Asking the Right Question in Collaborative Q&A systems

Jie Yang, Claudia Hauff, Alessandro Bozzon, Geert-Jan Houben
Delft University of Technology
Mekelweg 4, 2628 CD
Delft, The Netherlands
{j.yang-3, c.hauff, a.bozzon, g.j.p.m.houben}@tudelft.nl

ABSTRACT
Collaborative Question Answering (cQA) platforms are a very popular repository of crowd-generated knowledge. By formulating questions, users express needs that other members of the cQA community try to collaboratively satisfy. Poorly formulated questions are less likely to receive useful responses, thus hindering the overall knowledge generation process. Users are often asked to reformulate their needs, adding specific details, providing examples, or simply clarifying the context of their requests. Formulating a good question is a task that might require several interactions between the asker and other community members, thus delaying the actual answering and, possibly, decreasing the interest of the community in the issue. This paper contributes new insights to the study of cQA platforms by investigating the editing behaviour of users. We identify a number of editing actions, and provide a two-step approach for the automatic suggestion of the most likely editing actions to be performed for a newly created question. We evaluated our approach in the context of the Stack Overflow cQA system, demonstrating how, for given types of editing actions, it is possible to provide accurate reformulation suggestions.

Categories and Subject Descriptors: H.3.3 Information Storage and Retrieval: Information Search and Retrieval
General Terms: Experimentation
Keywords: Collaborative Question Answering; Classification; Stack Overflow

1. INTRODUCTION
Collaborative Question Answering (cQA) systems are highly popular Web portals where everyone can ask questions, and (self-appointed) experts jointly contribute to the creation of evolving, crowdsourced, and peer-assessed knowledge bases [5] [19], often in a reliable, quick and detailed fashion. Examples of such portals are Yahoo! Answers1 (for all kinds of questions) and Stack Exchange2, which consists of a number of sub portals, each dedicated to a particular topic, such as travelling, mathematics or programming.

In cQA systems users (askers) post questions, and rely on other community members to provide a suitable solution to their information need. Potential answerers (users that answer questions) look through the list of existing questions, typically ordered by recency, and decide whether or not to contribute to ongoing discussions. Such decisions are influenced by a multitude of factors, including time constraints, quality and difficulty of the question, and the knowledge of the answerer. Users can often also comment or vote on existing questions and answers. Commonly, when satisfied, an asker can mark an answer as accepted, thus declaring her need satisfied. Incentives to answer are often based on gamification features of a platform, such as reputation points [3].

Although the median time until a first answer is posted in response to a question can be in the order of a few minutes (as shown for instance for Stack Overflow [16]), more and more questions [4] remain ignored or without an accepted answer. Questions are unanswered when their meaning is not clear to the community members, or when it is not possible, given the available information, to understand the nature of the problem (e.g. the source code that produces a compiling error is missing). A good question should have enough details (but not too much), enough depth (without drifting from the core subject), examples (if applicable) as well as avenues already investigated by the asker [17]. Well-formed questions attract more high-quality answers than poorly formed questions, as subject experts are more likely to help users that already put some effort into finding an answer themselves [4, 16, 21].

We focus on Stack Overflow3, a cQA platform covering a large variety of topics related to the software development domain. Introduced in 2008, Stack Overflow features more than 5 million questions, and 10 million answers provided by more than 2 million users4. To manage and increase the likelihood of good and useful answers, users are provided with editing functionality, which allows the improvement of questions based on the feedback from other community members. Edits usually happen in response to comments or answers, a process which might require several interactions (asker waits for comments or answers, adapts the question, waits again,

1http://answers.yahoo.com/
2http://stackexchange.com/
3http://stackoverflow.com/
4These numbers are based on the Stack Overflow data released in September 2013.
Our work contributes a novel approach to improve the question formulation process. We envision a system that upon question submission, provides askers with feedback about the aspects of the question they need to change (improve) in order to phrase their needs in the right way. This in turn is more likely to attract the right answerers.

Here, we perform a first study to investigate the feasibility of this idea. In particular, we propose and evaluate the following two-step approach:

1. Determine whether the question is of high quality or whether it requires an edit (Question Editing Prediction).
2. When an edit is required, identify which aspect(s) of the question need(s) to be improved to turn it into a high quality question (Edit Type Prediction).

In the process, we address the following research questions:

- **RQ1**: To what extent are traces of question edits (and the lack of edits) indicative of well or poorly formed questions?
- **RQ2**: Given sets of properly/poorly formed questions, is it possible to automatically detect which category the question belongs to?
- **RQ3**: Is it possible to predict the type of action required to make a question “better”, i.e. improve its quality?

