Laboratorium voor Chemische Technologie

Verslag behorende
bij het processchema
van

K.G. Schuijf.

onderwerp:

Thermische ontegelding van Calciumnitraat.

Verwerking en recirculatie der productgassen.

adres: Vignolastraat 200
Rotterdam - 17

datum: maart 1968
Onderwerp: Thermische ontleding van Calciumnitraat.
Verwerking en recirculatie der productgassen.

K.G. Schuijf
Vignolastraat 200
Rotterdam-17

Maart 1968.
INHOUDSOPGAVE

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Titel</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Samenvatting</td>
<td>3</td>
</tr>
<tr>
<td>II.</td>
<td>Inleiding</td>
<td>4</td>
</tr>
<tr>
<td>III.</td>
<td>Uitvoering proces</td>
<td>5</td>
</tr>
<tr>
<td>IV.</td>
<td>Fysische en chemische aspecten</td>
<td>6</td>
</tr>
<tr>
<td>V.</td>
<td>Capaciteit van de fabriek</td>
<td>10</td>
</tr>
<tr>
<td>VI.</td>
<td>A. Grootte van de grondstof- en productstromen bij aamname van evenwicht</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B. Grootte van de grondstof- en productstromen bij bepaalde verblijftijd</td>
<td>21</td>
</tr>
<tr>
<td>VII.</td>
<td>A. Verwijdering van de waterdamp door indirect contact(koeler/condenser)</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>B. Verwijdering van de waterdamp door direct contact(sproaïtoren)</td>
<td>26</td>
</tr>
<tr>
<td>VIII.</td>
<td>Berekeningen der te gebruiken apparatuur</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>A. Recirculatie-compressor</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>B. Hoeveelheid af te voeren warmte via stoomketel</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>C. Indirect contact</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>D. Direct contact</td>
<td>37</td>
</tr>
<tr>
<td>IX.</td>
<td>Litteratuurlijst</td>
<td>45</td>
</tr>
</tbody>
</table>
SAMENVATTING

Sedert enkele jaren is aan de T.H. te Delft een onderzoek begonnen om te komen tot een omzetting van calcium-nitraat, dat als betrekkelijk weinig waardevol product in de kunstmestindustrie verkregen wordt, door thermische ontleding in salpeterzuur.
Hierdoor zou dus een gesloten N-kringloop verkregen worden, daar het ontstane salpeterzuur weer voor ontsluiting gebruikt kan worden. Bij deze ontleding ontstaan NO, O₂ en waterdamp.

In dit processchema zijn de mogelijkheden onderzocht ter verwijdering van de waterdamp, gecombineerd met recirculatie van productgas. Het laatste om een zo geconcentreerd mogelijk gasmengsel, wat nitreuze gassen betreft, te verkrijgen.

Hiertoe staan twee mogelijkheden open, te weten:
- **Indirect contact (koeler/condenser)**
- **Direct contact (sproeitoren)**

Daar weinig gegevens bekend zijn voor de berekening van de koeler/condenser (aanwezigheid van niet-condenseerbaar gas, absorptie van de nitreuze gassen, dus vorming van verdund salpeterzuur) levert het ontwerpen hiervan grote moeilijkheden op, welke slechts opgelost kunnen worden door metingen aan een proefcondenser.

Getracht is een koeler/condenser te berekenen, waarbij via "schotels" tussen de verschillende secties, vloeistof afgetapt wordt.

Tevens is met de ter beschikking staande gegevens onder bepaalde aannames geïntrigeer een sproeitoren te ontwerpen, waarbij condensatie bereikt wordt door de ontstane verdunne oplossing van salpeterzuur voor een groot deel weer te verspreiden. De warmte, welke het inkomende gasmengsel afstaat, wordt hierbij dus opgenomen door de verspreide oplossing.

Een voordeel van de laatste methode is de aanzienlijk goedkopere constructie.

Voor een juiste berekening dienen echter meer gegevens ter beschikking te komen.
II. Inleiding.

In de kunstzenuwist industrie zijn 3 ontsluitingsmethoden van de in de natuur voorkomende minerale fosfaten, zoals apatiet Ca₃F₂(PO₄)₆ gebruikelijk en wel:

A. Onsluiting met zwavelzuur.

\[\text{Ca}_3\text{F}_2\text{(PO}_4\text{)}_6 + 7 \text{H}_2\text{SO}_4 \rightarrow 2 \text{HF} + 3 \text{Ca(H}_2\text{PO}_4\text{)}_2 + 7 \text{CaSO}_4 \]

Hierbij ontstaat dus monocalciumfosfaat naast gips.

B. Onsluiting met fosforzuur.

\[\text{Ca}_3\text{F}_2\text{(PO}_4\text{)}_6 + 14 \text{H}_3\text{PO}_4 \rightarrow 2 \text{HF} + 10 \text{Ca(H}_2\text{PO}_4\text{)}_2 \]

waarbij dus geen gips ontstaat. Het ontstane product wordt in de handel gebracht onder de naam dubbelsuperfosfaat.

C. Onsluiting met salpeterzuur. (\[\rightarrow \] nitrofosfaten.)

\[\text{Ca}_3\text{F}_2\text{(PO}_4\text{)}_6 + 20 \text{HNO}_3 \rightarrow 10 \text{Ca(NO}_3\text{)}_2 + 6 \text{H}_3\text{PO}_4 + 2 \text{HF} \]

Neutraliseert men de verkregen oplossing gedeeltelijk met NH₃, dan wordt NH₄NO₃, CaHPO₄ en Ca(NO₃)₂ verkregen. Er ontstaat dan een zeer hygroscopisch product en is door deze eigenschap moeilijk op te slaan. Het ontstane calciumnitraat, dat hygroscopisch is, moet daarom verwijderd worden. Dit kan geschieden door het uit te laten kristalliseren. Hierbij ontstaat Ca(NO₃)₂·4aq. als bijproduct, dat als kalksalpeter 5Ca(NO₃)₂·NH₄NO₃·10aq. op de markt wordt gebracht.

Door gemengde ontsluiting met HNO₃ en H₂SO₄, resp. H₃PO₄ toe te passen, wordt Ca in de vorm van CaSO₄, resp. CaHPO₄ of Ca(H₂PO₄)₂ verkregen, waarbij dus de vorming van calciumnitraat wordt voorkomen.

Daar de waarde van calciumnitraat op de markt vrij laag is, zou het economisch zeer aantrekkelijk zijn, indien dit product in een waardevoller product om te zetten zou zijn. Daarom is gedacht aan omzetting in salpeterzuur, waardoor een gesloten N-kringloop wordt bereikt. Voor de ontsluiting van de minerale fosfaten wordt o.a. salpeterzuur gebruikt, hierbij ontstaat calciumnitraat, dat door thermische ontteding, gevolgd door absorptie der ontstane nitreuzen gassen weer omgezet wordt in salpeterzuur.

