MEDDELT

IMPACT OF CLIMATIC CHANGE ON NORTHCENTRAL MEDITERRANEAN DELTAS

A FINAL SUMMARY REPORT

JANUARY, 1997

sponsored by
Commission of the European Communities Directorate General XII
under
MEDDELT
Impact of Climatic Change on NW Mediterranean Deltas.
A Final Summary Report

A. Sánchez-Arcilla¹, J.A. Jiménez¹, D. Pont² M. Capobianco³
N. Prat⁴, M. Provansal⁵, P. Fraunie⁶, P. Ruol⁷, G. Abrami⁸, H. de Vriend⁹
J.W. Day¹⁰, M.J.F. Stive¹¹
S. Jelgersma¹², J. Pernetta¹³ and G. Sestini¹⁴

¹ Laboratori d’Enginyeria Marità, Catalonia University of Technology, Spain. ² Dynamique Ecologique et Sociale en Milieu Deltaïque, CNRS, France. ³ Tecnomare SpA, R & D, Environment, Italy. ⁴ Departament d’Ecològia, Universitat de Barcelona, Spain. ⁵ Institut de Géographie, Université de Provence, France. ⁶ Laboratoire de Sondages Electromagnétiques de l’Environnement Terrestre, Université de Toulon et du Var, France. ⁷ Istituto di Costruzione Marittima e di Geotecnica, Università di Padova, Italy. ⁸ Istituto Universitario Architettura di Venezia, Italy. ⁹ Department of Civil Engineering and Management, University of Twente, The Netherlands. ¹⁰ Louisiana State University, USA. ¹¹ Delft Hydraulics Laboratory, The Netherlands. ¹² Geological Survey of The Netherlands, The Netherlands. ¹³ UNEP, Kenya. ¹⁴ Deceased

This work has been done in the framework of the EU-ENVIRONMENT Project "MEDDELT, Impact of Climatic Change of Northwestern Mediterranean Deltas" under Contract No. EV5V-CT94-0465, Climatology and Natural Hazards (Commission of the European Communities. Directorate General XII. Science, Research and Development).
MEDDELT
Impact of Climatic Change on NW Mediterranean Deltas.
A Final Summary Report

A. Sánchez-Arcilla¹,²,³ J.A. Jiménez, D. Pont²,³ M. Capobianco²,³
N. Prat³, M. Provansal³, P. Fraunié³, P. Ruol³, G. Abrami³, H. de Vriend³,⁴
J.W. Day⁴, M.J.F. Stive⁴
S. Jelgersma⁵, J. Pernetta⁶ and G. Sestini⁵,⁶

¹ Project’s coordinator.
² Scientific Committee
³ Scientific responsibles (representing each partner)
⁴ Working Group Leaders
⁵ Advisory Committee
⁶ Deceased

1. Introduction 1
2. System Analysis: Deltaic Behaviour under Present Conditions 9
3. System Description: Deltaic Modelling and Impact Assessment 23
4. The Landscape Integrated Model: Conceptual Issues 31
5. Deltaic Vulnerability: Assessment and Applications 39
6. Conclusions: The Past and the Future 45

Acknowledgements 49
References 49
List Of Meddelt Publications 55
1. INTRODUCTION

\textit{SOME DELTAIC DEFINITIONS}

\textit{Deltas} are accumulations of river-supplied sediments in the land-ocean border. The dynamic behaviour of subaqueous and subaerial zones is governed by natural (marine, riverine and atmospheric) and anthropogenic factors.

\textit{NW Mediterranean Deltas} (see \textit{e.g.} Jelgersma, 1996)

\begin{itemize}
 \item Moderate wave and tidal climates:
 \begin{itemize}
 \item significant wave-height in deep water, yearly average = 0.5 m to 1.0 m
 \item spring tidal range = 0.1 m to 0.5 m
 \item storm surge yearly average maximum = 0.25 m to 0.75 m
 \end{itemize}
 \item Significant decrease in river solid discharges during the last (\textit{e.g.} 5) decades due to extensive damming in the catchment area and river flow regulation policies:
 \begin{itemize}
 \item % reduction: 50\% to 95\% (higher for the sand fraction).
 \end{itemize}
 \item Subsidence rates of average magnitude.
 \begin{itemize}
 \item Due mainly to compaction (0 to 3 mm/year during the last decades).
 \item Limited effect of tectonic movements.
 \end{itemize}
 \item Precipitation rates (local) of limited magnitude (less than 600 mm/year on average).
 \item Salt-wedge estuaries.
 \item Pressure of use and natural/anthropogenic values relatively high.
 \begin{itemize}
 \item Ecologically rich areas in comparatively "poorer" environments.
 \item Actively "exploited" (agriculture, fisheries, aquaculture, oil and gas, tourism, etc.) with clear conflicts between uses.
 \item With relatively low population densities (with respect to nearby big urban areas outside the deltas).
 \end{itemize}
\end{itemize}

These deltas are illustrated here by the Ebro, Po and Rhône (figures 1, 2 and 3).
Figure 1. The Ebro delta (Spain).
Figure 2. The Po delta (Italy).
Figure 3. The Rhône delta (France).
○ Deltaic impacts

- Intrinsic "dynamic character" of deltaic systems (which means that periodic river floodings, coastline variations, etc., are "normal" events in deltaic evolution, see table 1 and figure 4 for illustration).
- Significantly different deltaic behaviour depending on the time-scale (e.g. Ebro delta evolution during the last centuries, with deltaic plain variations comparable or in excess to what would be associated to the present damming system, e.g. figure 5).
- Assessing the "impact" on such a dynamic system therefore depends on "a priori" definitions (e.g. time-scale, reference state, etc.) and social perception.

<table>
<thead>
<tr>
<th>Event</th>
<th>Time Scale</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>River switching</td>
<td>1,000 yr</td>
<td>Deltaic lobe formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net advance of deltaic land masses</td>
</tr>
<tr>
<td>Major river floods</td>
<td>50–100 yr</td>
<td>Channel switching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major deposition</td>
</tr>
<tr>
<td>Major storms</td>
<td>10–20 yr</td>
<td>Major deposition</td>
</tr>
<tr>
<td>Average river floods</td>
<td>Annual</td>
<td>Deposition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Freshening (lower salinity)</td>
</tr>
<tr>
<td>Normal storm events</td>
<td>Weeks</td>
<td>Enhanced primary and secondary production</td>
</tr>
<tr>
<td>(frontal passage)</td>
<td></td>
<td>Enhanced deposition</td>
</tr>
<tr>
<td>Tides</td>
<td>Daily</td>
<td>Net transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drainage and/or marsh production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low net transport</td>
</tr>
</tbody>
</table>

Table 1. Spatial and temporal scales of forcing events (Day et al. 1995).

