taludbekleding van gezette steen, fase 0

grondmechanische aspecten

AFGEHANDELD

verslag literatuurstudie

M 1795, deel III WL
co 255780 / 44 LGM
juli 1982
taludbekleding van gezette steen, fase 0

groenmechanische aspecten

verslag literatuurstudie

M 1795, deel III WL
co 255780 / 44 LGM

juli 1982
INHOUD

Samenvatting en conclusies
1. Inleiding
2. Quasiestaticale druk onder tegen stenen glooiing ten gevolge van drukhoogte golf
 2.1. Hannoura, A'A
 2.2. Dracos, T.
 2.3. Edelman, T.
 2.4. Veer, van der, P.
 2.5. Electrische analogon metingen
 2.6. Discussie en conclusie drukhoogte golf
3. Dynamica
 3.1. Grond als elastisch eenfase materiaal
 3.1.1. Lamb, H. (1904)
 3.1.3. Kitamura en Sakurai (1979)
 3.1.5. Gakenheimer, D.C. (1971)
 3.1.6. Achenbach e.a. (1967)
 3.1.7. Barclay e.a. (1978)
 3.1.8. Hopkins, H.G.
 3.1.9. Discussie en conclusie eenfase materiaal
3.2. Andere grondmodellen
 3.2.1. Tosseling de Jong, G. de (1958)
 3.2.2. SATURN
 3.2.3. Conclusie andere grondmodellen
4. Consolidatie
 4.1. Yamamoto e.a. (1977)
 4.2. Groot, de en Sellmeijer
 4.3. Madsen, O.S. (1978)
 4.5. Conclusie consolidatie
Samenvatting en conclusies

In dit rapport wordt een overzicht gegeven van literatuur die grondmechanische aspecten behandelt die van belang kunnen zijn voor het onderzoek naar de stabiliteit van taludbekleding van gezette steen. De nadruk bij deze studie ligt op een wiskundige beschrijving van de verschijnselen.

In dit rapport is literatuur onderzocht over de volgende onderwerpen (met in het kort de conclusies):

1. Berekeningsmethoden die de quasistatische druk onder tegen de taludbekleding beschrijven. Hierbij is ook een artikel van Hannoura meegenomen. Hoewel deze ook massatraagheids termen in de berekening meeneemt. Dit artikel bevindt zich op de scheiding tussen de grondmechanica en de hydrodynamica en was elders moeilijk te plaatsen. De toepasbaarheid van de gepresenteerde artikelen voor dit onderzoek bleek gering.

2. Dynamische berekeningen, waarin grond geschematiseerd wordt tot een half oneindig elastisch medium, bestaande uit één fase. De beschreven literatuur geeft oplossingen voor randvoorwaarde problemen die tot op zekere hoogte overeenkomen met het golfklapprobleem. Bij de hier beschreven artikelen is het probleem de aannemer dat grond op te vatten is als een elastisch één fase materiaal. Dit is wel een heel ruwe benadering van de werkelijkheid.

3. Berekeningen uitgaande van de meer realistische aannemer dat grond op te vatten is als een twee fase materiaal met ook niet lineaire eigenschappen. Deze berekeningen zijn bijna alleen numeriek uitvoerbaar. Voor de grondbeschrijving zijn vrij realistische modellen voorhanden. Problemen zijn (nog); bepaling van de parameters van deze modellen en de kosten wegens de benodigde computertijd.

4. Berekeningen aan elastische twee fase materialen waarin de dynamische term verwaarloosd is (consolidatie). De behandelde artikelen bleken voor dit onderzoek niet erg bruikbaar.
Voor verder onderzoek kwamen twee benaderingswijzen naar voren, die het meest zinvol lijken voor verder onderzoek.

a. Een quasistatische benadering, zoals gepresenteerd in deel IV (Overdrukken door drukhoogte golven van ir. J.B. Sellmeijer en de berekeningen m.b.v. ELNAG).

b. Onderzoek naar de dynamische respons van het dijklichaam op de feitelijke golfklap (hoofdstuk 3 van dit rapport).
TALUDBEKLEDING VAN GEZETTE STEEN, FASE 0

Grondmechanische aspecten

1. Inleiding

In het kader van het vooronderzoek naar de stabiliteit van taludbekleding van gezette steen onder golfaanval is een literatuuroverzicht samengesteld over de grondmechanische aspecten van deze problematiek. De nadruk heeft hierbij gelegen op een wiskundige beschrijving van de verschijnselen.

Achtereenvolgens komen aan de orde:

- Berekeningsmethoden die de quasistatische druk onder tegen de taludbekleding beschrijven t.g.v. de drukhoogte van de golf.
- Berekeningsmethoden waarmee de druk en verplaatsingsgolven onder een steenzetting worden onderzocht, die voortkomen uit een dynamische belasting op de steenzetting. De grond wordt hierbij opgevat als een half oneindig elastisch medium (één fase materiaal). Ook de dynamische belasting (golfklap) wordt sterk geschematiseerd.
- Berekeningen die uitgaan van een meer realistische aannames door grond op te vatten als een tweefase materiaal en ook niet-lineaireiteit toe te staan.
 Deze berekeningen zijn dan ook, behalve één zeer eenvoudig geval, alle numeriek.
- Berekeningen aan tweefase materiaal waarin geen dynamische effecten in rekening gebracht worden.

Voorts is gezocht naar literatuur over grondmechanische schaal-effecten op dit gebied. Afgezien van een enkele opmerking (Madsen (24)) is echter hierover geen literatuur gevonden.

Deze literatuurstudie is een onderdeel van fase 0, zoals beschreven in de algemene opzet van het onderzoek (deel I). De studie is uitgevoerd door ir. A. Bezuijen van het Laboratorium voor Grondmechanica.
2. Quasistatische druk onder tegen stenen glooiing ten gevolge van
drukhoogte van de golf

In dit hoofdstuk wordt een overzicht gegeven van literatuur waarin
de quasistatische waterdruk onder tegen een min of meer ondoor-
latende glooiing van een dijk bij golfaanval berekend wordt.

Hannoura (1) berekent het verloop van de freatische lijn en de
drukverdeling bij golfaanval op een dijklichaam dat is opgebouwd
uit twee verschillende lagen poreus materiaal (zie figuur 1).

![Diagram](image)

fig. 1. Interactie van golven met een poreuze constructie.

Bij de berekening wordt gebruik gemaakt van zowel een impliciet-
expliciet eindig-differentie schema, als een eindige elementen-
methodes. Daarbij wordt uitgegaan van de volgende differentiaal-
vergelijkingen voor een niet-stationaire non-Darcy stroming in
poreuze media.

\[C_n \frac{\partial u}{\partial t} + \frac{u}{n} \frac{\partial u}{\partial x} + 2cn \frac{\partial c}{\partial x} + C_p = -gfnu \]

en

\[\frac{\partial c}{\partial t} + \frac{u}{n} \frac{\partial c}{\partial x} + \frac{c}{2n} \frac{\partial u}{\partial x} = 0 \]

waarin:

- \(C_n \) = de massatragheids correctie coefficient
- \(u_n \) = de horizontale snelheid van het water maal de
 porositeit (de Darcy snelheid)

(m/s)
\[n = \text{de porositeit} \quad (\%) \]
\[\sqrt{c^2} = \text{golfsnelheid} = \sqrt{g \left(H_0 + \eta \right)} \quad (\text{m/s}) \]
\[C_p = \text{de drukverdeling correctie-factor} \quad (\text{}) \]
\[t = \text{de tijd} \quad (\text{s}) \]
\[g = \text{de versnelling t.g.v. zwaartekracht} \quad (\text{m/s}^2) \]
\[f = \text{de non-Darcy wrijvingsterm, die afhankelijk is van} \ u(\text{s/m}) \]
\[H_0 = \text{het gemiddeld waterniveau} \quad (\text{m}) \]
\[\eta = \text{de interne golf amplitude} \quad (\text{m}) \]
\[x = \text{de horizontale as als aangegeven in onderstaande figuur 2.} \quad (\text{m}) \]

Deze vergelijkingen zijn afgeleid in (34).

![Fig. 2. Parameters in het probleem](image)

Dit stelsel vergelijkingen wordt opgelost door afwisselend met een eindig differentie schema het x-t vlak te discretiseren waarbij in karakteristieke richtingen wordt gewerkt en met de eindige elementenmethode het x-y vlak volgens figuur 3.

![Fig. 3. Discretisatie in het x-y vlak](image)
De in de figuren aangegeven ϕ is de stijghoogte van het water in het dijklichaam.

De resultaten van de berekening bij regelmatige golven worden vergeleken met metingen van modelonderzoek. Voor golven met een korte periode blijkt de overeenkomst goed, zoals blijkt uit fig. 4.

*Experiment — MOC-FDS Solution — — Hybrid Solution.

Fig. 4. Vergelijking van experiment met numerieke resultaten

Voor golven met een langere periode is de overeenkomst minder. Dit komt volgens de auteur omdat de randvoorwaarde aan het oppervlak van de glooiing een uit experimenten met golven met een korte periode gevonden empirische relatie tussen de golfparameters is. Ook is geen rekening gehouden met interne golfbreking.

De berekende hydrostatische plus momentane drukverdeling is gegeven in figuur 5.

Fig. 5. Berekende hydrostatische en momentane drukverdeling
Een dergelijk programma lijkt in principe bruikbaar om de drukverdeling in een filterlaag met daarop een laag gezette steen te berekenen omdat ook hier sprake is van 2 lagen met een verschillende porositeit. Daar de verschillen in porositeit in deze configuratie veel groter zijn dan bij de configuratie van Hanoura, zijn de resultaten van zijn berekeningen niet rechtstreeks toe te passen. Ook wordt geen rekening gehouden met insijpeling via de spleten tussen de stenen, die ook doorgaat als de buitenwaterstand lager is. Bovendien zijn bij het onderzoek naar de stabiliteit van steenzettingen betrekkelijk oppervlakkige verschijnselen, zoals de drukken van de filterlaag maatgevend, terwijl het programma van Hannoura meer gericht is op de berekening van verschijnselen dieper in het dijklichaam.

