Multi-temporal InSAR for deformation monitoring of the Granada and Padul faults and the surrounding area (Betic Cordillera, southern Spain)

Joaquim J. Sousaa,b,*, Antonio M. Ruízc,d, Andrew J. Hoopere, Ramon F. Hanssenf, Zbigniew Perskig, Luisa C. Bastosh,i, Antonio J. Gilc,d, Jesús Galindo-Zaldívarj,k, Carlos Sanz de Galdeanok, Pedro Alfarol, Mª Selmira Garridoc,d, Juan A. Armenterose, Elena Giménezc, Manuel Avilésc

aDepartment of Engineering, School of Science and technology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
bCenter of Geology, University of Porto, Portugal
cDepartamento de Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén, Jaén, Spain
dCentro de Estudios Avanzados en Ciencias de la Tierra (CEACTierra), Universidad de Jaén, Jaén, Spain
eSchool of Earth and Environment, The University of Leeds, Leeds, United Kingdom
fDepartment of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
gPolish Geological Institute - National Research Institute, Carpathian Branch, Cracow, Poland
hObservatório Astronómico, Faculdade de Ciência da Universidade do Porto, Portugal
iDepartment of Geosciences, Environment and Spatial Planning, Faculty of Science, University of Porto, Portugal
jDepartamento de Geodinámica, Universidad de Granada, Granada, Spain
kInstituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Granada, Spain
lDepartamento de Ciencias de la Tierra y Medio Ambiente, Universidad de Alicante, Apdo. 99, San Vicente del Raspeig, Alicante, Spain

Abstract

The quantification of low rate active tectonic structures is a major target of geodetic and geological studies to improve the knowledge of seismic hazards. The central Betic Cordillera (southern Spain) is affected by moderately active tectonic structures and seismicity. Part of this seismic activity is produced by several NW-SE normal faults located in the E of the Granada Basin.

* Corresponding author. Tel.: +351 259 350 357; fax: +351259 350 356.
E-mail address: jjsousa@utad.pt
Here, we apply Multi-temporal InSAR (MTI) data to quantify the deformation produced by the Granada fault and the Padul fault zones and the surrounding area. The Granada NW-SE active normal fault zone, 17 km in length, crosses the city of Granada, a very sensitive area from a seismic hazard point of view due to the population of the Granada town. At the Padul fault, there is no geodetic evidence of contemporary motion. Considering the evidence of recent activity from geologic data, this fault may experience discontinuous motion with a different seismogenic character. Despite the InSAR uncertainties, InSAR results are consistent with the estimated geologic deformation rates lower than 1 mm/yr. Our results also confirm previous InSAR studies in the Otura area showing an estimated average annual velocity along the SAR line-of-sight of up to 10 mm/year anthropogenic subsidence.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Peer-review under responsibility of the Organizing Committee of CENTERIS 2014.

Keywords: Granada fault; Padul fault; deformation; persistent scatterers; small baseline; InSAR; StaMPS;

1. Introduction

The Granada metropolitan area (southern Spain), with a population of over 500,000 people, is one of the areas with the highest seismic hazard of the Iberian Peninsula [1]. The most recent destructive earthquake of the Iberian Peninsula occurred in 1884 in the Granada Basin, about 50 km southwest from the city. With felt intensities of IX-X and an assigned macroseismic magnitude in the order of M=6.5, it caused about 800 fatalities. In addition, the Granada Basin experiences the highest seismicity rate of the Iberian Peninsula [2,3,4,5,6], characterized by earthquake swarms [7] and several instrumental earthquakes with magnitudes around 5.0. The most significant event is the 1956 NW Purchil earthquake (mb 5.0, I=VIII), causing 11 deaths. In addition, there is evidence of historical earthquakes in the study area, in the NE of the Granada Basin, such as the 1431 earthquake which produced severe damage in the Alhambra Palace in Granada [8].

