Vakgroep Chemische Technologie

Verslag behorende bij het fabrieksvoorontwerp van

P.H.W. Vercoulen

E.T. de Leeuw

onderwerp:

Catalytische Hydrodehalogenering van gechloreerde Koolwaterstoffen

adres: Schoemakerstraat 286
2628 WL Delft

opdrachtdatum: november 1989
verslagdatum: maart 1990

Bosboom Toussaintplein 131
2624 DJ Delft
Hydrogenation and Recycle of Organic Waste Streams

T. N. Kalnes and R. B. James
UOP Inc., Des Plaines, IL

Each year, billions of gallons of organic waste liquids are generated. Recently implemented EPA regulations now provide an economic driving force to minimize the net production of these waste materials. A hydrocarbon refining process employing catalytic hydrogenation has been expanded from current petroleum and petrochemical applications to the treatment and recycle of hazardous organic waste streams. In this paper, three classes of hazardous organic wastes are studied: PCB insulating liquids, halogenated petrochemical by-products, and residue from distillate oil sulfuric acid treatment. Pilot plant data are presented as the basis for evaluating the environmental and economic advantages of hydrogenation and reuse.

INTRODUCTION

There has been ongoing research and development work on a process utilizing hydroprocessing technology to decompose polychlorinated biphenyls in waste oils at Engineered Materials Research Center in Des Plaines, Illinois. In October, 1985, the Research Center expanded treatability studies to include a PCB insulating liquid, several petrochemical by-product samples, and an acid/tar sludge. The results of these pilot plant studies have been utilized to determine the commercial viability of applying UOP Inc.'s commercial hydrogenation technology to hazardous waste conversion and resource recovery.

In the first part of this paper, hydroprocessing chlorinated wastes is compared with incineration from a fundamental energy consumption standpoint. The second part includes a brief description of the hydrogenation plant program/procedures, followed by an in-depth review of three specific waste streams, which are presented in a case-study format.

HYDROGENATION ECONOMICS/ENERGY CONSERVATION

The alternative to chemical decontamination of hazardous organic wastes is primarily thermal incineration. Incineration of organic wastes destroys the chemical potential, or energy, of combustion inherent in the waste material. Chemical hydrogenation of the waste produces a fuel and saves, or recovers, much of the chemical energy wasted by incineration. In order to compare incineration with hydrogenation from a fundamental energy utilization point of view, the heats of combustion of several families of chlorinated compounds were calculated and are shown graphically in Figure 1.

The actual conditions that must be employed for safe incineration of chlorinated compounds are controversial. The fear is that incomplete combustion of the waste will produce phosgene, dioxins, or other toxins more dangerous than the original wastes being incinerated. A common rule of thumb used by incinerators is to limit the waste feed to a minimum heat of combustion content of 10,000 Btu/lb (4300 kJ/kg), corresponding to a chloride content of 20% to 50%. The flue gas scrubbing section often limits the chloride content of land-based incinerators to much lower levels. In principle, however, an incinerator system could be designed to handle high chloride levels.
The basic criterion for comparing energy utilization of incineration with hydrogenation is a required heat content of waste feed plus auxiliary fuel of 10,000 Btu/lb (4300 kJ/kg) minimum.

Figure 2 illustrates the inherent advantages of hydrogenation over incineration. The family of chloropropanes was utilized as the basic constituent of the waste feed. The energy savings were calculated in the following manner. For a specified chloride content, the auxiliary fuel required to bring the mixture to a minimum heat content of 10,000 Btu/lb is calculated. The heat of combustion of the product hydrocarbon fuel from hydrogenation was also calculated.

The energy necessary to produce the consumed hydrogen is calculated using a thermal conversion efficiency of 82%, which is typical of commercial hydrogen production facilities. The energy used to make the hydrogen is subtracted from the energy in the recycled fuel product, for a net energy production from hydrogenation. If any auxiliary fuel is needed to incinerate the waste, that energy is added to the net produced by hydrogen and reported as energy saved per pound of waste. In principle, it is possible to utilize some of the heat liberated during incineration. For this reason, three levels of incineration heat recovery are shown. The curve labeled “At Sea” represents no external heat recovery. Two other curves are shown assuming 30% and 60% incinerator heat recovery.

The results of the analysis show that in all cases hydrogenation is inherently more energy efficient than incineration. Hydrogenation is also superior to incineration in its ability to recover and recycle hydrogen chloride. Although no value has been used in the comparison for recovered HCI, the potential savings from recycling HCI can be significant.

PILOT PLANT PROGRAM

In Allied-Signal’s waste conversion research and development program, small quantities of waste organics were pilot-plant treated under hydrogen atmosphere. A schematic flow diagram of a typical hydrogenation pilot plant is shown in Figure 3.

UOP Inc. has utilized pilot plants of this design for several decades to develop and simulate hydrogenation operations at commercial scales ranging from 100 to 50,000 barrels/day. Custom designed pilot-scale reactors, separators, instrumentation, and catalyst loading techniques minimize or eliminate problems associated with process scale-up [1].

Pilot Plant Procedures

During the pilot studies, operating data are collected to allow complete material balances to be calculated. Several product gas, organic liquid, and inorganic liquid samples are routinely taken each day. Quantitative analyses of the organic and inorganic product phases are determined off-line using calibrated methods. In addition, an on-line GC/MS is utilized to qualitatively determine conversion response to process changes.

Case Studies

The application of hydroprocessing to hazardous waste conversion as a means of producing reusable organic and inorganic products was studied for three different classes of organic waste: 1. PCB insulating liquids, 2. halogenated photochemical by-products, and 3. residue from distillate oil sulfuric acid treatment. Representative samples of each waste type were obtained, analytically characterized and treated as mentioned above to determine overall conversion, product yields, and product quality.

Analytical and pilot data are presented for each waste type in a case study format. Each case study includes a detailed waste description, comments on current disposal methods, a description of an integrated processing scheme utilizing hydroprocessing to convert the waste, and a review of recent pilot results supporting the hydrogenation approach. Each case study is concluded with general comments regarding the economics of the proposed hydrogenation approach.

Case Study 1—PCB Insulating Liquid

Waste Characterization: A common PCB-containing product class used in transformers and capacitors is askarel. Askarel is a generic term for a group of synthetic, fire-resistant, chlorinated aromatic hydrocarbons used as electrical insulating liquids. The most common transformer askarels were 60% Aroclor 1260/40% trichlorobenzene (Type A) and 70% Aroclor 1254/30% trichlorobenzene (Type D). The ASTM (1978) published standard

<table>
<thead>
<tr>
<th>TABLE 1. ANALYSES OF WASTE SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Properties</td>
</tr>
<tr>
<td>Specific Gravity @ 15.6°C</td>
</tr>
<tr>
<td>Pour Point, °C</td>
</tr>
<tr>
<td>Viscosity @ 38°C, mm²/S</td>
</tr>
<tr>
<td>APHA Color</td>
</tr>
<tr>
<td>Chemical Analyses</td>
</tr>
<tr>
<td>Acid Number, mg KOH/g</td>
</tr>
<tr>
<td>Organic Chlorine, wt-%</td>
</tr>
<tr>
<td>Aroclor 1260, wt-%</td>
</tr>
</tbody>
</table>

Environmental Progress (Vol. 7, No. 3)
specifications for askarels. Based on the physical and chemical analyses shown in Table 1 and GC/MS characterization, the waste oil selected for Case Study 1 is a used askarel.

Current Disposal Practices: The hazardous nature of polychlorinated biphenyl is well documented and will not be addressed here. The most commonly used procedure for disposal is high temperature incineration. To achieve total PCB destruction, very severe combustion conditions are required, and even at these conditions there is still concern regarding toxic combustion by-products such as polycyclic organic matter (POM) polychlorinated dibenzo-p-dioxins (PCDD), and polychlorinated dibenzofurans (PCDF) [10].

Hydrogenation and Recycle: Complete hydrogenation of chlorinated aromatic compounds such as trichlorobenzene and PCB can be expressed by the following balanced chemical reactions:

\[C_6H_3Cl_3 + 6H_2 \rightarrow C_6H_{12} + 3HCl \]

Pilot plant studies indicated that the kinetics of this reaction require the presence of an active hydrogenation catalyst. Proper catalyst selection results in complete conversion at mild pressures and temperatures [1, 2].

PCB Insulating Liquid Processing Scheme: A block flow of the proposed process for converting the PCB liquid waste is shown in Figure 4. It consists of three sections: reactor, HCl recovery, and product separation. In the reactor section, the waste liquid is pumped to reactor pressure, mixed with hydrogen gas, and heated to reactor temperature. The relatively high heat of reaction evolved by hydrogenation is controlled by a proprietary management of heat exchange equipment and reactor design.

In the HCl recovery section, HCl is removed by absorption into a water phase producing a dilute solution of aqueous HCl, which can be concentrated in downstream equipment to any level desired. The effluent then passes to the product recovery section where the remaining acid gases are removed in a basic aqueous, inorganic salt solution. The net hydrocarbon product is collected, desorbed, and separated into either a stabilized liquid product or a vapor-phase fuel gas stream. The hydrogen gas is scrubbed and washed to remove trace contaminants and recycled back to the reactor section.

Pilot Plant Results: The Figure 4 flow scheme was simulated in the pilot plant previously presented in Figure 3. A single reactor vessel was utilized and the HCl was neutralized and recovered as a dilute salt solution. The liquid hydrocarbon was recovered in a water/oil separator and subjected to detailed analytical characterization. The overall material balance for the pilot testing averaged 101%.

Average chlorine conversions measured over a 24 hour test period was 99.98% for a single reactor pass. Aroclor 1260 in the hydrocarbon product liquid was analyzed at < 1 wt-ppm. Table 2 compares the organic waste liquid and total hydrocarbon products.

GC/MS analyses indicate the organic product is a mixture of cyclohexane (41.1 area %) and saturated two-ring compounds (58.9 area %). This mixture can be fractionally distilled to yield high value petrochemicals or, at worse, utilized as a clean, high-heating-value fuel source.

Economics of Hydrogenation versus Incineration: PCB insulating liquids are typically destroyed in specially permitted land-based incinerators. The dry-basis heat of combustion for the waste askarel studied was 5670 Btu/lb (2438 kJ/kg). In order to burn this material safely, an assumed auxiliary fuel must be used to raise the heating value to 10,000 Btu/lb (4300 kJ/kg). The amount of this auxiliary fuel is 8830 Btu/lb (3796 kJ/kg) of original waste askarel. For this study, it was also assumed that the incinerator utilizes a heat recovery scheme to generate steam. An assumed 40% of the heat liberated by the total mixture charged to the incinerator is recovered as useful energy and is equivalent to 5800 Btu/lb waste (2494 kJ/kg) waste. The net energy consumed in the incinerator is the difference, 3030 Btu/lb waste (1303 kj/kg) waste. The values for both incineration and hydrogenation are summarized in Table 3.

<table>
<thead>
<tr>
<th>Mass Units</th>
<th>Incineration</th>
<th>Hydrogenation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.566</td>
<td>0.7909</td>
</tr>
<tr>
<td>Organic Chlorine, wt-%</td>
<td><0.01</td>
<td><0.0001</td>
</tr>
<tr>
<td>Aroclor 1260, wt-%</td>
<td>60</td>
<td>43</td>
</tr>
</tbody>
</table>

Energy Required	8830	4120
Energy Produced	5800	8430
Net Energy Production	-3030	+4310

TABLE 3. ENERGY COST COMPARISON (2.326 Btu/lb = 1 kJ/kg)
The energy required by hydrogenation, as shown, is that required to make the hydrogen consumed by the process. Hydrogen is produced at an 82% thermal efficiency, or 4120 Btu/lb (3624 kj/kg) waste. The energy produced is the heating value of the decontaminated hydrocarbon fuel product, or 8430 Btu/lb (3156 kj/kg) waste. The net energy usage of hydrogenation is that produced minus that consumed, or a plus export of 4310 Btu/lb (1853 kj/kg) of waste. The conclusion is that hydrogenation enjoys a fundamental advantage over incineration of 7340 Btu/lb (3156 kj/kg) of waste.

Case Study 2—Halogenated Petrochemical By-Products

Waste Characterization: Two different waste samples are presented: halogenated by-product liquid from a vinyl chloride manufacturing plant, and halogenated distillation bottoms liquid formed in the production and purification of epichlorohydin.

Vinyl Chloride Waste: Vinyl chloride monomer (VCM) is used in the production of polyvinylchloride (PVC), one of the largest volume polymers produced in the world today. Overall VCM capacity in the U.S., Western Europe, and Japan is ~12 x 10^6 MTA. VCM has been identified as a known carcinogen as early as 1974 existing [7]. A sample of halogenated waste by-product from an VCM production operation was characterized and found to contain ~60 different halogenated compounds, with the major components being trichloroethane (18.8%), trichlorobenzene (8.8%), dichloroethene (6.8%), and chlorobenzene (6.0%).

Epichlorohydin Waste: Epichlorohydin, as a petrochemical intermediate, has many different uses, including the manufacture of epoxy resins and many glycerol and glycidol derivatives [7]. In 1985, overall combined production of epichlorohydin in the U.S., Western Europe, and Japan was estimated to be about 421 x 10^3 metric tons [9]. Epichlorohydin is known to attack the respiratory system, lungs, skin, and kidneys. A sample of halogenated waste by-product distillation bottoms from an existing epichlorohydin product operation was characterized and found to contain 28 different halogenated compounds, with the major components being trichloropropane (49.8%), dichloropropylether (17.8%), and chloropropylpropanol ether (8.4%). Table 4 compares the physical properties of the two halogenated by-product streams.

Both materials are pumpable liquids at ambient temperatures and contain small quantities of water, solids, and metals. Total organic chlorine content was determined to be ~70 wt-% in both of the streams.

Current Disposal Practice: The halogenated petrochemical by-products presented in the case study are currently disposed of by at-sea incineration. To minimize the production of toxic by-products such as chlorinated dioxins and phosgene gas, severe incineration conditions are employed. Due to the low heat of combustion of these waste streams (<2150 kj/kg, dry basis), substantial amounts of support fuel are required, which drives incineration costs to undesirable levels. To minimize disposal costs flue gases are not scrubbed. Several environmental groups are now lobbying to discontinue this method of disposal.

Table 4. Halogenated By-Product Waste Analyses

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Liquid Waste</th>
<th>Epichlorohydin Distillation Bottoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity @ 15.6°C</td>
<td>1.336</td>
<td>1.382</td>
</tr>
<tr>
<td>Water and Sediment, wt-%</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Solids (>10 micrometer, wt-%)</td>
<td>2.8</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metals, wt-ppm</th>
<th>Fe</th>
<th>Na</th>
<th>Ca</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>166</td>
<td>149</td>
<td></td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Hydrogenation and Recycle: Hydrogenation of the chlorinated alkane portion of the vinyl chloride liquid waste can be expressed by the following balanced chemical reaction:

\[
C_2H_4Cl_2 + ZH_2 \rightarrow C_2H_7 + ZHCl
\]

Similarly, hydrogenation of a halogenated ether such as the dichloropropylether found in the epichlorohydin liquid waste can be expressed as:

\[
(C_3H_7Cl_2)O + 6H_2 \rightarrow 2C_3H_8 + 4HCl + H_2O
\]

As with the PCB insulating liquid, pilot plant studies have indicated that the kinetics of these reactions require the presence of an active hydrogenation catalyst. Complete conversion of the organic halogen compounds can be achieved for both the vinyl chloride and epichlorohydin by-product waste streams at processing conditions similar to those employed for PCB decomposition. The proper choice of waste pretreatment, reactor design, and heat recovery scheme are critical to the overall commercial viability of this waste conversion operation.

Halogenated Petrochemical By-Product Processing Scheme: The heart of the UOP waste conversion process, for producing usable fuel and chemical feedstocks from halogenated petrochemical waste, is exactly the same as

![Figure 5. Waste conversion schematic.](image-url)
the PCB process. For the process technology to include as wide a variety of wastes as possible, two additional unit operations, a pretreatment section, and a polishing reactor have been incorporated into the processing scheme. A block flow schematic of the process is shown in Figure 5.

Many halogenated hydrocarbon waste streams contain various quantities of solids. These solids vary from polymeric residues to catalyst dust, and may contain high concentrations of metals. The solids are of a size and nature that do not allow easy filtration. The nature of the halogenated hydrocarbons is such that thermal decomposition will often accompany any evaporation or distillation used to separate the solids from the liquid waste.

In order to process the liquid portion of a "solids-containing" waste, a UOP proprietary process is employed to concentrate the solids in a small stream of liquid, utilizing a portion of the circulating hydrogen gas stream. The rejected solids stream is then sent to other disposal. The bulk of the waste liquid and hydrogen gas is sent to the reactor section for conversion, as already outlined.

To ensure high chlorine removal levels, a polishing reactor located after the HCl recovery section is employed. The final reactor also acts as a guard bed to minimize chloride breakthrough due to possible upsets in the upstream processing.

Pilot Plant Results: The flow scheme in Figure 5 was simulated using bench- and pilot-scale pretreatment techniques and the hydrogenation pilot plant presented previously in Figure 3.

The vinyl chloride waste liquid was pretreated to remove a total of ~15% solids, metals, and high molecular weight tars. The epichlorohydrin distillation bottoms were pretreated to remove ~0.1% free water.

The pretreated liquid wastes were catalytically hydroprocessed using a one-pass reactor flow scheme. High conversion (99.9-99.999%) of organic halogen to hydrochlorine was achieved during a 15 day demonstration run. Vinyl chloride waste liquid was treated during the first half of the demonstration run and epichlorohydrin distillation bottoms were treated over the last 8 days.

As with the PCB treating studies, the hydrogen chloride product was neutralized and recovered as a dilute salt solution. The primary organic products (C₁-C₄ hydrocarbons) were recovered and quantified as a net separator distillation bottoms were treated over the last 8 days.

Overall material balances during the 15-day demonstration run were 100 ± 2%. Eighteen separate test runs (material balances) support the vinyl chloride average yields and 15 plant balances are included in the epichlorohydrin waste conversion analyses. Reactor temperature trues were held constant during the 15-day demonstration run. The UOP Inc. Proprietary hydrogenation catalyst utilized showed no signs of deactivating during the operation, as determined by monitoring total organic chlorine conversion, product yields, and catalyst bed temperature profile.

Economics of Hydrogenation versus Incineration: The energy consumption and production for the by-products case are shown analogously to the PCB study in Table 6. The basis for this comparison is epichlorohydrin bottoms with a dry-basis heat of combustion of 4870 Btu/lb (2094 kJ/kg). The sample of waste used by UOP in this study came from material presently being incinerated at sea. With zero heat recovery as a basis, hydrogenation saves 14,130 Btu/lb waste (6075 kJ/kg) waste over incineration. The savings for vinyl chloride waste are similar.

Case Study 3—Residue from Distillate Oil Sulfuric Acid Treatment

Waste Characterization: Historically, sulfuric acid washing and acid/delay treatment were commonly used as oil refining techniques in the production of white oils, high quality lubricating base stocks, and various petrochemical intermediates. Concentrated sulfuric acid was used to purify various oil fractions by reacting with and removing sulfur-containing, unsaturated, and other undesirable compounds. The acid sludge, which is produced during these refining operations, represents a formidable waste-disposal problem. It can be burned, but its high acid and sulfur contents and viscous nature render it extremely difficult to handle and make it an undesirable fuel [11]. At one time or another most refining plants have disposed of the sludge material by dumping it into pits [6]. The waste sludge selected for Case Study 3 represents the acidic sludge produced over many years during a coke-oven light oil washing operation. Table 7 presents physical and chemical properties of a representative waste sludge sample taken from one existing lagoon.

The reactions between sulfuric acid and organic compounds are extremely complex [11]. Some of the unsaturated compounds react directly with acid to form sulfates or sulfonic acids [11, 12]. Others polymerize to produce gums and resins. The reactions of the organic sulfur compounds are similar in complexity. The greatest portion forms a highly viscous and sticky sludge, which contains

<table>
<thead>
<tr>
<th>Table 5. Pilot Plant Product Yields</th>
<th>Vinyl Chloride</th>
<th>Epichlorohydrin Distillation Bottoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Chloride</td>
<td>74.5</td>
<td>69.0</td>
</tr>
<tr>
<td>Methane</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Ethane</td>
<td>14.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Propane</td>
<td>2.5</td>
<td>27.3</td>
</tr>
<tr>
<td>Butane</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>C₅₂ Hydrocarbon</td>
<td>4.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Water</td>
<td>0.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Total Wt-%</td>
<td>105.3</td>
<td>104.2</td>
</tr>
<tr>
<td>Chemical Hₓ Consumption,</td>
<td>111</td>
<td>90</td>
</tr>
<tr>
<td>SCF/Gal (249.2 SCF/gal = 1m³/m³)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Table 6. Energy Cost Comparison (2,325 Btu/lb = 1 kJ/kg) |
|-----------------|-----------------|
| | Incineration | Hydrogenation |
| Energy Required | 10,470 | 2900 |
| Energy Produced | | 6560 |
| Net Energy Production | -10,470 | +3660 |

<table>
<thead>
<tr>
<th>Table 7. Bulk Acid Sludge Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Properties</td>
</tr>
<tr>
<td>Relative Density</td>
</tr>
<tr>
<td>Flash Point, °C</td>
</tr>
<tr>
<td>Viscosity @ 38°C, poise</td>
</tr>
<tr>
<td>Elemental Analyses, Wt-%</td>
</tr>
<tr>
<td>Carbon</td>
</tr>
<tr>
<td>Hydrogen</td>
</tr>
<tr>
<td>Sulfur</td>
</tr>
<tr>
<td>Nitrogen</td>
</tr>
<tr>
<td>Oxygen</td>
</tr>
<tr>
<td>Metals</td>
</tr>
</tbody>
</table>
considerable amounts of unused acid along with some entrained oil. The waste sample characterized in Table 7 contained a significant quantity (~40%) of entrained (tightly bound) aqueous material having a pH < 1 and a high concentration of soluble organics. The physical properties of the acid sludge (corrosive, flammable, ignitable, viscous) make material handling and ultimate disposal very awkward. Recent, in-situ stabilization techniques have been attempted on similar type wastes with limited success, leaving the ultimate resolution of the problem for future generations.

