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We propose different designs of switchable coupling between a superconducting flux qubit and a

microwave transmission line. They are based on two or more loops of Josephson junctions which are

directly connected to a closed (cavity) or open transmission line. In both cases the circuit induces a

coupling that can be modulated in strength, reaching the so-called ultrastrong coupling regime in which

the coupling is comparable to the qubit and photon frequencies. Furthermore, we suggest a wide set of

applications for the introduced architectures.
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Superconducting quantum circuits [1] possess ingre-
dients for quantum information processing and for devel-
oping on-chip microwave quantum optics [2]. After the
first manipulations of few-level superconducting systems
(qubits) [3–5], the real boost came with the achievement of
the strong coupling regime between qubits and confined
microwave photons [6–8]. The initial qubit-cavity cou-
plings of 10–100 MHz exceeded by orders of magnitude
the rate at which photons leak out of the resonator, but the
use of the transmon qubit [9] improved those numbers by a
factor of 2–3 reaching a strength that is comparable only to
the state of the art in microwave quantum optics [10,11].
More recently, proof-of-principle theoretical and experi-
mental studies have paved the way to the ultrastrong cou-
pling regime [12–14], where the coupling approaches the
qubit transition frequency and the Jaynes-Cummings
model of cavity QED [10,14] breaks down [15,16], and a
door opens to the rather unexplored physics beyond the
rotating-wave approximation [17,18].

The strong coupling regime in circuit QED has made
possible an incredible variety of experiments, such as
dispersive readouts of qubits [19], resolving the photon
numbers in cavity [20], multiphoton excitations of the
Jaynes-Cummings model [21], preparing nonclassical
states of a resonator [22], full quantum tomography of
the microwave radiation field [23], or the Tavis-
Cummings model [24], etc. However, all those experi-
ments have something in common: The microwave field
is confined inside a resonator. In other words, the trans-
mission line spectrum is discrete and the coupling between
qubits and photons could be switched on and off by tuning
the qubit [25] or cavity frequency [26]. While the switch-
ability of the coupling has been proposed for open lines
[27,28], this has not been achieved in the ultrastrong
coupling regimes.

In this work, we will introduce a novel circuit QED
design where the qubit is ultrastrongly coupled to a trans-

mission line, open or not, with a coupling that can be tuned
in strength and kind by applying an external flux bias. Our
proposal uses the type of designs shown in Fig. 1, where
the qubit is built in direct contact with the transmission
line. It has been shown theoretically [14], and demon-
strated experimentally [13], that the system admits an
effective description based on a two-level system—the
current in the loop—ultrastrongly coupled to the photons
in the line. We will boost these ideas and show that, by
means of induced quantum interference, one is capable of
cancelling the ultrastrong coupling, effectively rotating the
qubit basis, or activating higher-order nonlinearities. This
fully controllable coupling tunability opens the path for
new experimental results and nontrivial applications. A
very important one is switching on and off the interaction
in order to control the qubit evolution with subnanosecond
resolution, allowing one to resolve the emission and propa-
gation of single photons, measuring their light cone, and
studying the propagation of entanglement between qubits
coupled to the same transmission line [29]. Straightforward

FIG. 1 (color online). Schemes for ultrastrong coupling be-
tween a qubit and a transmission line. (a) Basic setup of a qubit
coupled directly to the line. �c is the phase difference between
the nodes in which the qubit and line intersect. (b) With a second
loop, the coupling can be modulated. (c) A slightly improved
setup in which the qubit is better decoupled from the flux f2.
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extensions of this work will also allow the implementation
of ultrafast quantum switches between cavities and remote
qubits or the design of qutrits with tunable couplings.

The basic design of the switchable coupling can be
understood by using a few rules that focus on the inductive
terms of the Hamiltonian. More precisely, we will concen-
trate on the dominant contributions to the energy, which
are given by the Josephson junctions as Vð�nÞ ¼
�EJn cosð�nÞ. Here, EJn denotes the Josephson energy
of the nth junction, and�n is the phase difference between
both sides of the junction. These phases are by the
Josephson relation proportional to the flux across the de-
vice, � ¼ ’=’0 with the reduced flux quantum ’0 ¼
@=2e. The next rule is that around close loops the total
flux is quantized in a multiple of h=2e. This quantization
imposes relations between the flux jumps on different
junctions, reducing the complexity of the problem,P

n�n ¼ fþ 2�n, but it also introduces a control parame-
ter which is the externally applied magnetic flux inside the
loop, f’0. Finally, we will include an additional flux
difference �c along the segment that is shared with the
transmission line [see Fig. 1(a)] and which is the source of
the coupling.

