Print Email Facebook Twitter Uncertainty quantification in a heterogeneous fluvial sandstone reservoir using GPU-based Monte Carlo simulation Title Uncertainty quantification in a heterogeneous fluvial sandstone reservoir using GPU-based Monte Carlo simulation Author Wang, Y. (TU Delft Reservoir Engineering; Qingdao University of Technology) Voskov, D.V. (TU Delft Reservoir Engineering; Stanford University) Daniilidis, Alexandros (TU Delft Reservoir Engineering) Khait, M. (TU Delft Reservoir Engineering; Stone Ridge Technology) Saeid, S. (TU Delft Reservoir Engineering) Bruhn, D.F. (TU Delft Reservoir Engineering; Fraunhofer IEG) Date 2023 Abstract The efficient operation and management of a geothermal project can be largely affected by geological, physical, operational and economic uncertainties. Systematic uncertainty quantification (UQ) involving these parameters helps to determine the probability of the focused outputs, e.g., energy production, Net Present Value (NPV), etc. However, how to efficiently assess the specific impacts of different uncertain parameters on the outputs of a geothermal project is still not clear. In this study, we performed a comprehensive UQ to a low-enthalpy geothermal reservoir using the GPU implementation of the Delft Advanced Research Terra Simulator (DARTS) framework with stochastic Monte Carlo samplings of uncertain parameters. With processing the simulation results, large uncertainties have been found in the production temperature, pressure drop, produced energy and NPV. It is also clear from the analysis that salinity influences the producing energy and NPV via changing the amount of energy carried in the fluid. Our work shows that the uncertainty in NPV is much larger than that in produced energy, as more uncertain factors were encompassed in NPV evaluation. An attempt to substitute original 3D models with upscaled 2D models in UQ demonstrates significant differences in the stochastic response of these two approaches in representation of realistic heterogeneity. The GPU version of DARTS significantly improved the simulation performance, which guarantees the full set (10,000 times) UQ with a large model (circa 3.2 million cells) finished within a day. With this study, the importance of UQ to geothermal field development is comprehensively addressed. This work provides a framework for assessing the impacts of uncertain parameters on the concerning system output of a geothermal project and will facilitate analyses with similar procedures. Subject Energy productionGeothermal uncertainty quantificationGPU platformMonte Carlo simulationNet present value To reference this document use: http://resolver.tudelft.nl/uuid:9c7fb903-3abb-4641-be12-2662d43b9fb2 DOI https://doi.org/10.1016/j.geothermics.2023.102773 ISSN 0375-6505 Source Geothermics, 114 Part of collection Institutional Repository Document type journal article Rights © 2023 Y. Wang, D.V. Voskov, Alexandros Daniilidis, M. Khait, S. Saeid, D.F. Bruhn Files PDF 1_s2.0_S037565052300127X_main.pdf 4.51 MB Close viewer /islandora/object/uuid:9c7fb903-3abb-4641-be12-2662d43b9fb2/datastream/OBJ/view