Hydrogenation and Recycle: Due to the complex nature of this waste sample, no single reaction can fully express the mechanism involved in the pilot plant hydrogenation studies. Based on GC/MS characterization of various waste and treated product streams, it is postulated that one of the conversion reactions that occurs is a carbon-sulfur bond cleavage that can be expressed by the following general equation:

\[(C_2H_8S_2) - + 7/2 H_2 \rightarrow C_2H_6 + H_2S + 2H_2O\]

(C_2H_8S_2) represents a building block of the polymeric-like sludge, which when broken down under hydrogen atmosphere, releases H_2S and water. The resultant organic product is much lower in viscosity and easily separates from the previously entrained sulfuric acid and water.

Acid/Tar Sludge Processing Scheme: A simplified process block flowchart for the remediation of an acid tar lagoon is shown schematically in Figure 6. The processing steps can be divided into three basic sections: excavation and tar-water phase separation, hydrocarbon processing, and water treating.

The excavated lagoon material is first mechanically de-watered. An aqueous phase, with a low pH and high in inorganics, is separated from the tar. An aromatic light oil (roughly equivalent to 200°F (392°C) minus material) produced in the reactor section, is recycled to dilute the tar residue and allow the material to be more easily charged to the reactor section.

The hydrocarbon material is mixed with hydrogen gas, heated, and passed to two stages of reaction. The reactor effluent is separated into stabilized light oil and heavy fuel oil products, a small fuel gas stream, and an aqueous stream consisting of previously entrained water, water produced by reaction, and certain water-soluble organics. The aqueous streams are combined and mixed with a lime solution formed from calcium waste (coincidentally present near the sight) to adjust the pH to neutral and precipitate metal salts and complexes. The neutralized solid-water mixture is sent to biological treatment for conversion of toxic organics. A portion of the treated water is clarified of solids and recycled to make up the lime slurry. The treated water-solids effluent is sent to a secure landfill. The mass units in Figure 6 provide a material balance of the overall treatment process.

Pilot Plant Results: The major treatment steps shown in Figure 6 have been studied at the bench-scale and pilot-plant level. Several different sludge dewatering techniques have been screened, and the aqueous and organic phases produced have been subjected to detailed analytical characterization. Table 8 presents some of the analytical results.

Hydrogenation of the organic phase was studied in both batch and continuous operations. In the continuous studies, the dewatered organic phase was blended with a

<table>
<thead>
<tr>
<th>Organic Phase</th>
<th>Aqueous Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Number, mg KOH/g</td>
<td>~37</td>
</tr>
<tr>
<td>Heat of Combustion, Btu/lb</td>
<td>13,750</td>
</tr>
<tr>
<td>Sulfur</td>
<td>4.4</td>
</tr>
<tr>
<td>Heavy Metals, wt-ppm</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>8.2</td>
</tr>
<tr>
<td>Ni</td>
<td>5.0</td>
</tr>
<tr>
<td>Mo</td>
<td><1</td>
</tr>
<tr>
<td>Cu</td>
<td>85</td>
</tr>
<tr>
<td>Zn</td>
<td>24.5</td>
</tr>
<tr>
<td>Pb</td>
<td><4</td>
</tr>
<tr>
<td>V</td>
<td>0.4</td>
</tr>
<tr>
<td>Cd</td>
<td><1</td>
</tr>
<tr>
<td>Co</td>
<td><2</td>
</tr>
</tbody>
</table>

Environmental Progress (Vol. 7, No. 3)
light aromatic solvent to improve pumpability prior to being treated under hydrogen atmosphere.

The organic product produced in the pilot-scale hydrogenation studies was distilled into two fractions and characterized. Table 9 summarizes some of these analyses.

The neutralized and biologically-treated aqueous fraction produced in the pilot-scale hydrogenation studies contained non-detectable levels (<1 wt-ppm) of EPA regulated volatile and semi-volatile priority pollutants as determined by GC/MS. In addition, the heavy metal concentration of the treated aqueous phase was reduced by an order of magnitude. During the neutralization step, a precipitate formed on the aqueous inorganic phases.

Assuming that this is enough to support combustion without auxiliary fuel and that a remediation cleanup at the site cannot support the cost and complexity of heat recovery, then debits for incineration are zero. The hydrogenation approach will preserve the chemical energy of the hydrocarbon and transform it into a useful fuel. The net energy produced per pound of lagoon waste is 9110 Btu/lb (3917 kJ/kg).

To be consistent with Cases 1 and 2 approach, only the energy required to produce the consumed hydrogen is shown. In fact, due to the relatively low H₂ consumption for this waste stream (~40% is aqueous), the energy consumed in other processing steps becomes significant.

SUMMARY AND CONCLUSIONS

Hydrogenation of hazardous organic chemical wastes to produce recyclable organic and inorganic products has been successfully demonstrated in a series of bench- and pilot-scale treatability studies. Based on the pilot-scale results and a fundamental comparison of hydrogenation and incineration, it can be concluded that hydrogenation and reuse provide an economical solution to some very complex waste treatment problems.

The conversion of PCB waste, halogenated petrochemical waste, and acid/tar sludge to recyclable fuels, petrochemicals, inorganic acid, and non-hazardous solids can be accomplished at processing conditions well within the range of existing commercial hydrogen refining operations. In addition, pretreatment and post-treatment unit operations have been integrated with the catalytic hydrogenation step to expand the flexibility of the process to handle a wide range of waste types.

LITERATURE CITED

3. R. C. Thermodynamics Tables, Non-Hydrocarbons, Thermodynamics Research Center, The Texas A&M University System, College Station, Texas.

5. Mitchell, D., Erickson, "The Analytical Chemistry of PCBs".

7. Bletchly, J. D. "Report to the Commission of the European Communities on a Study of Measures to Avoid Dispersion into the Environment of Polychlorinated Biphenyls (PCBs) and Polychlorinated Terphenyls (PCTs) from Existing Installations," October 15, 1985.

"Although these 'end-of-pipe' strategies and remedial technologies have been somewhat successful in controlling pollution or cleaning it up once it is generated, further gains through technological treatment and control will be much more costly and difficult to achieve. Furthermore, as the nation approaches the 21st century, we face another level of environmental threats far more complex and widespread than can be addressed by 'end-of-pipe' controls."

John H. Skinner

Environmental Progress, November 1989
Inhoudsopgave

Samenvatting .. i
Conclusies en aanbevelingen ii

1. Inleiding .. 1

2. Uitgangspunten .. 2
 2.1 Voeding .. 2
 2.2 Kinetiek .. 2
 2.3 Stofeigenschappen .. 3
 2.4 Veiligheidsaspecten 5

3. Het processchema ... 6
 3.1 Procesbeschrijving 6
 3.2 Flexibiliteit en regeling 6
 3.3 Inbedrijfstelling ... 7

4. Procescondities ... 8
 4.1 Procesdruk ... 8
 4.2 Reaktie evenwichten 8
 4.3 Massabalansen .. 9
 4.4 Conversie ... 10
 4.5 Katalysator ... 10
 4.6 ASPEN PLUS .. 10

5. Apparatuur .. 12
 5.1 Warmtewisselaars ... 12
 5.1.1 Voorverwarmer H4 12
 5.1.2 Condensor H6 13
 5.1.3 Gekoelde absorbertrap (T9) 13
 5.1.4 Voorverwarmer polisher H10 14
 5.1.5 Gekoelde absorbertrap (T12) 14
 5.2 Flash-verdamper .. 14
 5.3 Reaktoren ... 15
 5.4 Absorptietorens ... 15

6. Economische Evaluatie 17
 6.1 Inleiding ... 17
 6.2 Investeringen ... 17
 6.2.1 Warmtewisselaars 17
 6.2.2 Absorptietorens 18
 6.2.3 Reaktoren en flash-verdamper 19
 6.2.4 Totale investering 19
 6.3 Jaarlijkse kosten 20
 6.3.1 Produktievolume afhankelijke kosten 20
 6.3.2 Semivariabele kosten 21
 6.3.3 Investeringsafhankelijke kosten 21
 6.3.4 Totale jaarlijkse kosten 21
 6.4 Opbrengsten ... 21
 6.5 Noodzakelijke prijs per ton HKW 22

7. UOP met recycle .. 23

8. UOP versus TH² .. 24

9. Specificatiebladen en balansen 25
10. Symbolenlijst ... 42
11. Literatuur ... 44

Bijlagen

1 uitgangsartikel
2 gelineariseerde evenwichtsvergelijkingen
3 Aspen programma's
4 voorbeeld Aspen uitdraai

Processchema's bijgesloten in kaft.
Samenvatting

Dit verslag beschrijft de katalytische hydrodehalogenering van gechloreerde koolwaterstoffen met behulp van waterstof. De omzetting vindt plaats in een adiabatische fixed bed reaktor bij temperaturen tussen de 600 en 850 K. Daar er geen kinetiek gegevens voorhanden waren, is de conversie op basis van thermodynamisch evenwicht bepaald. Deze conversie (op chloorbasis) is groter dan 99.999 %. Als modelvoeding werd een equimolair mengsel bestaande uit trichloorpropaan, dichloorpropaan, dichloorpropeen en chloorkoolzeen genomen. De produkten van het proces zijn 33% zoutzuur en de gedechloreerde koolwaterstoffen. De afvalstromen van het proces zijn een zoutoplossing en een stroom vaste stof resten, geconcentreerd in een kleine stroom chloorkoolwaterstoffen.

De capaciteit van het proces bedraagt 22000 ton gechloreerde koolwaterstoffen per jaar. De totale investeringskosten bedragen kf 3247.6. Het proces heeft een gestelde Internal Rate of Return van 8% bij een looptijd van acht jaar. Hiermee komt de noodzakelijke prijs die per ton chloorkoolwaterstoffen betaald moet worden op f 257.1. Hierbij is er vanuit gegaan dat de afvalstromen en de produktstromen geen kosten of baten leveren.
Conclusies en aanbevelingen

Het katalytische hydrodehalogenerings proces (UOP) lijkt op basis van dit fabrieksvoorontwerp goed te kunnen concurreren met andere verwerkingsmethodes (Thermische hydrodehalogenering, verbranding). De hier berekende noodzakelijke prijs per ton chloorkoolwaterstof is f 257.1.

Om te weten of het proces werkelijk concurrerend kan zijn, is het noodzakelijk meer informatie over de katalysator te hebben. Met name over de levensduur van de katalysator en de kinetiek, waaronder die van eventuele roetvorming, is niets bekend.

Het proces levert als produkten een 33% zoutzuur oplossing en een mengsel van koolwaterstoffen. Deze produktstromen zijn niet direct geschikt voor de verkoop. De zoutzuurstroom is vermoedelijk verontreinigd met voornamelijk benzeen; De koolwaterstofstroom is een mengsel en dit kan eventueel nog gescheiden worden om zuivere koolwaterstoffen te krijgen. In hoeverre dit de economie van het proces beïnvloedt is onbekend. Hier dient nog onderzoek aan verricht te worden.

Het proces levert twee afvalstromen, te weten een stroom vaste stoffen geconcentreerd in een kleine hoeveelheid gecho­ lorerde koolwaterstoffen en een zoutoplossing, vermoedelijk verontreinigd met benzeen. Voor de verwerking van deze afvalstro­ men kan een uitbreiding van het proces wenselijk zijn. Dit moet nog onderzocht worden.

Het oorspronkelijke UOP proces waarin gewerkt wordt met een overmaat waterstof, waardoor er een recycle nodig is, is hier summier bekeken. De waterstof scheiding aan het einde van het proces is benaderd als een blackbox en dient nog verder uitge­ werkt te worden.

Mocht de omzetting in de eerste reaktor te laag zijn, dan was het idee dat de tweede reaktor dit zou kunnen opvangen. De tweede reaktor en absorber zijn daarom identiek aan de eerste reaktor en absorber. Er moet nog bekeken worden of er bij een te lage conversie in de eerste reaktor de stroom chloorkoolwater­ stoffen de absorber (vanwege de lage temperatuur) nog wel aan de bovenkant verlaat.
1. Inleiding

Dit fabrieksvoorontwerp behandelt de katalytische omzetting van gechloreerde koolwaterstoffen naar waterstofchloride en koolwaterstoffen, waarbij het koolstofskelet behouden blijft. Deze omzetting gebeurt met behulp van zuiver waterstof. De reactie kan in zijn algemene vorm als volgt beschreven worden:

\[
\text{kat} \quad \text{R-Cl} + \text{H}_2 \quad \longrightarrow \quad \text{R-H} + \text{HCl}
\]

Gehalogeneerde koolwaterstoffen worden voornamelijk gebruikt als oplosmiddel, verpakkingsmateriaal, bestrijdingsmiddel en als grondstof voor de chemische industrie. Uiteindelijk blijven vele tonnen van deze stoffen over als afval. Bij de conventionele verbranding van chloor-koolwaterstoffen kunnen zwaar-toxische gassen vrijkomen, waaronder dioxines. Aangezien de overheid steeds zwaardere eisen stelt aan de uitstoot van milieu belastende stoffen, is het nodig nieuwe processen te ontwikkelen ter beperking van de milieu belasting. Het verbeteren van bestaande verbrandingsinstallaties vergt, voor zover dit al mogelijk is, te hoge investeringen.

In het kader van de tweede fase opleiding Proces- en Apparaatontwerpen (1989) aan de Technische Universiteit Delft is een alternatief ontwikkeld voor de verwerking van gechloreerd afval. Het proces is gebaseerd op een thermische hydrodehalogenering. Dit proces gebruikt als grondstoffen gechloreerde koolwaterstoffen, zuurstof en zware olie, de produkten zijn zoutzuur en synthese gas.

Een andere mogelijkheid naast het eerder genoemde katalytische- en thermische proces is de Eentraps vergassings dehalogenering (Nesraad). Een nadeel van dit proces is de hoge eindtemperatuur waardoor mogelijkerwijs geen volledige conversie behaald wordt.

Het doel van dit fabrieksvoorontwerp is tot een vergelijking te komen van het katalytisch proces, zoals beschreven door UOP [1] en [2], en het thermisch proces zoals dat in de tweede fase opleiding ontwikkeld is zie [3]. In beide gevallen is uitgegaan van dezelfde modelvoeding zoals beschreven in hoofdstuk 2.
2. Uitgangspunten

2.1 Voeding

Om een goede vergelijking te kunnen maken met het tweede fase proces (TH²) wordt er uitgegaan van een voeding chloorkoolwaterstoffen van 22000 ton/jaar bestaande uit:

- 25 mol% 1,2,3-trichloorpropaan (TCP)
- 25 mol% 1,2-dichloorpropaan (DCP)
- 25 mol% 1,1-dichloor-1-propeen (DCPE)
- 25 mol% chloorbenzeen (ARCL)

Bij 300 dagen volcontinu draaien komt dit overeen met 0.85 kg/s.

In het TH² proces is gekozen voor deze samenstelling vanwege:

- het hoge chloorgehalte
- aanwezigheid van roetvormers
- aanwezigheid van aromaten

Een ander uitgangspunt zoals beschreven in [3] is dat er geen fluor, broom of jood in de voeding aanwezig is; metalen komen in zodanig lage concentraties voor dat deze voor de berekeningen verwaarloosd mogen worden.

In het UOP proces is de vaste stof (verfresten, katalysatorresten e.d.) verwijdering een essentiële stap. Aangenomen is dat de vaste stoffen zonder verlies aan voeding afgescheiden worden. Deze af te scheiden vaste stoffen zijn niet meegenomen in de modelvoeding. Als waterstofbron is gekozen voor zuiver waterstof. De benodigde hoeveelheid is 830 ton/jaar, overeenkomend met 0.032 kg/s.

2.2 Kinetiek

Aangenomen is dat de gebruikte katalysator alleen onderstaande reakties katalyseert:

\[
\begin{align*}
\text{TCP} + \text{H}_2 & \quad \longrightarrow \quad \text{DCP} + \text{HCl} \\
\text{DCP} + \text{H}_2 & \quad \longrightarrow \quad \text{CP} + \text{HCl} \\
\text{CP} + \text{H}_2 & \quad \longrightarrow \quad \text{PAAN} + \text{HCl} \\
\text{DCPE} + \text{H}_2 & \quad \longrightarrow \quad \text{CPE} + \text{HCl} \\
\text{CPE} + \text{H}_2 & \quad \longrightarrow \quad \text{PEEN} + \text{HCl} \\
\text{ARCL} + \text{H}_2 & \quad \longrightarrow \quad \text{AR} + \text{HCl}
\end{align*}
\]
Bij gebrek aan kinetiek gegevens is uitgegaan van thermodynamisch evenwicht. De aannamen, dat er geen hydrogeneringsreakties optreden en geen C-C bindingen worden gevormd noch verbroken, zijn gezien de evenwichtsconstanten bij de relatief lage reactietemperatuur (600-800 K) gerechtvaardigd. Een belangrijk gevolg hiervan is dat er geen roetvorming optreedt. Hierdoor wordt de aanname dat de katalysator niet deactiveert een stuk aannemelijker. Verder stelt het evenwicht zich momentaan in.

2.3 Stofeigenschappen

De gebruikte fysische constanten en correlaties zijn grotendeels afkomstig van het processsimulatiepakket ASPEN PLUS versie 8.2 (Aspen). Aangezien Aspen geen gegevens van DCPE in zijn databank heeft, is gebruik gemaakt van de ingebouwde mogelijkheid deze waarden te schatten. Dit schatten gebeurt op basis van groepsbijdragen.

In tabel 2.1 staan de belangrijkste fysische constanten, in tabel 2.2, 2.3 en 2.4 correlatiecoëfficiënten. De door Aspen gebruikte correlaties zijn:

\[
\ln(p_{\text{sat}}) = A + B/T + C*T + D*\ln(T) + E*T^6
\]

(7)

\[
c_p^{\text{ig}} = A + B*T + C*T^2 + D*T^3
\]

(8)

\[
H_{\text{vap}} = A \left[(T-T_c)/(1-B/T_c) \right]^{C}
\]

(9)

<table>
<thead>
<tr>
<th>component</th>
<th>MW g/mol</th>
<th>Tb K</th>
<th>rho kg/m³</th>
<th>Hf kcal/mol</th>
<th>S° cal/mol/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>2.0</td>
<td>20.4</td>
<td></td>
<td>0.0</td>
<td>31.23</td>
</tr>
<tr>
<td>HCl</td>
<td>36.5</td>
<td>188.1</td>
<td></td>
<td>-22.06</td>
<td>44.65</td>
</tr>
<tr>
<td>TCP</td>
<td>147.4</td>
<td>430.0</td>
<td>1390</td>
<td>-43.12</td>
<td>88.57</td>
</tr>
<tr>
<td>DCP</td>
<td>113.0</td>
<td>369.5</td>
<td>1160</td>
<td>-40.30</td>
<td>82.84</td>
</tr>
<tr>
<td>CP</td>
<td>78.5</td>
<td>308.9</td>
<td>862</td>
<td>-33.05</td>
<td>74.49</td>
</tr>
<tr>
<td>PAAN</td>
<td>44.1</td>
<td>231.1</td>
<td>585</td>
<td>-24.82</td>
<td>64.51</td>
</tr>
<tr>
<td>DCPE</td>
<td>111.0</td>
<td>349.0</td>
<td>1186</td>
<td>-4.62</td>
<td>79.86</td>
</tr>
<tr>
<td>CPE</td>
<td>76.5</td>
<td>318.3</td>
<td>938</td>
<td>0.8</td>
<td>71.25</td>
</tr>
<tr>
<td>PEEN</td>
<td>42.1</td>
<td>225.4</td>
<td>519</td>
<td>4.88</td>
<td>63.80</td>
</tr>
<tr>
<td>ARCL</td>
<td>112.6</td>
<td>404.9</td>
<td>1106</td>
<td>12.39</td>
<td>74.92</td>
</tr>
<tr>
<td>AR</td>
<td>78.1</td>
<td>353.3</td>
<td>877</td>
<td>19.82</td>
<td>64.34</td>
</tr>
</tbody>
</table>
Tabel 2.2 Correlatiecoëfficiënten voor de Antoine vergelijking

<table>
<thead>
<tr>
<th>Component</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2)</td>
<td>25.35</td>
<td>-142.9</td>
<td>9.7E-2</td>
<td>-2.919</td>
<td>2.2E-11</td>
</tr>
<tr>
<td>(\text{HCl})</td>
<td>43.84</td>
<td>-2.6E3</td>
<td>3.2E-3</td>
<td>-3.665</td>
<td>1.6E-16</td>
</tr>
<tr>
<td>(\text{TCP})</td>
<td>80.09</td>
<td>-7.8E3</td>
<td>3.8E-3</td>
<td>-8.603</td>
<td>3.4E-18</td>
</tr>
<tr>
<td>(\text{DCP})</td>
<td>49.13</td>
<td>-5.5E3</td>
<td>-8.1E-4</td>
<td>-3.783</td>
<td>7.6E-18</td>
</tr>
<tr>
<td>(\text{CP})</td>
<td>38.67</td>
<td>-4.2E3</td>
<td>-1.8E-3</td>
<td>-2.270</td>
<td>2.0E-17</td>
</tr>
<tr>
<td>(\text{PAAN})</td>
<td>63.59</td>
<td>-3.6E3</td>
<td>8.2E-3</td>
<td>-7.092</td>
<td>7.1E-17</td>
</tr>
<tr>
<td>(\text{DCPE})</td>
<td>50.59</td>
<td>-5.1E3</td>
<td>0.0</td>
<td>-4.146</td>
<td>1.0E-17</td>
</tr>
<tr>
<td>(\text{CPE})</td>
<td>98.25</td>
<td>-6.1E3</td>
<td>1.2E-2</td>
<td>-12.39</td>
<td>8.6E-18</td>
</tr>
<tr>
<td>(\text{PEEN})</td>
<td>52.76</td>
<td>-3.2E3</td>
<td>4.3E-3</td>
<td>-5.136</td>
<td>8.6E-17</td>
</tr>
<tr>
<td>(\text{ARCL})</td>
<td>60.52</td>
<td>-6.4E3</td>
<td>1.8E-3</td>
<td>-5.652</td>
<td>3.9E-18</td>
</tr>
<tr>
<td>(\text{AR})</td>
<td>73.86</td>
<td>-6.0E3</td>
<td>5.5E-3</td>
<td>-8.080</td>
<td>6.6E-18</td>
</tr>
</tbody>
</table>