2.2. Dracos I

Dracos (2) geeft een berekening van de beweging van de freatische lijn in een poreus dijklichaam bij de overgang tussen de dijk en het water (het zogenaamde uittreepunt). Bij de berekening wordt er van uit gegaan dat het waterniveau varieert volgens:

\[H = H_0 \cos \frac{2\pi}{T} t \]

waarin

- \(T \) = de periode (s)
- \(H_0 \) = het halve verschil tussen maximaal en minimaal waterniveau (m)

De differentiaal vergelijking voor de beweging van het uittreepunt wordt dan:

\[\frac{d^2 z}{dt^2} + \frac{gn}{k} \frac{dz}{dt} + \frac{gsin^2 \beta}{\Delta Z_0} z = \frac{gsin^2 \beta}{\Delta Z_0} H_o \times (1 + \cos \frac{2\pi}{T} t) \]

waarin:

- \(z \) = de hoogte van het uittreepunt op tijdstip \(t \) (m)
- \(g \) = de versnelling van de zwaartekracht \((m/s^2) \)
- \(n \) = de porositeit (%)
- \(k \) = de doorlatendheid \((m/s) \)
- \(\Delta Z_0 \) = het verschil tussen de hoogte van het uittreepunt en de hoogte van het waterpeil (alleen bij dalend waterpeil) (m)
- \(\beta \) = de hoek van het dijklichaam t.o.v. de horizontaal (rad)
Door de vereenvoudigingen die zijn toegepast (b.v uniforme porositeit) lijken de resultaten voor het probleem van de stabiliteit van steenzettingen minder bruikbaar.

Wel blijkt uit zijn berekeningen dat het uittreepunt gemiddeld hoger ligt dan het gemiddeld water niveau (zie fig. 6). Hetgeen ook bij filterlagen in steenzettingen is geconstateerd.

Naar aanleiding van de stormramp van 1953 werd een onderzoek ingesteld naar de stabiliteit van dijkbelopen (3). Het eerste gedeelte van het rapport over dit onderzoek behandelt de invloed van overstromend water op een beloop. Aangetoond wordt dat overstromend water in niet waterdicht beklede dijken een grondwaterstroom kan veroorzaken die aanleiding geeft tot het bezwijken van het binnenbeloop van de dijk.

Dit gedeelte valt buiten het kader van dit literatuuroverzicht. In het tweede gedeelte van zijn rapport behandelt Edelman de stabiliteit van waterdichte dijkbelopen. In dit gedeelte wordt de druk onder tegen een ondoorlatende bekleding beschreven, op het moment dat het grondwaterniveau in de dijk hoger is dan het waterniveau aan de buitenzijde.
Voor een bekleding bestaande uit blokken leidt hij voorwaarden af voor de drukhoogte waarbij een blok gaat schuiven en wanneer het wordt opge- licht van het talud. In de formules in het rapport van Edelman is niet de opwaartse kracht van het water verdisconteerd. In de hieronder gegeven formules is hiermee wel rekening gehouden, zodat deze formules iets af- wijken van die van Edelman.

Een blok gaat schuiven als:

\[\Delta \phi > (1 - \frac{\tan \alpha}{\tan \phi}) \cdot d \cdot \frac{\gamma - \gamma_w}{\gamma_w} \cdot \cos \alpha \]

waarin:
- \(\phi \) = de hoek van de inwendige wrijvingsweerstand van de grond (rad)
- \(\Delta \phi \) = de overdruk van het water (N/m²)
- \(\alpha \) = de hoek van het talud met de horizontaal (rad)
- \(d \) = de dikte van de steenzetting (m)
- \(\gamma \) = de soortelijke massa van de steenzetting (kg/m³)
- \(\gamma_w \) = de soortelijke massa van het water (kg/m³)

Uiteraard is het criterium wanneer een blok van het talud gelicht wordt hetzelfde als genoemd bij Sellmeijer (deel IV)

\[\Delta \phi > \frac{\gamma - \gamma_w}{\gamma_w} \cdot d \cdot \cos \alpha \]

De bepaling van \(\Delta \phi \), zoals uitgewerkt door Edelman door een lineair potentiële verloop aan te nemen, de z.g. driehoeksregel (zoals aangegeven in figuur 7), is echter te eenvoudig om van praktisch nut te kunnen zijn.
A. Drukverloop onder de dijkbekleiding volgens de driehoeksregel.

B. Vergelijking potentiële verloop volgens Edelman met nauwkeuriger berekeningen van v.d. Veer. De sets lijnen a₁ en a₂ in b geven berekeningen voor twee verschillende gevallen die in 2.4 besproken worden.
Edelman zelf wijst dan ook op een met een spleetmodel proefonder-
vindelijke bepaling van $\Delta \phi$.

2.4. **Veer, van der P.**

Van der Veer (28) berekent met behulp van conforme afbeeldingen de overdruk
die onder een gesloten dijkbekleding kan ontstaan als de freatische
lijn in het dijklichaam hoger ligt dan de waterlijn. Hij vergelijkt
die met de resultaten van de driehoeksregel, die bij de behandeling
van het artikel van Edelman ter sprake gekomen is. Uitgangspunten
van de berekening van van der Veer zijn:
De lengte van het talud is groot t.o.v. de lengte van de bekleding,
het verhang van de freatische lijn is gering en op korte afstand
doen zich geen storende invloeden voor b.v. lagen of damwanden. Er worden
twee gevallen onderscheiden:
1) Stationaire stroming (constante horizontale aanvoer van grond-
water)
2) Een moment uit een niet-stationaire stroming.
Als we de drukhoogte van de freatische lijn t.o.v. de stil waterlijn
ϕ_v noemen, dan geldt volgens de driehoeksregel dat de overdruk
onder de dijkbekleding ter plaatse van de waterlijn:

$$ P_{\text{max}} = a_3 \phi_v $$

met $a_3 = 1 - \frac{h}{H}$

(voor de betekenis van h en H zie fig. 7).
Voor een stationaire stroming geldt volgens van der Veer:

$$ P_{\text{max}} = a_1 \phi_v $$

met $a_1 = \frac{1}{\sqrt{1 - (\frac{h}{H})^2}}$

met $\theta = \arctan(n) + \frac{\pi}{2}$

de hoek tussen de freatische lijn en het talud (zie fig. 7).
Voor een moment uit een niet stationaire stroming wordt dit:

$$ a_2 = \frac{1}{\pi} \arccos \left(2 \frac{h}{H} \theta - 1 \right) $$
Voor het onderzoek naar de stabiliteit van steenzettingen onder golfaanval is het nut van dit artikel beperkt. De variatie in de hoogte van de waterlijn is bij golfaanval zo heftig dat nooit van een (quasi-) stationaire stroming gesproken kan worden, als de stroming in het gehele dijklichaam een rol speelt, zoals in dit artikel verondersteld. Wel zou bij een zeer weinig water doorlatende steenzetting, bij eb, het in dit artikel beschreven mechanisme een extra overdruk kunnen creëren onder een steenzetting, die samen met de al besproken en nog te bespreken mechanismen instabiliteit van die steenzetting aanleiding geven.

2.5. **Electronische analoge metingen**

Door dat de stroming in een dijklichaam, voor praktische gevallen, heel moeilijk analytisch oplosbaar bleek, is men bij de deltadienst omstreeks 1960 gestart met het uitvoeren van metingen aan analoge elektrisch modellen. Deze modellen kunnen gebruikt worden voor heel reëele geometrien. Over dit werk is gepubliceerd door Marcus (29) en Bischoff van Heemskerk (33).

2.6. **Discussie en conclusie: drukhoogte golf**

De in het voorafgaande beschreven artikelen zijn alle geschreven met het oog op andere toepassingen dan onderzoek naar de stabiliteit van taludbekledingen van gezette steen. De in deze artikelen gepresenteerde resultaten zijn voor dat onderzoek dan ook nauwelijks bruikbaar. Een glooiing die bestaat uit twee lagen met heel verschillende doorlatendheid wordt in geen van de artikelen beschreven. Even min al de mogelijkheid van inslijpeling. Dit wil zeggen dat bij een teruglopende golf water achterblijft op het talud wat tussen de stenen van de glooiing doorstroomt naar de daaronder liggende laag en zo niet te verwaarlozen bijdrage kan geven aan de overdruk.

Door het LGM en de deltadienst afd. WTG zijn daarom berekeningen uitgevoerd waarin bovengenoemde punten wel in rekening gebracht zijn. De resultaten van deze studies zijn in deel IV opgenomen.
3. **Dynamica**

Een van de mogelijke oorzaken voor de beschadiging van een talud van gezette steen door golfaanval is de drukgolf die zich in de ondergrond voortplant nadat het talud is getroffen door een klap van een brekende golf. De literatuur over dit ontwerp is als volgt onder te verdelen:

1. Grond wordt opgevat als een één fase materiaal met elastische eigenschappen.
2. Grond wordt opgevat als een tweefase materiaal, een korrelskelet verzadigd met water. Het korrelskelet heeft elastische eigenschappen.
3. Afhankelijk van de situatie wordt grond beschouwd als een als dan niet met water verzadigd korrelskelet, waarbij het korrelskelet geen elastische eigenschappen hoeft te hebben.

3.1. **Grond als elastisch éénfase materiaal**

Dit is de enige benadering waarbij analytische oplossingen van de bewegingsvergelijkingen mogelijk zijn voor andere dan de meest eenvoudige gevallen. Van deze benadering is dan ook de meeste literatuur voorhanden. De aannemer dat grond te beschouwen is als een elastisch éénfase materiaal, is echter een zeer ruwe benadering van de werkelijkheid.

Voor een halfoneindig elastisch medium gelden de volgende bewegingsvergelijkingen

\[G \cdot V^2 \ddot{\bar{U}} + (K + 1/3 \cdot G) \text{grad} (\text{div} \ \bar{U}) = \rho \frac{\partial^2 \bar{U}}{\partial t^2} \]

waarin

- \(\bar{U} \) = de uitwijking (m)
- \(K \) = de compressie-modulus (N/m²)
- \(G \) = de glijdingsmodulus (N/m²)
- \(\rho \) = de volumieke massa van de grond (kg/m³)
- \(t \) = de verlopen tijd (s)
Ook geldt nog:

\[
\frac{K + 1/3 G}{K + 4/3 G} = \frac{1}{2-2\nu} \quad \text{en} \quad \frac{G}{K + 4/3 G} = \frac{1-2\nu}{2-2\nu}
\]

waarin \(\nu\) is de dwarscontractie coëfficiënt of Poisson ratio.

Soms wordt de uitwijkings gesplitst in een rotatievrij deel en een gedeelte zonder divergentie.

Door te stellen

\[
\vec{U} = \text{grad} \; \phi + \text{rot} \; \vec{\phi}
\]

en dit invullen in de differentiaal vergelijking, wordt deze:

\[
\text{grad} \left[(K + \frac{4}{3} G) \vec{v}^2 \phi - \rho \frac{\partial^2 \phi}{\partial t^2} \right] + \text{rot} \left[G \vec{v} \phi^2 - \rho \frac{\partial^2 \phi}{\partial t^2} \right] = 0
\]

Deze vergelijking is nu te splitsen in een rotatievrij en een divergentievrij gedeelte.