Figure 4. Switching of the Ebro river mouth (Maldonado, 1972).
THE CLIMATIC CHANGE PERSPECTIVE

Climatic change "definition"

- Mainly considered in terms of sea-level-rise increases which clearly affect low-lying areas in delicate equilibrium such as deltas.
- Marginally considered in terms of precipitation and storminess changes.
- The reason being that the uncertainties associated to the "downscaling" of Global Circulation Models' results (e.g. for precipitation, storminess, etc.) are comparable in
magnitude to the predicted changes in these variables (at the regional scale required by deltas). Moreover, the effect of any changes in precipitation rates will be largely damped by the system of dams and the river flow regulation policy.

Additionally, any climatic change may have multiple and opposite effects on a system as complex (climatically and geomorphologically) as any of the three considered catchment areas. As an illustration, any rise in temperature, which would increase evapo-transpiration losses, may also affect plant production and cover and, thus, change the runoff pattern in an unpredictable manner.

THE MEDDELT PROJECT

The conceptual approach is schematised in figure 6.

Figure 6. The MEDDELT conceptual approach.
Strategy:

- Characterise the deltaic system in terms of three elements.
 - *Deltaic plain* and *fringe* (two distinct geographic units with significantly different processes, time-scales and energy levels).
 - *The socio-economic system*, established upon the deltaic plain and fringe and linking them between themselves and to the rest of the territory (via management policies and land-uses).

- Define a reference situation for the deltaic system based on the "present" deltaic behaviour. This implies the development of a conceptual model for deltaic evolution under present conditions and defining these conditions and their time-scales.

- Analyse the effects of climatic change (basically through a "given" eustatic accelerated SLR) on the deltaic system by comparing its decadal evolution for two scenarios: a no-intervention one (*i.e. steady trends for on-going activities*) and another one in which some (one at least) management option to cope with SLR effects is included.

Geographical perspective:

- This approach is being followed for the three NW Mediterranean deltas studied in MEDDELT: Ebro, Rhône and Po.

- Using the same conceptual approach and climatic change boundary conditions.

- Allowing for the natural differences between the three deltas (*e.g. different subsidence rates, abundance of inlets and lagoons in the Po coastal fringe, etc.*).
2. SYSTEM ANALYSIS: DELTAIC BEHAVIOUR UNDER PRESENT CONDITIONS

☐ SOME DEFINITIONS

☐ Aim of the analysis stage: To understand the deltaic behaviour (physical and ecological subsystems, leaving for the last sections the socio-economic component) for three time-scales (medium, long and episodic) and with three aims:

- Develop a conceptual model linking the main elements of the deltaic system (see figure 7 for a sample illustration).
- Establish quantitative links for this conceptual model at least for the "present" conditions.
- Define the "present" or "reference" situation/status of the deltaic system (see figure 8 and table 2).

Figure 7. A conceptual model linking physical, ecological and socio-economic components for a deltaic system (Otter et al., 1996a).
Figure 8. Reference (present) status of shoreline erosion/accretion rates for the Ebro delta (Jiménez, 1996).

<table>
<thead>
<tr>
<th>classes</th>
<th>Ebro</th>
<th>Rhône</th>
<th>Po</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-4</td>
<td>0.49 (0.14)</td>
<td>6.50 (0.89)</td>
<td>(-)</td>
</tr>
<tr>
<td>4-3</td>
<td>7.68 (2.32)</td>
<td>21.61 (2.97)</td>
<td>(-)</td>
</tr>
<tr>
<td>3-2</td>
<td>27.22 (8.24)</td>
<td>58.55 (8.06)</td>
<td>1.87 (0.30)</td>
</tr>
<tr>
<td>2-1</td>
<td>68.90 (20.87)</td>
<td>106.35 (14.64)</td>
<td>8.52 (1.40)</td>
</tr>
<tr>
<td>1-0</td>
<td>171.08 (51.84)</td>
<td>252.74 (34.79)</td>
<td>75.17 (12.41)</td>
</tr>
<tr>
<td>below MSL</td>
<td>(-)</td>
<td>(-)</td>
<td>332.77 (54.95)</td>
</tr>
<tr>
<td>lagoons&marshes</td>
<td>13.96 (4.28)</td>
<td>280.39 (38.61)</td>
<td>167.77 (15.35)</td>
</tr>
</tbody>
</table>

Table 2. Reference (present) distribution of deltaic plain elevation classes for the three considered deltas (Canicio et al. 1996).

The three considered **time-scales** are (for more details see Sánchez-Arcilla and Jiménez, 1997)
- **Long-term:** decadal or longer, affecting the whole deltaic body (e.g. global shape changes illustrated by the coastal evolution of the Rhône delta for the last five decades (see figure 9), barrier islands evolution along the Po delta coast (figure 10) and by the changes in relative land elevation for different sites of the Rhone delta 30 years from now (see figure 11)).

- **Medium-term:** several years and several kilometres in space (e.g. volume changes along the Ebro delta coast at the yearly scale (see figure 12)).

Figure 9. Shoreline evolution of the eastern part of the Rhône delta (Suanez and Provansal, 1996a).
Figure 10. Barrier island evolution along the Po delta coast -Laguna Caleri and Laguna Valona- (Arcelli, 1996).

Figure 11. Changes in relative land elevation in Rhône delta plain 30 years from now (Sub: subsidence, P.site: riverine, RF: rice fields, HM: hunting marshes, CL: central lagoons) (Pont, 1996).
Figure 12. Volume changes along the Ebro delta coast at the yearly scale (after Jiménez and Sánchez-Arcilla, 1993).

- **Episodic scale**: time and space scales defined by the impact of an "extreme" driving agent (sea-storm, river-flood, etc.) with a return period of at least several years. This scale can be illustrated by the breaching which took place in the Trabucador bar (Ebro delta) in 1990, corresponding to a wave storm and surge events with return periods of 10 and 1.2 years, respectively (see figure 13). This episodic scale can also be illustrated by the floods in the Rhone river during 1993 and 1994. These floods, with return periods greater than 30 years, significantly distort the mean Rhone annual solid discharge (which was estimated by Pont and Bardin (1996) as 7.4×10^6 tons for the suspended load during the 1975-1994 period, but with a mean value of 5.96×10^6 tons for the same period when the two exceptional years (93 and 94) are excluded).
Means to achieve these objectives:

- Field data (already existing ones and newly measured to fill up gaps in information).
- Subsequent analysis for each delta.
- Comparative analyses between deltas.