Our results show that:

1. The need for edits is indeed indicative of a question’s quality.
2. The need for a question to be edited can be predicted with high accuracy.
3. The identification of the type of required edit is much more difficult to predict: we classified edit types in three categories, and found that only one of them can be accurately predicted.

In the remainder of this paper we first briefly cover related work in Section 2. Then, in Section 3 we present our methodology and developed hypotheses. The experimental setup and the experiments are presented in Sections 4 and 5 respectively. Finally, we discuss our findings and present future work in Section 6.

2. RELATED WORK

Collaborative question answering systems have been emerging as important collective intelligence platforms. Domain specific cQA platforms such as Stack Overflow are transforming the way people share experience, create knowledge and, ultimately, might cause the question to sink in the list of open issues.

Previous work has focused on showing that user expertise estimation and question recommendation. Anderson et al. [2] studied the factors that contribute to the long-lasting value of questions in Stack Overflow. Liu et al. [13] proposed a competition-based model for estimating question difficulty by leveraging pairwise comparisons between questions and users. Another area related to our work is the estimation of user expertise in cQA systems. In [24] it was found that the expertise networks in cQA systems possess different characteristics from traditional social networks, and based on this finding an expertise metric was proposed. Similar aspects were also studied in [12, 19]. Relevant examples of contributions addressing the problem of routing questions to the right answerer can be found in [14, 15] and [25].

To the best of our knowledge, no previous work has targeted the problem of question editing in cQA systems. Iba et al. [11] analyzed editing patterns of Wikipedia contributors using dynamic social network analysis; although several observations are related to our setting, the nature and purpose of wikis is different from the one of cQAs. The type and nature of collaborative acts was studied in [20] on the specific example of users proposing novel mathematical problems, or contributing to their solutions. While providing important insights, [20] focused on a qualitative assessment of the collaboration problem. The application of those insights, e.g. by means of automatic analysis methods, was not investigated.

3. METHODOLOGY

This section describes our experimental methodology. We first discuss and present the types of question edits typically encountered on Stack Overflow. Publicly available data dumps\(^5\) contain the entire history of all questions posted to Stack Overflow. Every revision of a question includes information about the editor (the asker or another user) and the time of the edit. We considered only questions whose question body was edited, thus ignoring changes in the title or in the tags.

\(^5\)https://archive.org/details/stackexchange
Then, we discuss how we approached the edit prediction task as well as the edit type prediction task (Section 3.2). Finally, Section 3.3 presents a number of hypotheses, derived from our research questions of Section 1.

3.1 Common Question Edits

We first need to define when we consider a question to be of high and of low quality respectively. A question is of high quality and thus well formed if:

1. it has not been edited in the past; and,
2. it has received at least two answers (the median number of answers for questions on Stack Overflow).

Previous work [18] relies on the number of positive preferences (upvotes) as question quality indicator. Due to the significant correlation between upvotes and number of answers we settled on the number of answers as indicator.

In contrast, we hypothesise that a question might be initially of poor quality if it does not receive an answer within 12 minutes after its publication (the median answer time on Stack Overflow), or if it is edited one or more times before it receives the first answer.

However, not all edits are equal: a question may be edited by the asker herself or by a different Stack Overflow user; an edit can lead to a major change in semantics or be simply a correction of a spelling error or a re-formatting of the question.

In order to gain qualitative insights, we first conducted a small-scale study aimed at eliciting the most important question. We defined a small-scale study aimed at eliciting the most important question.

Finally, Section 3.3 presents a number of hypotheses, derived from our research questions of Section 1.

3.2 Predicting Edits and Edit Types

Extracting Useful Question Edits.

The purpose of this step is to create the training and test data sets for our experiments. Our goal is to create a data set characterised by the presence of two distinct classes of questions, which will be used to train a classifier able to properly identify edited questions from non-edited questions.

Edited questions were selected as follows. Let there be n edits of question Q, expressed as revisions R1, ..., Rn. Here, Qn can also be considered as Rn0, i.e., the original question posted at time t0. Revision IDs are sorted according to time, each subsequent revision is an edit of the previous revision.

