | -1.7293 [ -1.7025 | -1.6936 | -1.7003 | -1.7210
€ ' 2-1 2-1 2-2 2-2 2-2 2-2 2-2 2-2
1.0 1.0502 0.9768 0.9938 0.9992 0.9999 1.0000 1.0001 1.0001
tanh(y) 0,8) 2.0435 | 22752 | -29676 | -4.0140 | -4.7788 | -55377 | -6.5051 | -7.5007
272 23 25 28 210 210 210 210
0.7440 | 0.5900 | 05929 04610 | 04719 | 04690 | 03662 | 0.3740
1/u [12) |gq25| -15063 | -1.8978 | -1.8938 | -2.4065 | -2.3825 | -2.3904 | -3.0310 | -3.0037
) 20 21 2! 272 22 22 23 23
0.3365 0.6031 09612 | 0.9481 1.1952 1.1933 1.5173 1.5019
\/- [0,1) 0.125 | 01332 | 04787 | -1.2097 | -1.1946 | -1.8971 -1.8943 | -3.0323 | -3.0038
u : 24 2l 2l 2l 22 22 23 23
0.5359 | 05290 | 03838 | 02565 02716 01775 0.1913 0.1905
I [12) [gqo5| -14811 | -14871 | -1.7560 | -2.1123 | -2.0878 | -2.5213 | -2.4852 | -2.4882
u ’ 51 51 20 21 2l P! 22 22

V. BIT SERIAL IMPLEMENTATION OF PIECE-WISE
APPROXIMATION SCHEMES

putation provides a cost effective solution for neural-network
computing. In bit serial computation and because our internal
number system has ten fraction bits and four integer bits, an
In neural computing, the number of neurons involved in theddition requires 14 machine cycles to compute and a multipli-
computation can be large, and a parallel computing unit coutdtion requires 28 machine cycles. In the bit serial computation
be very expensive. Due to the requirement of large neurons ingata are computed in a pipelined fashion. The worst case delay
implementation [9], [10], [16]-[21], a pipelined bit-serial com-of the computing is less than the total delay of each computing
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approximations proposed in [3]. For convenience of compar-
| X3 X2 Xj Xg X X X3 X4X5X6X7X38X9X 10 I PP prop (3] p

T T T T T 1] mpul 2 isons, we denote the first-order approximation scheme-1 used
. | . for sigmoid generations as S1, and we denote S2, S3 and S4
Shift controll . . - . C .
— ', cc,m ,0 e,r I for the sigmoid generators using the first-order approximations
| Table D |__> + scheme-2, scheme-3 and the second-order approximation
5 scheme-4, respectively. We also denote K2 and K3 as the

second— and third-order approaches, respectively, which are
proposed in [3], and we denote PS16 and PS8 for the existing

first-order approximation approach implemented in [7] for
1 bit shift the sigmoid generators. The estimated hardware requirements

*

14 + (including multipliers and adders) and precision are shown in

Table A I ’ Table X further discussion regarding PS16, PS8, K2 and K3
14i can be found in [22].

oultput Based on the estimations of Table X, we derived Table XI

reporting the ratios of performance and hardware requirement
for our proposed sigmoid generators (denoted as schemes S1,
_ . o .S2, S3 and S4) and the existing sigmoid generators (denoted
unit because the multiplier/adder can initiate the computatigR schemes PS16. PS8. K2 and K3) in terms of average error
without waiting for the all the input bits to be available. maximum error, lookup table size and the worst case delay. In

In Scheme-1 the delay to generate the function outputinclude;y e x| AVE-ERR s the average error, MAX-ERR is the max-
the delay ofmemory accesstogenerate parame@nsiC’'which i, o error, “Table” is the lookup table size and the delay is

can berestrictedto one machine cycle; the delayofmultlpllcatul)ﬁ\de worst case computation delay. If the ratio is less than 1.00,

Q*u;qndthedelayforadd|t|on.S|ncewecon3|derto_use p'pe“nﬁwen the proposed scheme outperforms the existing scheme for
bit serial computations, the total delay for the function genera‘t@;
I

Fig. 4. Block diagram for Scheme-4.

is less than the summation of the delays of memory access, m g corresponding parameter given on ihe left column of the
plicationand addition becausethe bitserialaddercanstartto co ble XI. . .
pute withoutwaiting for the multiplier to provide all the input bits, T 7omM the Table XI, it is noticed that all of our proposals for
Thebitserialaddercanstartcomputingaslongasthe tenthfractipff Sigmoid generator have smaller average error than the ex-
bitof (C' « u) is available which takes 11 machine cyclesinourir{Sting schemes. In particular, the average error of the proposal
ternal number system. To generate the 14-bit output for the bit S&. IS as small as 4% of the scheme denoted as K3 and as much as
rial adder, 14 more machine cycles are needed. Consequentlyth of the scheme PS16 as shown in Table XI. The maximum
total delay to generate the function outputis: 1(memory aceess§!Tor and the worst case delay of the proposal S1 is less than
11(multiplication)+ 14(addition)= 26 machine cycles. the existing schemes with a speed up that varies between 1.23
In scheme-2, the computation of delay is similar to thend 1.81. The proposal S1 requires larger lookup table size than
previous scheme. It is estimated that the maximum delay fine schemes K2 and K3, however compared to the gain of the
scheme-2 is 24 machine cycles. In scheme-3, the computatimplemented function average error (5% of the scheme K2 and
delay includes the delays for the exclusive-or (XOR) logi&t% of the scheme K3), the cost of lookup tables is worthwhile.
shifter, and set-reset logic. The total delay for the schemeFBe proposal S2 requires the least table size in our four pro-
has been estimated to be 25 machine cycles. posals and outperforms the existing schemes with a speedup up
The delay for the second-order approximation involves the 1.96. The proposal S3 has the best performance and outper-
delay of shifter representing the power of two multiplication oforms the existing schemes with a speedup from 1.28 to 1.88.
27K, The integetX is defined in(4.7) a&’ = [n/2]. From The proposal S4 have the least average and maximum errors
Table VI, the maximumyvalue afistenthusthe maximumvalueamong all the proposals. The four proposals S1, S2, S3, and S4
of K is five. Consequently the maximum delay for the shifter tprovide different tradeoff between the average and maximum
implementthe power of two multiplicationis five machine cyclesrrors, table size, and the worst case delay and outperform the
The worst case delay for scheme-4 is estimated to be 32 machiRgsting schemes.
cycles. The maximum computation delays for the four proposed
schemes are summarized as follows (the computation units are VIl. CONCLUDING REMARKS
designed in a pipelined bit serial fashion): Scheme-1(first order)