Several studies based on geologic and geomorphic markers have estimated moderate slip rates of the main active faults of the area [7]. These studies conclude that most of the active faults of the Granada Basin are normal, with slip rates between 0.06 and 0.5 mm/yr, producing mainly vertical displacements between the fault blocks.

In addition, several researches integrating geologic and geodetic studies were carried out in the study area: for instance, [9] and [10] analyzed the Padul fault area by means of a local triangulation-trilateration network, but no significant movements were detected due to the low fault deformation in the measured period. Furthermore, [10] analyzed the tectonic activity of the Granada fault area, a NW-SE oriented fault zone crossing the city of Granada, surveying two leveling profiles (Víznar and Genil) in 1999, 2000 and 2001, but very low rates of vertical displacement, close to the detection limit of geodetic techniques, were recorded. More leveling surveys have been carried out since 2001 until present revealing the discontinuous activity of this fault.

Between the Granada fault and the Padul fault areas, at the southern part of the Granada metropolitan area, a subsidence bowl was detected and analyzed [11,12,13,14,15] with a deformation rate up to 10 mm/yr. The deformation rates remain stable throughout the time span studied (1993-2006). Two main causes were identified to explain this phenomenon: (1) fast infrastructure development taking place in the outskirts of the village of Otura (new residential areas) leading to soil compaction, and (2) intensive withdrawal of water from underground originated for the increase of population in the last years. The detected subsidence makes the future monitoring of the area of crucial importance. These previous studies where based on Persistent Scatterer Interferometry (PSI).

The objective of this paper is to compare space-based geodetic techniques with geological data in order to estimate accurate fault slip rates of the Granada and the Padul faults zones and the surrounding area (Fig. 1) to assess its recent behavior and to differentiate between anthropogenic and tectonic deformation. In this paper, we applied time series InSAR techniques (StaMPS-MTI; [16]), that combines both Persistent Scatterer (PS) and Small Baseline (SB) approaches to obtain a regional accurate estimation of deformation. It has been shown that these techniques enable measurement of crustal deformation to be achieved with improved accuracy, in the best scenarios, in the order of 1 mm/yr [17] which is helpful for the quantification of deformation processes that cause small strains.

InSAR techniques give a regional overview to detect possible local anthropogenic deformation which could produce a misunderstanding of the tectonic deformation of a region, especially in areas characterized by low fault
slip rates. Geological data provide long term deformation rates. The comparison between both InSAR and geological
data provides new support to differentiate free slip and blocked fault surfaces, with related seismogenic character
and seismic hazard.

Fig. 1. Geological setting of the study area. (A) Location of the study
area in the Betic Cordillera, southern Spain. (B) Simplified geological
map of the Granada Basin, including the position of the main NW
active normal faults of the NE Granada basin. (G.F.: Granada fault,
P.F.: Padul fault). (Adapted from [7]).

Fig. 2. Geological map of the surroundings of Granada city with
location of Granada fault. (P-I: Víznar leveling profile, P-II: Genil
leveling profile).

2. Geodynamic setting

Two main areas were selected for applying ground monitoring InSAR techniques: the Granada city area, which
includes the Granada fault, and the Padul fault area (Fig. 1). The former area was chosen because it is the most
populated city of the central Betic Cordillera and is located in the highest seismic hazard area in the Iberian
Peninsula. For these reasons, ground deformation monitoring is crucial in order to mitigate seismic hazards or other
natural effects. The Padul fault is located at the west-southwestern termination of the Sierra Nevada, the highest
mountain range in the Betic Cordillera, which includes the Mulhacén peak, where the maximum altitude (3482 m)
of the entire Iberian Peninsula occurs.