Het rotatievrije gedeelte

\[
\frac{K + 4/3 G}{\rho} \; v^2 \phi - \frac{\partial^2 \phi}{\partial t^2} = 0
\]

beschrijft de rotatievrije longitudinale (p)-golven.

Het divergentievrije gedeelte

\[
\frac{G}{\rho} \; v^2 \; \phi - \frac{\partial^2 \phi}{\partial t^2} = 0
\]

beschrijft de divergentievrije transversale (s) - golven.

In sommige van de in het volgende ter sprake komende artikelen wordt gebruik gemaakt van de Lamé konstanten.

Deze zijn als volgt gedefinieerd

\[
\lambda = K - \frac{2}{3} G \quad \text{en} \quad \mu = G
\]

In het volgende wordt een overzicht gegeven van literatuur waarin grond wordt opgevat als een half-oneindig elastisch medium en de randvoorwaarden redelijk overeenkomen met de randvoorwaarden die behoren bij een golfklap.
3.1.1. \textit{Lamb, H.} [1904]

Door Lord Rayleigh was aangetoond dat oplossingen van de differentiaalvergelijkingen in een halfoneindig elastisch medium een bepaald soort oppervlaktegolven toelieten, waardoor de invloed van het vrije oppervlak groter bleek dan tot dan toe verwacht. In zijn artikel geeft Lamb oplossingen voor gedwongen trillingen en laat ook niet enkel-harmonische trillingen toe. De door hem gegeven oplossingen zijn echter alleen geldig voor golven ver van de bron ("far-field" oplossing) en daarom voor ons probleem minder geschikt.

Dit artikel wordt hier alleen genoemd, omdat het het basisartikel is over oppervlaktetrillingen waar door de meeste nu volgende auteurs naar verwezen wordt.

3.1.2. \textit{Holzlöchner, U.} [1969] [1980]

Uitgaande van de berekeningen van Lamb berekent Holzlöchner (6) de bewegingen van het oppervlak van een halfoneindige elastische ruimte, als op het oppervlak een rechthoek belast wordt met een harmonisch variërende spanning. Hierbij wordt de belasting per oppervlakte-eenheid geschreven als:

\[q = \frac{Q}{4 \, ab} \, e^{i \omega t} \]

waarin:
- \(Q \) = de totale maximale belasting (N)
- \(a \) = de halve lengte (m)
- \(b \) = de halve breedte (m)
- \(t \) = de tijd (s)
- \(\omega \) = de cirkelfrequentie (1/s)

Voor de Poisson ratio \(\nu = 1/3 \) en verschillende frequenties worden de bewegingen van het oppervlak aangegeven in fig. 8. Met de in deze figuur aangegeven \(f_1 \) en \(f_2 \) is de uitwijking \(U_y \) te berekenen uit de formule

\[U_y = \text{Re} \left[\frac{Q}{2Ga} \sqrt{\frac{\pi}{D_0}} \left(f_1 + if_2 \right) e^{i \omega t} \right] \]
waarin

\[b_0 = \frac{a}{b} \] \hspace{1cm} \text{ }()

\[G = \text{ de glijdingsmodulus} \] \hspace{1cm} \text{(N/m}^2)\text{)}

De in de figuur aangegeven \(a_0 \) is een maat voor de frequentie:

\[a_0 = a_0 \omega \sqrt{\frac{L}{G}} \] \hspace{1cm} \text{ }()

Waarin \(\rho \) de volumieke massa is.

Het nut van dit artikel voor het onderzoek naar de stabiliteit van dijkbekledingen wordt beperkt doordat als bron alleen harmonische spanningsvariaties meegenomen zijn.

Uiteraard kan een golfklap niet als zodanig opgevat worden. De resultaten kunnen dus alleen gebruikt worden om een afschatting van de orde van grootte van de trillingen te maken.

Wel zijn in deze berekening de oppervlaktegolven in rekening gebracht en geeft de berekening oplossingen dicht bij de bron.
Fig. 8. f_1 en f_2 als functie van $a_o = a \omega \sqrt{\frac{D}{G}}$ (Holzlöhner 1969)

en $\sqrt{f_3^2 + f_4^2}$ en $\phi = \arctan \left(\frac{f_4}{f_3} \right)$ als functie van $\bar{r} = r \omega \sqrt{\frac{D}{G}}$ (Holzlöhner 1980).
In een volgend artikel (7) berekent Holzlöhner de horizontale en vertikale verplaatsingen van het oppervlak van een elastische halfruimte, als de belasting op slechts 1 punt van die ruimte komt. De verticale verplaatsing is dan te schrijven als:

$$U_z = \text{Re} \left[\frac{Q}{G_r} \left\{ f_3 (\bar{r}, \nu) + i f_4 (\bar{r}, \nu) \right\} e^{i \omega t} \right]$$

waarin

- \(r \) = de afstand tot de bron (m)
- \(\nu \) = de poisson ratio

\(Q \) en \(G \) als in het vorige artikel van Holzlöhner

Het verloop van de genormeerde amplitude \(\sqrt{f_3^2 + f_4^2} \) en het verloop van de fasehoek \(\phi = \arctan \left(\frac{f_4}{f_3} \right) \) als functie van de genormaliseerde afstand tot de verstoring \(\bar{r} = \frac{r \omega}{\sqrt{\rho/G}} \) is gegeven in de figuur 8.

De resultaten voor de verschillende waarden van \(\bar{r} \) worden vergeleken met de "far-field" solution van Lamb (4). Voor de veel kleine-re horizontale verplaatsingen wordt verwezen naar het artikel.

Aan het slot van het artikel wordt het resultaat gegeven van een berekening waarbij van een cirkelvormig oppervlak met straal \(a \), door superpositie, een horizontale verplaatsing gegeven wordt. Voor verschillende frequenties is het verloop van de verstoring of afstand \(r/a \) van de verstoring gegeven. Omdat bij een golfklap de verplaatsing juist een onbekende is, lijkt dit minder relevant.

Wat betreft het nut van dit artikel voor het onderzoek naar de stabiliteit van steenzettingen geldt hetzelfde als ook bij het vorige artikel van Holzlöhner opgemerkt is, namelijk dat de tijdsafhankelijkheid van de belasting beperkt is tot harmonische functies. De vorm van het belaste vlak kan echter vrij willekeurig zijn.

3.1.3. Kitamura en Sakurai (1979)

Kitamura en Sakurai (8) geven een benaderende berekening voor de reële en imaginaire compliantie en stijfheid van onvervormbare rechthoeken op een elastische halfruimte bij verschillende frequenties. Uitgangspunt is de configuratie van fig. 9 en een soortgelijke oplossing als Holzlöhner (1980).
Fig. 9. Onderverdeling van het contact oppervlak en het coördinaten systeem.

Het contactoppervlak tussen de elastische halfruimte en de stijve rechthoekige constructie wordt onderverdeeld in kleine rechthoekjes. In de berekening wordt aangenomen dat de spanning over een rechthoekje konstant is en in het midden aangrijpt.

Figuur 10 geeft het reële en imaginaire deel van de stijfheid.

Fig. 10. Complexe stijfheid (dynamische beddingsconstante) in verticale richting voor constant contact oppervlak.
(k) met:

\[k = \frac{P}{U} \]

waarin P de kracht op de rechthoek is en U de uitwijking.

De dwarscontractie coëfficiënt is 1/3.

Voor de berekening van de compliantie gaan de auteurs uit van een benaderende formule, die ook zeer geschikt is om bij een gegeven harmonische puntbelasting de maximale verticale beweging van de grond te benaderen. De formule die bij de artikelen van Holzlohner ter sprake kwam:

\[U_2 = \text{Re} \left[\frac{Q}{G \pi} \{ f_3 (r, \nu) + i f_4 (r, \nu) \} e^{i\omega t} \right] \]

wordt in dit artikel geschreven als:

\[U_2 = \text{Re} \left[\frac{(1-\nu) Q}{2\pi G} \frac{1}{r} \{ f_1 + if_2 \} e^{i\omega t} \right] \]

Zodat dus geldt:

\[f_{1,2} = \frac{2\pi}{1-\nu} f_{3,4} \]

Voor alle waarden van \(\nu \) geldt nu voor kleine \(\omega r / V_S \) (waarin \(W \) de cirkel frequentie, \(r \) de afstand van de bron en \(V_S \) de transversale golfsnelheid) dat bij benadering geschreven kan worden:

\[\sqrt{f_1^2 + f_2^2} = 1 \text{ en } \phi = 1,20 \frac{\omega r}{V_S} \]

De uitwijking op een afstand \(r \) van de belasting wordt dan gegeven door:

\[U_2 = \frac{1 - \nu}{2\pi G} \frac{e^{-i\phi}}{r} Q e^{i\omega t} \]

Dicht bij de bron zal altijd gelden dat \(\omega r / V_S \) klein is en is de uitwijking van de elastische halfruimte op een afstand \(r \) van de bron, bij harmonische belastingsvariatie met maximale uitwijking \(Q \), met deze benaderende formule eenvoudig te berekenen.

De resultaten van Kitamura en Sakurai kunnen gebruikt worden om de verplaatsing van een betonblok bij een gegeven golfaanval te berekenen. Maar ook hier is alleen harmonische belasting in de berekening meegenomen. De stijfheid voor een stoot-vormige belasting kan dus alleen hieruit berekend worden als bekend is uit welke frequentie deze is opgebouwd.

Voor een bewegende puntbelasting op een oneindig halfvlak zijn door Gakenheimer en Mihlowitz (1969) (9) formules afgeleid die de bewegingen van dit halfvlak beschrijven. In dit artikel (10) berekent Gakenheimer aan de hand van die formules de oplossingen voor een stilstaande puntbelasting. De vorm van de belasting is een stapbelasting op \(t = 0 \). In de halfruimte kunnen de volgende golffronten in het coördinaten systeem getekend worden.

![Diagram of wavefronts](image)

\[H(t) \]

\[r (\phi = 90^\circ) \]

\[(\phi = 0^\circ) \]

\[\phi = 35.3^\circ \]

Fig. 11. Golffronten in een elastische halfruimte.