Technisch wordt thans salpeterzuur verkregen door oxidatie van ammoniak. Het voordeel van calciumnitraat als uitgangsstof t.o.v. ammoniak is, dat een gasmengsel verkregen wordt, dat rijker is aan stikstofoxide, waardoor een hogere concentratie van het te produceren salpeterzuur bereikbaar is.

Bij de NH₃-oxidatie wordt ammoniak met lucht over een platina-katalysator (met 5 à 10 % Hn) geleid, welke is aangebracht in de vorm van een net. De reactietemperatuur bedraagt 800 à 900 °C. De hoofdreactie is:

\[4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \]
Het ontstane gasmengsel via een afgasketel (om een deel van de warmte-inhoud weer nuttig te gebruiken, dus productie van stoom) gekoeld. Vervolgens wordt verder gekoeld in een koeler-condenser, waarbij een groot deel van het bij de reactie ontstane water condenseert. De temperatuur van het gasmengsel bedraagt dan 40°C. Tevens vindt hier oxidatie voor een deel van het ontstane NO tot NO₂ plaats en vorming van verdund salpeterzuur. De rest van het NO wordt geoxideerd in een Oxidatietafere. Tenslotte vindt absorptie van NO₂ in H₂O plaats volgens:

\[3 \text{NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{HNO}_3 + \text{NO} \]

Er ontstaat dus weer NO, dat in de absorptiekolom weer geoxideerd wordt tot NO₂.

In de absorptiekolom zijn dus twee functies te onderscheiden:
2. De ruimte tussen de schotels. Hier vindt oxidatie van het ontstane NO plaats.

De afstand tussen de schotels wordt dus bepaald door de oxidatiesnelheid en de gassnelheid.

De absorptie vindt plaats onder een druk van 4 à 8 atmosfeer.

III. Uitvoering proces.

Wat de uitvoering van de thermische ontleiding van calcium-nitraat betreft, zijn er voor de uitvoering met een fluidbed-reactor twee mogelijkheden:

1. Een fluidbedreactor met een fluidbed van CaO-deeltjes, waarbij de benodigde warmte, daar de ontleiding sterk endotherm is, via de wand door aardgasbranders wordt toegevoerd. De temperatuur in de reactor moet 600°C bedragen. De wandtemperatuur moet zo hoog mogelijk zijn, doch wordt beperkt door de hittebestendigheid van het materiaal van de wand. Materialen als Inconel, Incoloy en Nimonic (Cr-Ni-legeringen) zijn hittebestendig tot 1000 à 1160°C en hebben een goede bestendigheid tegen nitreuze gassen bij hoge temperaturen. Daar het smelttraject van deze legeringen ligt bij 1370-1420°C kan men echter de wandtemperatuur niet hoger kiezen dan 950°C in verband met te verwachten plaatselijke oververhitting.

2. Een fluidbedreactor met een "regenerator", welke op 1100°C gehouden wordt, waarbij de CaO-deeltjes uit de reactor weer via de "regenerator" opgewarmd worden, waarna afgifte van warmte in de reactor plaats vindt. De constructie is analog aan de fluidbedreactor, welke in de aardolie-industrie gebruikt wordt. (Ortho-flow van Kellogg.) De "regenerator" is zelf een fluidbed van CaO-deeltjes. De warmte in de "regenerator" wordt toegevoerd door verbranding van aardgas. Als fluidisatiegas kan lucht gebruikt worden, doch door hiervoor recirculatiegas te nemen, treedt geen verdunning van de ontstane gassen op, waardoor de benodigde absorptie-apparatuur kleiner uitvalt en een hogere concentratie aan HNO₃ te bereiken is.

De gassen uit de reactor bevatten waterdamp. Dit dient zoveel
mogelijk verwijderd te worden, daar het ontstane gasmengsel na compressie tot 4 à 8 atmosfeer met een temperatuur van 40 °C in tegenstroom in de absorptiekolom geleid wordt. Zou het water niet verwijderd worden dan vindt verdunning van het in de absorptiekolom op de onderste schotels ontstane gecen- treerde HNO₃ plaats.

In dit processchema zijn de mogelijkheden tot verwijdering van de ontstane waterdamp gecombineerd met recirculatie van productgas als fluidisatiegas onderzocht. De grondstof calciumnitraat wordt als een 70%-ige oplossing via verstuivers in de reactor verstoven.

De verwijdering van het water kan geschieden door gebruik te maken van:
1. Een koeler/condenser (indirect contact)
2. Een sproeitoren (direct contact)

Bij de laatste methode wordt het ontstane gasmengsel gekoeld door een recirculerende verdunne HNO₃-oplossing, welke door de optredende condensatie van waterdamp is ontstaan. Een voordeel van deze methode is de eenvoudige en niet zo kostbare apparatuur. Bovendien heeft men minder last van de optredende corrosie, daar (1) bestaat uit pijpen, terwijl bij (2) een lege kolom met sproeiers gebruikt wordt.

In beide gevallen wordt een deel van het uitijdende gas- mengsel gerealiseerd, het andere deel wordt via een 2-trapscompressor met tussenkoelers gecomprimeerd tot 4 à 8 atmosfeer en in de absorptiekolom geleid. Het in beide gevallen ontstane verdunne salpeterzuur wordt op een geschikte plaats in de absorptiekolom geleid.

IV. Fysische en chemische aspecten.

A. Thermische ontleding van Ca(NO₃)₂

Reactievergelijking:

\[
\text{Ca(NO}_3\text{)}_2 \rightarrow \text{CaO} + 2 \text{NO} + \frac{3}{2} \text{O}_2 \quad \Delta H_r = +88,12 \text{kcal/mol}
\]

Een dus sterk endotherme reactie. Calciumnitraat smelt bij 561 °C. De reactietemperatuur moet dus boven de 561 °C liggen. Het optredende mechanisme in de reactor kan men zich als volgt voorstellen: (litt. 3)

Van de verstoven oplossing van calciumnitraat verdampft het water en zet zich het calciumnitraat af rond een CaO-deeltje van het fluidbed. Vervolgens treedt ontleding op, hetgaan dus resulteert in een aangegroeid CaO-deeltje.
B. **Evenwichten tussen de ontstane gassen en het absorptie-evenwicht.**

1. Het evenwicht $2 \text{NO} + \text{O}_2 \rightleftharpoons 2 \text{NO}_2$

ligt bij $25 \degree \text{C}$ geheel rechts.

De evenwichtsconstante

\[
K = \frac{p_{\text{NO}_2}^2}{p_{\text{NO}} \cdot p_{\text{O}_2}}
\]

als functie van de temperatuur wordt gegeven door de volgende vergelijking:

\[
\log K = \frac{5749}{T} - 1,75 \log T + 0,00050 T - 2,839 \quad (\text{litt. 4})
\]

De reactiesnelheid wordt gegeven door:

\[
\frac{-dP_{\text{NO}}}{dt} = kP_{\text{NO}}^2P_{\text{O}_2}
\]

Deze reactie (3e orde) heeft een negatieve temperatuurcoëfficiënt, m.a.w. bij toenemende temperatuur daalt de reactiesnelheid. Verhoging van de druk heeft een gunstige uitwerking op de reactiesnelheid.