FIELD DATA

- For each deltaic system the following **data** have been compiled or reanalysed (to better characterise the medium/long-term components)
 - Driving terms:
 - River liquid and solid discharges.
 - Wind-waves.
 - Mean-water levels.
 - Wind and atmospheric pressure.
 - Deltaic "responses":
 - Deltaic levels (topography of the emerged delta and bathymetry of the submerged delta).
 - Deltaic shoreline positions.
- Sedimentological characteristics.

In addition, the following measurements have been obtained during the last years (basically in the frame of the MEDDELT project) (see figures 1, 2, 3):

- Driving terms: as before.
- Deltaic "responses":
 - Horizontal fluxes
 of water along and across some representative coastal stretches
 of sediment along and across some representative coastal stretches
 - Vertical fluxes (in terms of vertical accretion rates)
 of organic production/decomposition
 of vertical soil elevations (inorganic and organic contributions)

The field data collection program has been focused on three **key types of environment**:

- **Deltaic fringe**:
 - Inlet sites (in which emerged/submerged beach processes coexist and interact with river-mouth like processes).
 - Barrier beach sites (in which the conventional emerged/submerged beach processes coexist and interact with overwash and aeolian processes).
 - Beach/dune sites (in which the conventional sub-aerial and sub-aqueous beach processes can be observed and studied in detail).

- **Deltaic plain**:
 - Riverine sites (in which the river is still able to contribute to the deltaic plain vertical dynamics).
 - Isolated sites (in which the river is no longer able to contribute, so that deltaic plain dynamics are limited to the organic contributions).
 - Marine sites (in which deltaic plain dynamics are controlled by marine factors, and constitute an interactive border between deltaic plain and fringe).

Other important variables such as salinity levels, water quality, etc. are being considered only in a limited manner and will not be further discussed here.
Q SUBSEQUENT ANALYSES

One of the main aims of deltaic system analyses is to better understand (viz. quantify) the vertical and horizontal sediment fluxes and resulting deltaic body evolution for the present climatic scenario. The reason is that this deltaic body acts as “substrate” -and thus strongly conditions- for the ecological and socio-economic deltaic subsystems.

The deltaic plain behaviour is assumed to be mainly controlled by vertical processes. This means that vertical accretion rates and wetland elevation changes can be compared with relative sea-level rise rates (the addition of local subsidence plus eustatic rise in the area). The relative land elevation (RLE) can be estimated as the difference between soil elevation (SEL) and subsidence (SUB) plus sea-level rise (SLR). This very simplified model allows to assess the flooding/salinization risks for different deltaic habitats. This approach can be illustrated by figure 14 (Pont, 1996) in which the Rhone delta areas at risk are those whose current RLE is less than 40 cm (in the sense that, depending on the scenarios adopted, this RLE could be wiped out in less than 60 years). Taking into account the distance to the shoreline and to the river course plus the corresponding infrastructure (protection, etc.) it is possible to assign risk levels (see figure 15), albeit with a certain degree of expert judgement (considering the present limitations of knowledge on the interactions between different elements/variables of the deltaic system). These results show clearly that RLE and risk levels in the deltaic plain are not uniform, being the part of the plain directly influenced by the river -i.e. able to receive riverine supplies- the only one experiencing significant vertical accretion (comparable to the assumed SLR scenario). Impounded sites, without sediment input except during summer irrigation (if any) show very low accretion rates and even, in some cases, a e.g. the Beraches site in the Rhône delta, can show negative values (corresponding to erosion of the deltaic plain). This has important consequences, since it indicates that the larger the impoundment of the deltaic plain is, the shorter the vertical accretion will be. This is valid in general for all three studied deltas, being the general conclusion that under present-day conditions of SLR only the "open" riverine sites would have a positive RLE (2.9 cm after 30 years for the Rhone delta riverine site as shown in figure 11). Moreover, only the sites receiving inorganic input (by far the most important one on
terms of vertical accretion rates (Pont, 1996)) would be able to withstand a rise in eustatic level of 50 cm by the year 2100, even though some of these riverine sites have also higher subsidence rates. The "impulsive sedimentation" associated to large floods (provided that the sediment-laden water is able to flood the deltaic plain) can result in significant "instantaneous" accretion levels (up to 8 cm of fine sediments for the Rhone deltaic plain flooding of 1993/94 (Hensel et al. 1996)).

Figure 14. Distribution of zones with altitudes less than 0.50 m, corresponding to a RLE (see text for definition) less than 0.4 m (Pont, 1996).
The short-term measurements of deltaic plain vertical accretion rates -using "sedimentation/erosion tables" and "marker horizons" (see Boomsans and Day, 1993; Cahoon and Reed, 1995)- have been supplemented by longer-term estimates of land/sea levels. These longer term estimates are based on long-term series of tide-gauge data, long-term analyses of levees elevations and indirect estimations. As an illustration, figure 16 shows the estimated rates of relative SLR inside and just outside the Rhône delta (Suanez and Provansal, 1996b). The average rate of RSLR in the Rhône delta - about 2 mm/year- is about twice the corresponding rate in Marseille, just outside the delta, and compares well with the rates estimated for the Ebro delta from differences in levees elevations (Ibañez et al., 1995) and from indirect calculations based on sediment budget considerations (Sánchez-Arcilla et al., 1995). A summary of the various ways to assess RSLR rates appears in table 3.
Approach	Main time-scale	RSLR estimate	Remarks
Tide-gauge records | Decadal | 2 mm/yr Rhône (n.a.) Ebro 5 mm/yr Po | Time-scale depends on available record series variable in time (Po) |
Topographic measurements | Decadal | 5 mm/yr Ebro (n.a.) Rhône (n.a.) Po | Accuracy of RSLR estimate depends on quantity and quality of land-elevation data (only as an order of magnitude) |
Sediment budget indirect estimates | Decadal | 2-5 mm/yr Ebro (n.a.) Rhône (n.a.) Po | Accuracy limited by sediment budget uncertainties (i.e. can be used only as an order-of-magnitude approximation) |

Table 3. Summary of approaches to assess RSLR rates (n.a.: not available).