De cirkels geven de golffronten aan van de longitudinale (d) en transversale (s) golf. R geeft aan de relatieve snelheid van de oppervlakte- of Rayleigh golven. De verhouding tussen de longitudinale \((c_d) \) en de transversale \((c_s) \) voortplantingssnelheid wordt gegeven door de gestreepte lijn, waarbij geldt:

\[
\frac{c_s}{c_d} = \sin \phi
\]

Voor een lijn met constante hoek \(\phi \) blijkt de uit-wijking te geven in de dimensieloze coördinaat \(V_1 \) waarbij geldt:
De symbolen in het bovenstaande hebben de volgende betekenis:

- \(U_j(x, \phi, \tau) \) is de wrijving in de richting \(j \) en \(H(t) \) is de kracht die op de massa wordt aangebracht.
- \(V_1(\phi, \tau) \) is de bijbehorende functie.
- \(x = \sqrt{x^2 + z^2} \) is de afstand van een punt in de ruimte.
- \(\mu \) is de dynastische modulus.
- \(\rho \) is de massa per volume eenheid.
- \(c_d \) is de maximale snelheid.

Hieruit volgt dat \(V_1 \) onafhankelijk is van \(x \).

De onderstaande figuur toont de resultaten voor een Poisson ratio.

Vertikale verplaatsingen

Horizontale verplaatsingen

Fig. 12. Resultaten Gakenheimer, Lamb's puntbelasting probleem
van \(\frac{C_S}{C_d} = 1/\sqrt{3} \). De oplossingen voor \(\phi = 90^0 \) laten duidelijk de invloed van de oppervlakte- of Rayleigh golven zien. Op het eerste gezicht lijkt het onwaarschijnlijk dat de oppervlakte golven die zoals bekend afvallen met \(1/\sqrt{r} \) met eenzelfde dimensieloze parameter te beschrijven zijn als de golven in de halfruimte die afvallen met \(1/r \).

Dat dit toch kan komt door de speciale keuze van de lijn waarlangs de oplossing gegeven wordt, nl een lijn met constante \(\phi \). De oppervlakte golven vallen af met \(1/\sqrt{r} \), maar omdat een lijn met constante \(\phi \) steeds verder van het oppervlak verwijderd raakt blijkt uit een berekening van Achenbach (11) dat langs een lijn met constante \(\phi \) de plaatsafhankelijkheid van de oppervlakte-golven hetzelfde is als van de golven in de halfruimte, nl. \(1/r \) en dus kunnen uitwijkingen die door een combinatie van beide veroorzaakt worden toch met een dimensieloze uitwiking beschreven worden.

Voor het onderzoek naar de stabilité van steenzettingen onder golfaanval lijkt deze berekening bruikbaar als benadering voor de berekening van de uitwijkingen bij een golfklap. De zich voortplantende belasting is vergelijkbaar met die onder een brekende golf. Het nut wordt echter beperkt doordat dicht bij een golfklap (daar waar de stenen uit de glooiing verwijderd worden) de belasting niet opgevat kan worden als een puntbron en dat uit de berekening volgt dat de golf aan het oppervlak een singulariteit bevat. Daarom zijn geen oplossingen voor \(\phi = 90^0 \) gegeven. Deze zal in werkelijkheid nooit aanwezig zijn, maar hoe groot de uitwiking dan wel is, is niet af te schatten. Dit gegeven beperkt duidelijk de bruikbaarheid van deze berekeningen.

3.1.5. **Gakenheimer, P.C.** (1971)

Gakenheimer (12) berekent de respons van een elastische halfruimte op een zich uitbreidende oppervlaktebelasting.

De belasting begint in een punt en breidt zich dan ringvormig over het oppervlak uit (1), of over het oppervlak van een steeds groter wordende cirkel (2) (zie figuur 13).
Fig. 13. Zich uitbreidende plaat of ringbelasting.

De totale kracht blijft constant. De druk op de halfruimte wordt dus steeds minder.

De randvoorwaarde voor het probleem (2) is enigszins vergelijkbaar met de situatie van een op een elastische halfruimte brekende golf. Daarom zullen de oplossingen met randvoorwaarde (2) behandeld worden.

De vergelijkingen zijn dezelfde als ook in 3.1. gegeven alleen nu geschreven voor een axiaal symmetrisch probleem:

\[v^2\phi = \frac{1}{c_d^2} \frac{\partial^2 \phi}{\partial t^2} \]

\[v^2\psi - \frac{\psi}{r^2} = \frac{1}{c_s^2} \frac{\partial^2 \psi}{\partial t^2} \]

\(v^2 \) is de Laplace operator en de potentiaal \(\phi \) en \(\psi \) zijn gerelateerd aan de verplaatsing \(U_r \) en \(U_z \) (zie ook fig.13).

\[U_r = \frac{\partial \phi}{\partial r} - \frac{\partial \phi}{\partial z} \]

\[U_z = \frac{\partial \phi}{\partial z} + \frac{\partial (r\psi)}{rdr} \]
De constantes C_d en C_s worden gedefinieerd door

$$C_d^2 = (\lambda + 2\mu)/\rho \quad \text{en} \quad C_s^2 = \mu/\rho$$

waarin λ en μ de lamé constanten zijn en ρ de volumieke massa.

De randvoorwaarde is:

$$P_0 (r, t) = \frac{F_0}{\pi (ct)^2} H (ct-r)$$

Waarin F_0 de totale kracht is en H de Heaviside functie (een stapfunctie $H (\alpha) = 0 \ \alpha < 0$, $H (\alpha) = 1 \ \alpha < 0$) en c de snelheid waarmee de kracht zich over het oppervlak uitbreidt.

De oplossing kan weer gegeven worden in een dimensieloze uitwijking U_r of V_z, die gedefinieerd wordt vergelijkbaar met het vorige artikel van Gakenheimer:

$$U_r \text{ of } z (\phi, \tau) = \frac{F_0}{\pi^2 \mu x} \quad V_r \text{ of } z (\phi, \tau)$$

waarin $x = \sqrt{r^2 + z^2}$ en $\tau = \frac{c_d t}{x}$. V is dan onafhankelijk van ρ.

Ook hier geldt dus evenals bij het vorige artikel dat ongeacht de afstand tot de verstoring de golf bij ϕ is constant dezelfde vorm heeft. Vlak onder het oppervlak van de oneindige halfruimte wordt V_z voor verticale verplaatsing gegeven door fig. 14. Figuur 15 geeft de horizontale en verticale verplaatsing.
In beide figuren is de oplossing gegeven voor het geval dat de snelheid waarmee de belasting zich uitbreidt 1/3 is van de longitudinale geluidssnelheid in de grond. Het verplaatsingspatroon is vrijwel gelijk aan dat bij heel lage voortplantingssnelheden.

In het artikel worden ook oplossingen gegeven als de snelheid van uitbreiding van de belasting 4/5 en 2 maal de longitudinale geluidssnelheid in de grond is.

Gakenheimer merkt op dat de discontinuïteiten in golven zoals die voorkomen in zijn tekeningen fysisch niet realistisch zijn, maar voort komen uit de puntbelasting in het begin.

Wat betreft de toepasbaarheid van dit artikel van Gakenheimer voor het onderzoek naar de stabiliteit van steenzettingen geldt hetzelfde als wat ook opgemerkt is bij het vorige artikel. De aanname van een puntbron op t = 0 en de singulariteiten in de oplossing aan het oppervlak beperken de toepasbaarheid in hoge mate.

De opgelegde randvoorwaarde van een zich uitbreidende belasting is wel redelijk te vergelijken met een brekende golf.

3.1.6. Achenbach e.a. [1967]

Beschrijven in 2 artikelen (13, 14) de golven in een half oneindige ruimte met daaroverheen een plaat met andere eigenschappen. Daarbij wordt onderscheid gemaakt of de plaat vast aan de halfruimte verbonden is, of dat er slechts los contact is (in dat geval moeten de schuifspanningen op de overgang tussen de plaat en de halfruimte nul zijn).

In hun eerste artikel berekenen zij de vrije golven die in een dergelijke configuratie mogelijk zijn en vergelijken die met een benaderende theorie waarin aan de plaatvergelijking randvoorwaarden gekoppeld worden die volgen uit de vergelijkingen voor de elastische halfruimte.

In een tweede artikel berekenen zij de reactie van een dergelijke configuratie op een harmonisch bewegende belasting.
De hier beschreven benadering zou voor dit onderzoek bruikbaar kunnen zijn om na te gaan wat de invloed is van een steenlaag op een elastisch grondlichaam. Als de golflengte van de golven in het dijklichaam veel langer is dan de afmetingen van de stenen, zou de stenen glooiing opgevat kunnen worden als een slappe bovenlaag met ongeveer gelijk volumieke massa als de ondergrond. Als de golflengte van de zelfde orde of kleiner is dan de golflengte van de stenen, is deze benadering natuurlijk onbruikbaar. Helaas geven geen van beide artikelen oplossingen voor een slappe bovenlaag met vergelijkbaar of wat hogere volumieke massa als de ondergrond. Uit deze artikelen is dus geen conclusie te trekken over de invloed van een stenen glooiing op de beweging van de ondergrond zonder aan de hand van deze artikelen aanvullende berekeningen te doen.

3.1.7. Barclay e.a., 1978

In dit artikel (15) wordt aangegeven hoe berekeningen uitgevoerd kunnen worden aan een Maxwell viscoelastisch medium. Dit wil zeggen een medium met de volgende spannings-rek relatie.

\[
\frac{d \varepsilon}{dt} = \frac{1}{\mu} \frac{d\sigma}{dt} + \nu \sigma
\]

waarin

\(\varepsilon \) : de rek

\(t \) : de tijd

\(\sigma \) : de spanning

\(\mu \) : de stijfheid

\(\nu \) : de reciproke van de schuif viscositeit.

\(\frac{1}{\text{N/m}^2} \)

\(\frac{1}{\text{N/m}^2s} \)
Oppervlakte verschijnselen worden niet in de beschouwing meegenomen.

Deze beschrijving lijkt meer geschikt voor het doorrekenen van trillingen bij b.v. heien dan voor het beschrijven van de dynamische verschijnselen bij golfklappen. Mede omdat bij golfklappen eerder de normaalspanningen dan de schuifspanningen van belang zijn. Ook is de tijdsduur van de belasting bij golfklappen zo kort dat geen grote invloed van dit soort visceuze eigenschappen te verwachten is.

Uiteraard treden bij een golfklap wel allerlei dempingsmechanismen op, door b.v. lucht in het water en verandering van de phreatische lijn, maar deze worden niet beschreven met bovenstaande spannings-rek-relatie maar door:

$$\frac{1}{\nu} \frac{de}{dt} + \mu e = \sigma$$

Wat in een figuur als volgt is aan te geven.

Fig. 18. Schema viscoelastisch medium met bovenstaande spannings-rek relatie.

Het artikel geeft aan hoe, behalve de al in de vorige artikelen beschreven elastische eigenschappen ook visceuze eigenschappen in berekeningen meegenomen kunnen worden.
Dit is weer te geven als in onderstaande figuur.