2. Het evenwicht $2 \text{NO}_2 \rightleftharpoons \text{N}_2\text{O}_4$

De evenwichtsconstante

\[
K = \frac{p_{\text{N}_2\text{O}_4}}{p_{\text{NO}_2}^2}
\]

als functie van de temperatuur wordt gegeven door:

\[
\log K = \frac{2939}{T} - 9,1 \quad (\text{litt. 4})
\]

Voor $T = 873 \degree \text{K} (600 \degree \text{C})$ \quad $K = 2 \cdot 10^6 \text{ atm}^{-1}$
\[T = 393 \degree \text{K} (120 \degree \text{C}) \quad K = 3,16 \cdot 10^2 \text{ atm}^{-1}
\[T = 313 \degree \text{K} (40 \degree \text{C}) \quad K = 2,5 \text{ atm}^{-1}$
De absorptie in water vindt plaats volgens onderstaande reacties:

\[2 \text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_2 \] (1)

of

\[\text{N}_2\text{O}_4 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_2 \] (2)

\[2 \text{HNO}_2 \rightarrow \text{H}_2\text{O} + \text{NO} + \text{NO}_2 \] (3)

\[3 \text{NO}_2 + \text{H}_2\text{O}(\text{L}) \leftrightarrow 2 \text{HNO}_3(\text{L}) + \text{NO} \] (4)

of

\[\frac{3}{2} \text{N}_2\text{O}_4 + \text{H}_2\text{O}(\text{L}) \leftrightarrow 2 \text{HNO}_3(\text{L}) + \text{NO} \] (5)

\[2 \text{NO} + \text{O}_2 \rightarrow 2 \text{NO}_2 \] (6)

\[2 \text{NO}_2 \leftrightarrow \text{N}_2\text{O}_4 \] (7)

Reacties (4) en (5) zijn overall-reacties en worden verkregen doordoor opdeling van (1) en (3), resp. (2) en (3).

De evenwichtsconstante van reactie (4)

\[K = \frac{P_{\text{NO}} \cdot P_{\text{HNO}_2}^2}{P_{\text{NO}_2}^3 \cdot P_{\text{H}_2\text{O}}} \]

kan gesplitst worden in het product van twee K-waarden \(K_1 \) en \(K_2 \):

\[K = K_1 \cdot K_2 \]

waarin

\[K_1 = \frac{P_{\text{NO}}}{P_{\text{NO}_2}^2} \]

en

\[K_2 = \frac{P_{\text{HNO}_2}^2}{P_{\text{H}_2\text{O}}} \]

\(K_1 \) is als functie van de concentratie van het gevormde \(\text{HNO}_3 \) en als functie van de temperatuur gegeven door de volgende vergelijking:

\[K_1 = -0,11 (W) - 0,00002 T^2 + 0,51919 T - 65,34 \] (litt. 5)

waarin \(W \) = gewichtspercentage \(\text{HNO}_3 \)
Voor $T = 313^\circ K (40^\circ C)$ vindt men $K_1 = -0,11(4) + 7,47$

Reactie (4) of (5) is de snelheidsbepalende reactie. Reactie (2) (bimoleculair) is het meest waarschijnlijk, daar reactie (1) trimoleculair is.

Reactie (3) verloopt snel en vrijwel volledig. Uit proeven van Denbigh (litt. 4) blijkt, dat de absorptie-snelheid van nitreuze gassen evenredig is met $P_{N_2O_4}$ en niet met P_{NO_2}. Volgens Peters verloopt de vorming van HNO_3 in hoofdzaak in de gasfase. Hierbij wordt gedacht aan desorptie watermoleculen uit het vloeistofoppervlak en reactie hiervan met N_2O_4-moleculen in het gas. Bij bepaalde waarden van P_{HNO_3} en P_{H_2O} zijn beiden groter dan overeenkomt met de dampspanningen van HNO_3 van een bepaalde concentratie. Het gevolg is dat een nevel van salpeterzuurdeeltjes gevormd wordt, welke door de vloeistof geabsorbeerd wordt. Het evenwicht (7) stelt zich oneindig snel in.

$$\begin{align*}
NO + \frac{1}{2} O_2 & \rightleftharpoons NO_2 & \Delta H_r = -13,5 \text{ kcal/mol NO} \\
3 NO_2 + H_2O & \rightleftharpoons 2 HNO_3 + NO & \Delta H_r = -15,0 \text{ kcal/mol HNO}_3
\end{align*}$$

C. Corrosie.

Bij het gebruik van HNO_3 zijn 4 soorten van corrosie te onderscheiden:

1. Oppervlakte-aantasting.
2. Putvormige aantasting.
3. Interkristallijnse corrosie in de vorm van lasaantasting.

ad. 1

Deze is het gevolg van het feit, dat de redoxpotentiaal bij gebruik van Cr-Ni-staal 18/8, van het zich vormende condensaat volgens $3NO_2 + H_2O \rightleftharpoons 2 HNO_3 + NO$ zodanig is, dat er geen beschermende oxydelaag gevormd wordt.

ad. 2

Hieronder verstaat men een zeer plaatselijke aantasting in de vorm van putjes dan wel wat grotere plekken. Deze wordt veroorzaakt door vulafzettingen. (algan, ijzerroest)

Het optreden hiervan kan verminderd worden door vermindering van dode hoeken, periodiek doorspoelen met verdun $\text{HNO}_3 (5\%)$ en
chloreren ter verwijdering van algen.

ad. 3

Deze wordt veroorzaakt door de vorming van Cr-carbide op de kristalgrenzen. Deze lasaantasting komt voor in een smalle zone aan weerszijden van de las. Is te voorkomen door b.v. gestabiliseerd Cr-Ni-staal te gebruiken.

ad. 4

Deze uit zich in de vorm van scheuren en komt voor op plaatsen waar trekspanningen heersen, b.v. pijpenplaten van koelers. Te voorkomen door zodanig te construeren, dat de spanningen zo laag mogelijk zijn en door spanningsvrij te gloeien bij 1050 °C, gevolgd door afschrikken in koud water.

V. Capaciteit van de fabriek.

Uitgegaan wordt van de verwerking van 30.000 ton Ca(NO₃)₂ / jaar.

Indien de fabriek 300 dagen/jaar in bedrijf is, is dit een verwerking van 100 ton/dag = 1,16 kg/sec Ca(NO₃)₂ = 1,66 kg/sec Ca(NO₃)₂.4aq.

Uitgegaan wordt dus van 1,66 kg/sec Ca(NO₃)₂.4aq., wat overeenkomt met een 70 %-ige oplossing. Ca(NO₃)₂ smelt bij 43 °C in zijn kristalwater.