Users (the asker as well as anybody else) can also comment on a question or answer it. Let Cij be a comment on question Qj or any of its revisions at time tj. Similarly, let Aik be an answer to question Qk (or any of its revisions) at time tk. Which revision the comment or answer are referring to, depends on the timestamp of the comment or answer. We exploit these comments and answers and extract all pairs of original & edited question, with the following sequence characteristics:

\[R_{t_0}^{(0)} \rightarrow C_{t_j} \rightarrow R_{t_1}^{(1)} \rightarrow A_{t_k} \] \hspace{1cm} (1)

where \(t_0 < t_j < t_1 < t_k \). The idea is to be able to automatically catch edits stimulated by discussions with the community.

Intuitively, we consider edits that:

- have been made potentially in response to a first comment; and
- after the edit, triggered the posting of an answer.

To further ensure that the edits occurred in response to the posted comment, we only consider those pairs of original and edited questions where there is some overlap in terms between the comment and the added text in the edit.

As an example, in response to a comment:

\[\text{“Please add some source code”} \]

a user might edit a question and add:

\[\text{“My code: [actual code].”} \]

\[^5 \text{In our dataset with 5M questions, we observed a linear correlation coefficient of 0.25, p-value<0.001.} \]

\[^7 \text{Stack Overflow users are allowed to edit other users’ questions after they reach a particular reputation level.} \]
Attempt (1st edit) 9943644 Update 1: I've tested the application with NHProf without much added value: NHProf shows that the executed SQL is ...

HW/SW details (1st edit) 7473762 I'm running OS 10.6.8

Source code refinement (1st edit) 13318757 Here is the code:

import android.content.Context;
import android.graphics.Matrix;
...

Problem statement (1st edit) 7500461 The Error:
Exception in thread "AWT-EventQueue-0"
com.google.gson.JsonParseException: The JsonDeserializer
com.google.gson.DefaultTypeAdapters$CollectionTypeAdapter@4e76fba0
failed to deserialize json object

Example (1st edit) 11875006 I have a list of numbers like this in PHP array, and I just want to make this list a little bit smaller.

2000: 3 6 7 11 15 17 25 36 42 43 45 ...

Context (1st edit) 13923053 EDIT: I have 'jquery-1.8.3.min.js' included first, then I have the line $.noConflict();. Then I have includes for external files using the prototype framework. then I include my user defined function and finally call it. But, I figured ...

Solution (2nd edit) 9215463 **EDIT 2:** Okay that's done the trick. Using @Dervall’s advice I replaced the MessageBox line with a hidden window like this:

MSG msg;
HWND hwnd;
WNDCLASSEX wcx;

Table 1: Each edit type example shows part of the text added in the first or second edit respectively. The Post ID is the Stack Overflow ID. Note that revisions of post with ID postID can be accessed via http://stackoverflow.com/posts/postID/revisions.

With this basic filtering step we were able to capture around 170K quality-enhancing edits. The resulting question-edit pairs were then ranked according to the amount of editing, measured by the number of characters changed in the edited and original version of the question.

Our non-edited questions were selected from among all questions that were never edited and have received at least one answer. We ranked the non-edited questions according to their number of received answers — intuitively, the more answers a question receives, the higher is the engagement of community members with the question.

Extracting Edit Types.

Based on the categories identified in Section 3.1, we conducted a follow-up annotation study on 1000 edited questions randomly selected from the 25K most edited questions (i.e. those with the longest edits), with the purpose to derive labelled data for our edit types classifiers.

We collected annotations8 for the questions according to four categories derived from our initial findings presented in Section 3.1: Code, SEC (merging the categories Problem Statement, Example and Context), Attempt (merging the Solution and Attempt categories) and Detail. The decision to group the categories as presented was taken due to the practical difficulties the annotators encountered deciding between them. In later stages, we discarded the Detail category due to the small number of annotated instances. Edits which do not fall into one of our categories were labelled as a “null edit”.

We note, that for every question to be annotated, all edits of that question were labelled, i.e. R_{ij} for $j = 1...n$.

The annotations were then used to train three binary classifiers aimed at providing suggestions about the type of edit to be performed, for those questions that were deemed as in need for edits.

3.3 Hypotheses

This section presents the research hypotheses, based on the research questions posed in Section 1, we investigate in our work.

- **Hypothesis 1**: Communities attracting beginner’s programmers (e.g. Android programming, Web design) receive a larger number of edited questions than communities which require more in-depth knowledge...
(e.g. Assembler programming, functional programming).

- **Hypothesis 2**: Users new to Stack Overflow post questions in need of refinement. Over time, users learn how to post good quality questions.

- **Hypothesis 3**: Not only the time a user has spent on the portal is important, but also the amount of knowledge the user already has about a particular topic. We posit that users with substantial knowledge on a particular topic are less likely to post questions which require a substantial edit.