Fig. 16. Schematische voorstelling Maxwell viscoelastisch medium.

Uitgaande van een axiaal-symmetrisch probleem, beschrijven de auteurs benaderende en exacte oplossingen als een stelsel van al dan niet eindige viscoelastische media belast wordt met een stootvormige of harmonische belasting van een voorgeschreven schuifspanning. De configuratie is die als getekend in figuur 17.

Fig. 17. Configuratie voor de berekeningen van Barclay.
τ geeft aan de opgelegde schuifspanning.
3.1.8. *Hopkins, H.G.*

Hopkins (16) behandelt met de methode der karakteristieken problemen die beschreven worden door systemen van hyperbolische quasi-lineaire differentiaal vergelijkingen voor twee variabelen. De vergelijkingen van blz. 11 worden gebruikt voor één-dimensionale problemen maar met een niet-lineaire spannings-rekrelatie. De meeste aandacht wordt gegeven aan omstandigheden waar de elastische limiet overschreden wordt. De niet-lineairiteit van de vergelijkingen maakt dan continue en niet-continue oplossingen mogelijk. De in het artikel besproken situaties gelden ook voor longitudinale spanningsgolven in balken, vlakken en niet roterende en bolvormige spanningsgolven. Als voorbeeld het volgende:

De voortplantingssnelheid van een golf in een elastisch medium wordt gegeven door \(\sqrt{\frac{S}{\rho}} \), waarin \(S \) de elasticiteitsmodulus is en \(\rho \) de soortelijke massa. \(S \) is te bepalen uit de spannings-rek-relatie. Voor een materiaal dat niet enkelvoudig elastisch is, maar een spannings-rek-relatie heeft als aangegeven in onderstaande figuur 19 zal een éénmalige verstoring niet altijd één golffront geven.

![Diagram](image)

Fig. 19. a. Bi-lineaire spannings-rek-relatie
b. Bijbehorende golffronten

Als de verstoring namelijk zo groot is dat het punt \((\epsilon_y', \sigma_y')\) overschreden wordt dan zullen er bij enkelvoudige verstoring twee golffronten optreden.
Evenwel: één met een voortplantingssnelheid C_1 overeenkomend met de helling van het eerste gedeelte van de kromme en één met een voortplantingssnelheid C_2 overeenkomend met de helling van het andere gedeelte van de kromme. De golffronten zijn in de figuur 19 naast de spannings-rek-relatie gegeven (de horizontale as geeft een dimensieloze snelheid aan). Bij de volgende spannings-rek-relatie (fig. 20) zal een omgekeerde

![Graph of stress-strain relationship](image)

Fig. 20. Niet-lineair elastische spannings-rek-relatie.

toestand ontstaan. Des te groter de verstoring des te sneller de voortplantingssnelheid.

Een als in onderstaande figuur (21) opgebouwde verstoring, zal

![Graph of wave front example](image)

Fig. 21. Voorbeeld van een golffront.
naarmate de golf zich voortplant door het medium van vorm veranderen. De grotere verstoring ε_2 plant zich sneller voort dan ε_1, waardoor het eerste deel van de verstoring een steiler verloop krijgt, zoals hieronder aangegeven (fig. 22).

![Diagram](image)

Fig. 22. Golffront van fig. 21, nadat enige tijd een materiaal met de spannings-rek-relatie van fig. 20 doorlopen is.

Nog verder in het materiaal kan de verstoring zelfs een discontinu karakter krijgen.

Grond vertoont inderdaad een sterk niet-lineair karakter, zodat dit artikel een bijdrage zou kunnen leveren aan de problematiek van stabiliteit van steenzettingen.

Een groot bezwaar van dit artikel is echter dat het alleen één-dimensionale gevallen behandelt. In hoeverre de behandelde theorie ook meer dimensionaal toepasbaar is, valt moeilijk in kort bestek uit het artikel op te maken.

Verwacht mag worden dat de behandeling van het probleem al snel numeriek zal moeten worden.

In het volgende hoofdstuk 3.2. zullen dan ook enkele numerieke oplossingen besproken worden.

3.1.9. **Discussie en conclusie eenfasemateriaal**

Behalve de in het voorgaande besproken artikelen, is door het LGM een studie uitgevoerd naar de reactie van een halfoneindig
elastisch medium, uitgaande van een lijnbelasting. Aangenomen is
dat de verplaatsing in horizontale richting nul is. Hierdoor zijn
in de oplossing geen oppervlaktegolven aanwezig. Deze studie is in
deel IV opgenomen. De resultaten zijn bruikbaar
onder de aanname van een goed gesloten steenzetting en geen ver-
schuiving van de steenzetting t.o.v. de ondergrond bij een golf-
klap.

Van de behandelde artikelen en de studie van het LGM is in tabel
I een overzicht gegeven waarin het soort materiaal, de vorm van
de belasting, de vorm van de belasting in de tijd en eventuele
bijzonderheden gegeven worden.

Concluderend moet opgemerkt worden dat zowel de in het vooraf-
gaande besproken artikelen, als de door het LGM uitgevoerde stu-
die nog geen volledig inzicht gaven in het gedrag van een
elastische halfruimte bij een golfklap. Een probleem
vormen hierbij de oppervlaktegolven, die bij een stapbelasting
op een lijn of punt, vaak aanleiding geven tot divergente oploss-
ing.

Nu is een golfklap nooit op te vatten als een stapbelasting, en
ook niet als een puntbelasting, zeker niet dicht bij de golfklap.

Beter inzicht in het gedrag van een halfoneindige elastische
halfruimte kan verkregen worden als de Fourier getransformeerde
van een golfklap bekend is. Instabiliteit van de steenzetting t.g.v. een
golfklap blijkt namelijk altijd op te treden vlak bij de golfklap en dus
zou gebruik gemaakt kunnen worden van de benaderingen zoals die
behandeld zijn door Kitamura en Sakurai (8).

De door hun gegeven uitwijking in verticale richting $U_z (r,w)$
kan gebruikt worden om via integratie over het frequentiegebied
de totale uitwijking op afstand r te berekenen. Later zou deze
methode verfijnd kunnen worden door niet de benaderende formules
maar de exacte zoals beschreven door Holzlöhner (7) te gebruiken.

Uit de berekeningen van Gakenheimer (1969, 1971)(9, 12) blijkt dat de in-
vloed van beweging of uitbreiding van de belasting op de respons van de
halfruimte in vergelijking met stillstaande belasting gering is, als de
snelheid van de beweging of uitbreiding kleiner is dan 1/3 van de voort-
plantingssnelheid van longitudinale golven in de halfruimte. Dit is bij
een golfklap altijd het geval.
<table>
<thead>
<tr>
<th>Auteur</th>
<th>materiaal</th>
<th>vorm belasting</th>
<th>vorm van de belasting in de tijd</th>
<th>Bijzonderheden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb</td>
<td>elastisch</td>
<td>punt</td>
<td>willekeurig</td>
<td>Alleen oplossingen ver van de bron.</td>
</tr>
<tr>
<td>Holzlöhner(1969)</td>
<td>"</td>
<td>rechthoek</td>
<td>harmonisch</td>
<td></td>
</tr>
<tr>
<td>Holzlöhner(1980)</td>
<td>"</td>
<td>punt</td>
<td>harmonisch</td>
<td></td>
</tr>
<tr>
<td>Kitamara + Sakurai</td>
<td>"</td>
<td>rechthoek</td>
<td>harmonisch</td>
<td></td>
</tr>
<tr>
<td>Gakenheimer(I)</td>
<td>"</td>
<td>punt</td>
<td>stapfunctie</td>
<td>Zowel verticale als horizontale belasting.</td>
</tr>
<tr>
<td>Gakenheimer(II)</td>
<td>"</td>
<td>ring of plaat</td>
<td>stapfunctie</td>
<td>De ring of plaat breidt zich met constante snelheid uit, de totale belasting blijft gelijk. Oplossingen voor vrije golven. Belasting beweegt met constante snelheid.</td>
</tr>
<tr>
<td>Achenbach(I)</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achenbach(II)</td>
<td>"</td>
<td>lijn</td>
<td>constant</td>
<td></td>
</tr>
<tr>
<td>Barclay</td>
<td>visco-</td>
<td>schuif</td>
<td>stapfunctie</td>
<td>1 dimensie</td>
</tr>
<tr>
<td>Hopkins</td>
<td>niet</td>
<td>spanning</td>
<td>willekeurig</td>
<td>Horizontale uitwijking is 0 (geen oppervlakte-golven).</td>
</tr>
<tr>
<td>Sellmeijer</td>
<td>elastisch</td>
<td>lijn</td>
<td>stapfunctie</td>
<td></td>
</tr>
</tbody>
</table>
3.2. Andere grondmodellen

Zodra uitgegaan wordt van een meer realistische beschrijving van de grond, door bijvoorbeeld uit te gaan van een tweefase model of door niet-lineairiteit in de spannings-rek-relatie toe te staan, zijn analytische oplossingen voor een enigszins met de praktijk overeenkomend randvoorwaarden probleem niet mogelijk. De computerprogramma's waarmee numerieke oplossingen gevonden kunnen worden, zijn van vrij recente datum en de theorie van niet-lineairiteit in de spannings-rek-relatie is nog volop in ontwikkeling. Om deze reden is de literatuur over dit onderdeel beperker als over het vorige.

Zodra niet-lineairiteit in de modellen toegestaan wordt is het ook veel moeilijker resultaten van anderen te "vertalen" naar eigen onderzoek. Is in lineaire gevallen de uitwijkung evenredig met de belasting, bij niet-lineaire modellen is dit uiteraard niet meer het geval. Daarbij wordt ook de initiële spanning van belang, de spanning die in de grond heerst voor belasten. In de in het volgende behandelde artikelen (behalve het eerste) wordt besproken hoe met numerieke oplossingsmethoden en een al dan niet lineair grondmodel met het golfklapprobleem vergelijkbare problemen opgelost zijn. Het geeft dan ook eerder aan hoe ook het golfklap probleem aangepakt zou kunnen worden, dan dat zij werkelijk oplossingen biedt. Daarbij geven enige auteurs vergelijkingen met het elastische éénfase model, zodat nagegaan kan worden in hoeverre een elastisch éénfase model nog voldoet.