VI. A. Grootte van de grondstoff- en productstromen bij aanname van evenwicht.

1. Productgas.

Ca(NO₃)₂ → CaO + 2 NO + ½ O₂

1,16 kg/sec Ca(NO₃)₂ levert:

1,16 \(\frac{164}{164} \) = 56 kg/sec CaO = 0,40 kg/sec CaO

1,16 \(\frac{164}{164} \) = 2,30 kg/sec NO = 0,42 kg/sec NO = 14,1 mol/sec NO

1,16 \(\frac{32}{164} \) = 3,32 kg/sec O₂ = 0,34 kg/sec O₂ = 10,6 mol/sec O₂

Verder ontstaat 0,50 kg/sec waterdamp = 27,8 mol/sec H₂O (G)
Totaal productgas: 14,1 mol/sec NO
10,6 mol/sec O₂
27,8 mol/sec H₂O

\[52,5 \text{ mol/sec} \]

1 mol gas (273 °K, 1 atm.) \(\equiv \frac{22,4}{1} = 22,4 \cdot 10^{-3} \text{ m}^3 \)
1 mol gas (873 °K, 1 atm.) \(\equiv \frac{873}{273} \cdot 22,4 \cdot 10^{-3} \text{ m}^3 = 71,6 \cdot 10^{-3} \text{ m}^3 \)

Volumestroom productgas 52,5 \(\cdot \frac{71,6 \cdot 10^{-3}}{22,4 \cdot 10^{-3}} \text{ m}^3/\text{sec} = 3,76 \text{ m}^3/\text{sec} \)

2. Fluidisatiegas

De diameter van de reactor bedraagt 2,60 m (Litt. 2)
3,76 \(m^3/\text{sec} \) productgas geeft een snelheidsvermeerdering van

\[\frac{3,76}{\frac{1}{4} \pi (2,6)^2} = 0,71 \text{ m/sec} \]

De gemiddelde waarde van de fluidisatiegassnelheid wordt 1 m/sec gekozen (Litt. 2)
Stel de snelheid van het gas, dat onder in de reactor komt bedraagt \(x \text{ m/sec} \), dan moet gelden:

\[x + (x + 0,71) = 1 \]

Hieruit volgt voor de waarde van \(x \): 0,65 m/sec.
Onder in de reactor moet dan:

\(0,65 \cdot \frac{1}{4} \pi (2,6)^2 \text{ m}^3/\text{sec} = 3,45 \text{ m}^3/\text{sec} \) fluidisatiegas ingeleid worden.

3. Nozzle-gas

Er vindt een goede verspreiding van de 70%ige Ca(NO₃)₂-oplossing plaats, als \(\varphi_y \text{ gas} = 500 \varphi_y \text{ oplossing} \) (Litt. 8)
Ingevoerd wordt 1,66 kg/sec Ca(NO₃)₂·4aq.
De dichtheid van deze oplossing bedraagt 1700 kg/m³
\(\varphi_y \text{ oplossing} = \frac{1,66}{1700} \text{ m}^3/\text{sec} \)
\(\varphi_y \text{ nozzle-gas} = \frac{500 \cdot 1,66}{1700} \text{ m}^3/\text{sec} = 0,49 \text{ m}^3/\text{sec} \)
\[\phi_V \text{ fluidisatiegas} + \phi_V \text{ nozzle gas} = \phi_V \text{ recirculatiegas} = (3.45 + 0.49) \text{ m}^3/\text{sec} = 3.94 \text{ m}^3/\text{sec} = \frac{3.94}{71.6 \times 10^{-3}} \text{ mol/sec} = 55.0 \text{ mol/sec} \]

Berekening der stromen.

De verschillende stromen zijn in de volgende figuur aangegeven. In deze zeer schematische figuur is de hoofdapparatuur in de vorm van blokjes aangegeven.

I: reactor
II: regenerator
III: koeler/condensor
IV: warmtewisselaar

Bovendien zijn hierin alleen de voor de berekening van belang zijnde stromen in opgenomen. Voor de berekening der stromen, indien er evenwicht is, wordt de druk op 1 atm. gesteld.

Aangenomen wordt:
1) De evenwichten stellen zich inderdaad in. (Voldoende lange verblijftijd)
2) Gevormd NO wordt volledig geoxideerd.
3) Het gas, dat uit de koeler/condensor komt is verzadigd aan waterdamp, waarvan de partiële spanning gelijk is aan de bij die temperatuur behorende maximale spanning van de waterdamp. De invloed van het gevormde verdunde HNO\textsubscript{3} op de waterdampspanning wordt dus buiten beschouwing gelaten.

Uit de vergelijking \(\text{Ca(NO}_3\text{)}_2 \rightarrow \text{CaO} + 2 \text{NO} + \frac{3}{2} \text{O}_2 \) volgt, dat...
de verhouding van het aantal molen O\textsubscript{2} tot het aantal molen NO
gelijk aan \(\frac{1}{2} \) is.

Brutovergelijking van de HNO\textsubscript{3} - vorming: \(2 \text{NO} + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 \rightarrow 2\text{HNO}_3 \)

of \(2 \text{NO} + \text{H}_2\text{O} + \frac{3}{2} \text{O}_2 \rightarrow 2\text{HNO}_3 \)

Hiervoor geldt dus eveneens \(\text{mol O}_2 : \text{mol NO} = \frac{1}{2} \)

Deze betrekking geldt dus voor elke gasstroom.

Massabalansen:

\[
\begin{align*}
\varphi_{m1} + \varphi_{m1} &= \varphi_{m2} \\
\varphi_{m2} &= \varphi_{m3} \\
\varphi_{m3} &= \varphi_{m4} + \varphi_{m5} \\
\varphi_{m5} &= \varphi_{m6} + \varphi_{m7} \\
\varphi_{m7} &= \varphi_{m8}
\end{align*}
\]

\(\varphi_{m1} \) (productgas): 14,1 mol/sec NO
10,6 mol/sec O\textsubscript{2}
27,8 mol/sec H\textsubscript{2}O

\(\varphi_{m3} \): 55,0 mol gas/sec

\(\varphi_{m2} \) (600\textdegree C):

\(u \) mol/sec NO
0,75 umol/sec O\textsubscript{2}
v mol/sec H\textsubscript{2}O

\(52,5 \) mol/sec totaal

\((1,75 u + v) \) mol/sec

Dus \(1,75 u + v = 52,5 + 55 = 107,5 \)
\(v = (107,5 - 1,75 u) \) mol/sec H\textsubscript{2}O

Samenstelling \(\varphi_{m8} \) (600\textdegree C):