Tabel 2.3 Correlatiecoëfficiënten voor de \(\text{Cp}^\text{ig} \) vergelijking

<table>
<thead>
<tr>
<th>Component</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2)</td>
<td>2.6E4</td>
<td>1.5E1</td>
<td>-2.3E-2</td>
<td>1.8E-5</td>
</tr>
<tr>
<td>(\text{HCl})</td>
<td>3.0E4</td>
<td>-7.2</td>
<td>1.2E-2</td>
<td>-3.9E-6</td>
</tr>
<tr>
<td>(\text{TCP})</td>
<td>2.7E4</td>
<td>3.6E2</td>
<td>-2.8E-1</td>
<td>8.8E-5</td>
</tr>
<tr>
<td>(\text{DCP})</td>
<td>1.0E4</td>
<td>3.7E2</td>
<td>-2.6E-1</td>
<td>7.7E-5</td>
</tr>
<tr>
<td>(\text{CP})</td>
<td>1.8E3</td>
<td>3.5E2</td>
<td>-2.2E-1</td>
<td>5.9E-5</td>
</tr>
<tr>
<td>(\text{PAAN})</td>
<td>-4.2E3</td>
<td>3.1E2</td>
<td>-1.6E-1</td>
<td>3.2E-5</td>
</tr>
<tr>
<td>(\text{DCPE})</td>
<td>2.9E4</td>
<td>2.5E2</td>
<td>-1.6E-1</td>
<td>4.2E-5</td>
</tr>
<tr>
<td>(\text{CPE})</td>
<td>2.5E3</td>
<td>3.0E2</td>
<td>-2.3E-1</td>
<td>7.3E-5</td>
</tr>
<tr>
<td>(\text{PEEN})</td>
<td>3.7E3</td>
<td>2.3E2</td>
<td>-1.2E-1</td>
<td>2.2E-5</td>
</tr>
<tr>
<td>(\text{ARCL})</td>
<td>-3.4E4</td>
<td>5.6E2</td>
<td>-4.5E-1</td>
<td>1.4E-4</td>
</tr>
<tr>
<td>(\text{AR})</td>
<td>-3.4E4</td>
<td>4.7E2</td>
<td>-3.0E-1</td>
<td>7.1E-5</td>
</tr>
</tbody>
</table>

Tabel 2.4 Correlatiecoëfficiënten en \(T_C \) voor \(\text{Hvap} \)

<table>
<thead>
<tr>
<th>Component</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(T_C) in K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2)</td>
<td>9.0E5</td>
<td>2.0E1</td>
<td>3.4E-1</td>
<td>332.0</td>
</tr>
<tr>
<td>(\text{HCl})</td>
<td>1.6E7</td>
<td>1.9E2</td>
<td>3.1E-1</td>
<td>324.6</td>
</tr>
<tr>
<td>(\text{TCP})</td>
<td>3.8E7</td>
<td>4.3E2</td>
<td>3.7E-1</td>
<td>651.0</td>
</tr>
<tr>
<td>(\text{DCP})</td>
<td>3.1E7</td>
<td>3.7E2</td>
<td>3.6E-1</td>
<td>577.0</td>
</tr>
<tr>
<td>(\text{CP})</td>
<td>2.6E7</td>
<td>3.1E2</td>
<td>3.6E-1</td>
<td>485.0</td>
</tr>
<tr>
<td>(\text{PAAN})</td>
<td>1.9E7</td>
<td>2.3E2</td>
<td>3.5E-1</td>
<td>369.8</td>
</tr>
<tr>
<td>(\text{DCPE})</td>
<td>3.0E7</td>
<td>3.5E2</td>
<td>3.4E-1</td>
<td>543.8</td>
</tr>
<tr>
<td>(\text{CPE})</td>
<td>2.7E7</td>
<td>3.2E2</td>
<td>3.4E-1</td>
<td>365.0</td>
</tr>
<tr>
<td>(\text{PEEN})</td>
<td>1.8E7</td>
<td>2.3E2</td>
<td>3.6E-1</td>
<td>632.4</td>
</tr>
<tr>
<td>(\text{ARCL})</td>
<td>3.7E7</td>
<td>4.0E2</td>
<td>3.5E-1</td>
<td>562.1</td>
</tr>
<tr>
<td>(\text{AR})</td>
<td>3.1E7</td>
<td>3.5E2</td>
<td>3.5E-1</td>
<td>562.1</td>
</tr>
</tbody>
</table>
2.4 Veiligheidsaspecten

In tabel 2.5 staan enige eigenschappen van in het proces voorkomende stoffen of hun isomeren. Uit tabel 2.5 blijkt duidelijk dat elke emissie van deze stoffen naar de omgeving voorkomen moet worden. Dit stelt zware eisen aan de constructie van apparaten en de afblaassystemen. Bij calamiteiten is afblazen of affakkelen (wegens de vorming van dioxines) niet toelaatbaar. Zie [3] en [15].

Tabel 2.5 Eigenschappen van de in het proces voorkomende stoffen met betrekking tot de veiligheid

<table>
<thead>
<tr>
<th>Stof</th>
<th>T_b °C</th>
<th>Vlampunt °C</th>
<th>zelf ontbr. °C</th>
<th>explosiegrenzen vol % in lucht</th>
<th>MAC ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>-253</td>
<td>-</td>
<td>-</td>
<td>4.0 - 76.0</td>
<td>-</td>
</tr>
<tr>
<td>HCl</td>
<td>-162</td>
<td>-</td>
<td>537</td>
<td>5.0 - 16.0</td>
<td>5 C</td>
</tr>
<tr>
<td>PEEN</td>
<td>-48</td>
<td>-72</td>
<td>499</td>
<td>2.0 - 11.1</td>
<td>-</td>
</tr>
<tr>
<td>CPE</td>
<td>45</td>
<td>-27</td>
<td>390</td>
<td>3.2 - 11.5</td>
<td>1</td>
</tr>
<tr>
<td>DCPE</td>
<td>108</td>
<td>35</td>
<td>-</td>
<td>5.3 - 14.5</td>
<td>1</td>
</tr>
<tr>
<td>TCP</td>
<td>158</td>
<td>82</td>
<td>304</td>
<td>3.2 - 12.6</td>
<td>50</td>
</tr>
<tr>
<td>DCP</td>
<td>96</td>
<td>15</td>
<td>555</td>
<td>3.4 - 14.5</td>
<td>75</td>
</tr>
<tr>
<td>PAAN</td>
<td>-42</td>
<td>-</td>
<td>465</td>
<td>2.0 - 9.5</td>
<td>-</td>
</tr>
<tr>
<td>AR</td>
<td>80</td>
<td>-11</td>
<td>550</td>
<td>1.0 - 8.0</td>
<td>10</td>
</tr>
<tr>
<td>ARCL</td>
<td>132</td>
<td>28</td>
<td>590</td>
<td>1.3 - 11.0</td>
<td>75</td>
</tr>
<tr>
<td>zoutzuur</td>
<td>57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5 C</td>
</tr>
</tbody>
</table>

NB. MAC-waarden hebben betrekking op de gemiddelde waarde over 8 uur. Een MAC-waarde met een C erachter geeft een maximale waarde, deze mag nooit overschreden worden.
Figure 5. Waste conversion schematic.

HALOGENATED PETROCHEMICAL BY-PRODUCTS

Figure 3.1 blokschema uit [2]
3. Het processchema

3.1 Procesbeschrijving

Stroom nummer 1, de chloorkoolwaterstoffen (HKW's), komt binnen op kamertemperatuur en druk. Via pomp P3 en voorverwarmer H4 wordt de stroom op de condities gebracht voor de zogenaamde 'solids removal step'. Dit is een flashverdamper waarbij de druk van de stroom afgelaten wordt naar 1 bar. De vaste stoffen worden op deze manier geconcentreerd in een kleine stroom vloeistof die als bodemprodukt het proces verlaat. Deze afvalstroom dient alsnog verwerkt te worden. De van vaste stof ontdane HKW's worden vervolgens gecondenseerd in H6.

Stroom nummer 7 wordt nu via P7 op procesdruk gebracht en gaat de reaktor R8 in, evenals de waterstof (stroom nummer 4) die reeds op druk is. Uitgaande van het stationaire geval wordt de bij de exotherme reakties vrijkomende warmte gebruikt om de ingaande HKW- en waterstofstroom op reaktietemperatuur te brengen. Een groot deel van deze warmte is nodig om de HKW stroom te verdampen. De reaktor is een adiabatische fixed bed reaktor gevuld met katalysator. De stroom die de reaktor uitkomt gaat vervolgens de koeltrap van de absorber T9 binnen. In de absorber wordt de stroom gewassen met water, waarna als bodemstroom een 33% zoutzuur oplossing de absorber verlaat. Aan de top verlaten de koolwaterstoffen en de resterende waterstof de absorber.

Om een hogere conversie te behalen wordt na de HCl verwijdering een tweede reaktor gebruikt, de zogenaamde 'polishing reaktor' R11. Aangezien de totale omzetting in deze reaktor klein zal zijn, is het nodig de ingaande stroom door middel van voorverwarmer H10 op hogere temperatuur te brengen.

Na de tweede reaktor volgt weer een HCl verwijderingsstap, bestaande uit een zelfde absorber T12, inclusief koeltrap, waarin echter met een 1% Natriumhydroxide oplossing gewassen wordt om er zeker van te zijn dat alle HCl verwijderd wordt. Een zoutoplossing komt vrij aan de bodem, terwijl de koolwaterstoffen via de top het proces verlaten.

3.2 Flexibiliteit en regeling

Om eventuele schommelingen in de voedingsstromen (inclusief koelwater en stoom) op te vangen, zijn een aantal regelingen aangebracht. In het geval dat de massastroom HKW's beduidend groter wordt, dient de hoeveelheid aan H4 toe te voeren stoom zodanig geregeld te worden dat er juist zoveel verdamppt, dat de
PROCESSCHEMA van de KATALYTISCHE DEHYDROHALOGENERING VAN GECHLOREERDE KOOLWATERSTOFFEN MET ZUIVER WATERSTOF

E.T. de Leeuw
P.H.W. Vercoelen

Fabraat Voorstroom No. 2826
Februari 1990

<table>
<thead>
<tr>
<th>Stroomnummer</th>
<th>Temp. in K</th>
<th>Abs. druk in bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figuur 3.2 Processchema van de hydrohalogenering

- **13% Natriumhydroxide oplossing**
- **Water**
- **Waterstof**
- **Chloorkoolwaterstoffen**
- **1% natriumhydroxide oplossing**
- **Water**
- **Waterstof**
- **Chloorkoolwaterstoffen**
- **Koolwaterstoffen**

Stoom

Koolwater

Figuur 3.2 Processchema van de hydrohalogenering

- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**
- **Koolwater**
- **Zoutoplossing**
- **Zoutzuur (33%)**

Processtappen:
- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**

Installationen:
- **Flash-Verdamper condensor**
- **Verwarmer**
- **Gepakt bed reactor**
- **HCL absorber**
- **Verwarmer**
- **Polishing reactor**
- **Neutralizer**

Technische gegevens:
- **Temperatuur:**
- **Druk:**

Figuur 3.2 Processchema van de hydrohalogenering

- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**

Installationen:
- **Flash-Verdamper condensor**
- **Verwarmer**
- **Gepakt bed reactor**
- **HCL absorber**
- **Verwarmer**
- **Polishing reactor**
- **Neutralizer**

Technische gegevens:
- **Temperatuur:**
- **Druk:**

Figuur 3.2 Processchema van de hydrohalogenering

- **13% Natriumhydroxide oplossing**
- **Water**
- **Waterstof**
- **Chloorkoolwaterstoffen**
- **Koolwaterstoffen**

Stoom

Koolwater

Figuur 3.2 Processchema van de hydrohalogenering

- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**
- **Koolwater**
- **Zoutoplossing**
- **Zoutzuur (33%)**

Processtappen:
- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**

Installationen:
- **Flash-Verdamper condensor**
- **Verwarmer**
- **Gepakt bed reactor**
- **HCL absorber**
- **Verwarmer**
- **Polishing reactor**
- **Neutralizer**

Technische gegevens:
- **Temperatuur:**
- **Druk:**

Figuur 3.2 Processchema van de hydrohalogenering

- **13% Natriumhydroxide oplossing**
- **Water**
- **Waterstof**
- **Chloorkoolwaterstoffen**
- **Koolwaterstoffen**

Stoom

Koolwater

Figuur 3.2 Processchema van de hydrohalogenering

- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**
- **Koolwater**
- **Zoutoplossing**
- **Zoutzuur (33%)**

Processtappen:
- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**

Installationen:
- **Flash-Verdamper condensor**
- **Verwarmer**
- **Gepakt bed reactor**
- **HCL absorber**
- **Verwarmer**
- **Polishing reactor**
- **Neutralizer**

Technische gegevens:
- **Temperatuur:**
- **Druk:**

Figuur 3.2 Processchema van de hydrohalogenering

- **13% Natriumhydroxide oplossing**
- **Water**
- **Waterstof**
- **Chloorkoolwaterstoffen**
- **Koolwaterstoffen**

Stoom

Koolwater

Figuur 3.2 Processchema van de hydrohalogenering

- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**
- **Koolwater**
- **Zoutoplossing**
- **Zoutzuur (33%)**

Processtappen:
- **P1**
- **P2**
- **P3**
- **P4**
- **P5**
- **P6**
- **P7**
- **P8**
- **P9**
- **P10**
- **P11**
- **P12**

Installationen:
- **Flash-Verdamper condensor**
- **Verwarmer**
- **Gepakt bed reactor**
- **HCL absorber**
- **Verwarmer**
- **Polishing reactor**
- **Neutralizer**

Technische gegevens:
- **Temperatuur:**
- **Druk:**
warmteproductie in reaktor R8 niet te groot wordt en dat de afvalstroom vaste stoffen niet te groot wordt.

Wanneer het totale chloorgehalte van de stroom HKW's verandert, dient de hoeveelheid waterstof aangepast te worden. Met name als het chloorgehalte te groot wordt (wat niet meer opgevangen kan worden door de kleine overmaat waterstof), moet de totale waterstoftoevoer vergroot worden. Dit kan geregeld worden met behulp van een FFC-controler, waarbij het setpoint een functie is van het totale chloorgehalte, dat regelmatig bepaald zal moeten worden. Deze regeling is echter niet opgenomen in het processchema.

De hoeveelheid water nodig in absorber T9 om een 33% zoutzuur oplossing te krijgen, wordt bepaald via een FFC-regeling aan de hand van de massa stroom die reaktor R8 verlaat. Er is gekozen voor deze opzet omdat het continu meten van de HCl concentratie lastig is en veel tijd vergt.

Als de omzetting in R11 ongeacht de oorzaak groter wordt, met als gevolg een toenemende reaktortemperatuur wordt er minder warmte aan de voedingsstroom van R11 toegevoerd.

Op T12 is een vergelijkbare regeling als op T9 aangebracht.

3.3 Inbedrijfstelling

Het opstarten tot aan de reaktorsectie zal weinig problemen geven aangezien hier alleen de voeding verdampd moet worden. De stroom die de reaktor ingaat zal echter verwarmd moeten worden. Dit moet op een zodanige manier gebeuren dat er geen problemen ontstaan met te hoge temperaturen die kunnen ontstaan door het vrijkomen van de reaktiewarmte. Met name voor het wandmateriaal van de reaktor en verder om roetvorming en kraakreakties tegen te gaan.

Is de omzetting in R8 in het begin te laag dan zal de temperatuur van de uitgaande stroom te laag zijn. De koeling in de onderste trap van de absorber zal dan minder moeten zijn om er voor te zorgen dat de HKW's via de top de absorber verlaten. Voor R11 geldt hetzelfde als voor R8 maar dan in mindere mate.
Figuur 4.1 ln K_r als functie van de temperatuur

Tabel 4.1 K_r-waarden bij verschillende temperaturen

<table>
<thead>
<tr>
<th>K</th>
<th>600 K</th>
<th>700 K</th>
<th>800 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_r(1)$</td>
<td>3.7E8</td>
<td>3.4E7</td>
<td>5.4E6</td>
</tr>
<tr>
<td>$K_r(2)$</td>
<td>2.2E6</td>
<td>3.2E5</td>
<td>7.2E4</td>
</tr>
<tr>
<td>$K_r(3)$</td>
<td>4.6E5</td>
<td>7.7E4</td>
<td>2.0E4</td>
</tr>
<tr>
<td>$K_r(4)$</td>
<td>9.6E6</td>
<td>1.2E6</td>
<td>2.3E5</td>
</tr>
<tr>
<td>$K_r(5)$</td>
<td>5.3E7</td>
<td>5.4E6</td>
<td>9.6E5</td>
</tr>
<tr>
<td>$K_r(6)$</td>
<td>6.1E5</td>
<td>9.1E4</td>
<td>2.1E4</td>
</tr>
</tbody>
</table>
4. Procescondities

4.1 Procesdruk

De in het proces heersende druk is 30 bar. UOP gebruikt drukken tot ongeveer 55 bar (zie bijlage 1). Hier is voor 30 bar gekozen omdat in TH² ook 30 bar gebruikt is.

4.2 Reaktie evenwichten

Om de totale chlooromzetting, uitgaande van de evenwichtsituatie, te berekenen is gebruik gemaakt van massabalansen en evenwichtsrelaties. Voor de reakties een tot en met zes in § 2.2 gelden de volgende evenwichtsrelaties:

\[K_r(1) = \frac{[\text{HCl}][\text{DCP}]}{[\text{H}_2][\text{TCP}]} \]
\[K_r(2) = \frac{[\text{HCl}][\text{CP}]}{[\text{H}_2][\text{DCP}]} \]
\[K_r(3) = \frac{[\text{HCl}][\text{PAAN}]}{[\text{H}_2][\text{CP}]} \]
\[K_r(4) = \frac{[\text{HCl}][\text{CPE}]}{[\text{H}_2][\text{DCPE}]} \]
\[K_r(5) = \frac{[\text{HCl}][\text{PEEN}]}{[\text{H}_2][\text{CPE}]} \]
\[K_r(6) = \frac{[\text{HCl}][\text{AR}]}{[\text{H}_2][\text{ARCL}]} \]

De bovenstaande K-waarden worden berekend met behulp van onderstaande formule:

\[-RT\ln K_r(i) = G_r = \sum \left[H_f(i) + \int \frac{c_p(i) \,dT}{T} \right] - \left[S^0(i) + \int \frac{c_p(i)}{T \,dT} \right] \]

De waarden van \(H_f(i) \) en \(S^0(i) \) kunnen afgelezen worden in tabel 2.1. Voor \(c_p(i) \) gelden correlaties, als functie van de temperatuur, die eenvoudig te integreren zijn. Deze staan in tabel 2.3. De K-waarden, die met een pascal programma zijn uitgerekend, staan in tabel 4.1 vermeld en zijn in figuur 4.1 als functie van de temperatuur uitgezet.
Om de evenwichtsrelaties simultaan met de massabalansen op te kunnen lossen, was het nodig de evenwichtsrelaties te lineariseren. Van de elf componenten kunnen er dus zes geschreven worden als functie van de overige vijf. Deze aldus verkregen gelineariseerde evenwichtsvergelijkingen staan geschreven in bijlage 2.

4.3 Massabalansen

Er zijn elf componenten en zes evenwichtsrelaties. Om het systeem volledig te kunnen beschrijven zijn er dus nog vijf vergelijkingen nodig. Er kunnen zonder meer drie elementbalansen (chloor, waterstof, koolstof) en één overall molbalans opgesteld worden. Een molenbalans is mogelijk omdat het aantal molen per reaktie constant blijft. De vijfde vergelijking kan gehaald worden uit het feit dat er geen C-C bindingen verbroken of gevormd worden. De koolstofbalans is dan te splitsen in een C₃- en een aromaatbalans. De ingaande hoeveelheden zijn:

- chloor 14 mol/s
- waterstof (35+2*voeding H₂) mol/s
- C₃ 5.25 mol/s
- aromaat 1.75 mol/s
- molen (7+voeding H₂) mol/s

De gebruikte vergelijkingen staan hieronder:

chloor : \[3[TCP] + 2[DCP] + [CP] + 2[DCPE] + [CPE] + [ARCL] + [HCl] = 14/\phi_V\] (8)

C₃ : \[[TCP] + [DCP] + [CP] + [PAAN] + [DCPE] + [CPE] + [PEEN] = 5.25/\phi_V\] (10)

aromaat : \[[ARCL] + [AR] = 1.75/\phi_V\] (11)

molen : \[[TCP] + [DCP] + [CP] + [PAAN] + [DCPE] + [CPE] + [PEEN] + [ARCL] + [AR] + [HCl] + [H₂] = (7+voeding H₂)/\phi_V\] (12)

De voeding H₂ kan vrij gekozen worden en in dit proces geldt voeding H₂ = 16 mol/s, \(\phi_V\) is het volume debiet.

Het stelsel van elf vergelijkingen werd met behulp van Eureka opgelost.
Figuur 4.2 Blokschema van het in Aspen gebruikte rekenmodel
4.4 Conversie

Nu de concentraties van de elf componenten bekend zijn, kan de totale chlooromzetting berekend worden. Het blijkt dat het thermodynamisch evenwicht zo gunstig ligt, dat de omzetting per component bijna volledig is (namelijk groter dan 0.999). Tijdens het rekenen is voor elke component een conversie van 0.999 aangenomen. Het verschil in conversie van de verschillende componenten komt pas tot uiting in het 5e cijfer na de komma. Ook de temperatuursinvloed komt pas in dit cijfer tot uiting, binnen het bereik van 500 < T < 900 K.

4.5 Katalysator

In de literatuur over het UOP proces, zie [1] en [2], staat vermeld: "pilot plant studies have indicated that the kinetics of these reactions require the presence of an active hydrogenation catalyst", en "Proprietary hydrogenation catalyst utilized showed no signs of deactivating during the operation ..". Helaas blijft het bij deze uitspraken. Het enige wat verder in de literatuur, zie [4] en [5], gevonden werd, was informatie over HCl-eliminatie reakties met behulp van metaalsulfaten op silica. Dit onderzoek is gedaan aan het Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Japan. Een meer recente ontwikkeling staat beschreven in [10], waarin als katalysator actieve kool gebruikt wordt bij temperaturen tussen 400 en 750 °C.