Wanneer grond wordt opgevat als een tweefase materiaal, wordt uitgegaan van de volgende vergelijkingen (die voor de overzichtelijkheid in een ééndimensionale vorm zijn geschreven).

evenwicht water:

\[np_f \frac{\partial V_f}{\partial t} = n \frac{\partial p}{\partial y} - \frac{n^2 \mu}{k} (V_f - V_s) + np_f g \] \((3.2.1) \)

evenwicht korrelskelet:

\[(1-n)p_s \frac{\partial V_s}{\partial t} = - \frac{\partial \sigma}{\partial y} - (1-n) \frac{\partial p}{\partial y} + \frac{n^2 \mu}{k} (V_f - V_s) + (1-n)p_s g \] \((3.2.2) \)
continuïteit water:

\[\frac{\partial V_f}{\partial y} + \frac{1-n}{n} \frac{\partial V_s}{\partial y} = -\frac{1}{K_f} \frac{\partial p}{\partial t} \quad (3.2.3) \]

continuïteit korrelskelet:

\[(1-n) \frac{\partial V_s}{\partial y} = \frac{1-n}{K_s} \frac{\partial \sigma'}{\partial t} = \frac{\partial n}{\partial t} \quad (3.2.4) \]

Waar in:

- \(V_f \) = de snelheid van het water
- \(V_s \) = de snelheid van het korrelskelet
- \(\sigma' \) = de korrelspanning in de y-richting
- \(\rho \) = de waterspanning
- \(\rho_f \) = soortelijke massa van het water
- \(\rho_s \) = soortelijke massa van het korrelskelet
- \(g \) = zwaartekracht versnelling
- \(\kappa \) = intrinsieke doorlatendheid van de grond
- \(\mu \) = dynamische viscositeit van het water
- \(K_f \) = compressie modulus van het water
- \(K_s \) = compressie modulus van de grond
- \(y \) = coördinaten richting (verticaal)
- \(t \) = tijd

In deze formules is er van uitgegaan, dat de ingewikkelde spannings-rek-relatie van grond met één parameter \(K_s \) kan worden weergegeven. Bij de nog te behandelen niet lineaire grondmodellen zal blijken dat dit in veel gevallen niet mogelijk is, maar \(K_s \) een tensor is en niet alleen de korreelspanning in de y-richting maar ook in de andere richtingen een bijdragie geeft aan form. 3.2.4.

3.2.1. Josseling de Jong, G. de (1956)

Josseling de Jong (17) beschrijft de interactie tussen de grond en een heipaal. Het is een van de weinige oudere publicaties waar grond opgevat wordt als een tweefase materiaal.
In het eerste gedeelte wordt de voortplanting van een drukstoot in een paal met behulp van de methode der karakteristieken beschreven. Daar deze beschrijving buiten het kader van dit literatuuroverzicht valt wordt hiervoor naar dit artikel verwezen.
In het volgende gedeelte worden de drukvariaties beschreven in een vlakke p-golf in de x-richting, bij een stootvormige belasting van het korrelskelet in dezelfde richting.
De vergelijkingen zijn dezelfde als besproken in 3.2.1.
Alleen nu 1-dimensionaal in de x-richting, zodat de spanningen in het korrelskelet gegeven kunnen worden als een druk. De doorlatendheid k zoals die is gedefinieerd in dit artikel is $\frac{k}{\mu n}$ uit de inleiding.
De spanning in het korrelskelet (p_s) en in het water (p_f) ter plaatse x blijkt geschreven te kunnen worden als:

$$p_f = \frac{k_f}{k_f + n k_s} p \left\{ \begin{array}{ll} 0 \text{ voor } t < x/c' & \{ 0 \text{ voor } t < 0 \\ +1 \text{ voor } t > x/c' & \{ k + \text{erf} \frac{x}{2 \sqrt{kt}} \text{ voor } t > 0 \end{array} \right.$$

$$p_s = \frac{k_f}{k_f + n k_s} p \left\{ \begin{array}{ll} n k_f & \{ 0 \text{ voor } t < x/c' & \{ 0 \text{ voor } t < 0 \\ k_2 & \{ +1 \text{ voor } t > x/c' & \{ \text{erf} \frac{x}{2 \sqrt{kt}} \text{ voor } t > 0 \end{array} \right.$$

waarin: $p =$ de spanning van de stootbelasting (N/m²) (ingeset op $t = 0$)

$$c' = \sqrt{(k_f/n + k_s)/(n \rho_f + (1-n) \rho_s)}$$ (m/s)

is de geluidssnelheid

$$\bar{k} = k \frac{k_f k_s}{[k_f/n + k_s]}$$ (m²/s)

$\text{erf} (Z) = \frac{2}{\sqrt{\pi}} \int_0^\infty \exp(-\lambda^2) \, d\lambda$

De resultaten zijn gegeven in figuur 23.
Fig. 23. Stootvormige belasting van de korrels in $x = 0$ veroorzaakt een snelle acoustische voortplanting van druk in porieuwatern gevolgd door langzame aanpassing van korreldruk.

Ter beschrijving van het drie-dimensionale karakter van de stootuitbreiding geeft dit artikel slechts een berekening die betrekking heeft op een oneindige elastische ruimte. Omdat in het kader van dit literatuuroverzicht juist de oppervlaktegolven van belang zijn, is deze berekening voor dit overzicht niet van belang.

Het nut van dit artikel voor het onderzoek naar de stabiliteit van taludbekledingen van gezette steen is dat het aangeeft hoe de druk van een stootbelasting zich voortplant in een tweefase materiaal. Uit de gegeven formules voor P_F en P_a blijkt, dat voor het geval dat de compressibiliteit van het water veel kleiner is dan die van de grond, binnen zeer korte afstand bijna alle kracht door het water gedragen wordt. Deze waterdruk plant zich voort met de geluidssnelheid in water.
Bij de p-golf (de uitwijing is in dezelfde richting als de voortplanting) bewegen water en korrels als één geheel te samen. Voor p-golven gedraagt tweefase materiaal zich als een elastisch medium met de compressibiliteit van water en de dichtheid \(\rho_g = n \rho_f + (1-n) \rho_s \) van de grond.

Voor s-golven (de uitwijing staat loodrecht op de voortplantingsrichting) daarentegen wordt door de auteur zonder nader bewijs gesteld dat de waterspanningen bij dit type golf te verwaarlozen zijn en dat de golf de karakteristieke eigenschappen van een golf in droog zand heeft. In dit geval lijkt de behandeling van grond als 2-fase materiaal een overbodige complicatie.

3.2.3. **Saturn**

Voor een minder eenvoudige configuratie dan in het vorige artikel sprake kwam, is geen analytische oplossing bekend. Berekeningen kunnen dan alleen nog numeriek uitgevoerd worden. De volgende artikelen presenteren alle berekeningen met het computerprogramma SATURN.

Met dit programma wordt met de eindige elementenmethode het niet-lineaire gedrag van tweefase media beschreven. De vergelijkingen zijn de vergelijkingen die gegeven zijn in 3.2.1.

Met dit programma zijn verschillende grondmodellen door te rekenen. Voor zowel 1, 2 als 3 dimensionale problemen met een aparte optie voor axiaal symmetrische problemen.

Als voorbeeld kunnen de berekeningen die gemaakt zijn t.b.v. golfklappen op asfaltbekledingen dienen.

Uitgangspunt van de berekeningen is een modelproef in een bak zand met een hoogte van 1,2 meter en een diameter van 4 meter.

Deze bak is afgedekt met een dunne kunststof plaat, zie fig. 24.
Fig. 24. Proefopstelling impact probleem.

Midden op de plaat wordt de belasting aangebracht volgens fig. 25.

Impact pressure

Fig. 25. Verloop van de spanningen op de in fig. 24 aangegeven kunststof plaat.
Het geheel is te beschouwen als een geschematiseerde golfklap op een ondergrond van droog of met water verzadigd zand. Het probleem is axiaal symmetrisch voor de berekening werd de halve doorsnede van de bak onderverdeeld in 432 elementen.

Engering en Sweet (14) hebben de hierboven beschreven configuratie doorgerekend met het Critical State Soil Mechanics (CSSM) model. Dit is een elasto-plastisch grondmodel, d.w.z. dat de grond relatief sterker plastisch deformeert bij hogere deviatorspanningen. De mate van plastische deformatie is een functie van de effectieve spanningen en de porositeit. Als de kritische toestand bereikt wordt (het bezwijkoppervlak in de spanningsruimte), kan het grondmonster verder gedeformeerd worden zonder verdere verandering van de toestand parameters. Wiskundig is deze toestand in het CSSM-model gesimuleerd door een bezwijkoppervlak dat een functie is van de gemiddelde effectieve spanning en de plastische volumetrische rek. In dit rapport worden de resultaten vergeleken met berekeningen met een lineair-elastisch model. Het verloop van de spanningen en verplaatsingen in het in fig. 26 aangegeven punt H, is gegeven in de figuren 27, 28 en 29 zoals die volgden uit de berekeningen.
Fig. 27. De verplaatsing van de vloeistof en het korrelskelet in de x-richting voor het CSSM-model en een elastisch grondmodel. DFx is de verplaatsing van de vloeistof in de x-richting - DSx geeft hetzelfde aan, maar dan voor de korrels.
Fig. 28. As figure 27, maar nu in de y-richting.
Fig. 29. De waterspanning (P) en de gemiddelde effectieve druk (PS) ter plaats H.
Wel dient vermeld te worden dat bovengenoemd constitutief model niet in staat is het gedrag van zand volledig te beschrijven. Daarom worden nog steeds nieuwe modellen ontwikkeld. Een model dat bij narekening van triaxiaalproeven het gedrag van zand beter beschreef dan het bovengenoemde model is het elastoplastic double hardening model (20).
Het ligt in de bedoeling van het LGM om bovengenoemd impact probleem op korte termijn ook na te rekenen met dit model, maar op het moment van schrijven zijn nog geen resultaten bekend. Ging het tot nu toe om berekeningen van een vrij theoretisch probleem, met een oplossingsmethode als SATURN zijn ook meer praktische berekeningen mogelijk, zoals gemaakt door Sweet e.a. (21) die de verplaatsing van een met een betonnen muur afgeschermd aarden wal berekend bij een stootbelasting. En de berekening aan het slot van het al eerder genoemde rapport van Engering en Sweet (19) over het CSSM-model waarin de verplaatsing van een betonnen muur op de top van een dijk onder invloed van golfaanval wordt bepaald.