The analysis of long-term time series of field data can be used in a straight forward manner to assess the effects of a given climatic change scenario. As an illustration, figure 17 shows the storm surge climate for the Ebro, Rhône and Po coasts, derived from local tide-gauge records. The thin lines represent surge levels induced by a RSLR of 0.25m (which would be the corresponding RSLR for a no-subsidence assumption and an eustatic rise of 25 cm for the year 2050 as recommended by IPCC'95 medium estimation). The largest decrease in return periods corresponds to the Po delta, being the Ebro delta the less affected.
Several other types of field measurements have been obtained and analysed to supplement the basic understanding derived from the previously mentioned measurements. Among these complementary observations there are:

- River mouth oceanographic studies to assess the interactions between river discharges and coastal dynamics, which control e.g. the dispersion of fine riverine discharges (Arnoux et al., 1995). As an illustration figure 18 shows the distribution of fine suspended sediments at the mouth of the Rhone river for the following meteor-oceanographic conditions: river flow of 2000 m3/s and a northerly wind of 8m/s.

- Subsidence studies -using cores and other geophysical means- to assess the local land elevations variations due to natural compaction (e.g. Barnolas, 1995) and man-induced ground-water extraction (e.g. Sestini, 1992).

- Circulation studies to assess the current patterns and associated nutrient fluxes around the deltas and in the adjacent coasts (e.g. Espino et al. 1994).

- Evaluation of primary production and decomposition in different deltaic plain environments (e.g. Curcó et al. 1996; Scarton and Rismondo, 1996, Rioual et al. 1996). The response of the different existing species to “stress” (to SLR in this context) have been assessed, showing a potential strong regression of *Arthrocnemum*
fructicosum in the Rhône delta due to SLR (Rioual et al. 1996). On the other hand, these data with the corresponding vertical accretion rates (e.g. Ibañez et al. 1996) have been used as an input to model soil formation in the deltaic plain (e.g. Torre et al. 1996).

Figure 18. Suspended sediment distribution in the Rhône plume (Arnoux et al., 1995).

- Bathymetric changes in inlets in order to estimate their contribution to the coastal sediment budget. This has been completed with physical models in a wave basin to simulate coastal changes close to the inlet entrance (e.g. Ruol and Tondello, 1996).
- Topographic measurements of beach profiles from the dune row to the shoreline, in order to estimate the cross-shore exchange of sediment between the coastal fringe and the deltaic plain as well as to estimate the aeolian and storm contribution to these processes (e.g. Suanez and Provansal, 1996c; LIM/UPC 1996).
3. SYSTEM DESCRIPTION: DELTAIC MODELLING AND IMPACT ASSESSMENT

SOME DEFINITIONS

- The *main aim* in here is to
 - Build-up a conceptual model of deltaic dynamics (from physical and ecological standpoints) for the plain and fringe units and long-time scales.
 - Quantify the main links between the different units of the developed deltaic model. This allows a dynamic description of the "present" or "reference" situation for each delta (essential to assess any natural or man-induced impact).
 - Build a series of quantitative models able to predict deltaic behaviour under "given conditions".

- The variety of physical and ecological conditions and the presence of multiple human-related boundaries suggested the adoption of a physiographic unit based modelling approach.
 - Physiographic units are defined for deltaic plain and fringe sub-domains in terms of controlling processes and "physical" boundaries.
 - This implies that the dynamics within each unit can be described by suitable conservation laws and -in their absence- empirical relationships.
 - These links between units depend on the particular type of model to be developed. For instance figure 19 shows the physiographic units defined for a generic deltaic coastal fringe. In the case of the Ebro delta, it was used to develop a decadal-scale shore-line evolution model. The links between units are, in this case, the yearly averaged along and across shore sediment transport rates. The corresponding model for the Rhône delta has required developing a detailed dune/dry beach response model. The corresponding model for the Po delta has required a detailed barrier-island and lagoon behaviour model (figure 20). This illustrates the particularities of the three studied deltas, within the common methodological approach and conceptual model framework.
DELTAIC FRINGE MODELLING

The developed conceptual model for deltaic coastal fringes is described in some papers from the final MEDDELT book of abstracts (Capobianco and Stive, 1996; Jiménez et al. 1996a, Capobianco et al. 1996) so that only a brief summary will be sketched in here. It is based on:

- Process-based defined physiographic units, illustrated by: shoreface, surf-zone, “subaerial beach” (of different types such as dune/beach, barrier coast, spit, deposition "mouth" area), lagoon, etc.
- The main driving terms considered are the river, the waves and corresponding wave-induced currents and the mean-water-level variations (in the external coast and through-out the delta).
- The coastal response is basically simulated by a combination of process-based models (e.g. for the coastline evolution associated with gradients in the net alongshore sand transport) and behaviour-based formulations (e.g. for the active profile response to SLR). An illustration of the simulated coastal response for the southern Ebro delta spit appears in figures 21 and 22, for various combinations of driving terms.

Figure 19. Physiographic-unit based coastal model.
Figure 20. Simplified conceptual model for a generic lagoon inlet (Capobianco and Stive, 1996).

Figure 21. La Banya spit shoreline evolution with and without RSLR (Sánchez-Arcilla et al. 1996).
The developed conceptual model for deltaic plains is described in Day et al. (1995) so that only a brief summary will be sketched in here (see figure 23). It is based on:

- The vertical accretion rates for various deltaic plain sites, determined considering inorganic (marine and riverine contributions) and organic (above and below ground production and decomposition) material inputs. As was clearly shown in the model's sensitivity analysis, plant production only plays a minor role in soil formation both in terms of root production and inputs from the litter. The variation in land elevation is mainly a function of the input of allochthonous inorganic matter, and also of the sediment compaction at the surface and in deeper layers. Only the variables related to soil structure (pore density, maximum pore space and minimum pore space) were measured in the various types of wetlands (see for illustration table 4). The soil surface altitude compared to its initial value after t years of simulation, is denoted as "soil elevation" (SEL$_t$). This "soil elevation" variable does not take into account the processes of subsidence in the deeper layers (SUBS), which includes not only compression of the entire Holocene sediment layers, but also possible tectonic movements in the underlying rocks. The Relative Land Elevation after 30 years
(RLE_{30}) is therefore equal to the difference between soil elevation and subsidence plus sea-level rise.

- The so determined "relative land elevation" is then extrapolated to a surface area of similar characteristics, from which the whole deltaic plain vertical dynamics can be assessed.

- The vertical accretion rate modelling includes a soil formulation which takes into account the changes in composition of mineral and organic matters as well as the resulting porosity.