The study area is located in the central Betic Cordillera, in a wide collision zone between the African and
Eurasian plates. At present, these plates converge at a rate of approximately 5 mm/yr according to the NUVEL-1A
model [18]. From the late Miocene to the present, the Granada Basin is subjected to a NNW-SSE compressive stress
field with an associated ENE-WSW tension [19,20]. This tension is accommodated mainly by NW-SE normal
faults, most of them, located in the NE and SE sectors of the Granada Basin (Fargue-Jun fault, Granada fault, Sierra
Elvira-Dilar fault, Alhendín-Santa Fe fault, Padul fault and Padul-Dúrcal fault, among others), showing geological
evidences of recent activity [21,22,23,24,25,26,8,27,28]. This set of NW-SE normal faults, mostly dipping to the
southwest, has caused subsidence of several blocks to the west producing topographic steps and fault scarps
[29,30,28]. [7] offer a review of the main characteristics of these active faults.
The Granada fault belongs to this set and crosses the city of Granada with a NW-SE to N-S direction (Fig. 2). This is an active normal fault zone measuring ~17 km in length and dipping 60° SW. The fault cuts Pliocene and Pleistocene soft rocks, mainly conglomerates, of the Alhambra Formation [31] proving its recent activity. The fault zone has several splays, roughly parallel to each other, with a total throw of 300 m [7]. This fault zone is characterized by many NW-SE small-scale normal faults dipping 65-75° mostly to the SW, with displacements ranging between a few centimeters and ten meters [30].

[7] estimate a fault slip rate of 0.12 mm/yr. The maximum magnitude earthquake for this fault, considering the fault length, is estimated between Mw 6.3 and 6.7 and the reference earthquake has a Mw > 4.9 [7]. Although the area has historical and instrumental earthquakes, it is not possible to associate them with a specific fault due to the depth of seismicity that generally occur around 10 km depth and the presence of several active faults.

The Padul fault also belongs to this system of NW-SE trending normal faults mainly dipping towards the SW. These faults are often associated to asymmetric basins filled with sedimentary wedges of Tortonian and younger ages [32]. The fault is located at the west-southwesternmost termination of the Sierra Nevada and is approximately 12 km long (Fig. 3) with an average NW-SE strike and has various segments which dip towards the SW and S. It consists of two connected segments showing clear evidence of recent activity as a seismic source [8]. In detail, the fault geometry is quite complex and display both low and high angle surfaces; furthermore, there is evidence of progressive rotation of the fault during its evolutionary history [8]. The cumulative vertical displacement associated to the Padul fault is greater than 800 m [23].

Seismic activity along the Padul fault is very scarce. In the period 1980 – 1996, only one earthquake of a magnitude greater than 3 occurred [8]. Despite the low seismic activity, there is abundant geological evidence for the recent activity of this fault [8].

3. InSAR data

Granada Basin and its surroundings (Fig. 4A) are covered by a total of 29 ERS-1/2 SAR scenes from descending satellite track 280 and frame 2859 (Figs. 4B and 5A), and 30 Envisat ASAR scenes from ascending satellite track 187 and frame 729 (Figs. 4B and 5B). The SAR images span the period from December 1993 to October 1999, and between October 2002 and February 2010, respectively for ERS1/2 and Envisat.

A Shuttle Radar Topography Mission (SRTM) C-band DEM with resolution of 3 arc-second geographic resolution (90 m) and 10 meter height accuracy was used as an external DEM to remove the topographic phase from the differential interferograms. Precise orbits data for ERS-1/2 and Envisat satellites, which enable the removal of flat-earth phase from the differential interferograms, were provided by Delft Institute for Earth observation and Space Systems (DEOS) [33].
3.1. Multi-temporal InSAR

Multi-temporal InSAR methods are extensions of conventional InSAR techniques, which address the problems of decorrelation and atmospheric delay by analyzing only pixels that retain some degree of correlation, defined as persistent scatterers (PS). These techniques involve the simultaneous processing of multiple SAR acquisitions over the same area to allow for the correction of uncorrelated phase noise terms and hence, reduce errors associated with the deformation estimates. Currently, multi-temporal InSAR algorithms can be broadly classified into two categories - persistent scatterer (PS) (e.g., [34,35,36]) and small baseline (SB) (e.g., [37,38,39,40]) methods. Each of these set of methods is designed for a specific type of scattering mechanism: point-like and distributed scatterers, respectively for PS and SB methods (for more details on scattering mechanism refer to e.g., [41]).