4.6 ASPEN PLUS

Het processchema zoals in figuur 3.2 is omgezet in een voor Aspen geschikt blokschema, zie figuur 4.2. In blok 1 wordt de voeding op druk gebracht; de benodigde arbeid wordt berekend. In blok 2 wordt deze stroom op temperatuur gebracht, blok 3 is de 'solids removal step', de flash-verdamper. In blok 4 wordt de stroom gecondenseerd waarna het in blok 5 weer op druk gebracht wordt.

Blok 6 is de reaktor waarin de conversie per component meeggegeven wordt. In blok 7 worden alle componenten behalve PAAN, PEEN, H₂ en HCl afgesplitst en om de absorber heen geleid. Om een goede HCl-absorptie simulatie te krijgen moet met de speciale Aspen Electroliet Module gewerkt worden. In dit model wordt rekening gehouden met het splitsen van HCl in ionen. Aspen kan geen absorber doorrekenen wanneer alle componenten meegenomen worden én elektrolytchemie gebruikt wordt. De gekoelde absorbertrap wordt in blok 8 net als in TH2 als flasher apart doorgerekend. Blok 10 is de absorber.

In blok 11 worden de in blok 7 afgescheiden componenten weer bij de hoofdstroom gevoegd. Via blok 9 wordt de temperatuur van deze 'heavies' gebracht op de temperatuur van de hoofdstroom. De in blok 9 extra vrijgemaakte warmte wordt in de warmtebalans verwerkt in de absorber koeltrap. Blok 12 is de voorverwarmer.
voor de 'polisher'. De blokken 13 tot en met 18 zijn hetzelfde als de blokken 6 tot en met 11. Hierbij dient nog opgemerkt te worden dat om NaOH mee te kunnen nemen in de tweede absorber, PAAN en PEEN ook omgeleid zouden moeten worden. Hier is er voor gekozen in plaats van NaOH, PAAN en PEEN mee te nemen.

Aangezien het hele blokschema niet in een keer door Aspen uit te rekenen is, moet met verschillende secties gewerkt worden. Dit betekent dat de uitgaande stroom van de ene sectie de ingaande stroom van de volgende sectie is. Het blijkt dat tussen de absorber sectie en de polisher sectie een gedeeltelijke condensatie optreedt. Dit is in de warmtebalans meegenomen.
5. Apparatuur

5.1 Warmtewisselaars

De warmtewisselaars zijn gedimensioneerd volgens de methodes beschreven in [11].

5.1.1 Voorverwarmer H4

De functie van H4 is het opwarmen van de voeding HKW tot de temperatuur die nodig is om de voeding in de flasher te kunnen verdampen. Deze temperatuur is afhankelijk van de kookpunten van de componenten in de voeding. De ingaande temperatuur is 304 K en de uitgaande temperatuur is 566 K. De toegevoerde warmte Q is berekend door Aspen en bedraagt 335 kW. Het verwarmend medium is stoom met een druk van 40 bar en een temperatuur van 683 K, zie [12]. De uitgaande temperatuur van de stoom wordt gesteld op 543 K, zodat er geen 'temperature cross' optreedt. De benodigde massafluss m_w stoom volgt uit:

\[Q = m_w \cdot c_{pw} \cdot (T_{wi} - T_{wu}) \]

(1)

met \(c_{pw} = 2.03 \text{ kJ/kg/K} \) geldt \(m_w = 1.18 \text{ kg/s} \)

Het gemiddelde logaritmisch temperatuursverschil kan berekend worden met:

\[dT_{ln} = \frac{dT_{\text{max}} - dT_{\text{min}}}{\ln(dT_{\text{max}}/dT_{\text{min}})} \]

(2)

Deze \(dT_{ln} \) moet nog gecorrigeerd worden met een factor F die gehaald kan worden uit appendix A van [11]. Hiertoe moeten de zogenaamde warmtecapaciteitsverhouding tussen de koude en de warme stroom, \(R_C \), en de zogenaamde temperatuursefficiency, \(T_{eff} \), berekend worden.

\[R_C = \frac{T_{wi} - T_{wu}}{T_{ku} - T_{ki}} \]

(3)

\[T_{eff} = \frac{T_{ku} - T_{ki}}{T_{wi} - T_{ki}} \]

(4)

\(R_C = 0.534 \) en \(T_{eff} = 0.691 \) hieruit volgt voor \(F = 0.98 \) bij 4 shell passes en 8 of meer tube passes. De gecorrigeerde \(dT \) is 124 K
Om het vereiste verwarmend oppervlak V.O. te berekenen wordt een gemiddelde warmteoverdrachtscoëfficient k_u gekozen, voor H4 is k_u gelijk aan 800 W/m²K (globaal). Voor het verwarmend oppervlak geldt:

$$ V.O. = \frac{Q}{k_u \times dT} $$ (5)

Voor H4 geldt V.O. = 3.38 m².

5.1.2 Condensor H6

Condensor H6 condenseert de damp afkomstig van de flash-verdamper met behulp van koelwater. De temperatuur van de ingaande HKW stroom is 401 K, de uitgaande 298 K. Het koelwater wordt opgewarmd van 293 tot 303 K. De door Aspen bepaalde warmtestroom is gelijk aan 342 kW. Uit (1) volgt nu de massastraam koelwater = 8.2 kg/s. De dT is 33.5 K. Voor k_u wordt weer 800 W/m²K genomen. Voor het verwarmend oppervlak V.O. wordt met (5) berekend V.O. = 12.8 m². De configuratie staat in het warmtewisselaarspecificatieblad van H6. De snelheid waarmee het koelwater door de buizen stroomt is nu uit te rekenen:

$$ c_k = \frac{4 \times m_k}{\rho_h \times \pi \times d_i^2 \times z_1} $$ (6)

z_1 is 15, $d_i=0.02$ m; daaruit volgt $c_k = 1.74$ m/s.

5.1.3 Gekoelde absorbertrap (T9)

De condensor zal verticaal worden uitgevoerd daar de absorptievloeistof de pijpen bevloeit. De berekening van het verwarmend oppervlak is hetzelfde als in § 5.1.2. De temperaturen zijn:

$$ T_{wi} = 808 \text{ K} $$
$$ T_{wu} = 370 \text{ K} $$

$$ T_{ki} = 293 \text{ K} $$
$$ T_{ku} = 303 \text{ K} $$

$$ dT = 128 \text{ K} $$ (2)
Q = 1300 kW, deze is voor een groot deel afkomstig van de absorptiewarmte. De massastroom koelwater is (1) 31 kg/s. De \(k_u \) is nu 80 W/m\(^2\)/K. Het V.O. wordt nu (5) 127 m\(^2\). Voor de configuratie zie warmtewisselaarspecificatieblad T9. De koelwatersnelheid \(c_k \) = 1.1 m/s.

5.1.4 Voorverwarmer Polisher H10

De voorverwarmer is nodig om de stroom afkomstig van de eerste absorber op voldoende hoge temperatuur te brengen. De temperatuur van de stromen zijn:

\[
\begin{align*}
T_{wi} &= 300 \text{ K} \\
T_{wu} &= 600 \text{ K} \\
T_{ki} &= 683 \text{ K} \\
T_{ku} &= 583 \text{ K}
\end{align*}
\]

\(dT = 117 \text{ K} \)

\(Q = 346 \text{ kW}; \quad m_w = 1.7 \text{ kg/s} \) (1); \(k_u = 700 \text{ W/m}^2/\text{K} \). Het V.O. wordt dan 4.2 m\(^2\). Voor de configuratie zie warmtewisselaarspecificatieblad H10.

5.1.5 Gekoelde absorbertrap (T12)

De configuratie van de gekoelde trap is dezelfde als van T9. De af te voeren warmtestroom Q is echter 219.7 kW; De koelwatermassastroom is dan 5.3 kg/s. Het V.O. is dus 127 m\(^2\), gelijk aan T9

5.2 Flash-verdamper

De flash-verdamper in dit proces dient ervoor de vaste stoffen van de voeding af te scheiden. Dit gebeurt door de voeding te verdampen, waarbij de vaste stoffen in een kleine stroom vloeistof geconcentreerd worden en verder verwerkt moeten worden. De druk wordt afgelaten tot één bar.

De verdamping kan vereenvoudigd worden door de stroom te verfluchtigen met behulp van waterstof. Dit is echter niet in het processchema opgenomen.

De flasher bestaat uit een cilindrisch stalen vat met een diameter van 0.5 meter en een hoogte van 1.75 m. Deze afmetingen zijn gebaseerd op een verblijftijd van 1.5 seconden bij een volumestroom van 0.23 m\(^3\)/s. Deze verblijftijd is arbitrair gekozen.
Figuur 5.1 stuwwgrens voor losgestorte vullichamen

\[
\varphi = \frac{U_1}{U_g} \cdot \left[\frac{\rho_1}{\rho_2} \right]^{0.5}
\]

Figuur 5.2 floodinggrens voor losgestorte vullichamen

\[
\lambda = \left(\frac{E_D}{g} \right)^{0.5} \left(\frac{\eta_1}{\eta_2} \right)^{0.05}
\]

Berlzadels

Raschig ringen
Pall ringen
5.3 Reaktoren

De twee in het proces voorkomende reaktoren zijn identiek. De adiabatische reaktor bestaat uit een cilindrisch, stalen vat, met een wanddikte van 3 cm, een binnendiameter van 0.50 m en een hoogte van 1.8 m, hetgeen neerkomt op een volume van 0.35 m3 en een L/D verhouding van circa 3.5.

De reaktor is gevuld met een vaste pakking bestaande uit katalysator en drager. De porositeit van het katalysator bed is gesteld op 0.5. De verblijftijd, waarop de berekeningen gebaseerd zijn, is 3.4 s. Vanwege het corrosieve karakter van het geproduceerde HCl gas, wordt de reaktor bekleed met emaille.

5.4 Absorptietorens

De twee in het proces voorkomende absorptietorens zijn identiek. Als pakking wordt gebruikt Raschig ringen van 1 inch van keramisch materiaal. De binnenkant van de kolom kan voorzien worden van een coating (teflon). Het aantal theoretische schotels is twee. Voor de dimensionering van de kolom wordt gebruik gemaakt van de berekeningsmethode van Zuiderweg zie [13].

De berekening kan in twee gedeelten worden opgedeeld:

- capaciteitsberekening (kolomdiameter)
- efficientieberekeningen (kolomhoogte)

Voor het berekenen van de kolomdiameter is de flowparameter nodig. Deze is als volgt gedefinieerd:

$$\phi = \frac{u_{gs}/\rho_g}{u_{ls}/\rho_{ol}}$$ \hspace{1cm} (7)

Daar er twee superficiële snelheden op elkaar gedeeld worden valt de kolomdoorsnede eruit en kan de flowparameter berekend worden uit het volume debiet van de vloeistof en het gas. Met $u_{gs}A= 5.99E-3 \text{ m}^3/\text{s}$; $u_{ls}A=1.47E-3 \text{ m}^3/\text{s}$; $\rho_g=38.32 \text{ kg/m}^3$ en $\rho_{ol}=1056.4 \text{ kg/m}^3$ volgt (7) $\phi=0.78$. Uit figuur 5.1 kan nu het bedrijfspunt van de kolom als percentage van de floodinggrens ($\%fl$) afgelezen worden. Met $\phi=0.78$ volgt hieruit $\%fl=83\%$ uit figuur 5.2 kan nu de volgende factor bepaald worden:

$$\text{factor} = \lambda_{labda}^{0.5} \left[\frac{F_P}{g} \right]^{0.05} \left[\frac{\mu_1}{\mu_g} \right]$$ \hspace{1cm} (8)

Voor de factor lezen we af factor=0.19. De pakkingsfactor kan vervolgens uit figuur 5.3 bepaald worden. $F_P=500$. De belastings-
Figuur 5.3 pakkingsfactoren voor verschillende typen vullichamen
factor kan nu berekend worden. Voor μ_1/μ_g wordt 100 genomen. Aspen levert geen μ_g, daarom is uitgegaan van waarden die gevonden zijn in [14]. Uit de definitie van de belastingsfactor kan de maximale gassnelheid (floodingsgrens) berekend worden:

$$\lambda_{\text{labda}} = \frac{u_{g_{S\text{max}}}^{\sqrt{\rho_{\text{g}}}}}{\sqrt{\rho_{\text{l}}}}$$

(9)

$$u_{g_{S}} = \%f_{l} \times u_{g_{S\text{max}}}$$

(10)

Voor de superficiële gassnelheid wordt nu gevonden $u_{g_{S}}=0.092$ m/s. Uit de superficiële gassnelheid en het volumedebiet van het gas is nu de kolomdoorsnede, en daarmee de kolomdiameter, te berekenen. Voor de diameter wordt gevonden $D_{l}=0.29$ m. Met de kolomdoorsnede en het vloeistofdebiet kan ook de superficiële vloeistof snelheid berekend worden, $u_{1}=0.023$ m/s.

Nu de superficiële snelheden bekend zijn kan de hoogte van een theoretische plaat (HETP) berekend worden. Hiervoor moet eerst de hoogte van een transfer unit (HTU) worden berekend. Hiervoor gelden de volgende relaties:

$$\text{HTU}_{og} = \text{HTU}_{g} + S_{f}\text{HTU}_{l}$$

(11)

$$\text{HTU}_{g} = 0.44E-3 \times \frac{\text{Re}_{g}^{0.4}\text{Sc}^{2/3}}{u_{g_{S}}^{0.56}}$$

(12)

$$\text{HTU}_{l} = 0.29E-3 \times \frac{u_{1}^{0.27}\text{d}_{l}^{1/3}}{D_{l}^{0.5}\text{g}^{1/6}}$$

(13)

$$\text{Re}_{g} = \frac{u_{g_{S}}\text{d}_{r}\text{r}_{\text{h}_{og}}}{\mu_{g}}$$

(14)

$$\text{Sc} = \frac{u_{g_{S}}\text{d}_{r}}{D_{g}}$$

(15)

$$S_{f} = K \times L/G$$

(16)

$$\text{HETP} = \frac{\ln S_{f}}{S_{f}-1} \times \text{HTU}_{og}$$

(17)

De HETP is een benadering en daarom kan volstaan worden met globale schattingen voor K, D_{g} en D_{l}. D_{g} en D_{l} komen uit [14] en zijn: $D_{g} = 1E-5$ m2/s en $D_{l} = 3E-9$ m2/s. K wordt bepaald door Aspen en is 7.5E5. Gebruik makend van bovenstaande formules wordt er voor HETP gevonden HETP=5.2 m. Voor de kolom vinden we nu 12 m, bestaande uit $2\times 5.2 + 1.6$ m voor toe- en afvoerhoogte.
6. Economische Evaluatie

6.1 Inleiding

Bij de economische evaluatie gaat het erom de prijs, die betaald moet worden voor de verwerking van een ton HKW, te bepalen die nodig is om een gestelde rentabiliteit te halen. Om op economisch vlak een gedegen vergelijking te kunnen maken, is uitgegaan van de aannamen zoals die gedaan zijn voor het TH2 proces. Deze aannamen zijn:

- het te investeren bedrag is beschikbaar, hoeft niet te worden geleend
- het proces moet een Internal Rate of Return (IRR) hebben van 8% na belasting
- de belasting is 42%
- levensduur van het proces is acht jaar
- de afschrijving bedraagt 12.5% van de totale investering per jaar

De in dit hoofdstuk voorkomende formules en gegevens zijn afkomstig uit [6] tenzij anders vermeld. De annuïteitsfactor kan nu met de volgende formule berekend worden:

\[
a = \frac{i(1+i)^n}{(1+i)^n-1}
\]

met \(i=0.08\) en \(n=8\) wordt \(a=17.4\%\)

De netto winst moet derhalve (17.4-12.5 =) 4.9% bedragen.

6.2 Investeringen

De totale investeringen worden berekend op basis van kale apparaatkosten die vermenigvuldigd worden met verschillende Lang factoren.

6.2.1 Warmtewisselaars

In literatuur [8] wordt als volgt de kostprijs van een warmtewisselaar met verwarmend oppervlak \(A\) bepaald:

\[
C_t = C_b F_d F_p F_m
\]

\[
C_b = \exp[8.202 + 0.01506 \ln(A) + 0.06811 \ln^2(A)]
\]

\[
F_d = \exp[-0.7844 + 0.0830 \ln(A)]
\]
Hierin zijn g_1 en g_2 afhankelijk van het gebruikte constructie materiaal. De uitgerekende kostprijzen van de warmtewisselaars voorkomend in het processchema staan vermeld in tabel 6.1. De totale kosten voor de warmtewisselaars komen hierdoor op 215485.

<table>
<thead>
<tr>
<th>WW</th>
<th>A in m2</th>
<th>F_m</th>
<th>C_e in $$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4</td>
<td>3.9</td>
<td>1.417</td>
<td>3967</td>
</tr>
<tr>
<td>H6</td>
<td>14.0</td>
<td>1.621</td>
<td>7801</td>
</tr>
<tr>
<td>T9</td>
<td>127.0</td>
<td>4.869</td>
<td>99667</td>
</tr>
<tr>
<td>H10</td>
<td>4.6</td>
<td>1.477</td>
<td>4383</td>
</tr>
<tr>
<td>T12</td>
<td>127.0</td>
<td>4.869</td>
<td>99667</td>
</tr>
</tbody>
</table>

6.2.2 Absorptietorens

De methode voor de kostprijs berekening van absorptietorens komt uit [9]. De gebruikte formules zijn:

\[
C_t = F_m C_b + C_{pl} + (\pi D_i^2/4) T_1 C_p \tag{7}
\]

\[
C_{pl} = 1017.0 D_i^{0.7396} T_1^{0.70684} \tag{8}
\]

\[
C_b = \exp[6.488 + 0.21887 \ln(W_s) + 0.02297 \ln(2) (W_s)] \tag{9}
\]

\[
W_s = \pi D_i (T_1 + 0.8116 D_i) T_s \rho_s \tag{10}
\]

\[
T_s = 0.5 P D_i / (S E - 0.6 P) \tag{11}
\]

met $P=35$ bar, $E=0.85$, $S=945$ bar, $\rho_s=7861$ kg/m3, $F_m=2.1$ en $C_p=510$/m^3 volgt hieruit voor de totale kosten van een absorptietoren 16160. De F_m die hier genomen is komt overeen met stainless steel, 316 zie tabel 6.2. Er dient te worden opgemerkt dat de doorsnede van de kolom kleiner is dan de minimale doorsnede die vereist is voor de toepassing van deze correlatie. In TH is echter eveneens van deze formules buiten het toepassingsgebied gebruik gemaakt. De prijs van de coating van de absorptietorens is niet meegenomen omdat hiervan geen gegevens voorhanden zijn.
Tabel 6.2 Constructie materiaal factoren

<table>
<thead>
<tr>
<th>Materiaal</th>
<th>Kost factor, Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel, 304</td>
<td>1.7</td>
</tr>
<tr>
<td>Stainless steel, 316</td>
<td>2.1</td>
</tr>
<tr>
<td>Carpenter 20CB-3</td>
<td>3.2</td>
</tr>
<tr>
<td>Nickel-200</td>
<td>5.4</td>
</tr>
<tr>
<td>Monel-400</td>
<td>3.6</td>
</tr>
<tr>
<td>Inconel-600</td>
<td>3.9</td>
</tr>
<tr>
<td>Incoloy-825</td>
<td>3.7</td>
</tr>
<tr>
<td>Titanium</td>
<td>7.7</td>
</tr>
</tbody>
</table>

6.2.3 Reaktoren en flash-verdamper

Doordat de reaktor zo klein is, liggen de afmetingen buiten het gebied waarvoor de correlatie uit [7] is opgesteld. Hierdoor is het noodzakelijk te extrapuleren om toch tot een prijsschatting te komen. De gebruikte correlaties zijn:

\[
C_t = F_m \cdot C_b \quad \text{(12)}
\]

\[
C_b = \exp[8.600 - 0.21651 \cdot \ln(W_s) + 0.04576 \cdot \ln^2(W_s)] \quad \text{(13)}
\]

\[
W_s = \pi \cdot D_i \cdot (T_1 + 0.8116 \cdot D_i) \cdot T_s \cdot \rho_s \quad \text{(14)}
\]

\[
T_s = 0.5 \cdot P \cdot D_i / (S \cdot E - 0.6 \cdot P) \quad \text{(15)}
\]

Uitgaande van de zelfde waarden als in § 6.2.2 wordt de kostprijs van de reaktoren $14381 per stuk. Van de katalysator zijn geen gegevens bekend. Een gefundeerde schatting van de kostprijs is dus niet mogelijk, hier wordt aangenomen dat een reaktor plus katalysator $20000 kost. Dit komt neer op $8895 per ton katalysator waarbij is aangenomen dat de levensduur van de katalysator vier jaar is.

Om de kostprijs van de flash-verdamper te bepalen zou nog meer geëxtrapoleerd moeten worden. Dit levert echter geen reële waarde op. Besloten is de flash-verdamper niet mee te nemen in de kostenberekening zoals dat ook in TH² gebeurd is.

6.2.4 Totale investering

De totale apparaatkosten zijn:

<table>
<thead>
<tr>
<th>Apparaat</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>warmtewisselaars</td>
<td>$215485</td>
</tr>
<tr>
<td>absorptietorens</td>
<td>$16160</td>
</tr>
<tr>
<td>reaktoren</td>
<td>$40000</td>
</tr>
<tr>
<td>totaal</td>
<td>$271645</td>
</tr>
</tbody>
</table>
Deze aanschafprijzen vormen de zogenaamde Purchase Cost Equipment (PCE). De Physical Plant Cost (PPC) wordt nu gevonden door de PCE te vermenigvuldigen met een Langfactor 3.4. Deze factor corrigeert voor installatie, piping, gebouwen, utilities en dergelijke. De kosten voor design, engineering, contingency en het contractor's fee worden meegenomen in de fixed investment door de PPC te vermenigvuldigen met 1.45. De totale investering \(I_t \) is dan uiteindelijk 1.25*fixed investment.

\[
I_t = 1.25 \times 1.45 \times 3.4 \times 271645 = \$ 1674012. \text{ Met een huidige dollarkoers van } 1.94 \text{ f/$ wordt dit kf 3247.6}
\]

6.3 Jaarlijkse kosten

Om de fabricage kosten \(K_f \) te bepalen, berekenen we de produktievolume afhankelijke kosten \(K_p \), de semivaribele kosten \(K_i \) en de investeringsafhankelijke kosten \(K_i \). Voor de fabricage kosten geldt dan \(K_f = K_p + K_i + K_i \). Rekening houdend met te maken kosten voor Sales, Administration en Research (SAR) worden de totale jaarlijkse kosten \(K_t \) gelijk aan 1.05*Kf.