- **Hypothesis 4**: As the Stack Overflow platform gained popularity, less and less questions requiring a substantial edit have been posted. Users read the guidelines and “learn” from different forums/portals how to properly ask questions.

- **Hypothesis 5**: New users are most likely to “forget” to add source code and previous attempts to their questions.

4. EXPERIMENTAL SETUP

We use the public Stack Overflow dump. Manual annotations, training and test data used in our experiments are available for download at https://github.com/WISDelft/WIS_HT_2014. We consider, for training purposes, all questions posted up to and including December 31, 2012; the test set includes all questions posted between January 1, 2013 and September 6, 2013. We use a logistic regression-based classifier. The feature set is composed of unigrams (terms) extracted from the dataset, an approach that has been shown to perform well for different prediction tasks in the past. The chosen classifier, though likely to not yield the best possible accuracy, allows us to gain valuable insights into the importance of different features.

4.1 Edit Prediction

The training and evaluation of the edit prediction classifier has been performed using the ranked list of edited and non-edited questions described in Section 3.2.

![Figure 1: Both the training and test data were partitioned in three ways. The edit prediction classifier was trained on the Extreme set of the training data. The evaluation was performed on all data partitions of the test data.](image)

<table>
<thead>
<tr>
<th></th>
<th>Extreme</th>
<th>Confident</th>
<th>Ambiguous</th>
</tr>
</thead>
<tbody>
<tr>
<td>ranking by</td>
<td>1%</td>
<td>10%</td>
<td>all edited questions</td>
</tr>
<tr>
<td>distance</td>
<td></td>
<td></td>
<td>all non-edited questions</td>
</tr>
<tr>
<td>ranked by</td>
<td></td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>answers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For training purposes, due to the skewedness of the class distribution (there are more non-edited than edited questions), we randomly sample from the negative class until we have reached the same number of samples as exist in the positive class. A similar sampling process is also used for the test data, with the exception of the Ambiguous set, which includes all test questions.

The reason for experimenting with different data partitions is the nature of the task. Our overall goal is to predict for each and every question in our test set whether or not it requires an edit. Due to the nature of the questions, we expect that questions in the Extreme test set can be classified with higher accuracy than questions in the Ambiguous test set.

Table 2 contains an overview of the total number of questions used for training and test purposes. We train on nearly 36,000 questions and test our pipeline on up to 1.8 million questions.

4.2 Predicting the Edit Type

Given a question which has been flagged as “to edit” in the first step, this processing step determines which aspect(s) of the question require an edit.

The 1000 annotated questions feature an average of 3.05 ± 1.84 edits. Three trusted annotators evaluated disjoint sets of 300 questions each. Additionally, a common set of 100 questions were labelled by all three annotators to test the agreement. The inter-annotator agreements for the four edit categories are shown in Table 3.

<table>
<thead>
<tr>
<th>Edit Type</th>
<th>Code</th>
<th>SEC</th>
<th>Detail</th>
<th>Attempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kappa</td>
<td>0.67</td>
<td>0.59</td>
<td>0.19</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Table 3: Inter-annotator agreement of edit category annotation, measured by Fleiss’ Kappa.

The number of questions belonging to each category are reported in Figure 2. We used a majority consensus approach to determine the category of the 100 overlapping questions. Recall, that we annotate every edit of a question, and thus the total number of items shown in Figure 2 exceeds 1000. Of all edits, 30.75% could not be assigned to any of the four categories. We did not observe significant differences between the edit type distribution at different edit iterations (i.e. first edits are similarly distributed to second or third order edits).

We observe that Code, SEC and Attempt are often occurring categories, indeed more than half of the questions...
Table 2: Basic statistics of our training and test data for the edit prediction task. Since more non-edited than edited questions exist, for the Extreme and Confident partitions, the number of non-edited questions was matched to the number of edited questions by sampling a subset of all questions in the respective dataset.

<table>
<thead>
<tr>
<th></th>
<th>#Questions Overall</th>
<th>#Edited Questions</th>
<th>#Non-edited Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test: Extreme</td>
<td>14,920</td>
<td>7,460</td>
<td>7,460</td>
</tr>
<tr>
<td>Test: Confident</td>
<td>85,072</td>
<td>42,536</td>
<td>42,536</td>
</tr>
<tr>
<td>Test: Ambiguous</td>
<td>1,772,649</td>
<td>522,874</td>
<td>1,249,775</td>
</tr>
<tr>
<td>Training: Extreme</td>
<td>35,892</td>
<td>17,946</td>
<td>17,946</td>
</tr>
</tbody>
</table>

Figure 2: Annotation study results: number of questions with an edit from a particular category. The SEC category captures the problem Statement, Examples and the Context.