\((u - 14,1) \) mol/sec NO
\((0,75 u - 10,6) \) mol/sec O\textsubscript{2}
\((1,75 - 1,75 u - 27,8) \) mol/sec H\textsubscript{2}O
\((79,7 - 1,75 u) \) mol/sec H\textsubscript{2}O
Indien bij 40°C NO als NO₂ aanwezig is, dan is de samenstelling van φₙ₇: (u - 14,1) mol/sec NO₂

\[(0,75u - 10,6) - \frac{1}{2}(u - 14,1) \] mol/sec O₂ = \((0,25u - 3,6) \) mol/sec O₂

\((79,7 - 1,75u) \) mol/sec H₂O

We hebben echter ook nog het evenwicht \(2\text{NO}_2 \leftrightarrow \text{N}_2\text{O}_4 \)

Stel, dat er x mol/sec \(\text{N}_2\text{O}_4 \) gevormd wordt, dan is de juiste samenstelling van \(\phi_{m7} \) bij 40°C:

\[x \text{ mol/sec } \text{N}_2\text{O}_4 \]

\((u - 14,1) - 2x \) mol/sec NO₂

\((0,25u - 3,6) \) mol/sec O₂

\((79,7 - 1,75u) \) mol/sec H₂O

\[\frac{(62 - x - 0,5u)}{(u - 14,1 - 2x)^2} \]

2 NO₂ \(\leftrightarrow \) N₂O₄

\[K (40°C) = 2,5 \text{ atm}^{-1} \]

\[K = \frac{P_{\text{N}_2\text{O}_4}}{P_{\text{NO}_2}} = 2,5 \]

\[P_{\text{tot}} = 1 \text{ atm} \]

Verder geldt \(P_{\text{H}_2\text{O}} = 0,073 \text{ atm} \) (bij 40°C)

dus

\[\frac{79,7 - 1,75u}{62 - x - 0,5u} = 0,073 \]

Uit (2) volgt \(a = 0,043x + 43,871 \) (3)

Vergelijking (3) gesubstitueerd in verF. (1):

\[x^2 - 31,28x + 209,05 = 0 \]

Hieruit volgt: \(x_1 = 21,6 \)

\(u_1 = 44,8 \)

Deze oplossing heeft geen betekenis.
en \(x_2 = 9,7 \)
\(u_2 = 44,3 \)

De gassamenstellingen zijn dus:

<table>
<thead>
<tr>
<th>(\phi_m) in mol/sec</th>
<th>Temp. in °C</th>
<th>NO</th>
<th>NO(_2)</th>
<th>N(_2)O(_4)</th>
<th>O(_2)</th>
<th>H(_2)O</th>
<th>Mol totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600</td>
<td>14,1</td>
<td>-</td>
<td>-</td>
<td>10,6</td>
<td>27,8</td>
<td>52,5</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>44,3</td>
<td>-</td>
<td>-</td>
<td>33,2</td>
<td>30,1</td>
<td>107,6</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>-</td>
<td>44,3</td>
<td>-</td>
<td>11,0</td>
<td>30,1</td>
<td>85,4</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>-</td>
<td>10,3</td>
<td>9,7</td>
<td>7,5</td>
<td>2,3</td>
<td>30,3</td>
</tr>
<tr>
<td>8</td>
<td>600</td>
<td>30,2</td>
<td>-</td>
<td>-</td>
<td>22,6</td>
<td>2,3</td>
<td>55,1</td>
</tr>
</tbody>
</table>

Stel, dat de samenstelling van \(\phi_m \) (gas) als volgt is:

- \(a \) mol/sec N\(_2\)O\(_4\)
- \(b \) mol/sec NO\(_2\)
- \(c \) mol/sec O\(_2\)
- \(d \) mol/sec H\(_2\)O

Dan is de samenstelling van \(\phi_m = \phi_m - \phi_m \) :
- \((a-9,7) \) mol/sec N\(_2\)O\(_4\)
- \((b-10,8) \) mol/sec NO\(_2\)
- \((c-7,5) \) mol/sec O\(_2\)
- \((d-7,3) \) mol/sec H\(_2\)O
De verhouding der componenten in φ_{m_5} en φ_{m_6} is uiteraard dezelfde, dus geldt:

\begin{align*}
\frac{a}{b} : \frac{c}{d} &= 9,7 : 10,8 : 7,5 : 2,3 \\
\text{Hieruit volgt:} \\
b &= 1,11a \\
c &= 0,77a \\
d &= 0,24a
\end{align*}

φ_{m_5}:

- a mol/sec N_2O_4
- $1,11a$ mol/sec NO_2
- $0,77a$ mol/sec O_2
- $0,24a$ mol/sec H_2O

φ_{m_6}:

- $(a - 9,7)$ mol/sec N_2O_4
- $(1,11a - 10,8)$ mol/sec NO_2
- $(0,77a - 7,5)$ mol/sec O_2
- $(0,24a - 2,3)$ mol/sec H_2O

Stel de massastrroom bij evenwicht φ_{m_5}(ev.) In φ_{m_5} bevindt zich nl. geen NO meer, daar aangenomen was, dat volledige oxidatie van NO zou optreden.

Samenstelling van φ_{m_5}(ev.):

- p mol/sec N_2O_4
- q mol/sec NO_2
- r mol/sec NO
- s mol/sec H_2O
- t mol/sec O_2

\[(p + q + r + s + t)\text{ mol/sec totaal}\]

Stel de samenstelling van φ_{m_4}(L):

- m mol/sec HNO_3
- n mol/sec H_2O

Het gewichtspercentage van het gevormde HNO_3 bedraagt dan:

\[
\frac{63 \cdot m}{63m + 18n} \cdot 100 \%
\]

Voor het absorptie evenwicht $3\ NO_2 + H_2O \leftrightarrow 2\ HNO_3 + NO$

geldt:

\[
\frac{p_{NO}}{p_{NO_2}} = -0,11 \left(\frac{6300 \cdot m}{53m + 18n} \right) + 7,47
\]

Voor het evenwicht $2\ NO_2 \leftrightarrow N_2O_4$

geldt

\[
\frac{p_{N_2O_4}}{p_{NO_2}^2} = 2,5
\]

Dus

\[
\frac{p + q + r + s + t}{(p + q + r + s + t)^3} = -0,11 \left(\frac{6300 \cdot m}{63m + 18n} \right) + 7,47 \tag{1}
\]
\[
\begin{align*}
\frac{p + q + r + s + t}{p + q + r + s + t} & = 2,5 \\
(p + q + r + s + t) & = 2,5
\end{align*}
\]
(2)

\[P_{H_2O} (40 \, ^{\circ}C) = 0,073 \, atm, \quad \text{dus} \quad \frac{s}{p + q + r + s + t} = 0,073 \quad (3)\]

\(\phi_{m_5}\) (indien volledige oxidatie van NO optreedt)

\[
2 \, NO + O_2 \rightarrow 2 \, NO_2
\]

De samenstelling van \(\phi_{m_5}\) was:
- \(a \, mol/sec \, N_2O_4\)
- \(1,11a \, mol/sec \, NO_2\)
- \(0,77a \, mol/sec \, O_2\)
- \(0,24a \, mol/sec \, H_2O\)