6.3.1 Produktievolume afhankelijke kosten

De produktievolume afhankelijke kosten worden bepaald door de prijzen van de grondstoffen en hun doorzetten. Zie tabel 6.3. De electriciteitskosten zijn 0.16 per kWh. Het verbruik is 216 MWh/jaar, de electriciteitskosten zijn dan kf 34.56.

Tabel 6.3 Grondstofprijzen, doorzet en kosten

<table>
<thead>
<tr>
<th>stroom</th>
<th>prijs f/ton</th>
<th>doorzet ton/jaar</th>
<th>(K_p) kf/jaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>stoom</td>
<td>32</td>
<td>74650</td>
<td>2388.80</td>
</tr>
<tr>
<td>water</td>
<td>0.50</td>
<td>31622</td>
<td>15.81</td>
</tr>
<tr>
<td>koelwater</td>
<td>0.07</td>
<td>1153440</td>
<td>80.74</td>
</tr>
<tr>
<td>loog</td>
<td>550</td>
<td>46.7</td>
<td>25.69</td>
</tr>
<tr>
<td>waterstof</td>
<td>1800</td>
<td>830</td>
<td>1494.00</td>
</tr>
</tbody>
</table>

De totale produktievolume afhankelijke kosten \(K_p \) zijn kf 4039.6 per jaar.
6.3.2 Semivariabele kosten

De semivariabele kosten zijn de loonkosten en de onderhoudskosten. De loonkosten worden bepaald met de Wessel relatie:

\[
\frac{\text{manuren}}{\text{ton produkt}} = 1.7^* \frac{N}{(\text{capaciteit/dag})^{0.76}}
\]

(16)

\(N\) staat voor het aantal secties. Het aantal secties in UOP wordt gesteld op 3, namelijk het voedings/voorverwerkingsgedeelte, de reaktorsectie en de absorptiesectie. Als iedere \(12\) manuren voor een functieplaats staat, geldt:

\[
f_p = 1.7^*N^*(\text{capaciteit/dag})^{0.24}/12
\]

(17)

Met capaciteit/dag = 181.7 ton/dag, loonkosten = \(k_f\) 350/fp worden de totale loonkosten \(k_t\) 518.4 per jaar.

Het onderhoud wordt geschat op 4% van de totale investeringen. Dit komt neer op \(k_f\) 129.9 /jaar. \(K_1\) is dan \(k_f\) 648.3 /jaar.

6.3.3 Investeringsafhankelijke kosten

De investeringsafhankelijke kosten zijn:

- afschrijving: \(0.125^*I_t\)
- verzekering: \(0.01^*I_t\)

\[
\text{totaal } K_i = 0.135^*I_t = k_f 438.4
\]

6.3.4 Totale jaarlijkse kosten

De totale jaarlijkse kosten \(K_t\) zijn gelijk aan 1.05 * (\(K_p + K_1 + K_i\)) = \(k_f\) 5382.6

6.4 Opbrengsten

De produkten van het proces zijn zoutzuur en een koolwaterstof mengsel. Er zijn twee afvalstromen, te weten de stroom met vaste stoffen in een HKW mengsel en de zoutoplossing. De zoutzuur stroom is nog verontreinigd met voornamelijk benzeen. Aangezien deze stroom niet als zodanig te verkopen is wordt de opbrengst van deze stroom op nul gesteld. Het koolwaterstof mengsel bestaat
voornamelijk uit propaan, propeen en benzeen. De waarde van dit mengsel is moeilijk te schatten aangezien de afzonderlijke componenten nog afgescheiden moeten worden. Hier wordt uitgegaan van het ongunstigste geval, namelijk opbrengst is nul.
Om de geproduceerde afvalstromen te verwerken, zullen ook nog kosten gemaakt moeten worden. Deze kosten worden op nul gesteld.
Als enige opbrengst blijft er dan over de inkomsten die verkregen worden voor het verwerken van de chloorkoolwaterstoffen.

6.5 Noodzakelijke prijs per ton HKW

Met de voorwaarden gesteld in §6.1 kan nu de noodzakelijke prijs per ton HKW uitgerekend worden:

afschrijving : \[R = 0.125 \times I_t = \text{kf} \ 406.0 \]
annuïteitsfactor : \[a = 0.174 \] zie (1)
netto winst : \[W_n = a \times I_t - R = \text{kf} \ 159.1 \]
bruto winst : \[W_b = W_n / (1 - 0.42) = \text{kf} \ 274.4 \]

De noodzakelijke opbrengst is gelijk aan de totale jaarlijkse kosten \(K_t \) plus de brutowinst. Dit is gelijk aan \(\text{kf} \ 5657.0 \) per jaar. Dit komt neer op een noodzakelijke prijs van \(\text{f} \ 257.1 \) per ton HKW.
Figuur 7.1 Processchema van het proces met recycle

Proceschema van de Katalytische Dehydrohalogenering Van Gechloreerde Koolwaterstoffen Met Zuiver Waterstof

E.T. de Lera
P. H. W. Vercoulen

- Stroomnummer
- Temp. in K
- Abs. druk in bar

Fob. Vorschep No. 2826
Februari 1990
In het proces zoals het door UOP wordt beschreven, zie [1] en [2], wordt gewerkt met een waterstof recycle. De vermoedelijke reden hiervoor is dat om een hoge conversie in de reaktor te behalen, een overmaat waterstof aanwezig moet zijn. Deze overmaat waterstof wordt aan het eind van het proces afgescheiden en teruggevoerd naar de eerste reaktor. De benodigde scheidingsstap zou een cryogene scheiding kunnen zijn, in het processchema (zie figuur 7.1) is de scheiding opgenomen als een blackbox.

Er is gekozen voor een hoofdproces zonder recyclestroom om twee redenen. Ten eerste is het in het hoofdproces niet nodig een overmaat waterstof te nemen omdat de conversie al groter is dan 0.999. Ten tweede is de waterstofscheiding een nogal gecomplie­ceerd proces en levert onder de gedaane aannamen geen wezenlijke bijdrage. Het proces is echter wel met een overmaat waterstof doorgerekend met Aspen met de blackbox als ideale scheider. De berekende component-, massa- en warmtestromen staan in hoofdstuk 9.

Indien gewerkt moet worden met een overmaat waterstof, is het nodig de relatief dure waterstof af te scheiden en terug te voeren. Dit heeft gevolgen voor de grootte van de apparatuur, met name de diameter van de absorptie kolommen zal toenemen. Bij een totale waterstof stroom van 40 mol/s wordt de benodigde kolomdiameter 0.51 m. Een bijkomend gevolg is dat de temperatuur in de reaktor lager zal zijn, namelijk 648 K.
8. UOP versus TH

Een groot voordeel van het UOP proces boven TH', is het feit dat bij het UOP proces vanwege de katalysator bij lagere temperatuur gewerkt kan worden. Dit betekent een vereenvoudiging van de uitvoering van de apparaten. De reaktor bijvoorbeeld, hoeft niet gemaakt te worden van materiaal dat tegen hoge temperaturen bestand is. Doordat de temperatuur van de reaktor laag kan blijven is er geen noodzaak voor een olievergassingssec­tie, die de waterstof en energie levert.

Een nadeel van TH' is dat een deel van de geproduceerde waterstof in de reaktor verbrand moet worden om de ingaande HKW stroom te verdampen. In het UOP proces wordt met een veel kleinere stroom waterstof gewerkt, die in zuivere vorm aangekocht wordt. De hoge investering in de olievergassingsinstallatie kan dan achterwege blijven. Aangezien roetvorming in UOP niet voorkomt (volgens uitgangspunt), kan ook de investering in de roetsectie (van TH') achterwege blijven. Daar er in het hele UOP proces met kleinere massastromen gewerkt wordt, zijn de apparaten kleiner.

Het mag duidelijk zijn dat het UOP proces staat of valt bij een goed functioneren van de katalysator.

De noodzakelijke prijs per ton HKW zoals voor het UOP proces uitgerekend werd, bedraagt f 257.1 per ton HKW. In TH' worden twee prijzen uitgerekend, namelijk een 'best case' van f 98.6 /ton en een 'worst case' van f 530.5/ton. Het is duidelijk dat de hier berekende prijs (het bedrag dat betaald moet worden voor de verwerking van een ton HKW) kan concurreren met genoemd TH' proces en met de huidige verwerkingsmethodes die een prijs vragen van f 500 tot f 1000 per ton (AVR). Voor de producten en afvalstromen (zoutzuur, koolwaterstoffen en vaststoffen, zoutoplossing) van het UOP proces worden geen kosten of baten geteld.

Het zal duidelijk zijn dat bovenstaande gegevens met enig voorbehoud geïnterpreteerd moeten worden. Met name de diepgang van dit fabrieksvoorontwerp is minder groot dan in het tweede fase proces.
9. Specificatiebladen en balansen

In dit hoofdstuk zijn de apparaatspecificatiebladen van het hoofdproces opgenomen. De component-, overall massa- en overall warmte balansen zijn voor zowel het hoofdproces als voor het proces met de recycle stroom opgenomen.

Inhoud van dit hoofdstuk:

<table>
<thead>
<tr>
<th>Component</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>voedingsverhitter H4</td>
<td>26</td>
</tr>
<tr>
<td>condensor H6</td>
<td>27</td>
</tr>
<tr>
<td>gekoelde trap T9 en T12</td>
<td>28</td>
</tr>
<tr>
<td>voorverwarmer polisher H10</td>
<td>29</td>
</tr>
<tr>
<td>fixed bed reaktor R8</td>
<td>30</td>
</tr>
<tr>
<td>polishing reactor R11</td>
<td>30</td>
</tr>
<tr>
<td>flash-verdamper V5</td>
<td>30</td>
</tr>
<tr>
<td>absorptietoren T9 en T12</td>
<td>31</td>
</tr>
<tr>
<td>pompen P3 en P7</td>
<td>32</td>
</tr>
<tr>
<td>componentbalans hoofdproces</td>
<td>33</td>
</tr>
<tr>
<td>overall massa- en warmtebalans hoofdproces</td>
<td>35</td>
</tr>
<tr>
<td>componentbalans recycleproces</td>
<td>37</td>
</tr>
<tr>
<td>overall massa- en warmtebalans recycleproces</td>
<td>39</td>
</tr>
</tbody>
</table>
Technische Universiteit Delft
Vakgroep Chemische Procestechnologie

WARMTEWISSELAARSPSEIFIKATIEBLAD

<table>
<thead>
<tr>
<th>Apparaatnummer</th>
<th>H.4.</th>
<th>Aantal: 1 serie/parallel</th>
</tr>
</thead>
</table>

ALGEMENE EIGENSCHAPPEN:

<table>
<thead>
<tr>
<th>Type</th>
<th>Warmtewisselaar*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koeler</td>
<td></td>
</tr>
<tr>
<td>Kondensator</td>
<td></td>
</tr>
<tr>
<td>Verdampers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uitvoering</th>
<th>met vaste pijpplaten*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>floating head</td>
</tr>
<tr>
<td></td>
<td>heerspel</td>
</tr>
<tr>
<td></td>
<td>dubbele pijp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positie</th>
<th>horizontaal/verticaal*</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kapaciteit</th>
<th>3.35 kW (berkend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmtewisselend oppervlak</td>
<td>3.9 m² (berkend)</td>
</tr>
<tr>
<td>Overallwarmteoverdrachtscoëfficiënt</td>
<td>8.2 W/m²K (globaal)</td>
</tr>
<tr>
<td>Logaritmisch temperatuurverschil (LMTD)</td>
<td>12.7 °C</td>
</tr>
<tr>
<td>Aantal passages pijp zijde</td>
<td>8</td>
</tr>
<tr>
<td>Aantal passages mantel zijde</td>
<td>4</td>
</tr>
<tr>
<td>Korrektiefactor LMTD (min. 0,75)</td>
<td>0,5</td>
</tr>
<tr>
<td>Gekorrigeerde LMTD</td>
<td>12.4 °C</td>
</tr>
</tbody>
</table>

BEDRIJFSKONDITIES:

<table>
<thead>
<tr>
<th>Soort fluidum</th>
<th>Mantel zijde</th>
<th>Pijp zijde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massastroom</td>
<td>1.16 bar</td>
<td>0.85 bar</td>
</tr>
<tr>
<td>Massastroom te verdampen/kondenseren*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gemiddelde soortelijke warmte</td>
<td>2.83 kJ/kg °C</td>
<td>2.84 kJ/kg °C</td>
</tr>
<tr>
<td>Verdampingswarmte</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Temperatuur IN</td>
<td>2.4°C</td>
<td>2.4°C</td>
</tr>
<tr>
<td>Temperatuur UIT</td>
<td>4°C</td>
<td>4°C</td>
</tr>
<tr>
<td>Druk</td>
<td>5 bar</td>
<td>5 bar</td>
</tr>
<tr>
<td>Materiaal</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Doorstrepen wat niet van toepassing is
WARMTEWISSELSAARSPECIFIKATIEBLAD

ALGEMENE EIGENSCHAPPEN:

<table>
<thead>
<tr>
<th>Funktie</th>
<th>Condensatie-reactie-werking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Warmtewisselaar*</td>
</tr>
<tr>
<td></td>
<td>Keel</td>
</tr>
<tr>
<td></td>
<td>Kondensor</td>
</tr>
<tr>
<td></td>
<td>Verdampers</td>
</tr>
<tr>
<td>Lengte</td>
<td>L = 3 m</td>
</tr>
<tr>
<td>Finaal breedte</td>
<td>ac. = 0,325 m</td>
</tr>
<tr>
<td>Diameter</td>
<td>Dc = 0,335 m</td>
</tr>
<tr>
<td>Snelheidsv.</td>
<td>S = 0,0310 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uitvoering</th>
<th>met vaste pijpleten*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>floating head</td>
</tr>
<tr>
<td></td>
<td>haarspeld</td>
</tr>
<tr>
<td></td>
<td>dubbele pijp</td>
</tr>
<tr>
<td></td>
<td>platte warmtezaag</td>
</tr>
</tbody>
</table>

| Positie | horizontaal/verticaal* |

Kapaciteit	3,7 kW (berkend)
Warmtewisselend oppervlak	1,4 m² (berkend)
Overallwarmteoverdrachtscoëfficiënt	0,335°C
Logaritmisch temperatuurverschil (LMTD)	33,5°C
Aantal passages pijpzijde	8
Aantal passages mantelzijde	4
Korrektiefactor LMTD (min. 0,75)	1/2
Gekorrigeerde LMTD	-

BEDRIJFSKONDITIES:

<table>
<thead>
<tr>
<th>Soort fluidum</th>
<th></th>
<th>Mantelzijde</th>
<th></th>
<th>Pijpzijde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>verdampen/kondenseren*</td>
<td>water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massastroom</td>
<td>kg/s</td>
<td>0,85</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Massastroom te verdampen/kondenseren*</td>
<td>kg/s</td>
<td>0,95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gemiddelde soortelijke warmte</td>
<td>kJ/kg°C</td>
<td>1,40</td>
<td>4,10</td>
<td></td>
</tr>
<tr>
<td>Verdampingwarmte</td>
<td>kJ/kg</td>
<td>3,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatuur IN</td>
<td>°C</td>
<td>40</td>
<td>29,3</td>
<td></td>
</tr>
<tr>
<td>Temperatuur UIT</td>
<td>°C</td>
<td>29,0</td>
<td>30,3</td>
<td></td>
</tr>
<tr>
<td>Druk</td>
<td>bar</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiaal</td>
<td></td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Doorstrepen wat niet van toepassing is
WARMTEWISSELAARSPECIFIKATIEBLAD

<table>
<thead>
<tr>
<th>Apparaatnummer</th>
<th>Aantal serie/paralleli</th>
</tr>
</thead>
</table>

Functie: Condenseren

| Type: Warmtewisselaar* |
|-------------------|------------------|
| | Koeier |
| | Kondensor |
| | Verdamper |

**Uitvoering: met vaste pijpleten* |

| Lengte: 4.4 m |
| Diameter IC ...: 0.8 m |
| Diameter IC DC: 0.0254 m |
| Diameter DC : 0.02 |
| Z: 360 |

**Positie: horizontaal/verticaal* **

| Kapaciteit: 1300 kW (berekend) |
| Warmtewisselend oppervlak: 77 m² (berekend) |
| Overallwarmteoverdrachtscoëfficiënt: 80 W/m²K (globaal) |
| Logaritmisch temperatuurverschil (LMTD): 128 °C |
| Aantal passages pijpzijde: 4 |
| Aantal passages mantelzijde: 4 |
| Korrektiefactor LMTD (min. 0,75): 0,75 |
| Gekorrigeerde LMTD: 128 °C |

BEDRIJFSKONDITIES :

| Soort fluidum: H₂O, H₂O |
| ksi/ksi/ksi: 1,6, 1,6, 3,1 |
| Massastroom: kg/s |
| Massastroom te verdampen/kondenseren: kg/s |
| Gemiddelde soortelijke warmte: kJ/kg°C |
| Verdampingswarmte: kJ/kg |
| Temperatuur IN: °C |
| Temperatuur UIT: °C |
| Druk: bar |
| Materiaal: | Mantelzijde | Pijpzijde |
| | | h₂O, h₂O | Roestvrij staal |

Doorstrepen wat niet van toepassing is
WARMTEWISSELARSGEbruik van een apparaat voor het verwarmen van vloeistoffen

ALGEMENE EIGENSCHAPPEN

<table>
<thead>
<tr>
<th>Eigenschap</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparaatnummer</td>
<td>H.30</td>
</tr>
<tr>
<td>Aantal</td>
<td>serie/paralel*</td>
</tr>
<tr>
<td>Functie</td>
<td>Warmtewisselaar*</td>
</tr>
<tr>
<td></td>
<td>Koeler</td>
</tr>
<tr>
<td></td>
<td>Kondenmer</td>
</tr>
<tr>
<td></td>
<td>par. Verdamper</td>
</tr>
<tr>
<td>Uitvoering</td>
<td>met vaste pijpplaten*</td>
</tr>
<tr>
<td></td>
<td>floating head</td>
</tr>
<tr>
<td></td>
<td>haarspeld</td>
</tr>
<tr>
<td></td>
<td>dubbele pijp</td>
</tr>
<tr>
<td></td>
<td>platenwarmtewisselaar</td>
</tr>
<tr>
<td>Positie</td>
<td>horizontaal/verticaal*</td>
</tr>
<tr>
<td>Kapaciteit</td>
<td>34.6 kW (berekend)</td>
</tr>
<tr>
<td>Warmtewisselend oppervlak</td>
<td>4.6 m² (berekend)</td>
</tr>
<tr>
<td>Overallwarmteoverdrachtscoëfficiënt</td>
<td>0.7 W/m²K (globaal)</td>
</tr>
<tr>
<td>Logaritmisch temperatuurverschil (LMTD)</td>
<td>1.7 °C</td>
</tr>
<tr>
<td>Aantal passages pijpzijde</td>
<td>8</td>
</tr>
<tr>
<td>Aantal passages mantelzijde</td>
<td>4</td>
</tr>
<tr>
<td>Korrektiefactor LMTD (min. 0,75)</td>
<td>0.9</td>
</tr>
<tr>
<td>Gekorrigeerde LMTD</td>
<td>-1.0 °C</td>
</tr>
</tbody>
</table>

BEDRIJFSKONDITIES

<table>
<thead>
<tr>
<th>Eigenschap</th>
<th>Mantelzijde</th>
<th>Pijpzijde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soort fluidum</td>
<td>steel</td>
<td>steel</td>
</tr>
<tr>
<td>Massastroom</td>
<td>1.7</td>
<td>0.37</td>
</tr>
<tr>
<td>Massastroom te verdampen/condenser*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gemiddelde soortelijke warmte</td>
<td>2.02 kJ/kg°C</td>
<td></td>
</tr>
<tr>
<td>Verdampingswarmte</td>
<td>-</td>
<td>3.75</td>
</tr>
<tr>
<td>Temperatuur IN</td>
<td>68.3</td>
<td>300.</td>
</tr>
<tr>
<td>Temperatuur UIT</td>
<td>58.3</td>
<td>600.</td>
</tr>
<tr>
<td>Druk</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Materiaal</td>
<td>steel</td>
<td></td>
</tr>
</tbody>
</table>

Doorstrepen wat niet van toepassing is
<table>
<thead>
<tr>
<th>Apparaat No:</th>
<th>R8</th>
<th>R11</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benaming, type</td>
<td>gepolijst reactor</td>
<td>gepolijst reactor</td>
<td>Flashverdampers</td>
</tr>
<tr>
<td>Abs. of druk in bar</td>
<td>30</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>temp. in °C</td>
<td>536</td>
<td>329</td>
<td>128</td>
</tr>
<tr>
<td>Inhoud in m³</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Diam. in m</td>
<td>1.80</td>
<td>1.80</td>
<td>1.75</td>
</tr>
<tr>
<td>l of h in m</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Vulling:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schotels-aant. vaste pakking katalysator- type - - - vorm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speciaal te gebruiken mat.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aantal serie/parallel</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* aangeven wat bedoeld wordt
Technische Universiteit Delft
Vakgroep Chemische Processtechnologie

Fabrieksvoorontwerp No: 2026
Datum:
Ontworpen door:

TORENSPECIFIKATIEBLAD

<table>
<thead>
<tr>
<th>Apparaatnummer</th>
<th>Fabrieknummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 912</td>
<td></td>
</tr>
</tbody>
</table>

ALGEMENE EIGENSCHAPPEN:

- **Functie:** destillatie / extractie / absorptie / ...
- **Type toren:** gepakt / schotel / sproeiër / ...
- **Type schotel:** klokkje / zeefplaat / valve / ...
- **Aantal schotels:** theoretisch: 2
- **Aantal schotels:** praktisch:
- **Schotelaafstand / HETS:** 0.2 m
- **Diameter toren:** 0.29 m
- **Materiaal schotel:**
- **Hoogte toren:** 2 m

MATERIAAL TOREN: geen / open stoom / reboiler / ...

