Effects of Authority Transitions between Adaptive Cruise Control and Manual Driving on Traffic Flow Efficiency.

Silvia Francesca Varotto
Dr. Raymond Hoogendoorn
Prof. ir. Bart van Arem
Prof. ir. Serge Hoogendoorn

Transport & Planning, Delft University of Technology
Introduction

Road transport

Congestion Accidents Pollution

Adaptive Cruise Control (ACC)

What are the effects of authority transitions?

Traffic flow efficiency
1. Overview of work

- Authority transitions
- Driving Behaviour
- Microscopic traffic flow simulation
- Analysis of empirical driving behaviour
- Analysis of traffic flow characteristics
- Conclusion and future research
2. Literature review

Data collection methods

- FOT
- Driving simulator

Motivations for authority transitions

- Behavioural adaptations of drivers

Car following and lane-changing models

- Effects on traffic flow efficiency
2.1. Motivations for authority transitions

<table>
<thead>
<tr>
<th>Authority transitions between ACC and manual driving</th>
<th>Discretionary</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drivers switches off</td>
<td>Lane change</td>
<td>System switches off</td>
</tr>
<tr>
<td></td>
<td>Create a gap</td>
<td>Sensor failure</td>
</tr>
<tr>
<td></td>
<td>Left-lane speed adaptation</td>
<td>Constraints reached</td>
</tr>
</tbody>
</table>

2.2. Behavioural adaptations of drivers

Behavioural aspects that are influenced by ACC

- Higher speeds
- Shorter time headways

Changed role of the driver

- Reduction of vigilance
- Reduction of situation awareness

Ability to respond to emergency situations
2.3. Microscopic traffic flow models

Car following models

Lane-changing models

ACC are a different type of vehicle

Authority transitions are not possible

ACC vehicles have an effect of traffic flow (Kesting 2008; Klunder, et al. 2009)

Capacity

Capacity drop

Stability
3. Methodology

Microscopic traffic flow simulation

- Manual driver
- Transitions
- ACC

Control condition
- No transitions

Experimental condition
- Drivers can switch off

Lane changing manoeuvre
- Switch off ACC
- Do not switch off ACC
3.1. Model specification

Car following models

IDM
Treiber, et al. 2000

Transitions

ACC model

Inter-driver heterogeneity

\[a_{\text{max}}_n \sim \text{truncN}(1.4, 0.3) \]
\[b_{\text{max}}_n \sim \text{truncN}(2, 0.3) \]
\[T_n \sim \text{truncN}(1.5, 0.3) \]
3.1. Model specification

<table>
<thead>
<tr>
<th>Safe gap criterion</th>
<th>Incentive criterion right to left</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ds_{ego_n} > gap_{ego_n}$</td>
<td>$V_{hp_l} > V_l + \epsilon_n$</td>
</tr>
<tr>
<td>$gap_{ego_n} = s_0 + \theta_n \cdot T_n \cdot v_n$</td>
<td></td>
</tr>
<tr>
<td>$ds_{hp_f_n} > gap_{hp_f_n}$</td>
<td></td>
</tr>
<tr>
<td>$gap_{hp_f_n} = s_0 + \theta_n \cdot T_f \cdot v_f$</td>
<td></td>
</tr>
<tr>
<td>$\theta_n \sim truncN(1, 0.1)$</td>
<td>$\epsilon_n \sim truncN(1, 0.5)$</td>
</tr>
<tr>
<td>$T_n \sim truncN(1.5, 0.3)$</td>
<td></td>
</tr>
</tbody>
</table>
4. Simulation results

<table>
<thead>
<tr>
<th>Design</th>
<th>Two lane highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand levels</td>
<td>1500 - 4000 veh/h</td>
</tr>
<tr>
<td>Mixture</td>
<td>0% ACC</td>
</tr>
</tbody>
</table>

Analysis of traffic flow characteristics

<table>
<thead>
<tr>
<th>Time & Distance headways</th>
<th>Speed</th>
<th>Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic flow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1. Time headway
4.1. Time headway

4.2. Distance headway
4.3. Speed

4.4. Acceleration
4.5. Density

4.6. Flow
5. Driving simulator experiment

Authority transitions between ACC and manual driving

<table>
<thead>
<tr>
<th>Control condition</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual driving</td>
<td>Mandatory</td>
<td>Discretionary</td>
</tr>
<tr>
<td>System switches off</td>
<td>Vehicle slows down</td>
<td>Driver switches off</td>
</tr>
<tr>
<td>Manual driving</td>
<td>Driver switches on</td>
<td>Manual driving</td>
</tr>
<tr>
<td></td>
<td>Driver switches on</td>
<td>Driver switches on</td>
</tr>
</tbody>
</table>
5.1. Experimental results

![Graphs showing experimental results with various metrics over distance.](image-url)
6. Conclusion and future research

Authority transitions influence traffic flow efficiency

Current models are not adequate

Validity of decision rule introduced

Parameter calibration

When do drivers disengage ACC?

Human factors
Effects of Authority Transitions between Adaptive Cruise Control and Manual Driving on Traffic Flow Efficiency.

Silvia Francesca Varotto
Dr. Raymond Hoogendoorn
Prof. ir. Bart van Arem
Prof. ir. Serge Hoogendoorn

Transport & Planning, Delft University of Technology