With these rules, one can analyze the setup from
Fig. 1(a) and impose the usual flux qubit configuration,
with two equal junctions EJ1 ¼ EJ3 ¼ EJ, and a smaller
one EJ2 ¼ �EJð�< 1Þ, and the quantization �1 þ�2 þ
�3 ��c ¼ fþ 2�n. The result is an effective
Hamiltonian that, for f ¼ �, reads

HJ ¼ �EJ cosð�1Þ � �EJ cosð�2Þ � EJ cosð�3Þ
¼ EJ½� cosð�þÞ � 2 cosð��=2Þ cosð�þ=2Þ�

þ �EJ�c sinð�þÞ þOð�c 2Þ: (1)

Note how this model combines a flux qubit term [4], where
the most important variable is the linear combination
�þ ¼ �3 þ�1, with a coupling between the qubit degrees
of freedom and the transmission line. When we introduce
the capacitive terms, the qubit can be diagonalized and the
model becomes

H � 1
2��z þ �EJ�c�x: (2)

It is noteworthy to mention that the qubit-line coupling can
remain in the ultrastrong regime [14], because it is propor-
tional to the Josephson energy �EJ. However, the coupling
always has the form �x�c , and there are no parameters to
tune the interaction.

A more versatile design, shown in Fig. 1(b), separates
the three qubit junctions and the transmission line by a
loop. The new Josephson junction adds a contribution to
the energy, which is of the form EJ4 cosð�4Þ ¼
�4EJ cosðf2 ��2 ��c Þ, while keeping the flux qubit
quantization independent of the transmission line flux,
�c . The result is now

H ¼ EJ½�� cosðf1 ��þÞ � 2 cosð��=2Þ cosð�þ=2Þ�
þ �4EJ cosðf1 þ f2 � �c þ�þÞ; (3)

with two independently adjustable parameters f1 and f1 þ
f2. A numerical evaluation of the Hamiltonian in the qubit
basis reveals that for f2 ¼ � the effective coupling

H � 1

2
��z þ �4EJ�c

X
r¼x;y;z

c1rð�;�4; f1Þ�r (4)

is linear in the field and has a tunable orientation
c1rð�;�4; f1Þ.
Moreover, since the coupling term is strictly indepen-

dent of the qubit Hamiltonian, it now becomes possible to
switch on and off the interaction. The simplest way is to
replace the fourth junction EJ4 with a SQUID, so that a
control flux over this loop will allow us to dynamically
tune the coupling strength �4. By using this technique, the
mutual influence between the qubit and the transmission
line can be completely suppressed in times of about 0.1 ns,
which is much faster than the qubit-resonator dynamics
[30]. Remark that in the ultrastrong coupling regime the
rotating-wave approximation cannot be made, and the
physics of Rabi oscillations does not apply.
A different setup which we consider in this work is

shown in Fig. 1(c). We now included two equal junctions
EJ5 ¼ EJ4 ¼ �4EJ, and we add a new loop above the qubit
with a control flux f3. Working at f3 ¼ �� f2 � f1 we
cancel a contribution cosðf1 þ f2 þ�þÞ that appears in
Eq. (3) when we move away from f2 ¼ �. The effective
Hamiltonian now reads

H ¼ 1

2
��z þ �4EJ

X
n¼1;2...

�c n
X

r¼x;y;z

cnr ð�;�4; f1; f2Þ�r:

(5)

With the two free parameters ff1; f2g we can (i) switch on
and off the interaction, (ii) change the orientation, and
(iii) increase the relevance of higher-order couplings.
We have analyzed these setups numerically, confirming

that the coupling is ultrastrong and can be arbitrarily tuned.
In order to do so, we first completed the theoretical model
to include the capacitive terms which appear in the junc-
tions and the line itself. We then diagonalized the
Hamiltonian of what we identify as the qubit degrees of
freedom and verified that they can still be treated under a
two-level approximation. Finally, we expanded the inter-
action between the qubit and the transmission line in
powers of the flux �c and computed the matrix elements
of the interaction in the qubit basis.
The main results are shown in Figs. 2 and 3, correspond-

ing to setups in Fig. 1(b) and 1(c). In the first figurewe have
explored the simplest switchable setup for various configu-
rations of the qubit � and of the externally applied flux f1.
It is important to remark that we have a very good qubit for
values of � well above the 0.8 which is normally consid-
ered. Furthermore, when f1 ¼ � for both �< 1 and
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�> 1, the ground states are superpositions of left- and
right-moving currents, and the interaction is proportional
to �x, transversely to the qubit basis. When we apply a
small flux difference increasing or decreasing f1, we un-
balance the populations of the two current states, the
ground state acquires an effective magnetic dipole, and
the interaction rotates from �z to �x;y.

The second set of plots is shown in Fig. 3 and corre-
sponds to the three-loops setup [Fig. 1(c)]. We have chosen
� ¼ 2 because it allows for a finer control in the rotation of
the interaction �x to �z, but it is not essential. The tuna-
bility of the qubit manifests as follows: When f1 is in-

creased, the strength of c1;2x decreases, causing an increase
of c1;2z , much like in Fig. 2. But in addition to this, we now
have complete freedom to change the value of f2. Changes
in this second flux result in a simultaneous deactivation of
all couplings cx;y;z, which become zero as seen in the dark

horizontal stripes for f2 ¼ ð2nþ 1Þ�=2 in Fig. 3(a) and in
the zeros of cx in Fig. 3(b). The switching capability,
measured as mincx=cz, is rather strong, 6� 10�4 in this
example, and improves by increasing �.