Er moet dan gelden:
- \(t - 0,5r = 0,77a \quad (4)\)
- \(0,24a = s \quad (5)\)

H-balans:

\[
\begin{align*}
3o,1,2 & = 2s + m + 2n \\
(\phi_{m_5}^3) & (\phi_{m_5}^{ev}) (\phi_{m_4})
\end{align*}
\]
(6)

In \(\phi_{m_5}\):
- \(mol \, O_2 : mol \, NO = 3 : 4\)
- \(p \, mol/sec \, N_2O_4 \Rightarrow 2p \, mol/sec \, NO + p \, mol/sec \, O_2\)
- \(q \, mol/sec \, NO_2 \Rightarrow q \, mol/sec \, NO + 0,5q \, mol/sec \, O_2\)
- \(r \, mol/sec \, NO \Rightarrow r \, mol/sec \, NO\)
- \(t \, mol/sec \, O_2 \Rightarrow t \, mol/sec \, O_2\)

\[
(2p + q + r) \, mol/sec \, NO + (p + 0,5q + t) \, mol/sec \, O_2
\]

dus \(mol \, O_2 : mol \, NO = 3 : 4 = (p + 0,5q + t) : (2p + q + r)\)

waaruit volgt:
- \(2p + q + 3r = 4t \quad (7)\)

Totaal balans:

\[
1660 = \phi_{m_4} + \phi_{m_6} + 400
\]

\[
(R) \quad (400 \, E \, CaO)
\]

\[
1260 = 63m + 18n + (a - 9,7) . (92) + (1,11a - 10,8) . 46
+ (0,77a - 7,5) . 32 + (0,24a - 2,3) . 13
\]

\[\Rightarrow 2929 = 172 \, a + 63 \, m + 13 \, n \quad (8)\]

RESULTAAT: 8 vergelijkingen met 8 onbekenden.
OPLOSSING

Uit (3) en (5) volgt:

\[p + q + r + s + t = \frac{s}{0,073} = \frac{0,24a}{0,073} = 3,29a \]

(9)

Uit (8) volgt:

\[63m + 18n = 2929 - 172a \]

(10) en (1) gesubstitueerd:

\[\frac{r.(3,29)^2}{q^3} = \frac{-693m}{2929-172a} + 7,47 \]

(9) in (2) gesubstitueerd:

\[\frac{p.(3,29a)}{q^2} = 2,5 \rightarrow q = \sqrt{1,32ap} \]

(11)

Uit (4) volgt:

\[r = 2t - 1,54a \]

(12)

Uit (7) volgt:

\[t = \frac{2p + q + 3r}{4} \]

(13)

Substitutie van (11) en (12) in (13):

\[t = \frac{2p + \sqrt{1,32ap} + 3(2t - 1,54a)}{4} \]

\[t = 2,31a - p - 0,5\sqrt{1,32ap} \]

(14)

dus \(r = 2t - 1,54a = 3,08a - 2p - \sqrt{1,32ap} \)

(15)

(13): \(p + q + r + s + t = 3,29a \)

(11), (15), (5) en (14) in (13) gesubstitueerd:

\[2p + 0,5\sqrt{1,32ap} - 2,34a = 0 \]

Stel \(\sqrt{ap} = x \), dan \(ap = x^2 \rightarrow p = \frac{x^2}{a} \)

\[\frac{2x^2}{a} + 0,53x - 2,34a = 0 \]

\[x^2 + 0,29ax - 1,17a^2 = 0 \]

\[x_{1,2} = \frac{-0,29a \pm 2,18a}{2} \]

Alleen \(x_1 = 0,95a \) heeft betekenis \(p = 0,90a \)

\[q = \sqrt{1,32ap} = 1,09a \]

\[r = 3,08a - 2p - \sqrt{1,32ap} = 0,19a \]

\[s = 0,24a \]

\[t = 2,31a - p - 0,5\sqrt{1,32ap} = 0,86a \]
\[
\frac{r \cdot (3,29a)^2}{q^3} = \frac{693 \text{ m}}{2929-172a} + 7,47
\]
\[
0,19a \cdot (3,29a)^2 = 1,59 = \frac{693 \text{ m}}{2929 - 172a} + 7,47
\]

Hieruit volgt:
\[
\frac{693 \text{ m}}{2929 - 172a} = 5,88
\]

Vergelijking (6): \(60,2 = 0,48a + m + 2n\)

Vergelijking (8): \(2929 - 172a = 63m + 13n\)

\[
\rightarrow \frac{623 \text{ m}}{63m + 13n} = 5,88 \quad \rightarrow n = 3,05 \text{ m}
\]

\[
m = \frac{60,2 - 0,48a}{7,1} \quad \text{in (8)} \quad \rightarrow a = 11,77
\]

\[
m = \frac{7,19}{23,5}
\]

\[p = 0,9 \quad a = 10,6\]

\[q = 1,09 \quad a = 12,8\]

\[r = 0,19 \quad a = 2,2\]

\[s = 0,24 \quad a = 2,8\]

\[t = 0,36 \quad a = 10,1\]

Samenstelling der stromen.

<table>
<thead>
<tr>
<th>No.</th>
<th>Q_m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp., in °C</td>
<td>600</td>
<td>600</td>
<td>150</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>NO mol/sec</td>
<td>14,1</td>
<td>44,3</td>
<td>2,2</td>
<td>66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30,2</td>
<td></td>
</tr>
<tr>
<td>E/sec</td>
<td>422</td>
<td>1330</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td>NO₂ mol/sec</td>
<td>-</td>
<td>44,3</td>
<td>12,8</td>
<td>589</td>
<td>602</td>
<td>106</td>
<td>10,8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>E/sec</td>
<td>-</td>
<td>2040</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N₂O₄ mol/sec</td>
<td>-</td>
<td>-</td>
<td>10,6</td>
<td>975</td>
<td>1085</td>
<td>193</td>
<td>9,7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>E/sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>O₂ mol/sec</td>
<td>10,6</td>
<td>33,2</td>
<td>11,0</td>
<td>10,1</td>
<td>8,5</td>
<td>1,0</td>
<td>7,5</td>
<td>22,6</td>
<td></td>
</tr>
<tr>
<td>E/sec</td>
<td>339</td>
<td>1081</td>
<td>352</td>
<td>325</td>
<td>272</td>
<td>32</td>
<td>240</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>H₂O mol/sec</td>
<td>27,8</td>
<td>30,1</td>
<td>30,1</td>
<td>23,5</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>E/sec</td>
<td>500</td>
<td>542</td>
<td>542</td>
<td>423</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HNO₃ mol/sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>E/sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>402</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mol totaal</td>
<td>52,5</td>
<td>107,6</td>
<td>85,4</td>
<td>31,2</td>
<td>38,5</td>
<td>36,2</td>
<td>5,9</td>
<td>30,3</td>
<td></td>
</tr>
<tr>
<td>Tot.in g/sec</td>
<td>1261</td>
<td>2933</td>
<td>2934</td>
<td>908</td>
<td>2003</td>
<td>2009</td>
<td>340</td>
<td>1669</td>
<td>1669</td>
</tr>
</tbody>
</table>
20