Stanford Method for Persistent Scatterers - Multi-Temporal InSAR (StaMPS-MTI) combines both PS and SB methods allowing the identification of scatterers that dominate the scattering from the resolution cell (PS) and slowly-decorrelating filtered phase (SDFP) pixels. Finally, the two datasets (PS+SDFP) are combined and further processing is performed on the combined dataset to isolate the deformation signal, based on these stable points (SP). The phase is unwrapped using a 3D approach that utilizes an algorithm developed for regularly gridded data. First, the sparse phase measurements are resampled to a grid using a nearest-neighbor interpolation routine. Then, the optimization routines of SNAPHU [42] are applied.

We based our work on this method, in which assumptions are made about the statistical behavior of the several phase contributions superimposing the deformation term. One of the basic ideas of this method is to assess the temporal stability of the radar targets directly from the interferometric phase. However, since the term representing phase noise is masked by several other terms like atmosphere or phase due to orbital inaccuracies, StaMPS uses an elaborate filtering procedure to remove all these undesired phase contributions. Within this filtering procedure the deformation is modeled to be spatially correlated.

The different steps involved in the StaMPS-MTI processing chain are described in detail in [16,35,43,14,15].

3.2. MTI results

The StaMPS-MTI method was applied to the two datasets presented in Section 3. 28 and 29 interferograms, respectively for ERS-1/2 and Envisat datasets, were used to identify persistent and coherent pixels against 83 and 104 (ERS-1/2 and Envisat, respectively) when applied SB approach (Fig. 5).

Fig. 6 shows the MTI results (PS+SB) over the study area. All the stable points displayed have coherence (a measure of the goodness of fit of the model to the observations, ranging from a minimum of 0 to a maximum of 1) above 0.65. For each stable point, the (mean) Line-Of-Sight (LOS) velocity and the displacement temporal series were computed relative to a circular reference area (radius 2 km) considered stable and marked with the green star in Fig. 6. For the entire datasets, the mean LOS velocity in relation to the reference area falls in the interval -10.3 mm/yr to 2.1 mm/yr. Despite the different temporal reference and different geometries induced by descending (ERS) vs. ascending (Envisat) orbits between both datasets, the general deformation pattern over the processed crop matches well. In particular, it can be seen that the subsidence rates detected in the area reveals the same deformation pattern and maintains the subsidence in both datasets.
Fig. 5. Temporal vs. spatial baseline distributions for the two interferometric stacks used in this study. The reference scene used in the PS processing is indicated by the start. Black lines indicate the interferograms used in the SB processing and the red triangles represent the scenes not used in the SB processing (spatial baseline > defined parameter). (A) ERS-1/2 descending track. (B) Envisat ascending track.

Fig. 6. StaMPS-MTI mean LOS velocity for ERS-1/2 (A) and Envisat (B) stacks. A mean amplitude image is used as a background. The reference area is indicated by a green start. The three areas marked with a white box represent the studied zones (1 - Granada fault, 2 - Padul fault and 3 - Otura village) and are enlarged in Figs. 8, 11 and 10.

Fig. 7. Stable points selecting criteria for both Genil and Víznar leveling profiles. In the case of Genil benchmarks (A), all the stable points that lie at distance less than 50 m. For Víznar (B), all the stable points located inside a buffer area with maximum distance of 50 m from the leveling line.