BEDRIJFSKONDITIES:

<table>
<thead>
<tr>
<th></th>
<th>Voeding</th>
<th>Top</th>
<th>Bodem</th>
<th>Reflux/absorptie middel (\mu)</th>
<th>Extraktie middel/...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatuur</td>
<td>97 °C</td>
<td>27</td>
<td>44</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Druk</td>
<td>30 bar</td>
<td>30</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Dichtheid</td>
<td>(\approx 35) kg/m³</td>
<td>40</td>
<td>99%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Massastroom</td>
<td>(0.049) kg/s</td>
<td>(0.23)</td>
<td>1.06</td>
<td>1.04</td>
<td></td>
</tr>
</tbody>
</table>

Samenstelling in mol % resp. gew.%

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

ONTWERP:

- **Aantal klokjes / zeegaten:****
- **Aktief schoteloppervlak:** \(m² \)
- **Lengte overlooprand:** \(mm \)
- **Diameter valpijp / gat:** \(mm \)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type pakking</td>
</tr>
<tr>
<td>Materiaal pakking</td>
</tr>
<tr>
<td>Afmetingen pakking</td>
</tr>
</tbody>
</table>

Verdere gegevens op schets verwijderen

*doorstrepen wat niet van toepassing is.

**indien een toren schotels van verschillend ontwerp bevat, dit vermelden!
<table>
<thead>
<tr>
<th>Apparaat No:</th>
<th>P3</th>
<th>P7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benaming, type</td>
<td>pomp</td>
<td>pomp</td>
</tr>
<tr>
<td>te verpompen</td>
<td>chloro-</td>
<td>chloro-</td>
</tr>
<tr>
<td>medium</td>
<td>ketwater-</td>
<td>ketwater-</td>
</tr>
<tr>
<td>Capaciteit in</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>kg/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichtheid in</td>
<td>1163.3</td>
<td>1163.3</td>
</tr>
<tr>
<td>kg/m^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuig-/persdruk</td>
<td>in 1 bar</td>
<td>in 16 bar</td>
</tr>
<tr>
<td>in bar (abs. of</td>
<td>mil 30 bar</td>
<td>mil 30 bar</td>
</tr>
<tr>
<td>eff.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>temp. in °C</td>
<td>in 25</td>
<td>in 25</td>
</tr>
<tr>
<td>in/uit</td>
<td>mil 31</td>
<td>mil 31</td>
</tr>
<tr>
<td>Vermogen in kW</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>theor./ prakt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speciaal te gebruiken mat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aantal serie/parallel</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* aangeven wat bedoeld wordt
<table>
<thead>
<tr>
<th>Componenten</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzeenchloride</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlopropane</td>
<td>0.197</td>
<td>0.197</td>
<td>0.197</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloropropaan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloropropeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichloropropeen</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total:</td>
<td>0.847</td>
<td>0.847</td>
<td>0.847</td>
<td>0.0323</td>
<td>0.847</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenten</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzeenchloride</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlopropane</td>
<td>0.197</td>
<td>0.198</td>
<td>0.198</td>
</tr>
<tr>
<td>Chloropropaan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloropropeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichloropropeen</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
</tr>
<tr>
<td>Total:</td>
<td>0.847</td>
<td>0.847</td>
<td>0.847</td>
</tr>
</tbody>
</table>

Stroom/Componenten staat

<table>
<thead>
<tr>
<th>M in kg/s</th>
<th>Q in kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Componenten</td>
<td>10</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>M</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.04</td>
</tr>
<tr>
<td>H₂</td>
<td>-</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
</tr>
<tr>
<td>benzeen</td>
<td>-</td>
</tr>
<tr>
<td>benzeencyaanide</td>
<td>-</td>
</tr>
<tr>
<td>dichlopropaan</td>
<td>-</td>
</tr>
<tr>
<td>dichlopropaan</td>
<td>-</td>
</tr>
<tr>
<td>chlorpropaan</td>
<td>-</td>
</tr>
<tr>
<td>chlorpropaan</td>
<td>-</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
</tr>
<tr>
<td>Totaal:</td>
<td>1.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenten</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.180</td>
<td>-</td>
<td>6.61e-2</td>
</tr>
<tr>
<td>H₂</td>
<td>-</td>
<td>-</td>
<td>3.93e-3</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
<td>-</td>
<td>6.86e-3</td>
</tr>
<tr>
<td>benzeen</td>
<td>-</td>
<td>-</td>
<td>0.137</td>
</tr>
<tr>
<td>benzeencyaanide</td>
<td>-</td>
<td>-</td>
<td>1.97e-3</td>
</tr>
<tr>
<td>dichlopropaan</td>
<td>-</td>
<td>-</td>
<td>2.58e-3</td>
</tr>
<tr>
<td>dichlopropaan</td>
<td>-</td>
<td>-</td>
<td>5.32e-3</td>
</tr>
<tr>
<td>chlorpropaan</td>
<td>-</td>
<td>-</td>
<td>6.86e-3</td>
</tr>
<tr>
<td>chlorpropaan</td>
<td>-</td>
<td>-</td>
<td>2.66e-3</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
<td>-</td>
<td>0.0723</td>
</tr>
<tr>
<td>Totaal:</td>
<td>0.180</td>
<td>-2860</td>
<td>0.367</td>
</tr>
</tbody>
</table>

M in kg/s
Q in kW

Stroom/Componenten staat
Hoofdpunten, Massa- en Warmtebalans

<table>
<thead>
<tr>
<th>IN</th>
<th>M</th>
<th>Q</th>
<th>IN</th>
<th>M</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Q</td>
<td></td>
<td>M</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0.847</td>
<td></td>
<td>613.2</td>
<td></td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>335.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Voeding
- Arbeid
- Stoom
- Warmte, stoffen
- Waterverlies
- Arbeid
- \(P_3 \)
- \(H_4 \)
- \(V_5 \)
- \(H_6 \)
- \(P_7 \)

<table>
<thead>
<tr>
<th>Retour</th>
<th>M</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>(Q)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>342.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Massa in kg/s</td>
<td>Warmte in kW</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>O. 0323</td>
<td>- 0.1874</td>
</tr>
<tr>
<td></td>
<td>1.04</td>
<td>-1.653 e4</td>
</tr>
<tr>
<td></td>
<td>1.70</td>
<td>346.0</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.48</td>
<td>49508</td>
</tr>
<tr>
<td></td>
<td>0.180</td>
<td>-2860</td>
</tr>
<tr>
<td></td>
<td>0.368</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td>0.368</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td>5,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.48</td>
<td>49508</td>
</tr>
</tbody>
</table>

Totaal

Massa in kg/s: 13.050.0
Warmte in kW: 1.55 -1.839 e4
Massa in kg: 51.9
Warmte in kW: 1.70

Fabrieksvoortwerp
No:
<table>
<thead>
<tr>
<th>Apparaatstroom</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componenten</td>
<td>M</td>
<td>Q</td>
<td>M</td>
<td>Q</td>
<td>M</td>
</tr>
<tr>
<td>H₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>benzeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>benzylchloride</td>
<td>0.197</td>
<td>0.197</td>
<td>0.197</td>
<td>0.197</td>
<td>0.197</td>
</tr>
<tr>
<td>dichloropropaan</td>
<td>0.258</td>
<td>0.258</td>
<td>0.258</td>
<td>0.258</td>
<td>0.258</td>
</tr>
<tr>
<td>chloropropaan</td>
<td>0.198</td>
<td>0.198</td>
<td>0.198</td>
<td>0.198</td>
<td>0.198</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>dichloropropaan</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
</tr>
<tr>
<td>Totaal:</td>
<td>0.847</td>
<td>-013.2</td>
<td>0.847</td>
<td>-006.0</td>
<td>0.847</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apparaatstroom</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componenten</td>
<td>M</td>
<td>Q</td>
<td>M</td>
<td>Q</td>
<td>M</td>
</tr>
<tr>
<td>H₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>benzeen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>benzylchloride</td>
<td>-</td>
<td>-</td>
<td>0.197</td>
<td>0.197</td>
<td>1.97e-4</td>
</tr>
<tr>
<td>dichloropropaan</td>
<td>-</td>
<td>-</td>
<td>0.258</td>
<td>0.258</td>
<td>2.58e-4</td>
</tr>
<tr>
<td>chloropropaan</td>
<td>-</td>
<td>-</td>
<td>0.198</td>
<td>0.198</td>
<td>1.98e-4</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>propaan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>dichloropropaan</td>
<td>-</td>
<td>-</td>
<td>0.194</td>
<td>0.194</td>
<td>1.94e-4</td>
</tr>
<tr>
<td>Totaal:</td>
<td>-</td>
<td>-</td>
<td>0.847</td>
<td>-013.2</td>
<td>0.847</td>
</tr>
</tbody>
</table>

Stroom/Componenten staat

M in kg/s
Q in kW
<table>
<thead>
<tr>
<th>Apparaatstroom</th>
<th>Componenten</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Q</td>
<td>M</td>
<td>Q</td>
<td>M</td>
<td>Q</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.04</td>
<td></td>
<td>1.04</td>
<td></td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td></td>
<td></td>
<td>5.24e-2</td>
<td></td>
<td>1.09e-4</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td></td>
<td></td>
<td>1.02e-4</td>
<td></td>
<td>0.510</td>
<td></td>
</tr>
<tr>
<td>benzeen</td>
<td></td>
<td></td>
<td>0.137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzeencarbonde</td>
<td></td>
<td></td>
<td>1.97e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dichlopropaan</td>
<td></td>
<td></td>
<td>2.50e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloropropaan</td>
<td></td>
<td></td>
<td>3.95e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloropropaan</td>
<td></td>
<td></td>
<td>2.74e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propaan</td>
<td></td>
<td></td>
<td>1.34e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propaan</td>
<td></td>
<td></td>
<td>0.0732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal:</td>
<td>1.04</td>
<td>-1.657e4</td>
<td>0.419</td>
<td>-247.4</td>
<td>1.55</td>
<td>-1.841e4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apparaatstroom</th>
<th>Componenten</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Q</td>
<td>M</td>
<td>Q</td>
<td>M</td>
<td>Q</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.180</td>
<td></td>
<td>1.89e-3</td>
<td></td>
<td>0.174</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td></td>
<td></td>
<td>5.24e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td></td>
<td></td>
<td>1.02e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzeen</td>
<td></td>
<td></td>
<td>0.137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzeencarbonde</td>
<td></td>
<td></td>
<td>1.97e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dichlopropaan</td>
<td></td>
<td></td>
<td>2.50e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloropropaan</td>
<td></td>
<td></td>
<td>3.95e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloropropaan</td>
<td></td>
<td></td>
<td>2.74e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propaan</td>
<td></td>
<td></td>
<td>1.34e-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propaan</td>
<td></td>
<td></td>
<td>0.0732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal:</td>
<td>0.180</td>
<td>-2860</td>
<td>0.425</td>
<td>-286.0</td>
<td>0.174</td>
<td>-2706</td>
</tr>
</tbody>
</table>

M in kg/s
Q in kW

Stroom/Componenten staat
Recycle, Massa-en Warmtebalans

<table>
<thead>
<tr>
<th>IN</th>
<th>M</th>
<th>Q</th>
<th>Vooraarnts</th>
<th>M</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.847</td>
<td>-813.2</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>335.2</td>
<td>0.847</td>
<td>-506.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>7.2</td>
<td>0.847</td>
<td>-613.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

1. **Voeding**
2. **Arbeid**
3. **Doorstroming**
4. **Reversing**
5. **Verwarming**
6. **Onske stoffen**
7. **Arbeid**

Reeurn

<table>
<thead>
<tr>
<th>M</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td></td>
</tr>
</tbody>
</table>

UIT

<table>
<thead>
<tr>
<th>M</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.20</td>
<td>342.4</td>
</tr>
<tr>
<td></td>
<td>Fabrieksvoorontwerp</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Massa in kg/s</td>
<td>11.48</td>
</tr>
<tr>
<td>Warmte in kW</td>
<td>19403</td>
</tr>
<tr>
<td></td>
<td>Totaal</td>
</tr>
<tr>
<td></td>
<td>11.48</td>
</tr>
</tbody>
</table>
Symbolenlijst

<table>
<thead>
<tr>
<th>Symbolen</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>annuitéitsfactor</td>
</tr>
<tr>
<td>A</td>
<td>oppervlak</td>
</tr>
<tr>
<td>CK</td>
<td>snelheid koelwater</td>
</tr>
<tr>
<td>CPig</td>
<td>warmtecapaciteit</td>
</tr>
<tr>
<td>CPg</td>
<td>warmtecapaciteit ideaal gas</td>
</tr>
<tr>
<td>Cb</td>
<td>basiskosten</td>
</tr>
<tr>
<td>Ctk</td>
<td>apparaatkosten</td>
</tr>
<tr>
<td>di</td>
<td>binnendiameter</td>
</tr>
<tr>
<td>dtr</td>
<td>nominale pakkingsdiameter</td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
</tr>
<tr>
<td>Dg</td>
<td>diffusiecoëfficiënt gasfase</td>
</tr>
<tr>
<td>Di</td>
<td>binnendiameter</td>
</tr>
<tr>
<td>Dl</td>
<td>diffusiecoëfficiënt vloeistoffase</td>
</tr>
<tr>
<td>E</td>
<td>efficiency factor</td>
</tr>
<tr>
<td>fp</td>
<td>aantal functieplaatsen</td>
</tr>
<tr>
<td>Fd</td>
<td>kostenfactor design</td>
</tr>
<tr>
<td>Fm</td>
<td>kostenfactor materiaal</td>
</tr>
<tr>
<td>Fr</td>
<td>kostenfactor druk</td>
</tr>
<tr>
<td>Fu</td>
<td>pakingsfactor</td>
</tr>
<tr>
<td>g</td>
<td>gravitatieversnelling</td>
</tr>
<tr>
<td>g1, g2</td>
<td>correlatiecoëfficiënten materiaal</td>
</tr>
<tr>
<td>G</td>
<td>gasstroom</td>
</tr>
<tr>
<td>gr</td>
<td>Gibbs vrije energie</td>
</tr>
<tr>
<td>HETP</td>
<td>hoogte van een theoretische schotel</td>
</tr>
<tr>
<td>Hf</td>
<td>vormingsenthalpie</td>
</tr>
<tr>
<td>HTU</td>
<td>hoogte transfer unit</td>
</tr>
<tr>
<td>Hvap</td>
<td>verdampingsenthalpie</td>
</tr>
<tr>
<td>i</td>
<td>rente</td>
</tr>
<tr>
<td>It</td>
<td>totale investeringen</td>
</tr>
<tr>
<td>Kt</td>
<td>warmtestroomcoëfficiënt</td>
</tr>
<tr>
<td>K</td>
<td>verdelingscoëfficiënt</td>
</tr>
<tr>
<td>Kf</td>
<td>fabricage kosten</td>
</tr>
<tr>
<td>K1</td>
<td>investeringsafhankelijke kosten</td>
</tr>
<tr>
<td>Ks</td>
<td>semivariabele kosten</td>
</tr>
<tr>
<td>Kp</td>
<td>produktievermogen afhankelijke kosten</td>
</tr>
<tr>
<td>Kt</td>
<td>reactie evenwichtsconstante</td>
</tr>
<tr>
<td>L</td>
<td>lengte</td>
</tr>
<tr>
<td>L</td>
<td>vloeistofstroom</td>
</tr>
<tr>
<td>labda</td>
<td>belastingsfactor</td>
</tr>
<tr>
<td>mk</td>
<td>massa stroom koelwater</td>
</tr>
<tr>
<td>mw</td>
<td>massa stroom</td>
</tr>
<tr>
<td>MW</td>
<td>molgewicht</td>
</tr>
<tr>
<td>n</td>
<td>aantal jaren</td>
</tr>
<tr>
<td>n</td>
<td>aantal secties Wessel relatie</td>
</tr>
<tr>
<td>psat</td>
<td>dampspanning</td>
</tr>
<tr>
<td>P</td>
<td>druk</td>
</tr>
<tr>
<td>Q</td>
<td>warmtestroom</td>
</tr>
<tr>
<td>R</td>
<td>universele gasconstante</td>
</tr>
<tr>
<td>Re</td>
<td>getal van Reynolds</td>
</tr>
<tr>
<td>Rho</td>
<td>dichtheid</td>
</tr>
<tr>
<td>rho</td>
<td>dichtheid gas</td>
</tr>
<tr>
<td>rho_k</td>
<td>dichtheid koelwater</td>
</tr>
</tbody>
</table>
\begin{tabular}{ll}
\textbf{S} & dichtheid vloeistof \text{\(\rho_1\)}} \quad \text{kg/m}^3 \\
\textbf{S} & maximaal aanvaardbare spanning \text{\(S\)}} \quad \text{N/m}^2 \\
\textbf{S} & stripfactor \text{\(S_f\)}} \quad - \\
\textbf{S} & entropie bij standaard condities \text{\(S^0\)}} \quad \text{cal/mol/K} \\
\textbf{S} & getal van schmidt \text{\(S_c\)}} \quad - \\
\textbf{S} & temperatuur \text{\(T\)}} \quad \text{K} \\
\textbf{S} & atmosferisch kookpunt \text{\(T_b\)}} \quad \text{K} \\
\textbf{S} & kritieke temperatuur \text{\(T_c\)}} \quad - \\
\textbf{S} & temperatuurs efficiency \text{\(T_{\text{eff}}\)}} \quad \text{m} \\
\textbf{S} & torenlengte \text{\(T_l\)}} \quad \text{m} \\
\textbf{S} & wanddikte \text{\(T_s\)}} \quad \text{m} \\
\textbf{S} & superficiële gassnelheid \text{\(u_{gs}\)}} \quad \text{m/s} \\
\textbf{S} & superficiële vloeistofsnelheid \text{\(u_{ls}\)}} \quad \text{m/s} \\
\textbf{S} & verwarmend oppervlak \text{\(V_O\)}} \quad \text{m}^2 \\
\textbf{S} & brutowinst \text{\(W_b\)}} \quad \text{f} \\
\textbf{S} & nettowinst \text{\(W_n\)}} \quad \text{f} \\
\textbf{S} & massa staal \text{\(W_s\)}} \quad \text{kg} \\
\textbf{S} & aantal buizen \text{\(z_i\)}} \quad - \\
\textbf{S} & volumedebiet \text{\(\Phi_v\)}} \quad \text{m}^3/\text{s} \\
\textbf{S} & viscositeit gas \text{\(\mu_g\)}} \quad \text{Pa*s} \\
\textbf{S} & viscositeit vloeistof \text{\(\mu_l\)}} \quad \text{Pa*s} \\
\textbf{S} & flowparameter \text{\(\phi\)}} \quad - \\
\end{tabular}
11. Literatuur

A new way to detoxify liquid organic wastes has been proposed for a central hazardous-waste-treatment facility in the Netherlands. Developed by UOP (Des Plaines, Ill.), the route, called direct contact hydrogenation (DCH), employs catalytic reduction (or hydroprocessing) to selectively remove such contaminants as halogens, sulfur, nitrogen, oxygen and organic metals from the waste. In addition to eliminating wastes, the route has the potential for producing value-added products (such as re-refined lube oil and various other gaseous and liquid hydrocarbons). The reducing environment avoids the formation of incompletely converted oxygenated byproducts (such as dioxins), and destroys them if present in the feed.