![Conceptual model for deltaic plain functioning and the impacts of SLR (Day et al. 1995)](Image)
Table 4. Model parameter values used for “soil elevation” simulation in the Rhône delta (Pont, 1996).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>La Palissade</th>
<th>Digue</th>
<th>Bernacles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pore density</td>
<td>0.96</td>
<td>0.94</td>
<td>0.41</td>
</tr>
<tr>
<td>Max pore space (%)</td>
<td>0.53</td>
<td>0.66</td>
<td>0.41</td>
</tr>
<tr>
<td>Min pore space (%)</td>
<td>0.42</td>
<td>0.42</td>
<td>0.32</td>
</tr>
<tr>
<td>Compaction constant</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dead leaves input (g/m²)</td>
<td>773</td>
<td>773</td>
<td>773</td>
</tr>
<tr>
<td>Dead leaves decomp (%)</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>Stem Fall rate (g/m²/year)</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Dead stems decomp (%)</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Surf living root (g/cm³)</td>
<td>0.125</td>
<td>0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>Root decay (%)</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Root productivity (g/g)</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Dead root/living root (ratio)</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Decomposition rate (%)</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

The summarised models for deltaic plain and fringe have been developed for the "generic Mediterranean delta" -denoted MEDDELT- as well as for each of the three studied deltas -Ebro, Rhône and Po-. Some of the constituent sub-models have been quantitatively verified (see for illustration figure 24 for the deltaic coastal fringe and figure 25 for the deltaic plain) while for others only a qualitative verification - supplemented by quantitative idealised calibration- has been possible.

This means that using these models it is, in principle, possible to assess the "physical" impact of a given climate scenario or management option (see for illustration figures 14 and 15 for deltaic plain and 21 and 22 for deltaic fringe). However, any integrated vulnerability assessment requires a consistent introduction of the ecological and socio-economic components. The first one has been considered in MEDDELT only in terms of the "physical substratum" and will not be, thus, further considered in this paper. The socio-economic component will be dealt with in the next sections.
Figure 24. Hindcast validation of the long-term shoreline evolution model used to generate figures 20 and 21 (Sánchez-Arcilla and Jiménez, 1996).

Figure 25. Calibration of the sediment dynamics sub-model in the Po delta plain -Barricata marsh- dots are field measurements and lines are model simulation (Rybczyk et al. 1996)
4. THE LANDSCAPE INTEGRATED MODEL: CONCEPTUAL ISSUES

PROBLEM SETTING

The objective in here is to make a first approximation towards the development of an integrated landscape model by

- identifying the possible direct links between the socio-economic component and the physical (eventually ecological) components;
- assessing the socio-economic impact of the various scenarios considered;
- helping to develop enhancement and mitigation measures to cope with the predicted physical (eventually ecological) trends.

A complete landscape integrated model would require (see e.g. Capobianco, 1996):

- Full dynamical treatment of the horizontal and vertical dimensions involved in the deltaic surface evolution.
- Coupled dynamical simulation of the physical and ecological components.
- Efficient interactions between the socio-economic sub-system and the physico-ecological sub-systems, so as to be able to simulate the effects/impacts of natural and man-induced changes.

All these requirements are still very much under development, which justifies the limited presentation here included.

As an example of the requirements of this kind of models, figure 26 shows the difference between a static and a full dynamical approach to study the effects and impacts of climatic change on deltas.

METHODOLOGY DEVELOPMENT

A methodology for the analysis of socio-economic impacts of climatic change in deltaic areas has been developed. It is one of the building blocks of a landscape integrated conceptual model and is sketched in figures 27 and 28. It is a step by step
check list which should result in an overview of the socio-economic setting of each delta, the consequences of the selected "change" (e.g. sea-level-rise) and the possible measures to cope with these consequences. A more complete description can be seen in Otter et al. (1996a).

Figure 26. Static and dynamical approach to study effects and impacts of climatic change on deltas (Jiménez and Sánchez-Arcilla, 1997)
Step 1
Definition and analysis of the policy problem

Step 2-6
Analysis of the (site) specific effects of the problem

Step 7
Formulation of objectives and criteria

Step 8
Response strategies/instruments and effects

Step 9
Decision framework/CBA & MCA

Step 10
Policy design

Systems Analysis

Step 2
Definition of inputs and outputs

Step 3
Identification of boundary conditions

Step 4
Delineation of subsystems

Step 5
Identification of critical variables and relations

Step 6
Response of subsystems

Figure 27. Methodology to analyse socio-economic effects and responses (Otter et al., 1996a)

SLR water sediments salinity coastal erosion subsidence salinity intrusion flooding salt industry rice production fishery tourism nature conservation aquaculture living transport natural variables processes primary activities secondary activities

Figure 28. Schematization of the deltaic system (Otter et al., 1996a)
The general methodology is made up of two sections. The first one is a policy analysis framework (steps 1 and 7-10). The second one is a system analysis framework (steps 2-6), which makes use of all the knowledge and modelling presented in previous sections.

In the policy framework, the "policy problem" is defined first. Depending on policy objectives and criteria, suitable "instruments" can be chosen. These "instruments" can be then "tested" in terms of their effects in the frame of a general deltaic vulnerability assessment (see next section). This approach must also include the weighting of pros and cons of each strategy, within a decision framework (be it cost-benefit analysis, multicriteria analysis or some other approach).

In the system analysis framework, the physiographic unit approach presented before must be supplemented with the socio-economic sub-system components. As already mentioned, specifying the existing (and expected) links between the full socio-economic, physical and ecological sub-systems is a far from trivial task very much under development, although some results are beginning to emerge (see e.g. Capobianco, 1996; Capobianco and Otter, 1996). It should be stressed that the socio-economic system description includes not only land-uses and population and activity distributions, but also administrative/legislative regulations (since they act as boundary or limiting conditions for management options and activity development), which further complicate the problem (e.g. Capobianco and Furlanetto, 1996).

THE LANDSCAPE MODEL

One of the characteristics of these kind of models is that they make use of key variables, processes and activities. These key parameters are selected as a function of the system characteristics to represent the deltaic system in an aggregated manner. The objective is to reduce the number of components to be considered in the analysis - retaining the main ones in term of deltaic functioning- without a significant loss of information about the deltaic integrated behaviour. This aggregation permits to reduce the links between components to be analysed. As an example, figure 29 shows the
conceptual model of links and interactions in the Ebro delta in terms of the above mentioned key parameters. The links are described in table 5.

