Title: EPOXY-RESIN ADHESIVE AND METHOD FOR BONDING USING SUCH AN EPOXY RESIN ADHESIVE

Abstract: The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano-substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a weight ratio of at least 1% and wherein the nano-substances are carbon-fibre nanotubes having a weight ratio of approximately 2%.
Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

The invention is concerned with an epoxy-resin adhesive as well as a method of applying such an epoxy-resin adhesive.

According to the prior art it is known to apply an epoxy-resin adhesive for bonding purposes.

The invention has as an objective to improve the bonding strength for which purpose the epoxy-resin adhesive according to the invention comprises a dotation of nano-substances.

Preferably the nano-substances are selected from the group comprising carbon fibre nanotubes, carbon nano-fibres and silicate nano powders.

Preferably the nano-substances are dispersed in the adhesive with a weight ratio of at least one percent. When the nano-substances are carbon-fibre nanotubes, best results are achieved when the epoxy-resin adhesive has carbon-fibre nanotubes with a weight ratio of approximately two percent related to the total weight of the epoxy-resin adhesive.

In case of silicate nano powders, the weight ratio is preferably set at approximately 5%.

The method for bonding comprising the step of applying an epoxy-resin adhesive is in another aspect of the invention characterized in that the epoxy-resin adhesive is subjected to radiation selected from the group comprising electron beam irradiation, ultra violet radiation, and mixed field radiation.

The measure of radiation in itself improves the bonding strength of the epoxy-resin adhesive independent from the application of nano-substances. Hence, the method of the invention relates to both epoxy-resin adhesive with and without nano-substances dispersed therein.

Best results are however achieved with the method of the invention wherein prior to the adhesive being subjected to radiation, same is provided with a dotation of nano-
substances.

Consistent with the preferences concerning the epoxy-resin adhesive of the invention, in the method of the invention it is advantageous that the nano-substances are provided to the adhesive at a weight ratio of at least one percent, and if carbon fibre nanotubes are applied preferably at a weight ratio of approximately two percent. When using silicate nano-powders, the weight ratio of the nano-substances can be increased up to five percent.

Appreciable results are achieved with the method of the invention when the epoxy-resin adhesive is applied on a metal. It is however also possible to apply the epoxy resin adhesive on other materials, such as polymers.

It is preferred that the metal's surface is polished and cleaned prior to the application of the epoxy-resin adhesive.

The bonding strength of the epoxy-resin adhesive can in the method of the invention be further promoted by modifying the metal's surface through the application of plasma nitriding implementation prior to the application of the epoxy-resin adhesive.

The radiation of the epoxy-resin adhesive is then applied following the application of the epoxy-resin to the metal's surface.

It is found that particularly good results can be obtained by selecting the metal from the group comprising at least steel, aluminium and titanium.

Hereinafter the invention will be further elucidated with reference to a typical example of an epoxy-resin adhesive according to the invention and a method of applying according to the invention such an epoxy-resin adhesive.

Further reference is made to the attached figure showing a lap shear tensile strength of an adhesive joint prepared by an epoxy-resin adhesive, by an epoxy-resin adhesive with a dotation of carbon-fibre nanotubes, and by the latter epoxy-resin adhesive modified by electron beam irradiation.
Example