After a proprietary pretreatment step to remove tramp metals and other solids, the undiluted waste is mixed with hydrogen at elevated temperature (up to 350°C) and pressure (up to about 800 psi). The mixture then goes to a fixed-bed catalytic reactor, where the contaminant is converted to a form that can be recovered. For example, the chlorine in chlorinated wastes is converted to HCl and then removed. The reactor effluent is partially cooled by heat exchange with recirculating hydrogen gas, then further treated by conventional means (e.g., neutralization, fractionation, biotreatment). The solids, plus any high-molecular-weight sludge from the reactor, are stabilized prior to leaving the process unit.
BIJLAGE 2

\begin{align*}
[\text{CP}] & = [\text{HCl}]_0^*[\text{PAAN}]_0/(K_\text{r}(3)*[H_2]_0) + [\text{HCl}]_0/(K_\text{r}(3)*[H_2]_0)^*([\text{PAAN}]-[\text{PAAN}]_0) + [\text{PAAN}]_0/(K_\text{r}(3)*[H_2]_0)^*([\text{HCl}]-[\text{HCl}]_0) - [\text{HCl}]_0*[\text{PAAN}]_0/(K_\text{r}(3)*[H_2]_0^2)*([H_2]-[H_2]_0) \\
[\text{DCP}] & = [\text{HCl}]_0^*[\text{PAAN}]_0/(K_\text{r}(2)*K_\text{r}(3)*[H_2]_0^2) + [\text{HCl}]_0^*/(K_\text{r}(2)\cdot K_\text{r}(3)*[H_2]_0^2)*([\text{PAAN}]-[\text{PAAN}]_0) + 2*[\text{PAAN}]_0*[\text{HCl}]-[\text{HCl}]_0) - 2*[\text{HCl}]_0^*[\text{PAAN}]_0/(K_\text{r}(2)\cdot K_\text{r}(3)*[H_2]_0^3)*([H_2]-[H_2]_0) \\
[\text{TCP}] & = [\text{HCl}]_0^3*[\text{PAAN}]_0/(K_\text{r}(1)*K_\text{r}(2)*K_\text{r}(3)*[H_2]_0^3) + 3*[\text{PAAN}]_0*[\text{HCl}]-[\text{HCl}]_0) - 3*[\text{HCl}]_0^3*[\text{PAAN}]_0/(K_\text{r}(1)*K_\text{r}(2)*[H_2]_0^3)*([H_2]-[H_2]_0) \\
[\text{CPE}] & = [\text{HCl}]_0^*[\text{PEEN}]_0/(K_\text{r}(5)*[H_2]_0) + [\text{HCl}]_0/(K_\text{r}(5)*[H_2]_0)*([\text{PEEN}]-[\text{PEEN}]_0) + [\text{PEEN}]_0/(K_\text{r}(5)*[H_2]_0)*([\text{HCl}]-[\text{HCl}]_0) - 2*[\text{HCl}]_0^*[\text{PEEN}]_0/(K_\text{r}(4)\cdot K_\text{r}(5)*[H_2]_0^3)*([H_2]-[H_2]_0) \\
[\text{DCPE}] & = [\text{HCl}]_0^*[\text{PEEN}]_0/(K_\text{r}(4)*K_\text{r}(5)*[H_2]_0^3) + [\text{HCl}]_0^*/(K_\text{r}(4)\cdot K_\text{r}(5)*[H_2]_0^3)*([\text{PAAN}]-[\text{PAAN}]_0) + 2*[\text{PAAN}]_0*[\text{HCl}]-[\text{HCl}]_0) - 2*[\text{HCl}]_0^*[\text{PAAN}]_0/(K_\text{r}(4)\cdot K_\text{r}(5)*[H_2]_0^3)*([H_2]-[H_2]_0) \\
[\text{ARCL}] & = [\text{HCl}]_0^*[\text{AR}]_0/(K_\text{r}(6)*[H_2]_0) + [\text{AR}]_0/(K_\text{r}(6)*[H_2]_0)*([\text{HCl}]-[\text{HCl}]_0) + [\text{HCl}]_0/(K_\text{r}(6)*[H_2]_0)*([\text{AR}]-[\text{AR}]_0) - [\text{HCl}]_0*[\text{AR}]_0/(K_\text{r}(6)*[H_2]_0^2)*([H_2]-[H_2]_0) \\
[\text{HCl}]_0 & = 14.0 \\
[H_2]_0 & = 2.0 \\
[\text{PAAN}]_0 & = 1.7 \\
[\text{PEEN}]_0 & = 3.5 \\
[\text{AR}]_0 & = 1.7
\end{align*}
TITLE 'CATALYTIC DEHYDROHALOGENATION'

E.J. DE LEIJ
P.J.L. VERZIJL

DESCRIPTION 'SIMULATION OF A CATALYTIC DEHYDROHALOGENATION PROCESSE'

INPUT UNITS SI PRESSURE=BAR MOLE-FLOW=1000 Litre/SEC
OUTPUT UNITS SI PRESSURE=BAR MOLE-FLOW=1000 Litre/SEC

COMPONENTS 1. HYDROGEN / HCL HYDROGEN-CHLORIDE / AC BENEZEE /
ARCL CHLORO-PROPANE / CCL 1,2,3-TRICHLORO PROPANE /
DCE 1,2-DICHLORO PROPANE / CP ISOPROPYL-CHLORIDE /
C2E ALICYCLO-C HLOIDE / PE PROPYLENE / OCE

FLOW-SHEET

STREAM ACETONE 103 / 273 PRESS=1 MOLE-FLOW=10
MOLE-FRACTION 1.0
STREAM FEEDING TEM=293 PRES=1.0 MOLE-FLOW=7.0
MOLE-FRACTION 0.25 / DCE 0.25 / DCL 0.25 / ARCL 0.25

BLOCK FEED/PRES PARAN PRES=30.0
BLOCK SOLID/FLASH PARAN PRES=1.0 VRIAC=1
BLOCK FEED/COOL PARAN TEMP=293 PRES=1
BLOCK PRESH/AC PARAN PRES=30

BLOCK FIXED/FLASH PARAN PRES=30 DUR=60 SERIES=YES
SOLIC 1 MIXED DFR 1 / H2 1 / DCF 1 / HCL 1
SOLIC 2 MIXED DFR 1 / H2 1 / CP 1 / HCL 1
SOLIC 3 MIXED DFR 1 / H2 1 / PA 1 / HCL 1
SOLIC 4 MIXED DFR 1 / H2 1 / CPE 1 / HCL 1
SOLIC 5 MIXED DFR 1 / H2 1 / RE 1 / HCL 1
SOLIC 6 MIXED DFR 1 / H2 1 / AR 1 / HCL 1
C1 Li 1 MIXED DFR 1.0
C1 Li 2 MIXED DFR 1.0

Bijlage 3
CONV 3 MIXED CP 0.999
CONV 4 MIXED DCP 0.999
CONV 5 MIXED CPE 0.999
CONV 6 MIXED ARIL 1.999

FLASH SPEC
FLASH SPEC HEAVY PHASE = 1
FLASH SPEC HEAVY PHASE = 1
FLASH SPEC RHE PHASE = 1

; STREAM - REPORT MOLEFLOW MOLE FRAC
TITLE 'HCL ABSORBER SEC:11E'
;
IN-UNIITS SI PRES=bar MOL:E-FLOW='HCL/SEC'
;
DATABASES AQUEOUS
;
PROPERTIES SI=SOR1D HENRY-COMPS=LISII CHEMISTRY=ACID TRUE-COMPS=0
;
HENRY-COMPS LIST2 HCL H2 O PA PE
;
PROP-DATA
IN-UNIITS SI
PROP-LISU HENRY
KPVAL HCL H2 O 38.45/93 -7662.332 0.1 1077
PROP-LISU GHELCC / GHELCO / GHELCE / GHELCC
KPVAL H2 O (H+ CL-) 41.5/14 / 5323.1 / -5.404 / 0.28350-1
KPVAL (H+ CL-) H2 O -22.154 / -22.04.1 / 5.133 / 0.28350-1
KPVAL HCL (H+ CL-) 1.011
KPVAL (H+ CL-) HCL -3.801
;
CHEMISTRY ACID
STOIC I HCL H+ 1 / H2 O 1 / CL- 1
;
COMPONENTS H2 O H2 O / HCL HCL / H2 O H2 O / PA PROPAINE /
PE PROPYLENE / H+ H+ / CL- CL-
;
STREAM GAS TEMPERATURE 30.0 PRES=50.0
MOL:FLOW H2 O 0.1348 / H2 23.9459 / HCL 2.2706E-2 / PA 3.4946 / PE 1.7416
STREAM CAUSTIC TEMPERATURE 62.98 PRES=50.0
MOL:FLOW H2 O 1.0
STREAM AFGAS TEMPERATURE 30.0 PRES=50.0
MOL:FLOW PA 3.42 / PE 1.7 / HCL 1E-5 / H2 25.9 / H2 O 0.101
;
FLOW-SHEET
BLOCK COOLER IN=GAS AQUA OUT=AFGAS SOLUS
BLOCK ABSORBER IN=AFGAS CAUSTIC OUT=WM AQUA
;
BLOCK COOLER FLASH
PARAM PRES=0 TEMPERATURE=370.0
;
BLOCK ABSORBER RADFRAC
PARAM NS:AGE=2 ALGORITHM=NONIDEAL FLASH-HAXIT=100
FEEDS CAUSTIC 1 ON-STAGE / AFGAS 2 ON-STAGE
PRODUCTS K=1 V / AQUA 2
r=SPEC 1 30.0 / 2 50.0
COL-SPECIFS MOL:FLOW=1 Q1=0 QN=0
STAGE-EFF 1 1.0
1-EST 1 340 / 2 360
;
RUN-CONTROL MAX-TIME=5000
;
STREAM-REPORT MOL:FLOW MOL:FRAC
;
TITLE 'POLISHING REACTOR GEODELSE'

PROPERTIES SIOP4

IN-UNITS SI PRESS=3BAR MOLE-FLOW='MOL/SEC'

COMPONENTS H2O H2O / HCL HCL / H2 H2 / AR RENZENE / ARCL CHLORORENZENE / DC 1,2,3-TRICHLOROPROPANE / DC 1,2-CHLOROPROPANE / CP T2-PROPYLEN-CHLORIDE / CPE ALLYL-CHLORIDE / PA PROPANE / PE PROPYLENE / LCPE

ESTIMATE

STRUCTURES

STRUCTURES UCPE CL1 C5 S / CL2 C5 S / C3 C4 D / C4 C5 S

FOM-DATA

IN-UNITS SI DIPOLE-MOMENT=DEBYE

FOM-LIST 20 / 10

FVAL UCPE 342 / 1.65

FVAL LCPE 430 / 1.61

FLOW-SHEET

BLOCK HEAVYBIJ IN=K, HEAVI OUT=FEDPOL

BLOCK HEATPOL IN=FEDPOL OUT=POLOUT

BLOCK POLISHER IN=FEDPOL OUT=POLOUT

BLOCK HEAVYBIJ FREE

STREAM HEAVY TEMP=516.084 PRESS=51

STREAM AR TEMP=310.758 PRESS=30

MOLE-FLOW H2O 1.4594E-2 / H2 2.0021 / PA 5.4724 / PE 1.7139 / HCL 1.4085E-2

BLOCK HEAVYBIJ MIXER PARAH PRESS=30.0

BLOCK HEATPOL HEATER PARAHE TEMP=500 PRESS=50

BLOCK POLISHER RSTOIC PARAHO PRESS=50.0 DUTY=U.L SERIES=YES

STOIC 1 MIXED TCP -1 / H2 -1 / DCP 1 / HCL 1

STOIC 2 MIXED DCP -1 / H2 -1 / CP 1 / HCL 1

STOIC 3 MIXED CP -1 / H2 -1 / PA 1 / HCL 1

STOIC 4 MIXED CPE -1 / H2 -1 / CPE 1 / HCL 1

STOIC 5 MIXED CPE -1 / H2 -1 / PE 1 / HCL 1

STOIC 6 MIXED ARCL -1 / H2 -1 / AR 1 / HCL 1

CONV 1 MIXED TCP 0.799

CONV 2 MIXED DCP 0.799

CONV 3 MIXED CP 0.799

CONV 4 MIXED CPE 0.799

CONV 5 MIXED CPE 0.799

CONV 6 MIXED ARCL 0.799

BLOCK HEAVYBIJ SEP PARAHS=HEAVY2 COMPONENTS=PA PE AR LCPE DCP CP DCE CPE ARCL & PARAHS=1.0 PARAHS=1.0 PARAHS=1.0 PARAHS=1.0 PARAHS=1.0 PARAHS=1.0 PARAHS=1.0

FLASH-SCCS HEAVY2 PHASE=1

FLASH-SCCS FREE PHASE=1
TITLE 'HCL ABSORBER SECTION';
IN-UNITS SI PRES=BAR MOLE-FLOW='HCL/SEC';
DATA BANKS AQUEOUS;
PROPERTIES SISOP15 HENRY-COMPS=LIST1 CHEMISTRY=ACID TRUE-COMPS=3;
HENRY-COMPS LIST1 HCL H2 PA PE;
PROP-DATA
IN-UNITS SI
PROP-LIST HENRY
DEVAL HCL FIC 55.45995 -76.07.352 0.0 0.1
PROP-LIST G=ELCC / G=ELCO / G=ELCE / G=ELCM
DEVAL H2 (H + CL-) 41.974 / 23.053.1 / -0.404 / L.2X350-1
DEVAL (H + CL-) H2O -22.154 / -22.044 / 5.183 / 0.2X350-1
DEVAL HCL (H + CL-) 0.1
DEVAL (H + CL-) HCL -7.001
CHEMISTRY ACID
SLOGIC HCL -1 / H+ 1 / CL- 1
COMPONENTS H2O H2 / HCL HCL H2 H2 / PE PROPANE /
PE PROPYLENE / H+ H+ / CL- CL-
STREAM GAS TEMP=805.972 PRES=30.0
MOLE-FLOW H2 2.6271 / HCL 15.7172 / PA 5.4912 / PE 1.7455
STREAM AQUAMIC TEMP=298 PRES=30.0
MOLE-FLOW H2O 4.356
STREAM AFGAS TEMP=370 PRES=30.0
MOLE-FLOW PA 3.14 / PE 1.17 / HCL 1 / H2 30 / H2O 0.2
FLOW SHEET
BLOCK COOLER IN=GAS AFGAS OUT=AFGAS ZOUTZUUR
BLOCK ABSORBER IN=AFGAS AQUAFEED OUT=AW AQUA

BLOCK COOLER FLASH2
PARAM PRES=370.0

DESIGN SPEC HCL-COND
DEFINE AG HOLE-FLOW STREAM=ZOUTZUUR COMPONENT=H20
DEFINE ZZ HOLE-FLOW STREAM=ZOUTZUUR COMPONENT=HCL
P VERP=22/AW
SPEC VERM TO 0.243
WOL-SPEC =0.01
VAR STREAM-MVAR STREAM=AQUAFEED VARIABLE=MOLE-FLOW LIMITS 25 1

BLOCK ABSORBER RADFRAC
PARAM N-STAGE=2 ALGORITHM=NONIDEAL FLASH-MAXIT=100
FEEDS AQUAFEED 1 ON-STAGE / AFGAS 2 ON-STAGE
PRODUCTS KM 1 V / AWUA 2
T-SPEC 1 50.0 / 70.0
COL-SPECS HOLE=REV=1 SM=1 WHEN=1
STAGE-EFF 1 1.0
T-EST 1 540 / 2 500

CON-CONTROL MAX-RATE=5.00

STREAM-REPORT MOLEFLOW RADFRAC;
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN CONTROL SECTION</td>
<td>1</td>
</tr>
<tr>
<td>RUN CONTROL INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>BLOCK STATUS</td>
<td>1</td>
</tr>
<tr>
<td>FLOWSHEET SECTION</td>
<td>2</td>
</tr>
<tr>
<td>FLOWSHEET CONNECTIVITY BY STREAMS</td>
<td>2</td>
</tr>
<tr>
<td>FLOWSHEET CONNECTIVITY BY BLOCKS</td>
<td>2</td>
</tr>
<tr>
<td>CONVERGENCE BLOCK: SOLVER1</td>
<td>2</td>
</tr>
<tr>
<td>COMPUTATIONAL SEQUENCE</td>
<td>2</td>
</tr>
<tr>
<td>OVERALL FLOWSHEET BALANCE</td>
<td>2</td>
</tr>
<tr>
<td>PHYSICAL PROPERTIES SECTION</td>
<td>4</td>
</tr>
<tr>
<td>COMPONENTS</td>
<td>4</td>
</tr>
<tr>
<td>V-0-S BLOCK SECTION</td>
<td>5</td>
</tr>
<tr>
<td>BLOCK: ABSORBER MODEL: RADFRAC</td>
<td>5</td>
</tr>
<tr>
<td>BLOCK: COOLER MODEL: FLASH</td>
<td>7</td>
</tr>
<tr>
<td>STREAM SECTION</td>
<td>9</td>
</tr>
<tr>
<td>RFSAS, ACOL, CAUSTICE, GAS INF.</td>
<td>9</td>
</tr>
<tr>
<td>SALTSOL</td>
<td>10</td>
</tr>
</tbody>
</table>
RUN CONTROL INFORMATION

THIS VERSION OF ASPEN PLUS LICENSED TO TECHNISCHE HOESCHOOL DELFT

TYPE OF RUN: NEW

INPUT FILE NAME: UD: [VERCOULEN]ABS.INP

OUTPUT FILE NAME: UD: [VERCOULEN]ABS.OUT

LOCATED IN: UD: [VERCOULEN]

PDF SIZE USED FOR INPUT TRANSLATION:
NUMBER OF FILE RECORDS (PSIZE) = 94999
NUMBER OF IN-CORE RECORDS = 760
PSIZE NEEDED FOR SIMULATION = 69

CALLING PROGRAM NAME: UD: [VERCOULEN]

LOCATED IN: UD: [VERCOULEN]

SIMULATION REQUESTED FOR ENTIRE FLOWSHEET:

BLOCK STATUS

*** ALL UNIT OPERATION BLOCKS WERE COMPLETED NORMALLY ***
*** ALL CONVERGENCE BLOCKS WERE COMPLETED NORMALLY ***
ASPN PLUS VER: VAX-VMS REL: 0.2-4 INST: TU-DELFT 2/13/90 PAGE 2

HCL ABSORBER SECTION

FLOW SHEET CONNECTIVITY BY STREAMS

<table>
<thead>
<tr>
<th>STREAM</th>
<th>SOURCE</th>
<th>DEST</th>
<th>STREAM</th>
<th>SOURCE</th>
<th>DEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS</td>
<td>----</td>
<td>COOLER</td>
<td>CAUSTIC</td>
<td>----</td>
<td>ABSORBER</td>
</tr>
<tr>
<td>AFGAS</td>
<td>COOLER</td>
<td>ABSORBER</td>
<td>SALTSOL</td>
<td>COOLER</td>
<td>AQUA</td>
</tr>
<tr>
<td>KH</td>
<td>ABSORBER</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

FLOW SHEET CONNECTIVITY BY BLOCKS

<table>
<thead>
<tr>
<th>BLOCK</th>
<th>INLETS</th>
<th>OUTLETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOLER</td>
<td>GAS AQUA</td>
<td>AFGAS SALTSOL</td>
</tr>
<tr>
<td>ABSORBER</td>
<td>AFGAS CAUSTIC</td>
<td>KH AQUA</td>
</tr>
</tbody>
</table>

CONVERGENCE BLOCK: SOLVER01

LEARN STREAM: AFGAS
TOLERANCE USED: -6.0000-06
TRACE MOLEFRAC: 0.1000-05

MAX/INTERVAL: 100 MINIMAL VALUE OF FUNCTION = 0.0000
CONVERGENCE STATUS: CONVERGED
TOTAL NUMBER OF ITERATIONS: 5

TOTAL MOLEFLOW MOL/SEC:
- H2O: 1.320606000+02
- HCL: 1.040774000+01
- H2: 2.558550000+05
- HCL H2: 2.259462000+02
- H2HCL: 3.494835000+01
- H2HCLH2: 1.744133000+01
- H2H2HCL: 0.000000000+00
- H2H2H2: 0.000000000+00

PRESSURE BAR:
- MASS ENTHALPY J/Kg:
- 0.300000000+00
- 168243100+07

ERROR/DOL:
- 1.320606000+02
- 1.040774000+01
- 2.558550000+05
- 2.259462000+02
- 3.494835000+01
- 1.744133000+01
- 0.000000000+00
- 0.000000000+00

COMPUTATIONAL SEQUENCE:

| SEQUENCE USED WAS: |
| SOLVER01 | ABSORBER | COOLER | SOLVER01 |

OVERALL FLOWSHEET BALANCE

Overall Flowsheet Balance (Continued)

Mass and Energy Balance

<table>
<thead>
<tr>
<th>Component</th>
<th>In (mol/sec)</th>
<th>Out (mol/sec)</th>
<th>Relative Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>10.1040</td>
<td>10.1040</td>
<td>0.29906E-06</td>
</tr>
<tr>
<td>HCl</td>
<td>0.22770E-01</td>
<td>1.22770E-01</td>
<td>0.03459E-08</td>
</tr>
<tr>
<td>H₂</td>
<td>25.9459</td>
<td>25.9459</td>
<td>0.21237E-08</td>
</tr>
<tr>
<td>Pₐ</td>
<td>3.4948</td>
<td>3.4948</td>
<td>0.13462E-07</td>
</tr>
<tr>
<td>H⁺</td>
<td>1.74180</td>
<td>1.74180</td>
<td>0.41785E-07</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Total</td>
<td>41.36092</td>
<td>41.36092</td>
<td>0.71502E-07</td>
</tr>
<tr>
<td>Mass (kg/sec)</td>
<td>1.432565</td>
<td>0.462365</td>
<td>0.10539E-06</td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>-0.23570E+07</td>
<td>-1.37899E+07</td>
<td>0.84095E-01</td>
</tr>
<tr>
<td>ID</td>
<td>TYPE</td>
<td>FORMULA</td>
<td>NAME or ALIAS</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>H2O</td>
<td>C</td>
<td>H2O</td>
<td>H2O</td>
</tr>
<tr>
<td>HCL</td>
<td>C</td>
<td>HCL</td>
<td>HCL</td>
</tr>
<tr>
<td>H2</td>
<td>C</td>
<td>H2</td>
<td>H2</td>
</tr>
<tr>
<td>PA</td>
<td>C</td>
<td>C3H8</td>
<td>PROPANE</td>
</tr>
<tr>
<td>PE</td>
<td>C</td>
<td>C3H6+2</td>
<td>PROPYLENE</td>
</tr>
<tr>
<td>H+</td>
<td>C</td>
<td>H+</td>
<td>H+</td>
</tr>
<tr>
<td>CL-</td>
<td>C</td>
<td>CL-</td>
<td>CL-</td>
</tr>
</tbody>
</table>

LISTID: SUPERCRITICAL COMPONENT LIST

LIST1: HCL, H2, PA, PE
BLOCK: ABSORBER MODEL: KAUFNAC

INLETS - AFGAS STAGE 2
CAUSTIC STAGE 1
OUTLETS - KW STAGE 1
AMIA STAGE 2

PROPERTY OPTION SET: SYSOP15
HENRI-COMPS ID: LIST
CHEMISTRY ID: ACID - APPARENT COMPONENTS
FREE WATER OPTION SET: SYSOP12
SOLUBLE WATER OPTION: ORGANIC OPTION SET

*** MAIS AND ENERGY BALANCE ***

IN : OUT

TOTAL BALANCE	42.2607	42.2607	0.69697E-07
MASS (1/SEC)	0.479284	0.479284	0.10172E-06
ENTHALPY (J/AT)	-0.33629E+07	-0.33629E+07	-1.29659E-06

*** INPUT DATA ***

**** INPUT PARAMETERS ****

NUMBER OF STAGES 2
ALGORITHM OPTION NONIDEAL
ABSORBER OPTION NO
INITIALIZATION OPTION STANDARD
INSIDE LOOP CONVERGENCE METHOD HULTEN
MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS 25
MAXIMUM NO. OF INSIDE LOOP ITERATIONS 100
MAXIMUM NUMBER OF FLASH ITERATIONS FLUSH TOLERANCE
OUTSIDE LOOP CONVERGENCE TOLERANCE 0.0001

**** COL-SPECs ****

MOLAR VAPOR D/L / TOTAL DIST 1.00000
CONDENSER DUTY (W/0 SURCOOL) WATT 0.0
REBOILER DUTY WATT 0.0
Profiles

Stage 1 Pressure (bar)
- Stage 1: 30.000
- Stage 2: 30.770

Stage 1 Temperature (K)
- Stage 1: 560.000
- Stage 2: 360.110

Tray Vaporization Efficiency

Stage 1 Efficiency
- 1.0000

Results

For Stage Temperature (K)
- 345.314

Bottom Stage Temperature (K)
- 355.160

Top Stage Liquid Flow (mol/sec)
- 0.00000

Bottom Stage Liquid Flow (mol/sec)
- 10.0419

Top Stage Vapor Flow (mol/sec)
- 30.5498

Bottom Stage Vapor Flow (mol/sec)
- 32.0472

Condenser Duty (Watt)
- 0.7

Reboiler Duty (Watt)
- 0.0

Maximum Final Relative Errors

Dew Point
- 0.15272E+00

Bubble Point
- 0.3271E+04

Component Mass Balance
- 0.34605E+05

Energy Balance
- 0.70045E+05

Profiles

Stage Temperature (K)
- Stage 1: 345.00
- Stage 2: 305.10

Pressure (bar)
- Stage 1: 30.00
- Stage 2: 30.00

Enthalpy (J/kgmol)
- Liquid
- Vapor

Heat Duty (Watt)
- Condenser: 0.7
- Reboiler: 0.0
BLOCK: ABSORBER MODEL: RADFRAC (CONTINUED)