— 26, Scheme-2(firstordes) 24, Scheme-3(firstordes) 25, and We have presented four schemes for the generation of
Scheme-4(second ordes)32. elementary functions using first-order and second-order ap-

proximations. An important aspect of the proposed schemes
is the capability to accommodate the functions we propose
and possibly an arbitrary number of additional functions
For our evaluations we consider two quantities: the averagih a common design to all functions. By loading the
error and maximum errérWe consider the implementation ofvalues that are unique to individual functions, high perfor-
the first-order approximation scheme proposed in [5], [6] andance and very small cost can be achieved, making the
implemented by Murtagh/Tsoi [4] and the second-/third-ord@roposed schemes suitable for a large number of hardwired
neural application and extremely valuable for the design

VI. EVALUATION

2Additional evaluations are reported in [23].
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TABLE X
AVERAGE AND MAXIMUM ERRORS OFSECOND-ORDER APPROXIMATION SCHEME-4

Parameter | sigm(u) sigm’(u) sin(u) | cos(uw) | In(u) it tanh(u) 1/u \/74 1/u?
AVE-ERR | 2.6x103{ 5.06x10 | 1.0x10-3 ] 9.1X10 | 5.1x10- ] 3.4x10* | 1.6x103 | 5.8x107 | 1.2X10"3 | 4.8X10"
MAX-ERR | 1.8X102} 4.6x10 | 5.5X103 | 5.5X10-3 [ 1.4x10-3 | 1.2X1073 | 1.6X102 | 1.3X103 | 5.3X102 | 2.0x10°3

Table size 28 28 25 25 28 28 28 28 28 28
TABLE X
COMPARISONS OFSIGMOID GENERATORS
Scheme Average Error | Maximum Error Table Size Delay Mult/Add
PSI16 8.6x1073 1.9x10-2 28 32 0/0
PS8 2.5x102 4.9x1072 14 32 0/0
K2 6.4x10-2 1.6x10°! 4 33 1/2
K3 7.8X102 2.0x10-! 4 47 2/2
S1 3.5X1073 1.8x102 28 26 1/1
52 4.2x10-3 2.0x102 14 24 0/1
53 6.9x103 2.4X1072 14 25 0/0
54 2.6X1073 1.8x10-2 28 32 1/2
TABLE XI

RATIOS FORS1, S2, S3aAND S4 O/ER SCHEMESPS16, PS8, K2anND K3

S1 S2 S3 S4
PS16 | PS8 | K2 | K3 | PS16 | PS8 [ K2 | K2 |PS16| PS8 | K2 | K2 |PS16| PS8 | K2 | K2

ave err (0.41 10.1410.05]0.04 1049 10.17[0.07 {0.05 ]10.80 |1 0.28 ] 0.1110.09 [0.30 |0.10]0.04 | 0.03
max_err [0.95 10.37)0.11]0.09)1.05 10.41]0.13({0.10 | 1.26 | 0.49]0.15}0.12]0.95 | 0.37]0.11]0.09
Table 1.00 | 2.00]7.00]7.00]0.50 ]1.00]3.50]3.50 |0.50 |1.00]3.50}3.50]1.00 |2.00]7.00]7.00
Delay 10.81 {0.81)0.79{0.55]0.78 ] 0.78 [ 0.76 | 0.53 {0.75 ] 0.75{0.73 ] 0.51 | 1.00 { 1.00 | 0.97 { 0.68

TABLE XII
HARDWARE REQUIREMENT OF THESCHEMES
Hardware Scheme-1 Scheme-2 Scheme-3 Scheme-4
multiplication 1 0 0 1
addition 1 1 0 2
shifter 0 1 1 1
exclusive-or 0 0 1 0
flip-flop 0 0 1 0
lookup table 25-28 bytes 13-14 bytes 13-14 bytes 25-28 bytes

of neural emulators advancing them to a more generalThe overall conclusion of the investigation is that the
purpose environment. We have established that under ®exond-order approximation and one of the first-order
prespecified criteria of having an average error not exceedisghemes have the potential to be used as a general purpose
102 (i.e., a representation error of around'2) and a devices to accommodate potentially a larger number of func-
maximum error of 102, two schemes for all functions cantions other than the ones we consider. The third first-order
satisfy the requirement. The proposed schemes provide waggroximation scheme can be used successfully for sigmoid
tradeoff selections between the hardware requirement ageherators and the second scheme can be used for more
the achieved function precision. In addition to registers thdtan half of the functions we considered. Finally we note
may be needed to hold input—output values, the requirtitht the eight segment design was chosen to facilitate the
hardware for the four schemes includes: multiplicatiompresentation. The proposed schemes are general and more
addition, bit-shifter, exclusive-or, flip-flop, and lookup tablesegments can be used to improve the precision, with proper
as shown in Table XII. consideration, at the expense of additional memory.
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