Ter controle:

1) Overall balans: \[1660 \text{ g/sec (IN)} = (340 + 908 + 400) \text{ g/sec} = 1648 \text{ g/sec (UIT)} \]

2) Balans over de reactor:

\[
(1660 + 1669) \text{ g/sec} = (2933 + 400) \text{ g/sec} \\
3329 \text{ g/sec} = 3333 \text{ g/sec}
\]

3) Balans over koeler/condenser:

\[2934 \text{ g/sec} = (2003 + 908) \text{ g/sec} = 2911 \text{ g/sec} \]

De verschillen worden veroorzaakt, doordat de gevonden waarden afkomstig zijn door de oplossing van een systeem met een vrij groot aantal onbekenden (8) en door afrondingen. Alle gevonden waarden vertonen echter geen grotere afwijkingen dan 1%, dus wel toelaatbaar.

Het gewichtspercentage van het gevormde salpeterzuur bedraagt:

\[
\frac{63\, m}{63\, m + 15\, n} \cdot 100\% = \frac{63\cdot 0.769}{63.7, 69\cdot 18.23, 7} = 53.4\%
\]

Dezelfde vergelijkingen en uitkomsten zijn geldig, indien een sproeitoren gebruikt wordt. In dat geval is evenwicht verondersteld tussen het uit de sproeitoren komende gas (40°C) en de gevormde HNO₃ - oplossing, welke in de sproeitoren versproeid wordt. Deze oplossing heeft bij intrede in de sproeitoren eveneens een temperatuur van 40°C.

Als uitkomst van de sterkte van het gevormde salpeterzuur wordt dus een zeer hoge waarde gevonden: Productie van 50%ige HNO₃ zonder absorptiekolom!! In de praktijk vindt men waarden van ca. 20%. De gevonden hoge waarde is het gevolg van het feit, dat aangenomen is, dat het absorptie-evenwicht zich inderdaad instelt, m.a.w. er is een oneindig lange verblijftijd in de koeler/condenser, resp. sproeitoren, aangenomen. Gagevens over verblijftijden en de concentratie van het gevormde salpeterzuur op technische schaal zijn echter niet bekend. Verder is bij bovenstaande berekeningen steeds zodra er NO bij temperaturen beneden de 150°C aanwezig is of gevormd wordt volledige oxidatie tot NO₂ aangenomen. Dit is evenmin in werkelijkheid het geval, doch zonder deze aannames zou het systeem nog ingewikkelder worden. Bovendien treedt de oxidatie over een temperatuurtraject op en zijn geen verblijftijden in de koeler/condenser, resp. sproeitoren bekend.

Wel is een verband in de litteratuur beschreven tussen de concentratie van het gevormde HNO₃ en de verblijftijd van het gas in een koeler/condenser. Atroschenko en Yastrebenetsky (litt. 9) vinden uit hun experimenten het volgende verband:

\[C = 8,90 t + 0,4 \]

waarin C het gewichtspercentage van het gevormde HNO₃ en t de verblijftijd is.

Dit verband geldt echter voor de door hen gebruikte apparatuur, te weten een condenser opgebouwd uit concentrische pijpen, met het gas in de binnenpijp en het koelwater in de
buitenpijp. De inwendige, resp. uitwendige diameter van de binnenpijp bedroeg 13 mm, resp. 17 mm. Voor de buitenpijp waren de afmetingen 20 mm, resp 25 mm.
Bij gebrek aan verdere gegevens zal dit verband tussen concentratie en verblijftijd gebruikt worden, ondanks de grote bedenkingen, die hier tegen in gebracht kunnen worden. (Vergroting van laboratoriumschaal op technische schaal.)

VI. B. Grootte van de grondstof- en productstromen bij bepaalde verblijftijd.

Stel de verblijftijd bedraagt 2 seconden, dan bedraagt de sterkte van het gevormde salpeterzuur:

\[C = 8,90 \cdot 2 + 0,4 = 10,2\% \]

\[\% \text{HNO}_3 = \frac{6300 \text{ m}}{63\text{ m} + 18\text{ m}} = 18,2 \]

(zie blz. 16)

\[n \approx 15,7 \text{ m} \]

Vgl. (8) \[2929 = 172a + 63m + 1,15,7m \]

\[2929 - 172a = 346,1\text{m} \] (16)

Vgl. (6) : \[60,2 = 2s + m + 2n = 0,43a + 32,4m \]

\[m = 1,86 - 0,015a \]

Gesubstitueerd in (16) : \[346,1(1,86 - 0,015a) = 2929 - 172a \]

\[a = 13,70 \]

Dus:

\[p = 0,90a = 12,33 \]
\[q = 1,09a = 14,93 \]
\[r = 0,19a = 2,60 \]
\[s = 0,24a = 3,29 \]
\[t = 0,86a = 11,78 \]
\[m = 1,65 \]
\[n = 25,91 \]
\[l,1la = 15,11 \]
\[o,77a = 10,55 \]
Samenstelling der stromen.

<table>
<thead>
<tr>
<th>No. Q_m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5_{ev}</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. in °C</td>
<td>600</td>
<td>600</td>
<td>150</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>600</td>
</tr>
<tr>
<td>NO mol/sec</td>
<td>14,1</td>
<td>44,3</td>
<td>-</td>
<td>-</td>
<td>2,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g/sec</td>
<td>422</td>
<td>1330</td>
<td>-</td>
<td>-</td>
<td>78</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NO$_2$ mol/sec</td>
<td>-</td>
<td>-</td>
<td>44,3</td>
<td>-</td>
<td>14,9</td>
<td>15,1</td>
<td>2,9</td>
<td>10,8</td>
</tr>
<tr>
<td>g/sec</td>
<td>-</td>
<td>-</td>
<td>2040</td>
<td>-</td>
<td>685</td>
<td>695</td>
<td>133</td>
<td>496</td>
</tr>
<tr>
<td>N$_2$O$_4$ mol/sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12,3</td>
<td>13,7</td>
<td>4,0</td>
<td>9,7</td>
</tr>
<tr>
<td>g/sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>132</td>
<td>1260</td>
<td>368</td>
<td>392</td>
</tr>
<tr>
<td>O$_2$ mol/sec</td>
<td>10,6</td>
<td>33,2</td>
<td>11,0</td>
<td>-</td>
<td>11,9</td>
<td>10,6</td>
<td>3,1</td>
<td>7,5</td>
</tr>
<tr>
<td>g/sec</td>
<td>339</td>
<td>1061</td>
<td>352</td>
<td>-</td>
<td>379</td>
<td>339</td>
<td>99</td>
<td>240</td>
</tr>
<tr>
<td>H$_2$O mol/sec</td>
<td>27,8</td>
<td>30,1</td>
<td>30,1</td>
<td>25,9</td>
<td>3,3</td>
<td>3,3</td>
<td>1,0</td>
<td>2,3</td>
</tr>
<tr>
<td>g/sec</td>
<td>500</td>
<td>542</td>
<td>542</td>
<td>466</td>
<td>59</td>
<td>59</td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>CH$_4$ mol/sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g/sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>107</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mol. totaal</td>
<td>52,5</td>
<td>107,0</td>
<td>85,4</td>
<td>27,6</td>
<td>44,9</td>
<td>42,7</td>
<td>11,5</td>
<td>30,3</td>
</tr>
<tr>
<td>Q_m tot in g/sec</td>
<td>1261</td>
<td>2933</td>
<td>2934</td>
<td>573</td>
<td>2332</td>
<td>2353</td>
<td>617</td>
<td>1669</td>
</tr>
</tbody>
</table>