We may now address the absolute strength of the qubit-
line coupling. For clarity, we will restrict to the case in
which the line forms a single-mode resonator, which ad-
mits a trivial generalization to the continuum by summing
over modes. The phase slip then becomes approximately
[14]

�c ¼ @xuðxÞ�x
’0

ffiffiffiffiffiffiffiffi
@

!C

s
ðaþ ayÞ

¼ 2�@x�ðxÞ�x
�0

ðaþ ayÞ:

Here uðxÞ is the photon mode eigenfunction in the cavity,
�x is the separation between the two qubit-line intersec-
tions, ! is the cavity mode frequency, and C the resonator
total capacitance. The dependence is thus similar to pre-
vious works meaning that we can achieve comparable
ultrastrong couplings. Assuming a flux gradient j@x�j ¼
65� 10�6�0=�m and a qubit size �x ¼ 5 �m, we reach
a coupling g ¼ 2� 10�3EJ, which for a typical junction
with EJ ¼ 250 GHz implies a very strong 500 MHz cou-
pling. The previous numbers are, however, pessimistic. An
aluminum thin film penetration depth �L ¼ 150 nm allows
a larger flux gradient, of 1:7� 10�3�0=�m or 25 times
the previous coupling strength, that is up to 10 GHz. Either
with these values, or by enhancing the phase slip with the
use of an auxiliary junction [14], the fact is one can take the
coupling strength deep in the ultrastrong regime with an
interesting consequence, namely, the possibility of induc-
ing nonlinearities in the transmission line [Fig. 3]. In the
crudest approximation, the second-order coupling strength
is proportional to �4EJð2��x@xc =�0Þ2. For a phase slip

FIG. 3 (color online). (a) Following Eq. (5), normalized trans-
verse coupling c1x as a function of external fluxes f1 and f2 for
the setup in Fig. 1(c), using � ¼ 2:0 and �4 ¼ 0:1. (b) Cut at
f1 ¼ 0:5 shows first-order (solid line) and second-order cou-
plings (dashed line) of longitudinal (cz, blue line) and transverse
(cx, red line).

FIG. 2 (color online). For the Fig. 1(b) setup, coupling
strengths as a function of the external flux f1 and the qubit
junction size � ¼ EJ2=EJ1, for f2 ¼ �. We plot (a) the normal-
ized first-order coupling along the Z direction, c1z�z�c , and
(b) across the XY plane.
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of 0.01–0.03, that means a coupling EJ � ð10�4–10�3Þ, or
25 to 250 MHz, according to the values mentioned before.

Throughout this work we neglected the coupling be-
tween the qubit and photons induced by the capacitive
energy of the junctions, that is, terms of the form

Hcap ¼ �4

1þ 2�þ 4�4

2�@!
@xc

�0

�xiða� ayÞqþ; (6)

where qþ ¼ ð�i@=@�þÞ is the conjugate operator to the
flux qubit variable�þ. This term, and a similar one for EJ5

[Fig. 1(c)], gives a negligible coupling strength�10�3
@!.

We envision several applications of the switchable cou-
pling introduced before. The first one would be to perform
quantum gates between arbitrary qubit pairs of a row
coupled to a transmission line. By decoupling all qubits
except those chosen to perform a two-qubit gate, it should
be possible to perform operations as the swap of quantum
information between the qubit and the line modes or
between both qubits. This scheme has an important advan-
tage, namely, that the qubit switching happens for precise
flux values, depending only on geometric properties and
not on the precise eigenenergies or fabricated junction
properties. A second application would be decoupling a
qubit from the transmission line and coupling it to slower
measurement devices, especially after having performed
an ultrastrong coupling evolution [31]. Furthermore, since
the coupling may be switched on and off in about 0.1 ns,
this enhanced resolution can also be used for the measure-
ment of quantum microwaves. More precisely, given that
one qubit may act as a perfect mirror for individual pho-
tons, a combination of one or more may be used as streak
camera for stroboscopic measurements of wave packets. A
fourth application is the deterministic generation of prop-
agating single- and two-photon pulses. This would work by
decoupling the qubit, exciting it, and then activating an
ultrastrong coupling dynamics. The qubit would decay in a
few nanoseconds, emitting either a single photon (linear
coupling) or two of them (nonlinear one) in a wave packet
whose shape can be tailored with a second qubit.

In conclusion, we believe that the future access to the
physics of switchable ultrastrong coupling will pave the
way to novel and otherwise inaccessible physics, including
key applications to quantum microwave technologies.
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