4. Discussion: comparison between MTI and geological data

The Granada Basin combines sectors affected by tectonic (Víznar profile of the Granada fault) and anthropogenic deformation (Otura area, intensive water withdrawal). Therefore, accurate fault slip rates must consider the effect of anthropogenic deformation, especially in this study area with very low or discontinuous fault slip rates (between 0.06 and 0.5 mm/yr according to [7]; and 0.12 mm/yr for the Granada fault). To enable the comparison of leveling with MTI results, the mean annual vertical displacement (mm/yr) has been estimated from the calculated height differences between consecutive benchmarks in both leveling profiles. Finally, we interpolated a portion of the MTI mean velocity map, composed of 1281 stable points, with a kriging technique [44] (Genil leveling profile area). To be able to compare MTI time series with leveling results, we selected the stable points that lie at distance less than 50 meters from each benchmark (Fig. 7A) and averaged their projected velocities to the vertical, taking into consideration the SAR incidence angle of 23°. In the Víznar leveling profile area, due to the insufficient amount of detected stable points, we used all the stable points located inside a buffer area with maximum distance of 50 m from the leveling line (Fig. 7B).

Comparing both independent datasets (different sensors, geometries and time reference), it is clear that both reveal the same deformation pattern along the two leveling profiles. It is also evident that only few stable points can be detected along the Víznar profile area due to the unfavorable terrain characteristics (relief and land cover) (Fig. 8B for ERS-1/2 and Fig. 8D for Envisat). The picture appears to be completely distinct in the case of the Genil profile. Each benchmark has more than one stable point within 50 m (Fig. 8C for ERS-1/2 and Fig. 8E for Envisat).

Fig. 9 shows the comparison between MTI and leveling mean velocities (in mm/yr) along the leveling profiles both for ERS and Envisat data processing. The variability of the deformation of these stable points is used to estimate the standard deviation (uncertainty bars in Fig. 9). In general, there is a good agreement between the leveling and MTI results although the discrepancies could be related to the different periods showed for both methodologies. In the case of Víznar line, due to the insufficient amount of detected stable points that lie at distance less than 50 meters for each benchmark, only interpolated and averaged stable points have been computed for benchmark V2. Because of this, in this profile, projected stable points (SP < 50 m leveling line) are shown.
The useful contribution of our MTI results is also shown in the Padul fault (Fig. 6, crop 2), another active normal fault located several km south of the Granada fault, with a slip rate varying between 0.16 and 0.35 mm/yr [7]. No significant deformation was detected by a local triangulation-trilateration network [9,10], which considers a short period of time and a low fault slip rate. In Fig. 11, we can see the StaMPS-MTI results in the area corresponding to the local triangulation-trilateration network (Padul fault). The deformation velocities are in the order of 0 mm/yr.

Fig. 8. StaMPS-MTI mean LOS velocity for Granada fault area. (A) Location of Víznar (red line) and Genil (blue line) leveling profiles. (B) and (D) show the results for Víznar profile (ERS-1/2 and Envisat, respectively) as well as the buffer used to select the stable point. (A) and (C) show the results for Genil profile (ERS-1/2 and Envisat respectively) as well as the 50 m radius circles used to select the stable points.

Fig. 9. Leveling and StaMPS-MTI results comparison. (A) Genil profile – ERS-1/2 1993-1999 vs. Leveling 1999-2011. (B) Genil profile – Envisat ASAR 2002-2010 vs. Leveling 1999-2011. (C) Víznar profile – ERS-1/2 1993-1999 vs. Leveling 1999-2009. (D) Víznar profile – Envisat ASAR 2002-2010 vs. Leveling 1999-2009. (Interpolated points: stable points selected after interpolation with a Kriging technique along the profile. Averaged points: averaged stable points that lie at distance less than 50 m from each benchmark (Fig. 7A). Projected points: stable points that lie less than 50 m from the leveling line (Fig. 7B)).