Table 4: Classifier performance on the edit prediction task across our three test sets.

<table>
<thead>
<tr>
<th>Test type</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme</td>
<td>0.63</td>
<td>0.78</td>
<td>0.70</td>
</tr>
<tr>
<td>Confident</td>
<td>0.58</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>0.51</td>
<td>0.65</td>
<td>0.57</td>
</tr>
</tbody>
</table>

5. EXPERIMENTS

We first present the results of our edit and edit type prediction tasks. Subsequently we present an analysis of a number of user-dependent factors that we hypothesise to influence the likelihood of a posted question requiring an edit (based on the hypotheses presented in Section 3.3).

5.1 Edit Prediction

The performance of our classifier on our test sets is presented in Table 4. As expected, the best results are achieved for the Extreme test set with an F1 score of 0.7. The recall of 0.78 implies that most questions which require an edit are classified as such by our approach, thus clearly demonstrating its feasibility. The classifier is trained on a feature set with a total of 7,206 features.

5.2 Edit Type Prediction

We now consider step 2 of our pipeline - the prediction of the type of edit(s) required to create a well-formed question. The results are shown in Table 6, rows one to three.

Important Features.

One of the benefits of a regression-based classifier is the ability to gain insights about the importance of different features based on the feature coefficients. In Table 5 we list the features (unigrams) with the highest and lowest coefficients respectively (after feature normalization). For instance, the term microsoft is an important feature for to-be-edited questions, while lexer is negatively associated with question edits, presumably because users discussing lexers have specific problems and a relatively deep understanding of their topic.

5.2 Edit Type Prediction

We now consider step 2 of our pipeline - the prediction of the type of edit(s) required to create a well-formed question. The results are shown in Table 6, rows one to three.

While the edits of Code and SEC can be predicted with moderate to high accuracy, the prediction of the Attempt category is essentially random.

Automatically Augmenting the Training Data.

Having so far relied on our manually annotated data only, we now turn to an automatic approach to augment the training data (the test data is fixed to our manually annotated
5.3 Hypotheses Testing

We now turn to an analysis of our hypotheses presented in Section 3.3.

Up to now we have only considered the question content in edit and edit type prediction. We now explore the impact that different factors can have on the quality of a question. Such factors include:

- The topic of a question.
- The user's prior experience on Stack Overflow.
- User knowledge on the question's topic, and the temporal influence of Stack Overflow.

We first test our hypotheses **H1-H5**, then add related features for the prediction tasks to our classifier to investigate whether they can make a difference.

5.3.1 Topical Influence

We investigate hypothesis **H1**, i.e. if questions about particular frameworks or languages (e.g. **JavaScript**, **Java**), in particular those often used by programming beginners, are more prone to requiring an edit than questions related to more advanced topics such as software engineering (e.g. **design-patterns** or **compilers**).

For simplicity, we consider the tags assigned to each question as indicator of a question's topic. To avoid the influence of insignificant edits, we consider all questions of the **Confident** datasets (both training and test). Since a question may be assigned multiple tags, a question may appear in multiple tag sets. We rank the tags according to:

<table>
<thead>
<tr>
<th>Unigram</th>
<th>Coef.</th>
<th>Unigram</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbcontext</td>
<td>0.88</td>
<td>mental</td>
<td>-0.29</td>
</tr>
<tr>
<td>microsoft</td>
<td>0.57</td>
<td>nicer</td>
<td>-0.31</td>
</tr>
<tr>
<td>xx</td>
<td>0.57</td>
<td>understood</td>
<td>-0.31</td>
</tr>
<tr>
<td>com</td>
<td>0.55</td>
<td>pre-compil</td>
<td>-0.34</td>
</tr>
<tr>
<td>tick</td>
<td>0.47</td>
<td>lexer</td>
<td>-0.41</td>
</tr>
<tr>
<td>neater</td>
<td>0.46</td>
<td>c/c++</td>
<td>-0.42</td>
</tr>
<tr>
<td>byte</td>
<td>0.45</td>
<td>firstnam</td>
<td>-0.47</td>
</tr>
<tr>
<td>inbuilt</td>
<td>0.44</td>
<td>testabl</td>
<td>-0.53</td>
</tr>
<tr>
<td>socket</td>
<td>0.42</td>
<td>string</td>
<td>-18.48</td>
</tr>
<tr>
<td>reproduc</td>
<td>0.39</td>
<td>archiv</td>
<td>-19.94</td>
</tr>
</tbody>
</table>

Table 5: Regression coefficients of the most positively and negatively weighted features (unigrams) for the edit prediction task.