3.2.3. Conclusie andere grondmodellen

De in 3.2.2. behandelde artikelen geven aan wat de mogelijkheden zijn van berekeningen met SATURN. Tegenover deze mogelijkheden staan de relatief hoge kosten. Zo vergt een berekening van het impact-probleem met het elasto-plastische model van Molenkamp 24 uur zuivere CPU tijd op de Harris computer van het LGM.
Mogelijk zal blijken dat voor berekeningen aan de stabiliteit van taludbekledingen een lineair elastisch één-fase model een voldoend nauwkeurige beschrijving geeft. Door de complexiteit van de huidige elasto-plastische grondmodellen is dat echter niet à priori te bepalen. Pas na berekening met een geavanceerd grondmodel kan vastgesteld worden of een lineair elastisch éénfase model ook voldaan zou hebben.
4. Consolidatie

In dit hoofdstuk worden artikelen besproken waarin twee fase media behandeld worden, maar de traagheidskrachten van het korrelskelet en het water verwaarloosd worden. De vergelijkingen worden daardoor veel eenvoudiger waardoor meer analytische oplossingen mogelijk zijn. In één van de artikelen wordt de grond niet opgevat als een isotroop medium, maar de doorlatendheid is in één richting anders dan in de andere. Voor problemen waarin de dynamica een rol speelt, is dit nog niet onderzocht. Tot slot wordt in een artikel aangegeven wanneer traagheidskrachten van de vloeistof en het korrelskelet te verwaarlozen zijn.

4.1. Yamamoto, Sellmeijer e.a. (1977) [22]

Voor een zandlichaam van uniform materiaal wordt een berekening gegeven voor druk veranderingen in een met water verzadigd zandlichaam, als er boven dit zandlichaam zich golvend water bevindt. Aangenomen wordt dat de grond zich gedraagt als een elastisch poreus medium. Omdat het in dit probleem gaat om een kleine cyclische deformatie in vergelijking met de hydrostatische evenwichtstoestand, lijkt dit een redelijke benadering. Bovendien wordt aangenomen dat de beweging van het water door het zandlichaam te beschrijven is met de wet van Darcy. Uitgangspunt is de continuiteitsvergelijking:

\[
\frac{k}{\gamma_w} \nabla p = n \frac{\partial p}{\partial t} + \frac{\partial \varepsilon}{\partial t}
\]

waarin
- \(k \): de intrinsieke doorlatendheid \((m^2) \)
- \(p \): de wateroverspanning t.o.v. de hydrostatische druk \((N/m^2) \)
- \(\gamma_w \): de volumiaze massa van het water \((kg/m^3) \)
- \(\varepsilon \): de isotrope rek van het poreuse medium \(= \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} \) \((m) \)
- \(u \): de horizontale component van de verplaatsing \((m) \)
- \(w \): de verticale component van de verplaatsing \((m) \)
- \(t \): is tijd \((s) \)
- \(K' \): de schijnbare bulkmodulus van de vloeistof in de poriën. \((N/m^2) \)
Volgens Verruijt (1969) [26] is K' te schrijven als

$$\frac{1}{K'} = \frac{1}{K} + \frac{1 - S_r}{P_o}$$

Waar S_r: het percentage van verzadiging
P_o: de absolute waterspanning

Deze vergelijking wordt opgelost met als rondvoorwaarde bij $Z = 0$, d.w.z. de bovenkant van het zandlichaam.

$$\sigma'_Z = 0$$
$$\tau_{xZ} = 0$$
$$P = P_{max} \exp \left[i(\lambda + \omega t) \right]$$

Dus geen spanningen aan de bovenkant van het zandlichaam en een sinusvormige drukvariatie in het water.

Op $Z \to \infty$ (op grote diepte) geldt:

$$u, w, p, \to 0$$

De horizontale zowel als de vertikale verplaatsingen worden nul en de waterspanning wordt gelijk met de hydrostatische druk.

Oplossingen worden vergeleken met metingen en met benaderende oplossingen van onderen. Het blijkt dat de eerder in de literatuur gegeven benaderende oplossingen limiet gevallen zijn van deze oplossing. De overeenkomst met metingen is goed, als voorbeeld, zie figuur 30.
Fig. 30. Verticale verdeling van de amplitude van de waterspanning in fijn zand - theorie van Yamamoto e.a.
•, T=1,0 sec; Δ, 1,5; +,2,0; 0,2,6

Voor wat betreft de stabilité van taludbekledingen van gezette steen levert dit artikel weinig praktische informatie.
Het zou alleen kunnen dienen voor berekeningen aan het voorland van een dijklichaam.
Het wordt hier behandeld, omdat in een volgend artikel, met dezelfde methode de waterspanning berekend wordt in een lichaam dat is opgebouwd uit 2 lagen met verschillende porositeit. Dit is de situatie zoals die voorkomt in een uit zand opgebouwd dijklichaam met een taludbekleding.

4.2. de Groot en Sellmeijer

De Groot en Sellmeijer (23) geven oplossingen van de differentiaalvergelijking voor dezelfde situatie als Yamamoto e.a. maar nu met de mogelijkheid dat het zandlichaam is opgebouwd uit twee verschillende lagen, zie figuur 31.
Fig. 31. Geometrie van het probleem.

Om de berekening overzichtelijk te houden wordt aangenomen dat in de scheiding tussen het water en de bovenste laag de horizontale rek verwaarloosbaar is en dat tussen de twee lagen een te verwaarlozen schuifspanning optreedt.

Bij vergelijking van de gevonden oplossingen met die van Yamamoto e.a. (1977)(22) en een computerberekening van Bijsterveld (1976) (27) bleek dat de fout door deze benadering te verwaarlozen is als voor de verhouding tussen golfhoogte en golflengte een praktische waarde ingevuld werd.

Voor de stabiliteit van taludbekledingen is de berekening interessant die aan het slot van het artikel wordt gegeven. Een ondoorlatende laag ligt op een laag van met water verzadigd zand. De maximale naar boven gerichte druk \((w - w_1)/\gamma_w\) gedeeld door de halve golfhoogte \((H/2)\) is een functie van \(L^2/2\pi CT\) (zie fig. 32).
waarin: \(L \) : de golflengte

\[
\frac{1}{c} = \frac{\gamma_w}{k} \left\{ \frac{n}{K_w} + \frac{1}{K + \frac{4}{3}G} \right\} \quad \text{met}
\]

\(\gamma_w \): de volumieke massa van het water \((\text{kg/m}^3)\)

\(K_0 \): de compressibiliteit van het water in de onderste laag \((\text{N/m}^2)\)

\(K \): de compressiemoedulus van het korrelskelet \((\text{N/m}^2)\)

\(K_w \): de compressiemoedulus van de vloeistof \((\text{N/m}^2)\)

\(G \): de schuifmoedulus \((\text{N/m}^2)\)

\(k \): de doorlatendheid \((\text{m/s})\)

Het verloop voor \(K_w \to \infty \) is gegeven in figuur 32.

Fig. 32 Maximale naar boven gerichte druk vlak onder een ondoorlatende laag voor volledig onsamendrukbaar water.

Deze berekeningsmethode lijkt bruikbaar om enig inzicht te krijgen in de grootte van de drukken onder een vrijwel horizontaal liggende taludbekleding bij niet berekende golven.
4.3. Madsen (1978)

Voor een zelfde configuratie als Yamamoto e.a. berekent Madsen (24) de waterspanning en de effectieve spanningen in een poreus bed veroorzaakt door golven.

In zijn berekening laat Madsen echter de mogelijkheid open dat de doorlatendheid in de verticale richting k_z verschilt van die in de horizontale richting k_x. De bij de bespreking van het artikel van Yamamoto gegeven differentiaalvergelijking wordt dan

$$\frac{k_x}{k_z} \frac{\partial^2 \sigma}{\partial x^2} + \frac{\partial^2 \sigma}{\partial z^2} - \frac{\rho_f n}{k_z k'} \frac{\partial \sigma}{\partial t} = \frac{\rho_f}{k_z} \frac{\partial (\varepsilon_x + \varepsilon_z)}{\partial t}$$

In dit artikel wordt onderzocht hoe de waterspanning en de spanningen in het korrelskelet veranderen bij een meer of mindere mate van anisotropie in de grond en de compressibiliteit van de vloeistof in de poriën.

Resultaten van de berekeningen van Madsen worden gegeven in de figuur 33 waarin ook de gebruikte waarden van de verschillende parameters vermeld zijn.
Fig. 33. Verloop van de waterspanning in een zandbed met een d50 van 1 mm resp. 0,2 mm, veroorzaakt door golven boven het zandbed. P zijn de druk variaties boven het zandbed. Het eerste cijfer geeft de anisotropie aan, 1, 2 en 3 staat voor $k_w / k_z = 1$, 2 resp. 5. Het tweede getal geeft de compressibiliteit van de vloeistof maal de soortelijke massa $\gamma_w \beta$, 1, 2 en 3 betekent $\gamma_w \beta$ is 4.10^{-8}, 10^{-6} resp. 10^{-4}. Voor de figuren werden de volgende waarden gebruikt: waterdiepte 7 m, golfperiode 8 sec, glijdingsmodulus $\gamma_w / G = 10^{-6}$ cm^{-1} Poisson ratio 0,3 en porositeit $n = 0,4$.
Het blijkt dat bij zand met een $D_{50} = 1.0 \text{ mm}$ en een daarbij behorende waarde van de doorlatendheid $k_Z = 1 \text{ cm/sec}$ veel gevoeliger is voor anisotropie dan zand met $k_Z = 0.03 \text{ cm/sec}$, wat overeenkomt met een $D_{50} = 0.2 \text{ mm}$. Voor slib en klei kon gezegd worden dat de oplossing voor de boven geschetste configuratie in het geheel niet beïnvloed wordt door anisotropie, maar alleen afhanger van de compressiebilibiteit (γ_w^B) van het grondskellet gedeeld door die van de vloeistof.

Voor $\delta = \frac{1-2\nu}{1+\alpha} \to 0$

met $\alpha = \frac{K'\gamma_w (1-2\nu)/G}{\gamma_{we} n + \frac{4\pi^2}{1^2} (k_x - k_z)}$ (m)

waarin ω = de cirkelfrequentie van de golven (1/s)

ν = de poisson ratio ()

L = de golflengte (m)

kan de oplossing in een eenvoudige vorm geschreven worden

$\tilde{\sigma}_x = -\tilde{\sigma}_z = -\frac{\gamma_w H/Z}{\cosh \kappa d} \cdot k z e^{-kz} \cos (kx-\omega t)$

$\tau = -\frac{\gamma_w H/Z}{\cosh \kappa d} \cdot k z e^{-kz} \sin (kx-\omega t)$

$\tilde{p} = -\frac{\gamma_w H/Z}{\cosh \kappa d} \cdot e^{-kz} \cos (kx-\omega t)$

Hierin geeft het streepje boven een variabele aan dat het gaat om veranderingen t.o.v. de evenwichtstoestand. Deze oplossingen zijn dezelfde als wanneer de berekening uitgevoerd werd met de aannames dat het water en het korrelskellet onsamendrukbaar waren.