Fig. 10. (A) StaMPS-MTI stable points, with maximum values of 10 mm/yr, distribution over Otura village superimposed to a Google-Earth image where the same color code than for Fig. 6 is used. (B) Color contour intervals for a masked area inside the subsidence bowl superimposed to a 0.5 m resolution orthophoto used as a background. The profile A-B showing the maximum subsidence is presented in (C).
Again, the favorable characteristics of the descending pass can be observed by the amount of stable points detected in the ERS-1/2 stack (Fig. 11B). However, in both cases (ERS-1/2 and Envisat), the amount of stable points (Fig. 11B and 11C) is high enough to allow the comparison with deformation data obtained by [10]. In Fig. 12B, time series plots corresponding to the stable points located near the triangulation-trilateration network marks and detected in both datasets (ERS and Envisat) are shown. The position of the stable points is given in Fig. 12A. It can be concluded, as in [10], that no significant deformation is detected by any geodetic method during the period of analysis. The deformation rate is below the uncertainty threshold of MTI and geodetic techniques that are in the order of 1 mm/yr, although it is not possible to discard that this fault is blocked and may present a high seismic hazard. Considering that geological markers are deformed by this fault zone, a longer monitoring period is needed to determine its seismic behavior.

In addition, this MTI study has also shown the high subsidence area in the village of Otura associated to anthropogenic deformation [11,12,13,14,15] (Fig. 6, crop 3). In Fig. 10, the subsidence pattern for the Otura area, with maximum values of 10 mm/yr, is presented in more detail. Then, considering the absence in the Otura area of outcropping faults and of seismic events, the best possible explanation could be associated to the anthropogenic activity in the sector, with a large expansion of residential building coinciding with a dry period in the region until 1996. These factors determine the increasing of water needs that could have caused a drastic reduction of water table levels of aquifers. As a consequence, the decreases of the saturation of silty and marly silty soft rocks determine a decrease in the rock volume that finally led to high subsidence.

In our study area, E of the Granada Basin, major faults show evidence that tectonic motion in interseismic periods is at least one order of magnitude lower than the observed rates [9,10,7]. Moreover, these MTI studies offer useful information to distinguish anthropogenic deformation and active faults. In the Granada Basin, we clearly identify the areal distribution of anthropogenic deformation, which does not have any relationship with the regional distribution of active faults (Fig. 6). In addition, anthropogenic deformation has an irregular temporal pattern.
5. Conclusions

The application of a MTI approach combining both PS and SB methods (StaMPS-MTI) successfully detected hundreds of thousands of pixels that can be used as monitoring points (stable points). Deformation rates have been monitored during the period 1993-2010. No interseismic deformation has been detected in the E of the Granada Basin, where are located several active structures such as the Granada or Padul faults. Nevertheless, this InSAR study detected a maximum LOS velocity rate of about -10 mm/yr, although it is related to anthropogenic deformation already studied in the Otura village.

The apparent inactivity of the Granada and the Padul faults, however, may be a consequence of the still short monitoring period in respect to the accuracy of the geodetic techniques, or alternatively to an interseismic period of energy accumulation. These faults show clear geological evidence of recent activity and have a high seismic hazard.

The comparison between MTI results and field data further contributes to a validation of the MTI technique. The integration of InSAR with field geodetic techniques and geological data to estimate fault slip rates is highly recommended, to monitoring the different seismogenic behavior of faults and determining the blocking periods suitable to accumulate elastic energy that is liberated during seismic events. Moreover, the MTI pattern of ground deformation is especially useful to discriminate areas with evidences of anthropogenic from tectonic deformation.

Acknowledgements

SAR data are provided by the European Space Agency (ESA) in the scope of 3858 and 3963 CAT-1 projects. This research was supported by PR2006-0330, ESP2006-28463-E, Consolider-Ingenio 2010 Programme (Topo-Iberia project), CSD2006–0041 (Consolider), AYA2010–15501, P09-RNM-5388, CGL 2006-06001, CGL2010-21048 and CGL2011-30153-C02-02 projects from Ministerio de Ciencia e Innovación (Spain), the RNM-148, RNM-370, RNM-282 and RNM-5388 research groups from the Junta de Andalucía (Spain), and Fundação para a Ciência e a Tecnologia (Portugal). TUDelft radar group are gratefully acknowledged for all the technical support. The SRTM data were provided by USGS/NASA.

References