In the case of positive augmentation it can be observed that both the **Code** and **Attempt** prediction performances increase. The improvements in F1 stem from an increase in recall. This is natural since the augmented training data contains only positive questions.

After negative questions were added as well, the edit type predictions **Code** and **Attempt** are very slightly enhanced. This indicates that the negative questions do not contain much information of each other. For type **SEC** the classifier performs as poorly as a random baseline.

To summarise, we have found that the edit prediction task can be solved with high accuracy, while the edit type prediction task is more difficult to solve. We have presented strategies to semi-automatically enlarge the training data which have been shown to be beneficial for the **Code** and **Attempt** categories.

Up to now we have only considered the question content in edit and edit type prediction. We now explore the impact that different factors can have on the quality of a question. Such factors include the topic of a question, the user’s prior experience on Stack Overflow, user knowledge on the question’s topic, and the temporal influence of Stack Overflow.

We first test our hypotheses **H1-H5**, then add related features for the prediction tasks to our classifier to investigate whether they can make a difference.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Edit category</th>
<th>Nr. positive</th>
<th>Nr. negative</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Code</td>
<td>612</td>
<td>388</td>
<td>0.63</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>SEC</td>
<td>542</td>
<td>458</td>
<td>0.57</td>
<td>0.62</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>Attempt</td>
<td>336</td>
<td>664</td>
<td>0.39</td>
<td>0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>Positive</td>
<td>Code</td>
<td>8157</td>
<td>338</td>
<td>0.63</td>
<td>0.92</td>
<td>0.75</td>
</tr>
<tr>
<td>augmentation</td>
<td>SEC</td>
<td>542</td>
<td>458</td>
<td>0.57</td>
<td>0.62</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>Attempt</td>
<td>2387</td>
<td>664</td>
<td>0.40</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>Positive+</td>
<td>Code</td>
<td>8157</td>
<td>8157</td>
<td>0.63</td>
<td>0.95</td>
<td>0.76</td>
</tr>
<tr>
<td>negative</td>
<td>SEC</td>
<td>542</td>
<td>542</td>
<td>0.55</td>
<td>0.49</td>
<td>0.52</td>
</tr>
<tr>
<td>augmentation</td>
<td>Attempt</td>
<td>2387</td>
<td>2369</td>
<td>0.38</td>
<td>0.56</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 6: Classifier performance on the edit type prediction task. Numbers underlined are the ones higher than previous classification version. The best F1 scores in all edit type prediction tasks are highlighted in bold. Note that Nr. positive and Nr. negative only indicates the number of questions that affect training of the classifier. Precision, Recall and F1 are calculated based on the 1000 annotated questions.

Questions). The goal is to provide sounder evidence on the performance of our predictors. We test two augmentation strategies:

1. **Positive augmentation**: we assume that questions with the term **code** appearing in the edited version while not in the original version have a big chance to be a positive question of edit type **Code**; this is verified in our annotated dataset where this is true for more than 98% of the questions in the edit type **Code** category. We use this strategy to collect additional training data from the **Extreme** training set; for the edit type **Code** we identified nearly 7000 additional questions. We followed the same approach for the **Attempt** category, relying on the term **tried** (this assumption holds true for 21% of our annotated data set). No augmentation was performed for category **SEC**, as no indicative terms could be determined.

2. **Negative augmentation**: We consider non-edited question in the **Extreme** training set as well-formed questions, and include similar number as edited questions to be the instances of the negative class.

To ensure that the classification results are not influenced by our selection criteria, the features **code** and **tried** are removed in the training phase.