![Conceptual Model Diagram]

Figure 29. Conceptual model of links and interactions in the Ebro delta (Otter et al. 1996b)

In the practical application, these links have to be formulated in a quantitative manner by transforming them into (e.g. Capobianco, 1996):

- one mathematical formula describing the functional dependencies of the link;
- a series of possible values, e.g. height of embankments;
- a series of if-then conditions, e.g. describing management practices;
- the indication of a sub-model (as e.g. those used in soil formation in the deltaic plain (Torre et al. 1996) or those for coastal evolution (Sánchez-Arcilla and Jiménez, 1996));
- other.
<table>
<thead>
<tr>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20</td>
<td>Most natural areas are located on or near the coast. Coastal erosion and accretion is therefore a relevant input to their evolution. Conversely natural areas have their effect on coastal evolution.</td>
</tr>
<tr>
<td>10-21</td>
<td>Rice production will be threatened by coastal erosion and the attending salt intrusion in so far as these activities are taking place near the coast.</td>
</tr>
<tr>
<td>10-22</td>
<td>Coastal erosion may put mussel production at risk. If the Trabucador isthmus erodes, the Alfaques bay and the southern parts of the delta will be exposed to the sea (Mariño, 1992) and the mussel habitat will be destroyed.</td>
</tr>
<tr>
<td>10-23</td>
<td>Tourism may be affected by coastal erosion by loss of tourist facilities or indirectly through the loss of attractions such as the natural area. There are presently two camping sites near the beach.</td>
</tr>
<tr>
<td>10-24</td>
<td>Coastal erosion may affect the port in Sant Carles de la Ràpita and the roads in the delta.</td>
</tr>
<tr>
<td>10-25</td>
<td>Houses may be affected by coastal erosion as long as they are located on or near the beach. However, there are just a few residential areas there.</td>
</tr>
<tr>
<td>10-26</td>
<td>Salt industry may be at risk from coastal erosion for the same reasons as mussel production.</td>
</tr>
<tr>
<td>11-20</td>
<td>The lagoons in the north and in the south of the delta will be regularly intruded by the sea, changing their fresh water characteristics and hence the habitat in and near the lagoons (Mariño, 1992).</td>
</tr>
<tr>
<td>11-21</td>
<td>The rice fields will be flooded in so far as they are located on the coast. Rice is a fresh water crop and salt water intrusion (which does not only occur as a result of flooding) will pose a great problem.</td>
</tr>
<tr>
<td>11-22</td>
<td>Aquaculture will be in jeopardy if the southern bay is exposed to wave action. Fisheries may decrease as a result of loss of breeding grounds in the bays (Mariño, 1992).</td>
</tr>
<tr>
<td>11-23</td>
<td>The tourist facilities which may be affected by flooding are two tourist resorts in the north and south of the delta. The flooding of the camp grounds may lead to extensive damages.</td>
</tr>
<tr>
<td>11-24</td>
<td>There is no large-scale infrastructure in the delta. The port in Sant Carles de la Ràpita is located just outside the delta and no structural problems are expected there as defences will surely adapt in time (Mariño, 1992). There are no main roads in the delta and those that cross it are rather inland, thus minimising the impact or sea level rise and erosion.</td>
</tr>
<tr>
<td>11-25</td>
<td>Houses may be affected as long as they are located on or near the beach. (there are just a few residential areas). Most of the houses are in the highest part of the delta which is about 3-4 m above sea level. The main effects of sea level rise will be felt by the tourist developments on the coast. These developments are, however, small compared to the rest of the developments on the Spanish Mediterranean coast and are of marginal value to the delta economy.</td>
</tr>
<tr>
<td>11-26</td>
<td>Salt works will experience major impacts of global climate change through a higher sea level and an expected increase in storms.</td>
</tr>
</tbody>
</table>

Table 5. Description of links of figure 28 (Otter et al. 1996b).
<table>
<thead>
<tr>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30</td>
<td>The drainage network has several pumping stations which discharge through the lagoons to the bays (Mariño, 1992)</td>
</tr>
<tr>
<td>21-30</td>
<td>The fresh water irrigation literally 'pushes down' the saline water.</td>
</tr>
<tr>
<td>23-31</td>
<td>The development of the tourist sector leads to urbanisation and an increased soil impermeability through the construction on roads, pavements, squares etc. leading to an increased run-off.</td>
</tr>
<tr>
<td>25-31</td>
<td>The development of the housing sector leads to an increased impermeability of the soils through the construction of roads, pavements, squares etc. leading to an increased run-off.</td>
</tr>
<tr>
<td>30-10</td>
<td>A change in irrigation and drainage practices may influence the coastal erosion process by affecting the (already minimal) flow of water and sediments.</td>
</tr>
<tr>
<td>31-10</td>
<td>The building of constructions on the coast may have negative effects on the coast itself and more specifically on the coastal wetlands through erosion. The constructions prevent the wetlands from moving landinwards under erosion conditions.</td>
</tr>
<tr>
<td>31-11</td>
<td>Urbanisation leads to an increased impermeability of the soils which increases the run-off and consequently actual floods may occur more frequently.</td>
</tr>
</tbody>
</table>

Table 5. Description of links of figure 28 (Otter et al. 1996b).
5. DELTAIC VULNERABILITY: ASSESSMENT AND APPLICATIONS

VULNERABILITY DEFINITION AND ASSESSMENT

Vulnerability (worsening of the deltaic system status due to natural or man-induced factors) and the complementary concept of resilience (improvement or maintenance of the deltaic system status due to natural or man-induced factors) are difficult to define and evaluate for complex dynamical systems such as deltas, especially when their present situation is largely controlled or conditioned by the human influence.

Vulnerability/resilience is here defined in terms of three parameters:

- Variations in the "natural" rates of change (e.g. changes in the erosion rate rather than the appearance of erosion itself which may be a very natural process under present conditions). This can be illustrated by comparing the "natural" rates of erosion/accretion and lobe switching for the Ebro delta until 1960 -i.e. prior to the action of the present system of dams-, shown in figure 5, with the rates shown in figure 30 -which correspond to the period under the influence of dams and river flow regulation- (see also figure 31).

- Relative variations (i.e. gradient variations or sensitivity) in the same "natural" rates of change for a given increment in driving factors (e.g. relative variations in erosion rates for a unit increment of morphological wave-height or mean-water-level).

- Consumption of "resources" associated with the variations in rates of change (e.g. consumption of emerged barrier width associated with variations in erosion rates).

