Title
Effectiveness of trip planner data in predicting short-term bus ridership
Author
Wang, Z. (TU Delft Transport and Planning)
Pel, A.J. (TU Delft Transport and Planning) 
Verma, T. (TU Delft Policy Analysis) 
Krishnakumari, P.K. (TU Delft Transport and Planning) 
van Brakel, Peter (REISinformatiegroep)
van Oort, N. (TU Delft Transport and Planning) 
Date
2022
Abstract
Predictions on public transport ridership are beneficial as they allow for sufficient and cost-efficient deployment of vehicles. At an operational level, this relates to short-term predictions with lead times of less than an hour. Where conventional data sources on ridership, such as Automatic Fare Collection (AFC) data, may have longer lag times, in contrast, trip planner data is often available in (near) real-time. This paper analyzes how such data from a trip planner app can be utilized for short-term bus ridership predictions. This is combined with AFC data (in this case smart card data) to construct a ground-truth on actual ridership. The trip planner data is studied using correlation analysis to select informative variables, that are then used to develop 4 supervised machine learning models (linear, k-nearest neighbors, random forest, and gradient boosting decision tree). The best performing model relies on random forest regression and reduces the error by approximately half compared to a baseline model based on the weekly trend. We show that this model performance is maintained even for prediction lead times up to 30 minutes ahead, and for different periods of the day.
Subject
Public Transport
Trip Planner
Bus Ridership Prediction
Machine Learning
To reference this document use:
http://resolver.tudelft.nl/uuid:9c3e1d1e-9a5b-47a3-b5f2-21bf4b3af6eb
Publisher
CASPT
Embargo date
2023-07-01
Source
Proceedings of the 15th International Conference on Advanced Systems in Public Transport (CASPT2022)
Event
CASPT2022: 15th International Conference on Advanced Systems in Public Transport, 2022-11-06 → 2022-11-10, Tel Aviv, Israel
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Part of collection
Institutional Repository
Document type
conference paper
Rights
© 2022 Z. Wang, A.J. Pel, T. Verma, P.K. Krishnakumari, Peter van Brakel, N. van Oort