De berekeningen zoals uitgevoerd door Madsen zijn op zich nauwelijs toepasbaar voor het onderzoek naar de stabiliteit van dijkbekledingen. Zoals al opgemerkt bij de bespreking van het artikel van Yamamoto e.a. is de configuratie te verschillend. Niettemin blijkt dat anisotropie in de doorlatendheid van zand invloed heeft op de verdeling van de waterspanningen en de spanningen van het korrelskellet in het bed, maar de invloed van veranderingen in de compressibiliteit van het water blijkt veel groter te zijn.
Bij modelonderzoek, waar het heel moeilijk is alle lucht uit het water te verwijderen moet hier aandacht aan worden geschonken.

4.4. Zienkiewicz et al. [1980]

Het gedrag van verzadigde poreuze media onder dynamische of quasistatische belastingen werd het eerst geformuleerd door Biot. De vergelijkingen van Biot zijn vergelijkbaar met de vergelijkingen behandeld in hoofdstuk 3.2.1.

Voor deze vergelijkingen wordt verwezen naar het artikel (27). Afhankelijk van de aard van de belasting is het mogelijk de vergelijkingen zoals opgesteld door Biot te vereenvoudigen.

Een eerste benadering is de traagheidskrachten in de vloeistof buiten beschouwing te laten. Een verdere vereenvoudiging kan aangebracht worden door alle traagheidskrachten buiten beschouwing te laten. Wanneer welke benadering voldoende is, is onderzocht voor een homogene laag grond, die periodiek belast wordt met een vertikale spanning:

\[q_e^{\text{int}} \]

zie figuur 34.

Fig. 34. Grondlaag onder periodieke belasting.

\[u = \text{de uitwijking in de } x\text{-richting} \]
\[w = \text{de uitwijking in de } z\text{-richting} \]
\[p = \text{de druk in de vloeistof} \]

\[(\text{m}) \]
\[(\text{m}) \]
\[(\text{N/m}^2) \]
Of voor een dergelijke configuratie het volledige stelsel vergelijkingen van Biot opgelost moet worden, of dat met een benadering volstaan kan worden, bleek bepaald te worden door de parameters \(\pi_1 \) en \(\pi_2 \)

\[
\pi_1 = \frac{\frac{\kappa}{\omega} \frac{V}{L}}{\omega} = \frac{2k_p T}{\pi T^2} \quad \text{en} \quad \pi_2 = \frac{\omega L^2}{V C} = \frac{\pi^2}{T^2}
\]

waarin, \(\tilde{k} = k/\rho_f g \). \(K \) is de doorlatendheid in m/s

\(V_C \) : de geluidssnelheid \((D + \kappa_f \rho_f)/\rho\)

\(D, K_f \) : de bulkmodulus van de grond resp. de vloeiotof

\(n \) : de porositeit

\(\rho \) : de volumieke massa van de grond \((\rho_f \rho_f \text{ soortelijke massa} (\text{kg/m}^3) \text{ van het water})\)

\(\omega \) : de cirkelfrequentie van de belasting, is \(\frac{2\pi}{T} \)

\(\tilde{T} = 2\pi/V_C \). L is de dikte van de laag. zie figuur 34.

Of en welke benadering was toegestaan bleek ook nog, maar in veel mindere mate bepaald te worden door de dimensieleze parameters:

\[
\beta = \frac{\rho_f \rho}{\rho}, \quad n \quad \text{en} \quad \kappa = \frac{K_f/n}{D + K_f/n}
\]

Voor deze werd een voor veel grondsoorten goede benadering genomen

\[
n = \beta = 0,333 \quad \kappa = 0,973
\]

Voor deze woorden bleek het \(\pi_1 - \pi_2 \) vlak onder te verdelen in 3 gebieden, zoals aangegeven in figuur 35.
Fig. 35. Grenzen, waarbinnen bepaalde benaderingen geldig zijn.

Met een nauwkeurigheid van 3% geldt het volgende:

In gebied I zijn de traagheidskrachten geheel verwaarloosbaar, in gebied II zijn de traagheidskrachten in de vloeistof verwaarloosbaar. In gebied III moeten de volledige vergelijkingen van Biot opgelost worden. Het bleek dat als \(\pi_1 > 10^2 \) of \(\pi_1 < 10^{-2} \), dat de invloed van \(\pi_1 \) dan verwaarloosbaar is. De grondlaag is te beschouwen als volledig gedraineerd, respectievelijk volledig ongedraineerd. Aan de randen zal echter altijd een gedeelte gedraineerd zijn.

Voor het onderzoek naar de stabiliteit van taludbekledingen van gezette steen is het belang van dit artikel, dat het aangeeft welke oplossingsmethode gebruikt moet worden, of dynamica een belangrijk verschijnsel is en of, wat de achterliggende gedachte is bij alle artikelen waar grond als een éénfase materiaal beschouwd wordt, de grond als ongedraineerd opgevat mag worden. Maar ook hier geldt dat de resultaten alleen opgaan voor horizontaal talud.
4.5. Conclusie consolidatie

De in het hoofdstuk Consolidatie gepresenteerde artikelen lijken geen van alle erg bruikbaar voor het onderzoek naar de stabiliteit van steenzettingen. Voor de grondmechanische aspecten lijken twee benaderingswijzen zinvol:

a. Een quasistatistische beschouwing voor de drukhoogte zoals uitgevoerd door Sellmeijer en is opgenomen in deel IV. Hiervoor is het essentieel de helling van het talud in de beschouwing te betrekken.

b. Onderzoek naar de dynamische respons van het dijklichaam op de feitelijke golfklap. De helling van het talud is hier niet van belang, maar uiteraard moeten wel de massa-traagheidskrachten in rekening worden gebracht.

De hier gepresenteerde artikelen zijn in geen van beide benaderingen bruikbaar. Niet in (a) omdat alle artikelen uitgaan van een volkomen vlak liggend zandlichaam en niet in (b) omdat de massa-traagheidskrachten niet in rekening worden gebracht.
Literatuurlijst

A. Druk onder tegen stenen glooiing t.g.v. drukhoogte golf

1. HANNOURA, A.A.
 A hybrid finite element model applied to unsteady flow problems.
 Proc. 3th Int. Conf. on F.E.M. in Water Resves., May 19-23, 1980
 Oxford, Mississippi.

2. DRACOS, T.
 Calculation of the movement of the outcrop point in connection
 with harmonic fluctuations of the free water level along the
 water boundary.

3. EDELMAN, T.
 Stabiliteit van dijkenbelopen.
 Juni 1958.

B. Dynamica

B.1. Golven in een 1-fase materiaal

4. LAMB, H.
 On the propagation of tremors over the surface of an elastic
 solid.

5. RAYLEIGH

6. HOLZLOHNER, U.
 Schwingungen des elastischen Halbraums bei Erregung auf einer
 Recht-eckfläche.

7. HOLZLOHNER, U.
 Vibrations of the elastic halfspace due to vertical surface
 loads.
8. KITAMURA, Y en SAKurai, S.
Dynamic stiffness for rectangular rigid foundations on a semi-infinite elastic medium.

9. GAKENHEIMER, D.C. en MIKLOWITZ, J.
Trancient excitation of on elastic halfspace by a pointload traveling on the surface.

10. GAKENHEIMER, D.C.
Numerical results for Lamb's point load problem.

11. ACHENBACH, J.D.
Wave propagation in elastic solids.

12. GAKENHEIMER, D.C.
Respons of an elastic halfspace to expanding surface loads.

13. ACHENBACH, J.D. en KESHAVa, S.P.
Free waves in a plate supported by a semi-infinite continuum.

14. ACHENBACH, J.D., KESHAVa, S.P. en HERRMANN, G.
Moving loads on a plate resting on an elastic half space.

15. BARCLAY, P.W., MOODIE, T.B. en ROGERS, C.
Cylindrical impact waves in inhomogeneous visco-elastic media.

16. HOPKINS, H.G.
The method of characteristics and its application to the theory of stress waves in solids.
B.2. Golven in een twee-fase materiaal

17. JOSSELING de JONG, G. de
Wat gebeurt er in de grond tijdens heien.
De Ingenieur, 68e jaargang, no. 25, 77-88 (1956).

18. SWEET, J. en CECIL, R.A.
Saptile, a finite element computer code that analyses the
non-linear behaviour of saturated (two-phase) continua and
neighbouring structural components.
Handleiding, augustus 1979.

19. ENGERING, F. en SWEET, F.
Applications of the critical state soil mechanics model, using
the computer code SATURN.

20. MOLENKAMP, F.
Elasto-plastic double hardening model (MONOT).
Laboratorium voor Grondmechanica, CO-218595 (1980).

A method for dynamic soil-structure interaction problems.

C. Twee-fasen materiaal zonder dynamica

22. YAMAMOTO, T., KONING, H.L., SELLMEIJER, J.B. en HIJUM, E. van
On the response of a poro-elastic bed to water waves.

23. GROOT, M.T. de en SELLMEIJER, J.B.
Wave-induced pore water pressures in a two-layer system.
LGM-mededelingen.

24. MADSEN, O.S.
Wave induced pore pressures and effective stresses in a
poreus bed.
25. ZIENKEWISZ, O.C., CHANA, C.T. en BETTESS P.
 Drained, undrained, consolidating and dynamic behaviour
 assumptions in soils.

26. VERRUIJT, A.
 Elastic storage of aquifiers

27. BIJSTERVELD, J.J. van,
 Een toepassing van numerieke analyse bij twee-dimensionale
 consolidatie problemen.

28. VEER, van der, P.
 Overdrukken onder gesloten dijkbekledingen.
 pt-b31 nr. 9 547-550 (1976)

29. MARCUS, H.
 Onderzoek naar grondwaterstromen met behulp van een plaatvormige geleider.
 De ingenieur, nr. 24, pp 57-63 (10 juni 1960)

30. SELLMEIJER, J.B.
 Overdrukken op steenzetting door drukhoogte golven.

31. SELLMEIJER, J.B.
 Stoot op halfvlak.

32. CONCEPT NOTA
 Deltagoot, Onderzoek steenzetting Oesterdam. Schaalbeschouwing.
 Waterloopkundig Laboratorium en Laboratorium voor Grondmechanica,
33. BISCHOFF VAN HEEMSKERK, W.C.
Waterspanningen onder asfalt bekleding van dijken.
Ver. Bitumineuze werken (1965)

34. HANNOURRA, A.A.
Numerical and Experimental modelling of unsteady flow in rockfill embankments.