<table>
<thead>
<tr>
<th>STAGE</th>
<th>FLOW RATE MOL/SEC</th>
<th>FEED RATE MOL/SEC</th>
<th>PRODUCT RATE MOL/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIQUID VAPOR</td>
<td>LIQUID VAPOR</td>
<td>MIXED LIQUID VAPOR</td>
</tr>
<tr>
<td>1</td>
<td>10.044</td>
<td>31.05</td>
<td>10.0077</td>
</tr>
<tr>
<td>2</td>
<td>10.001</td>
<td>52.09</td>
<td>10.0108</td>
</tr>
</tbody>
</table>

**** X-PROFILE ****

<table>
<thead>
<tr>
<th>STAGE</th>
<th>X-PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.99958</td>
</tr>
<tr>
<td>2</td>
<td>0.9956</td>
</tr>
</tbody>
</table>

**** Y-PROFILE ****

<table>
<thead>
<tr>
<th>STAGE</th>
<th>Y-PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.14691E-01 0.69029E-14 0.33722E-05 0.35393E-04 0.55604E-04</td>
</tr>
<tr>
<td>2</td>
<td>0.28186E-01 0.29562E-03 0.33469E-03 0.32754E-04 0.50715E-04</td>
</tr>
</tbody>
</table>

**** X-VALUES ****

<table>
<thead>
<tr>
<th>STAGE</th>
<th>X-VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.14698E-01 0.33660E-15 24.323 3119.7 939.4</td>
</tr>
<tr>
<td>2</td>
<td>0.28196E-01 0.57993E-13 7414.0 7321.3 1074.3</td>
</tr>
</tbody>
</table>

BLOCK: COOLER MODEL: FLASH2

INLET STREAM(S): GAS AQUA
OUTLET VAPOR STREAM: AFGAS
OUTLET LIQUID STREAM: SALT SOL
PROPERTY OPTION SET: SYSOP15
HENRY-COMPS ID: LIST1
CHEMISTRY ID: ACID - APPARENT COMPONENTS
FREE WATER OPTION SET: SYSOP12
SOLUBLE WATER OPTION: ORGANIC OPTION SET

*** MASS AND ENERGY BALANCE ***

<table>
<thead>
<tr>
<th>TOTAL BALANCE</th>
<th>IN</th>
<th>OUT</th>
<th>RELATIVE DIFF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLEC MOL/SEC</td>
<td>41.9201</td>
<td>41.9201</td>
<td>0.211874E-16</td>
</tr>
<tr>
<td>MASS KG/SEC</td>
<td>0.473536</td>
<td>0.473536</td>
<td>0.43961E-16</td>
</tr>
<tr>
<td>ENTHALPY (WATT)</td>
<td>-0.29476E+07</td>
<td>-0.32079E+07</td>
<td>0.809569E-01</td>
</tr>
</tbody>
</table>

*** INPUT DATA ***

TWO PHASE IN FLASH
SPECIFIED TEMPERATURE K 370.000
PRESSURE DROP BAR 0.1
MAXIMUM NO. ITERATIONS 50
CONVERGENCE TOLERANCE 0.00011100
BLOCK: COOLER MODEL: FLASH2 (CONT.)

OUTLET TEMPERATURE	570.70
OUTLET PRESSURE	50.000
HEAT JUXT	-0.25985E+06
VAPOR FRACTION	6.709E-5

V-L PHASE EQUILIBRIUM:

<table>
<thead>
<tr>
<th>COMP</th>
<th>F(I)</th>
<th>X(I)</th>
<th>Y(I)</th>
<th>K(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>0.25356</td>
<td>0.99773</td>
<td>0.33408E-01</td>
<td>0.33501E+01</td>
</tr>
<tr>
<td>HCL</td>
<td>0.54172E-02</td>
<td>0.23657E+02</td>
<td>0.38604E-07</td>
<td>0.37693E-04</td>
</tr>
<tr>
<td>H2</td>
<td>0.81907</td>
<td>0.53846E-03</td>
<td>0.80427</td>
<td>2.390.4</td>
</tr>
<tr>
<td>PA</td>
<td>0.53576E-01</td>
<td>0.31938E-04</td>
<td>0.10833</td>
<td>3385.7</td>
</tr>
<tr>
<td>PE</td>
<td>0.41563E-01</td>
<td>0.52929E-04</td>
<td>0.55993E-01</td>
<td>1074.9</td>
</tr>
</tbody>
</table>
AFGAS AQUA CAUSLICF GAS KW

STREAM 1D
- **AFGAS**
- **AQUA**
- **CAUSLICF**
- **GAS**
- **KW**

FROM:
- COOLER
- ABSORBER

TO:
- COOLER
- ABSORBER

SUBSTREAM: MIXED

PHASE:
- VAPOR
- LIQUID

COMPONENTS:
- **H2O**
- **HCL**
- **H2**
- **PA**
- **PE**
- **H+**
- **CL-**

MOL/SEC

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>VAPOR</th>
<th>LIQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>1.0/7</td>
<td>10.0/34</td>
</tr>
<tr>
<td>HCL</td>
<td>2.85/4</td>
<td>2.85/35</td>
</tr>
<tr>
<td>H2</td>
<td>3.94/6</td>
<td>3.94/6</td>
</tr>
<tr>
<td>PA</td>
<td>3.45/4</td>
<td>3.45/4</td>
</tr>
<tr>
<td>PE</td>
<td>1.74/8</td>
<td>1.74/8</td>
</tr>
<tr>
<td>H+</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CL-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

VOL FRACTION

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>VAPOR</th>
<th>LIQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>5.54/8 0.9995</td>
<td></td>
</tr>
<tr>
<td>HCL</td>
<td>3.16/7 0.9935</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0.8/42 0.8489</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>0.10/63 0.1273</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>5.37/3 0.1273</td>
<td></td>
</tr>
<tr>
<td>H+</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CL-</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL FLOW:
- **MOL/SEC**
- **Kg/SEC**
- **CUI3/SEC**

<table>
<thead>
<tr>
<th>VAPOR</th>
<th>LIQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0/00</td>
<td></td>
</tr>
<tr>
<td>0.18/01</td>
<td></td>
</tr>
<tr>
<td>0.28/04</td>
<td></td>
</tr>
</tbody>
</table>

STATE VARIABLES:
- **T**
- **P**
- **VFRAC**
- **LFRAC**
- **SFRAC**

<table>
<thead>
<tr>
<th>VAPOR</th>
<th>LIQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0/00</td>
<td></td>
</tr>
<tr>
<td>0.18/01</td>
<td></td>
</tr>
<tr>
<td>0.28/04</td>
<td></td>
</tr>
</tbody>
</table>

ENTHALPY:
- **J/KMOL**
- **J/KG**
- **WAFF**

<table>
<thead>
<tr>
<th>VAPOR</th>
<th>LIQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.56/00/91/7</td>
<td></td>
</tr>
<tr>
<td>-1.06/25/12/0</td>
<td></td>
</tr>
<tr>
<td>-5.03/26/13/5</td>
<td></td>
</tr>
</tbody>
</table>

ENRCHP:
- **J/KMOL-K**
- **J/KG-K**

<table>
<thead>
<tr>
<th>VAPOR</th>
<th>LIQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.29/09/09/4</td>
<td></td>
</tr>
<tr>
<td>-7/56/09/09/1</td>
<td></td>
</tr>
</tbody>
</table>

DENSITY:
- **KMOl/CUM**
- **Kg/CUM**
- **AVG**

<table>
<thead>
<tr>
<th>VAPOR</th>
<th>LIQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.97/52</td>
<td></td>
</tr>
<tr>
<td>9.2/24</td>
<td></td>
</tr>
<tr>
<td>7.2/24</td>
<td></td>
</tr>
</tbody>
</table>

SALT SOL

STREAM ID: SALT SOL
FROM: CUDLER
TO: -----

SUBSTREAM: MIXED
PHASE: LIQUID
COMPONENTS: MOL/SEC
H2O 9.0626
HCl 2.2706E-02
H2 5.7500E-05
HA 5.0897E-04
HE 4.6519E-04
H+ 0.0
CL- 0.0

COMPONENTS: FRA FRA:
H2O 0.9072
HCl 2.2597E-05
H2 5.2046E-04
HA 5.1937E-05
HE 5.0229E-05
H+ 0.0
CL- 0.0
TOTAL FLOW:
MOL/SEC 9.0694
KG/SEC 0.1744
CONF/SEC 1.0262E-04

STATE VARIABLES:
T (K) 370.1000
PRES (BAR) 50.000
VFrac 0.0
LFRAC 1.0000
SRAC 0.0

ENTHALPY:
J/KMOL -2.6018+00
J/KG -1.5513+07

ENTROPY:
J/KMOL*K -1.4674+05
J/KG*K -5127.5011

DENSITY:
KMOL/CM3 23.2594
KG/CM3 9.321592
AVG MW 16.0557
Katalytische hydrodehalogenering van gechloreerde koolwaterstoffen

E.T. de Leeuw
P.H.W. Vercoulen
Reactor + Vorflasche
Aussch. 1
10 / 1 \ H₂ / He's

\[P_\text{H}_2 > 20 \text{ atm} \]

Verdampungs-Reactor
Verwärmer
Neste forms US research venture

Neste is to set up a joint venture in Santa Barbara, California, to study and develop high-tech applications for conductive polymers, and the potential for turning them into commercial products. Its partners will be two leading names in the US conductive polymer research world, professors Alan Heeger and Paul Smith of the University of California at Santa Barbara. Neste will hold a 50 per cent share.

The joint venture, to be called Unixx Corp, will develop and manufacture conductive and oriented polymers on an experimental scale, and market high-tech applications based on these materials for use by the electronics, aerospace, automotive and similar industries.

Unixx will draw on the extensive conductive polymer research carried out over a number of years by professors Heeger and Smith and Neste’s research work in the field dating back to 1982.

The results of this research have made it possible to combine the technical, optical and mechanical properties of conductive polymers in a unique way, to produce polymers with a level of conductivity and mechanical strength similar to that possessed by metals, Neste claims.

Through the joint venture, Neste says it will acquire a good position on the conductive polymer and related applications market. Unixx Corp is also expected to handle three main byproduct effluents from a VCM plant: EDC/VCM heavies, EDC lights and chlorinated organic gases present in the vent gases.

Pilot plant studies carried out by Unixx indicate the net impact of integration of the process with VCM production is to reduce the quantity of raw materials (chlorine and ethane) for an equivalent VCM yield, and to eliminate EDC lights and EDC/VCM heavies, two major hazardous waste streams.

Next to the elimination of waste streams, the most significant impact of integration is the effect on the chlorine demand. “The chlorine demand of the VCM production facility is reduced by approximately 7 per cent with the integration of the process and pretreatment units.”

Operating costs for the Unixx process, excluding labour and maintenance, are estimated by the company to be less than $50/ton chlorinated feed, or about $5/t of VCM produced. The primary costs are for the hydrogen — which should have a cost equivalent to its fuel value, and the compression power requirement.

Moreover, the company estimates that annual maintenance needs for a process unit are comparable to hydroprocessing applications encountered in the petroleum refining industry and should be no greater than 3.0-3.5 per cent of capital investment.

Unixx concludes that integration into a new grass roots facility or into a major expansion in the US should have a cost equivalent to its fuel value, and the compression power requirement.

Moreover, the company estimates that annual maintenance needs for a process unit are comparable to hydroprocessing applications encountered in the petroleum refining industry and should be no greater than 3.0-3.5 per cent of capital investment.

Unixx concludes that integration into a new grass roots facility or into a major expansion in the US should have a cost equivalent to its fuel value, and the compression power requirement.

Moreover, the company estimates that annual maintenance needs for a process unit are comparable to hydroprocessing applications encountered in the petroleum refining industry and should be no greater than 3.0-3.5 per cent of capital investment.

Unixx concludes that integration into a new grass roots facility or into a major expansion in the US should have a cost equivalent to its fuel value, and the compression power requirement.

Moreover, the company estimates that annual maintenance needs for a process unit are comparable to hydroprocessing applications encountered in the petroleum refining industry and should be no greater than 3.0-3.5 per cent of capital investment.

Unixx concludes that integration into a new grass roots facility or into a major expansion in the US should have a cost equivalent to its fuel value, and the compression power requirement.

Moreover, the company estimates that annual maintenance needs for a process unit are comparable to hydroprocessing applications encountered in the petroleum refining industry and should be no greater than 3.0-3.5 per cent of capital investment.

Unixx concludes that integration into a new grass roots facility or into a major expansion in the US should have a cost equivalent to its fuel value, and the compression power requirement.

Moreover, the company estimates that annual maintenance needs for a process unit are comparable to hydroprocessing applications encountered in the petroleum refining industry and should be no greater than 3.0-3.5 per cent of capital investment.
Het gewijzigde deel van het processchema (zie FVO verslag nr:2826) ziet er als volgt uit (figuur 1)

De chloorkoolwaterstoffenstroom (HKW's) bestaande uit 25 mol% trichloorpropaan, dichloorpropaan, dichloorpropeen en chloorbenzeen komt met 298 K en 1 bar het proces binnen. In pomp P1 wordt de stroom op 30 bar gebracht. In H2 wordt de stroom opgewarmd tot 500 K waarna in flasher V3 de eventueel aanwezige vaste stoffen afgescheiden worden. Om de koolwaterstoffen te vervluchtigen wordt gebruikt gemaakt van waterstof die de flasher op 600 K en 30 bar binnenkomt. Hierna wordt aan deze stroom een hoeveelheid waterstof toegevoegd zodat er een tienvoudige overmaat waterstof is. Vervolgens worden de HKW's in reactor R5 omgezet volgens de in het verslag
beschreven reacties. De reactor wordt gekoeld met water zodanig dat de uitgaande stroom een temperatuur heeft van 800 K. Deze uitgaande stroom wordt gebruikt om de waterstofstroom op te warmen.

Het processchema is met behulp van ASPEN doorgerekend. Voor de massa- en warmte balans zie het specificatieblad. Met betrekking tot de warmte integratie is gezocht naar een optimum voor de flasher waarbij de variabelen de ingaande HKW temperatuur, de ingaande waterstof temperatuur en de hoeveelheid waterstof waren. De hoogte van de temperatuur van de HKW stroom is beperkt i.v.m. de thermische stabiliteit van het mengsel en de temperatuur van het verwarmend medium. De temperatuur van de totale waterstof stroom is gesteld op 600 K, de temperatuur waarop het reactiemengsel de reactor ingaat. De hoeveelheid waterstof beschikbaar voor de flasher varieert tussen de nul en zeventig mol, maar deze hoeveelheid moet wel weer opnieuw op druk gebracht worden.

Via een sensitivity block in ASPEN bleek dat voor een ingaande HKW temperatuur van 500 K, een hoeveelheid van 13 mol waterstof per seconde nodig is. Zie figuur 2.

Figuur 2: percentage verdamp als functie van de ingaande HW temperatuur en de hoeveelheid waterstof
De vrijkomende warmte in de reactor warmte kan gebruikt worden om de temperatuur van de uitgaande stroom te verhogen of de warmte kan via een koelsysteem afgevoerd worden. Een probleem bij het ontwerpen van een koelsysteem, vanwege de aanname van momentaan evenwicht, is waar deze geplaatst moet worden. Hier wordt verondersteld dat het mogelijk is via zogenaamde 'inter-stage cooling' een aanvaardbaar temperatuur profiel in de reactor te creëren. Dit aspect is verder niet bekeken.

Hier is er voor gekozen dat de uitgaande stroom een temperatuur van 800 K heeft. Deze stroom kan dan gebruikt worden om de waterstofstroom voor te verwarmen terwijl de temperatuur van de produktstroom waarschijnlijk (er zijn geen kinetiek gegevens voorhanden) voldoende laag blijft om ongewenste reacties te voorkomen. De hoeveelheid warmte die dan nog afgevoerd moet worden is gelijk aan 0.357 MW. Aangezien deze warmte niet voldoende is om een redelijke hoeveelheid stoom te produceren of om stromen verderop in het proces te verwarmen, wordt deze warmte afgevoerd met koelwater. Wanneer de temperatuursstijging van het koelwater 15 °C is dan komt dit overeen met 5.7 kg/s.
<table>
<thead>
<tr>
<th>Componenten</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>TCP</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>DCP</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>CP</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>Propaan</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>DCPE</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>CPE</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>HCl</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>Ar</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>Totaal:</td>
<td>7</td>
<td>-813,2</td>
<td>7</td>
<td>-576,9</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenten</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>13</td>
<td>70</td>
<td>56,0222</td>
<td>70</td>
</tr>
<tr>
<td>TCP</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>DCP</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>CP</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>Propaan</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>DCPE</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>CPE</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>HCl</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>Ar</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>Totaal:</td>
<td>20</td>
<td>77</td>
<td>324,9</td>
<td>70</td>
</tr>
</tbody>
</table>

M in mol/s
Q in kW
Stroom/Componenten staat
<table>
<thead>
<tr>
<th>Stroom</th>
<th>Massa in kg</th>
<th>Warmte in kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>614,5</td>
<td>4214</td>
</tr>
<tr>
<td>81</td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- Stroom 70: Massa 614,5 kg, Warmte 4214 kW
- Stroom 81: Massa 270 kg

Fabrieksvoortwerp
<table>
<thead>
<tr>
<th>Apparaat No.</th>
<th>benzine</th>
<th>olie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benaming, type</td>
<td>polytropisch centrifugaal compresor</td>
<td>pomp</td>
</tr>
<tr>
<td>te verpompen medium</td>
<td>HKW's + H2</td>
<td>HKW's</td>
</tr>
<tr>
<td>Capaciteit in kg/s</td>
<td>0,873</td>
<td>0,85</td>
</tr>
<tr>
<td>Dichtheid in kg/m³</td>
<td>(\text{wet}: 1.41)</td>
<td>(1.63)</td>
</tr>
<tr>
<td></td>
<td>(\text{ma}: 26.7)</td>
<td></td>
</tr>
<tr>
<td>Zuig-/persdruk in bar (abs. of st.)</td>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>temp. in °C in / uit</td>
<td>102/33</td>
<td>25/31</td>
</tr>
<tr>
<td>Vermogen in kW theor./ prakt.</td>
<td>303,8</td>
<td>7,2</td>
</tr>
<tr>
<td>Speciaal te gebruiken mat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aantal serie/paralleel</td>
<td>3 trappen</td>
<td>1</td>
</tr>
</tbody>
</table>

* aangeven wat bedoeld wordt
ALGEMENE EIGENSCHAPPEN

<table>
<thead>
<tr>
<th>Funktie</th>
<th>Warmtewisselaar*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>floating head</td>
</tr>
<tr>
<td></td>
<td>haargapeld</td>
</tr>
<tr>
<td></td>
<td>dubbele pijp</td>
</tr>
<tr>
<td></td>
<td>platenwarmtewisselaar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uitvoering</th>
<th>met vaste pijpplaten*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L = 1.14</td>
</tr>
<tr>
<td></td>
<td>d = 0,254</td>
</tr>
<tr>
<td></td>
<td>d = 0,19</td>
</tr>
<tr>
<td></td>
<td>d = 0,15</td>
</tr>
<tr>
<td></td>
<td>44 buizen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positie</th>
<th>horizontaal/vertikaal*</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kapaciteit</th>
<th>229,7 kW (berekend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmtewisselend oppervlak</td>
<td>3 m² (berekend)</td>
</tr>
<tr>
<td>Overallwarmteoverdrachtscoëfficiënt</td>
<td>8,95 W/m²K (globaal)</td>
</tr>
<tr>
<td>Logaritmisch temperatuurverschil (LMTD)</td>
<td>8,7°C</td>
</tr>
<tr>
<td>Aantal passages pijpzijde</td>
<td>4</td>
</tr>
<tr>
<td>Aantal passages mantelzijde</td>
<td>1</td>
</tr>
<tr>
<td>Korrektiefactor LMTD (min. 0,75)</td>
<td></td>
</tr>
<tr>
<td>Gekorrigeerde LMTD</td>
<td></td>
</tr>
</tbody>
</table>

BEDRIJFSKONDITIES

<table>
<thead>
<tr>
<th>Soort fluidum</th>
<th>Mantelzijde</th>
<th>Pijpzijde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massastroom te verdampen/kondenseren*</td>
<td>0,11</td>
<td>0,85</td>
</tr>
<tr>
<td>Gemiddelde soortelijke warmte</td>
<td>2,03</td>
<td></td>
</tr>
<tr>
<td>Verdampingswarmte</td>
<td>1,713</td>
<td>1,38</td>
</tr>
<tr>
<td>Temperatuur IN</td>
<td>4,10</td>
<td>31</td>
</tr>
<tr>
<td>Temperatuur UIT</td>
<td>2,50</td>
<td>22,7</td>
</tr>
<tr>
<td>Druk</td>
<td>4,9</td>
<td>3,0</td>
</tr>
<tr>
<td>Materiaal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROCESSCHEMA van de KATALYTISCHE DEHYDROHALOGENERING VAN GECHELORREERDE KOOLWATERSTOFFEN MET ZUIVER WATERSTOF
E.T. de Leeuw
P.H.W. Vercoulen
Febuari 1990

Stroomnummer ☐ Temp. In K ☐ Abs. druk In bar

Diagram van de katalytische dehydrohalogenering van gechlooreerde koolwaterstoffen met zuiver waterstof.
PROCESSSCHEMA van de KATALYTISCHE DEHYDROHALOGENERING VAN GECHLOREERDE KOOLWATERSTOFFEN MET ZUIVER WATERSTOF

E.T. de Leeuw
P.H.W. Vercoulen

Stroomnummer: 0
Temp. in K: 0
Abs. druk in bar: 0

Fab. Voorontwerp No. 2826
Februari 1990