The classifier performance with both types of enlarged training data are reported in Table 6, rows four to nine.
filtering out all those tags that appear too infrequently in the data set. We consider this ranking to provide us with an indication of a community’s amount of beginners.

\[
\frac{\text{#questions with substantial edits}}{\text{#questions without an edit}}
\]

(2)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Tag</th>
<th>Ratio</th>
<th>#Questions in Confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>asp.net-mvc-4</td>
<td>6.16</td>
<td>505</td>
</tr>
<tr>
<td>2</td>
<td>jsf</td>
<td>6.02</td>
<td>615</td>
</tr>
<tr>
<td>3</td>
<td>symfony2</td>
<td>5.57</td>
<td>338</td>
</tr>
<tr>
<td>4</td>
<td>r</td>
<td>4.34</td>
<td>2,067</td>
</tr>
<tr>
<td>5</td>
<td>opencv</td>
<td>4.10</td>
<td>402</td>
</tr>
<tr>
<td>6</td>
<td>matlab</td>
<td>4.02</td>
<td>981</td>
</tr>
<tr>
<td>7</td>
<td>core-data</td>
<td>3.91</td>
<td>446</td>
</tr>
<tr>
<td>8</td>
<td>angularjs</td>
<td>3.67</td>
<td>288</td>
</tr>
<tr>
<td>9</td>
<td>mod-rewrite</td>
<td>3.52</td>
<td>297</td>
</tr>
<tr>
<td>10</td>
<td>asp.net-mvc-3</td>
<td>3.50</td>
<td>1,443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>vim</td>
<td>0.52</td>
<td>746</td>
</tr>
<tr>
<td>193</td>
<td>visual-studio-2008</td>
<td>0.50</td>
<td>921</td>
</tr>
<tr>
<td>194</td>
<td>web-applications</td>
<td>0.49</td>
<td>774</td>
</tr>
<tr>
<td>195</td>
<td>oop</td>
<td>0.45</td>
<td>2,711</td>
</tr>
<tr>
<td>196</td>
<td>database-design</td>
<td>0.45</td>
<td>1,220</td>
</tr>
<tr>
<td>197</td>
<td>unit-testing</td>
<td>0.44</td>
<td>1,526</td>
</tr>
<tr>
<td>198</td>
<td>logging</td>
<td>0.44</td>
<td>624</td>
</tr>
<tr>
<td>199</td>
<td>testing</td>
<td>0.41</td>
<td>840</td>
</tr>
<tr>
<td>200</td>
<td>design</td>
<td>0.34</td>
<td>1,386</td>
</tr>
<tr>
<td>201</td>
<td>svn</td>
<td>0.27</td>
<td>1,186</td>
</tr>
</tbody>
</table>

Table 7: Overview of the topics (tags) which contain the most and least edited questions. All available data was used to generate the rank and ratios. The last column shows the number of questions in the Confident data set.

Table 7 provides an overview of the ten most and least edited topics (identified by their tags) in our data set. As hypothesised, the top-ranking topics are those more framework or language related, while low-ranking topics are more generic or advanced. For instance, asp.net questions usually require a lot of edits. In contrast, topics like design or testing require edits with a considerably lower likelihood.

We also report the number of questions a tag is assigned to in the Confident data set. It can be observed that the tags of most edited questions usually occur less than the non-edited ones (except the r tag). This indicates that not the large number of beginners leads to poorly phrased questions. It is more likely that these questions need to be edited because they are more complex and require more clarifications.

5.3.2 User Influence

Hypothesis H2 is concerned with the user effect - how does a user’s familiarity with the portal Stack Overflow affect the probability of an edit? If hypothesis H2 holds, we expect that the probability of a substantial edit decreases with increasing user experience with the platform. Such experience can be implied based on different types of user actions such as posting questions, answering, commenting or voting on postings.

5.3.3 Knowledge Influence

Hypothesis H3 considers not only the activity of a user in the past (regardless of the topic), but also the knowledge of a user on a topic. In particular, we hypothesise that the number of questions requiring an edit decreases as a user gathers more experience on the topic (as she becomes more familiar with the terminology, etc.).

To evaluate this hypothesis, for each asker in the Confident data set (training+test) we plot the number of days since registering on Stack Overflow vs. the number of specific topic-related questions that require a substantial edit asked on this topic. As before, we use tags as topic indicator.

![Figure 3: Influence of user experience on posting a question which requires an edit.](image)

We use the Confident data set (training & test), which contains a total of 151,762 users – (16.4%) of all Stack Overflow askers. For each question, we determine the number of questions and answers in the entire data set (not limited to Confident) the asker has posted previously, then bin them into two groups: edited vs. non-edited questions. The comparison of these two groups is shown in Figure 3 in the form of a box plot. The number of past activities of a user is - as hypothesised - a significant indicator for the likelihood of a question edit. Users with fewer activities are more likely to edit their questions than more experienced users (to a statistical significant degree, p-value<0.001 by a Mann-Whitney test).