Each of these three classes of parameters contribute with a number of "vulnerability indexes" -which are simply the variations or consumptions above described after normalisation-. This means that vulnerability indexes range from -1.0 to 0.0 while resilience indexes range from 0.0 to 1.0. The so obtained vulnerability/resilience indexes can be then easily combined -in a linear manner to start with- including (optionally) a subjective weight for each of them to represent the political/subjective importance associated to each parameter (e.g. García, 1996).
Figure 30. Shoreline rates of change in the Ebro delta from 1957 to 1989 (Jiménez and Sánchez-Arcilla, 1993).

Figure 31. Ebro delta area changes during the last centuries (Jiménez, 1996; Jiménez et al. 1997).
THE WAY TO APPLICATIONS

A complete application of the presented general approach is still very much under development. Some limited applications are being performed within the MEDDELT project and will be summarised in here. More information can be seen in Otter et al. (1996), Sánchez-Arcilla et al. (1996), Capobianco (1996), Pont (1996) and in the work to be subsequently done.

The vulnerability/resilience assessment to SLR effects is being done with three scenarios, defined assuming a Common Climate Boundary Condition which is the SLR given by the IPCC'95 best guess scenario:

1. No-intervention scenario, in which it is assumed that there are no new management "responses" to cope with SLR effects and represents the "natural" (i.e. present or reference) deltaic system behaviour under SLR. This scenario is analysed using a static approach (e.g. flooding the delta under the selected SLR and defining flooded areas as areas at risk, see figures 15 and 32 for an illustration of this approach in the Rhône and Ebro delta respectively) and a dynamic approach (based on the already presented physiographic-unit deltaic model, see e.g. figure 31 to assess the impact of SLR on the Ebro delta coast).

2. Human-intervention scenario, in which the effects of SLR on the deltaic system are analysed in a dynamic way which also includes "system management" options. This scenario obviously includes applying an evaluation technique to quantify monetary and non-monetary "costs" of the management options, with special attention on the values/weights of activities/uses difficult to evaluate in monetary terms.

3. Sensitivity scenario, in which the no-intervention scenario is re-evaluated using different initial conditions in order to assess the sensitivity of the conceptual model (of the deltaic system in more general terms) to different forcing conditions.
For each of these three scenarios a number of vulnerability/resilience indexes is determined so as to represent with the minimum possible level of information the deltaic system status and its response. The scenarios with a dynamic approach allow to quantify the system reaction to SLR so that the expected magnitude of the resulting changes can be quantified (rather than identifying only potential zones at risk as is done for the static approach or "flooding" models).
Even though the same approach is being followed for the three studied deltas, there are significant differences in initial conditions and resulting status. As an illustration, if the static and dynamic approaches are applied to the Ebro delta, the main difference is the quantification of flooding levels and affected areas. The same two approaches for the Po delta give significantly different results: the static approach predicts serious impacts on the coastal fringe and almost no impacts for the deltaic plain which is almost completely hydrologically controlled. The situation is nearly reversed with the dynamic approach which predicts an adapting coastal fringe (upwards and landwards migration of the active beach profile, etc.) and serious impacts on the plain, especially if the ecological system is considered under a scenario of no sediment supply (Capobianco et al, 1996b).

When analysing vulnerability and resilience of the deltaic system it is necessary to study the system as a whole (i.e. all the components). However, in many cases it is useful to analyse the partial deltaic response to SLR by using some of the sub-models presented before. In this way, figure 33 shows a simulation of the response of wetland elevation in the Po delta (Chioggia) under a SLR given by the best estimate of IPCC'95 and for different mineral inputs. Obtained results predict that to keep in pace wetland elevation with the mean sea level (relative elevation) an input of 10,000 grams m\(^{-2}\) yr\(^{-1}\) would be necessary (Rybczyk et al. 1996). However, this amount is higher than the rates recorded for most salt marshes.

![Relative Wetland Elevation](image-url)

Figure 33. Simulated changes in wetland elevation for different mineral inputs under a SLR given by the best guess of IPCC'95 at the Chioggia wetland site -Po delta- (Rybczyk et al. 1996).
These results indicate that the Chioggia wetland is highly vulnerable—in terms of elevation—to SLR under present conditions (2,470 grams m\(^{-2}\) yr\(^{-1}\) is the current estimate of maximum mineral inputs, Rybczyk et al. 1996). Moreover, these results can also be used to assess the resilience capability of the system under different scenarios of sediment supply.

This "vulnerability" can also be measured in relative terms by comparing the expected wetland response under the present situation (current SLR conditions) with eustatic SLR, see figure 34. It can be seen that even under present conditions, the wetland is not able to maintain its relative elevation. This case therefore illustrates one of the types of vulnerability mentioned before, i.e. variation in the "natural" rates of change. Under both considered scenarios—current and accelerated SLR—the wetland evolutive trend is the same although with different rates.

Figure 34. Simulated changes in wetland elevation for a mineral input of 2,470 grams m\(^{-2}\) yr\(^{-1}\) under current SLR (1.5 mm/yr) at the Chioggia wetland site—Po delta—(Rybczyk et al. 1996).
6. CONCLUSIONS: THE PAST AND THE FUTURE

GENERIC CONCLUSIONS

- The presented approach can be used to assess the impact of climatic change on NW Mediterranean type deltas, but is also a general methodology to
 - Analyse deltaic systems using field data.
 - Simulate deltaic systems using conceptual/numerical models.
 - Assess vulnerability/resilience of deltaic systems using a landscape integrated model.

- The "past" behaviour must be understood using available and newly collected data which allow to characterise the past and present system status and its underlying dynamics. The required amount of field data depends on the horizontal/temporal scale of the considered processes/responses. As an illustration, a stable assessment of the averaged yearly behaviour of the Ebro delta coastline, has required data series longer than 3 to 4 years. Measurements shorter than this are "polluted" by seasonal fluctuations (Jiménez and Sánchez-Arcilla, 1993) (see figure 35 for illustration).

![Figure 35. Effects of the length of the time serie of data for the determination of the shoreline medium-term evolution trend (Jiménez and Sánchez-Arcilla, 1993).](image-url)
This “obvious” conclusion is not really a trivial matter since the only “long enough”
time series normally available for climatic change studies pertain to atmospheric and
terrestrial variables (temperature, precipitation, river liquid discharges, etc.). This leads
to a situation where, although some of the driving terms are well characterised at the
long time-scale, the associated deltaic response is seldom available.

In these cases (and the analysed deltas can be used as an example of this situation)
numerical models have to be used to “reconstruct” the deltaic behaviour. One problem
associated with the use of these models is that, in many cases, they have to be calibrated
at the short-term scale (depending on the available data), even though they will be
afterwards used in long-term simulations.