As an example an adhesive joint of titanium is prepared by using ultra high temperature resistant epoxy adhesive. The high performance nano adhesive is prepared by dispersing Single Walled Carbon Fibre Nano Tubes (SWNT) with a weight ratio of approximately 2% within the matrix adhesive. Prior to adhesive bonding, the surface of the titanium sheets is mechanically polished by wire brushing according to ASTM D 897 standard, ultrasonically cleaned and thereafter, the titanium surfaces are modified by plasma nitriding implantation. Then, the joints are exposed to electron beam radiation. Thermo Gravimetric Analysis (TGA) analysis are carried out in order to understand the physicothermal behaviour of the basic adhesive and the SWNT dispersed nano adhesive. The TGA studies show that for the basic adhesive there is a weight loss of the adhesive, however, in the case of the epoxy-SWNT nano adhesive, there is almost 99% retention of weight of the adhesive, when the adhesive is heated up to 350°C. In order to determine the joint strength, tensile lap shear tests are performed according to ASTM D 5868-95 standard, the results of which are shown in Fig. 1. Considerable increase in joint strength is observed, when the joint is prepared with the SWNT-adhesive according to the invention. When the high performance nano adhesive joint of titanium is exposed to electron beam radiation, an additional considerable increase in joint strength is observed. Failure in analysis of the joints is carried out under Scanning Electron Microscopic studies. Therefrom it can be concluded that, in the first case, SWNT essentially helps in local strengthening of the matrix adhesive leading to maximize the stress transfer and resulting in significant increase of joint strength, and in the second case, the crosslink density of the adhesive increases due to the exposure to electron beam radiation, resulting in further significant increase in adhesive bond strength.
CLAIMS

1. Epoxy resin adhesive comprising a dotation of nano-substances.
2. Epoxy resin adhesive according to claim 1, wherein the nano-substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders.
3. Epoxy resin adhesive according to claim 1 or 2, wherein the nano-substances are dispersed in the adhesive with a weight ratio of at least 1%.
4. Epoxy resin adhesive according to claim 3, wherein the nano-substances are carbon-fibre nanotubes having a weight ratio of approximately 2%.
5. Epoxy raisin adhesive according to claim 3, wherein the nano-substances are silicate nano powders having a weight ratio of approximately 5%.
6. Method for bonding comprising the step of applying an epoxy resin adhesive, characterized in that the epoxy resin adhesive is subjected to radiation selected from the group comprising electron beam irradiation, ultra violet radiation, and mixed field radiation.
7. Method according to claim 6, wherein prior to the adhesive being subjected to radiation same is provided with a dotation of nano-substances.
8. Method according to claim 7, wherein the nano-substances are provided to the adhesive at a weight ratio of at least 1%.
9. Method according to claim 7 or 8, wherein carbon fibre nanotubes are provided to the adhesive at a weight ratio of approximately 2%.
10. Method according to claim 7 or 8, wherein silicate nano powders are provided to the adhesive at a weight ratio of approximately 5%.
11. Method according to any of claims 6-9, characterized in that the epoxy resin adhesive is applied on a metal.
12. Method according to claim 11, characterized in that the metal's surface is polished and cleaned prior to the application of the epoxy resin adhesive.

13. Method according to claim 11 or 12, characterized in that the metal's surface is modified by plasma nitriding implantation prior to the application of the epoxy resin adhesive.

14. Method according to claim 6 or 7, and claim 13, characterized in that the radiation of the epoxy resin adhesive is applied following the application of the epoxy resin adhesive to the metal's surface.

15. Method according to any one of claims 8-11, characterized in that the metal is selected from the group comprising at least steel, aluminium and titanium.
Fig. 1
A. CLASSIFICATION OF SUBJECT MATTER

INV. C09J163/00 C09J11/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C09J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2006 225502 A (FUJIKURA LTD) 31 August 2006 (2006-08-31) abstract</td>
<td>1,3,4</td>
</tr>
<tr>
<td>X</td>
<td>CN 1 693 403 A (UNIV ZHEJIANG [CN]) 9 November 2005 (2005-11-09) abstract</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents

* "A" document defining the general state of the art which is not considered to be of particular relevance

* "E" earlier document but published on or after the international filing date

* "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

* "O" document referring to an oral disclosure, use, exhibition or other means

* "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "X" document member of the same patent family

Date of the actual completion of the international search: 19 June 2008

Date of mailing of the international search report: 04/07/2008

Name and mailing address of the ISA: European Patent Office, P. B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel.: (+31-70) 340-2040, TX 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer: Niaounakis, Michael
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 2006225502 A</td>
<td>31-08-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>CN 1693403 A</td>
<td>09-11-2005</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2007095475 A1</td>
<td>03-05-2007</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 2003193017 A</td>
<td>09-07-2003</td>
<td>NONE</td>
</tr>
</tbody>
</table>