![Figure 4: Influence of user knowledge on question edits. Results shown for topic (tag) C#](image)
Our analysis shows that these two variables are highly negatively correlated, with a Spearman correlation of -0.72 (p-value < 0.001). We remove all users with a registration date older than 1500 days, and denote the activity of a user by a vector \((a_1, \ldots, a_{1500})\) where \(a_i\) denotes the number of questions and answers posted by this user at day \(i\) since his registration. Figure 4 shows the cumulative vector for all users involved in the topic C#. It can be observed that as time passes, a user asks less questions that require substantial edits. Though we only present the results for C#, we note that we observe the same trends for the top 20 topics (tags) on Stack Overflow, which include Java, iOS and Python.

5.3.4 Temporal Influence

Similarly to hypotheses H2 and H3, we can also evaluate H4 by considering all questions posted in a particular year. If H4 holds, we expect to see a decreasing trend in questions requiring an edit. There is an influential factor, though, which will lead to more questions that require edits: new users registering and asking questions. Figure 5 plots:

\[E = \text{#edited questions} - \text{#non-edited questions} \]

in the Confident data partition over time, while Figure 6 depicts the evolution of user registrations in the same time period.

![Figure 5: Overview of the gradual increase in edited questions on Stack Overflow over time.](image)

Figure 6: User registration over time.

![Figure 6: User registration over time.](image)

The Spearman correlation between \(E\) and the number of user registrations is 0.79 with a p-value < 0.001. This result provides additional support to the motivations of our work, as it shows that, despite the fact that an individual user asks fewer questions when he stays longer on Stack Overflow, the increasing popularity of the platform leads to the creation of several more questions that could benefit from a systematic assessment of their quality.

5.3.5 Influence of User “Age” on Edit Type

Hypothesis 5 is concerned with the role that user seniority plays in influencing the types of information (Code, Attempt, or SEC) that are (not) initially included in the questions. For each of the 1000 annotated questions, we calculate the age of the question as the difference between its posting date and the registration date, in Stack Overflow, of its asker. Figure 7 depicts the difference, in terms of age, of edited and non-edited questions in the context of the Code edit type: we observe that this type of edits is significantly (p-value < 0.001 by a Mann-Whitney test) more likely to occur in the early days of a user’s activity on the platform; SEC and Attempt edits do not show significant differences.

![Figure 7: Influence of user age on posting a question which requires a Code type edit.](image)

5.3.6 Influence on Prediction

In a final experiment, we created additional features for edit and edit type prediction based on the results of the investigated hypotheses. The following features were added to the existing feature set: 1) tags of a question, 2) #activities of the asker, 3) #days between the registration of the asker and the time she posted the question, and, 4) #days between a question was posted and the time Stack Overflow was launched.

In our experiments we did not observe substantial differences in F1 when adding those features to our original (unigram-based) feature set. This indicates that the content, i.e., the terms in a question, are more important that contextual factors for predicting the question (type) edit.

6. CONCLUSIONS

As cQA systems grow in popularity and adoption, the ability to provide automated quality enhancement tools is a key factor to guarantee usability, reliability, and high knowledge creation quality. In this paper we explored a spe-
pecific aspect of user contributions: the formulation of well-formed questions. In order to receive useful answers, a question should feature positive characteristics such as specificity (i.e. provide enough details to understand the nature of the problem), and clarity (i.e. provide examples, or personal experiences).

We analysed the editing behaviour of Stack Overflow users, and identified three main classes of useful editing actions. We then applied machine learning techniques to define an approach for the automatic suggestion of edit types for newly created questions. With respect to the research questions listed in Section 1 we can draw the following conclusions:

- **RQ1**: Question edits are a very good indicator of the quality of a given question, as their presence is also a reflection of several distinct traits of the asker (e.g. being new to a given technology, knowledge in the targeted topic, etc.).

- **RQ2**: Using a simple unigram model, we observe classification accuracies (F1) between 63% and 70%. This is a very promising result which indicates the possibility for significant improvements when adopting more sophisticated techniques.

- **RQ3**: Out of three identified classes of edits, only one (namely code refinement) features good prediction performance. The results are encouraging, but suggest that a more in-depth analysis of the different type of editing actions is required, to gain a better understanding of their features.

In addition to improvements to the components of our current question editing suggestion method, future work includes the extension of our analysis to other domains covered by the Stack Exchange platform (e.g. math, literature, etc.), to collect more insights about the editing behaviour of users across different knowledge domains.

Acknowledgements

This publication was supported by the Dutch national program COMMIT. This work was carried out on the Dutch national e-infrastructure with the support of SURF Foundation.

7. **REFERENCES**