The “future” behaviour has been simulated using the conceptual model here
presented, making use of the physiographic-unit concept and quantifying the links
between units and physical/ecological/socio-economic sub-systems at the unit level. The
use of this type of simulation models at decadal scale requires careful calibration of the
component links and an overall model validation. This has been done, for instance,
using coastline positions from the last 25 years in order to validate a shoreline evolution
model able to forecast the Ebro delta coastal evolution at decadal scale (see figures 21
and 22). The same has been done to obtain the risk zonation in the Rhône deltaic plain
presented in figure 15.

\textit{SPECIFIC CONCLUSIONS}

The relatively low significance of "natural" climatic factors (river discharges, sea-
level rise, wave climate, etc.) in determining changes in present deltaic behaviour. The
conclusion is, thus, that management-related actions (river flow regulation, land uses,
coastal zone defences, impoundment’s, etc.) affect much more any possible change in
deltaic behaviour.

In the analysed deltas, due to the existing extensive deltaic management/regulation
policies, the climatic factor seems to accelerate the present evolutive trends (in terms of
vertical elevation and coastal processes) instead of generating any clear change in
deltaic behaviour. This means that, under present conditions, these deltas are highly conditioned by the management practices which constrain the resilience capability of these environments to cope with SLR.

O The importance of inorganic input (even if it is the wash-load fraction) to maintain relative land elevation. The same applies to sand input for all coastal fringes with a gradient in alongshore transport. In both cases the best way to make the most of the "remaining" natural input (i.e. what is left after the dams, etc. have taken their toll) is to allow the river to transport naturally the sediment and, at the same time, allow this sediment -fines for the deltaic plain and sand for the deltaic fringe- to be transported and deposited in the deltaic plain and fringe.

O Only the areas with high sediment input (of riverine or marine origin) and without the negative effects of "limiting" structures (impoundment, groins, etc.) will be able to withstand naturally SLR.

As an example, Sánchez-Arcilla et al. (1996) have estimated that it is necessary that the Ebro river supplies at least four (4) times the present sand supply rate to counteract the coastal erosion induced by a SLR given by the IPCC'95 best estimate.

O The same methodology has been applied to all 3 deltas, but a number of differences have illustrated the capabilities of the approach to other deltas in the world (variations in primary production related to soil elevation and salt content, variations in cross-shore transport and overwash related to beach profile and wave/surge climates, etc.). The numerical results obtained and presented partially in this report illustrate the feasibility of quantitative predictions for a better management.

O As a final conclusion, it should be stressed that deltas depend on high-energy events to maintain themselves. The non-linear character of sediment transport formulations justify this strong dependence on the "peaks" of riverine and marine driving factors. Human management, so far, has been directed to reduce these high-energy episodic events. In the future, and if the final aim is to enhance the natural survival of deltas, there is a need to re-introduce these episodic events in the deltaic dynamics.
ACKNOWLEDGEMENTS

This work was carried out as part of the MEDDELT project. It was supported by the EU Environment Programme under Contract No. EV5V-CT94-0465. It was also co-sponsored by the Spanish Ministry of Education and Research through DGICYT (UE95-0033).

The authors want to acknowledge the full team of MEDDELT researchers and the support staff of their corresponding institutions. Without them, neither the field work nor the numerical processing, simulations and conclusions would have been possible.

This Project has been presented and accepted as a LOICZ/IGBP research project.

REFERENCES

Capobianco, M. 1996. Impact of climatic change on Po delta. Integrated modelling as a

LIST OF MEDDELT PUBLICATIONS

Theses (Ph.D. and M.Sc.)

Ph.D.

(+3 in progress)

M.Sc.

Alfier, S. Studio sperimentale in laboratorio sull’influenza di un aggetto in corrispondenza di un’imboccatura portuale. Facoltà di Ingegneria, Università di Padova.

Bixio, A.C. Metodologie per l’analisi di stabilità delle imboccature a marea. Facoltà di Ingegneria, Università di Padova.

Ferro, M. 1995. Delta Po Natural Park: Sustainability and compatibility among plans, programmes and projects. IUAV.

Giorgetti, M. Studio sperimentale in laboratorio sui fenomeni di trasporto solido litoraneo in prossimità di una imboccatura lagunare. Facoltà di Ingegneria, Università di Padova.

Pizzo, G.M. Studio delle correnti costiere e del trasporto solido indotto dal moto ondoso lungo i litorali del Delta del Po. Facoltà di Ingegneria, Università di Padova.

Journals

Arnaud-Fasseta, G. Transit et piégeage de la charge de fond du Petit Rhone (Delta du Rhone, France du sud) à l’échelle pluriannuelle: le contrôle événements hydrologiques exceptionnels. Géomorphologie, relief, processus, environnements, (submitted).

Arnoux-Chiavassa, S., Rey, V. and Fraunié, Ph. Transport of suspended matter off the Rhone river plume. Journal of Coastal Research, (to be submitted).

Bruzzi, C. and Provansal, M. 1996. Impacts morphosédimentaires des tempêtes sur les côtes de Provence. Quaternaire, (accepted for pub.)

Forget, P. and Ouilhon, S. Surface suspended matter quantification in the Rhone river mouth area from combined field radiometric measurements and satellite imagery. Oceanologica Acta, (submitted).

Guan, C., Rey, V. and Forget, P. Improvement of the WAM wave model and its application to the Rhone river mouth area. Journal of Coastal Research, (to be submitted).

Suárez, S. and Provansal, M. 1996. Large scale evolution of the littoral of the Rhone delta (Southeast France). Journal of Coastal Research, (accepted for pub.)

Suárez, S. and Provansal, M. 1996. Morphosedimentary behaviour of the deltaic fringe in comparison to the relative sea-level rise on the Rhone delta. Quaternary Sciences Reviews, (accepted for pub.)

Suárez, S. and Provansal, M. Dynamics of beach/dune systems: an example from the deltaic coast of the Rhone delta (Southeast France). Journal of Coastal Conservation, (in review).

Verdier-Bonnet, C., Angot, Ph. and Fraunié, Ph. Paramétrisation de la turbulence pour le phénomène d'upwelling côtier en milieu stratifié. Comptes Rendus de l'Académie des Sciences, Paris, (accepted for pub.)

Conferences

58

Fraunié, Ph. 1996. About the Rhone river Plume. *JONSMOD 96*, Oslo, August 1996.

Reports