Ter controle:

1) **Overall balans**:

$$1660 \text{ g/sec (in)} = (618 + 573 + 400) \text{ g/sec} = 1591 \text{ g/sec (UIT)}$$

2) **Balans over de reactor**:

$$1660 + 1669 \text{ g/sec} = (2933 + 400) \text{ g/sec}$$

3) **Balans over de koeler/condenser**:

$$2934 \text{ g/sec} = (2332 + 573) \text{ g/sec} = 2905 \text{ g/sec}$$
VII. A. Verwijdering van de waterdamp door indirect contact.

Berekening van de totaal af te voeren warmte in de koeler/condenser (bij verblijftijd van 2 seconden.)

1) Stoom koelen van 150 °C → 100 °C :
 $542 \cdot 0,47 \cdot (150 - 100)$ cal/sec = 12740 cal/sec

2) Condensatiwarme waterdamp :
 Er condenseert $(3,9 - 3,3)$ mol/sec H_2O
 $26,8 \cdot 18 \cdot 940$ cal/sec = 260496 cal/sec

3) Water van 100 °C naar 40 °C :
 $26,8 \cdot 18 \cdot 1 \cdot (100 - 40)$ cal/sec = 28944 cal/sec

4) Niet gecondenseerd H_2O :
 $59,0 \cdot 47 \cdot (100 - 40)$ cal/sec = 1664 cal/sec

5) 2040 g/sec NO_2 :
 $2040 \cdot 0,197 \cdot (150 - 40)$ cal/sec = 44800 cal/sec

6) 352 g/sec O_2 :
 $352 \cdot 0,218 \cdot (150 - 40)$ cal/sec = 5520 cal/sec

7) Absorptiewarmte :
 Er wordt $1,7$ mol/sec HNO_3 gevormd :
 $1,7 \cdot 30$ kcal/sec = 510 kcal/sec

8) Oxidatiewarme :
 $1,7 \cdot 13,5$ kcal/sec = 230 kcal/sec

Totaal :

$390,314$ cal/sec = $390,314 \cdot 4,19$ J/sec = $1,635 \cdot 10^6$ W

Bij deze berekening is verondersteld, dat het gas tot 40 °C aanwezig is in de vorm van NO_2 en O_2, gevolgd door absorptie in de gecondenseerde waterdamp, waarbij volledige oxidatie van het gevormde NO optreedt.

Voor de berekening van het benodigde warmte-uitwisselend oppervlak van de koeler/condenser, wordt deze in 3 secties verdeeld en wel:

I. Gaskoelsective 150 °C → 100 °C
II. Condensatiesectie 100 °C → 80 °C
III. Nakoelsective 80 °C → 40 °C

De berekening levert grote moeilijkheden op, door:

1) De aanwezigheid van niet-condenseerbaar gas. De waterdamp moet dus door het aan het condensatie-oppervlak opgehoorte gas diffunderen. De aanwezige laag van nitreuze gassen en zuurstof vormt dus een extra warmteoorstand. Door deze gaslaag is de partiaaldruk van dit gas bij de wand groter dan in het midden van de pijp, omdat door condensatie van de waterdamp de concentratie van het niet-condenseerbaar gas hier groter is. Het gevolg hiervan is, dat de partiaal-druk van de waterdamp bij de pijpwand lager is dan in het midden van de pijp. Hierdoor dus een lagere condensatie-
temperatuur. Het verschil tussen de pijpwandtemperatuur en de condensatietermperatuur van de waterdamp is kleiner geworden met als gevolg minder condensatie van de waterdamp. Dit is de reden waarmee een temperatuurtraject van 100° - 80°C over de condensatie-sectie is gekozen.

2) Onbekendheid met de waarde van de totale warmte-overdrachtscoëfficiënt, mede als gevolg van 1). Om deze redenen wordt de berekening van de kooler/condenser slechts een zeer grove. Voor een juiste berekening zijn meer gegevens nodig, welke slechts verkregen kunnen worden uit metingen aan een proefcondenser.

Af te voeren warmte in sectie I:

1) Stoom van 150° → 100°C
2) NO₂ van 150° → 100°C:
 \[\frac{50.44300 \text{ cal/sec}}{110} = \frac{20.384 \text{ cal/sec}}{110} \]
3) O₂ van 150° → 100°C:
 \[\frac{50.8520 \text{ cal/sec}}{110} = \frac{3.877 \text{ cal/sec}}{110} \]

Totaal:
 \[37.011 \text{ cal/sec} = 155 \text{ kW} \]

Af te voeren warmte in sectie II:

1) Condensatiewarmte van de waterdamp:
 Aangenomen is, dat alles in dit gebied condenseert.
2) Niet gecondenseerd water;
 \[\frac{20.1664 \text{ cal/sec}}{50} = \frac{543 \text{ cal/sec}}{50} \]
3) Water van 100° → 80°C:
 \[\frac{20.28.944 \text{ cal/sec}}{50} = \frac{9.648 \text{ cal/sec}}{50} \]
4) NO₂ van 100° → 80°C:
 \[\frac{20.44300 \text{ cal/sec}}{110} = \frac{8.154 \text{ cal/sec}}{110} \]
5) O₂ van 100° → 80°C:
 \[\frac{20.8520 \text{ cal/sec}}{110} = \frac{1.551 \text{ cal/sec}}{110} \]

Totaal:
 \[280.397 \text{ cal/sec} = 1175 \text{ kW} \]
Af te voeren warmte in sectie III:

1) Absorptiewarmte:

2) Oxidatiewarmte:

3) Water van 80 → 40°C: 2.9648 cal/sec = 25.500 cal/sec

4) Niet gecondenseerd water: 2.548 cal/sec = 7.650 cal/sec

5) NO₂ van 80 → 40°C: 2.8154 cal/sec = 19.376 cal/sec

6) O₂ van 80 → 40°C: 2.1551 cal/sec = 16.358 cal/sec

Totaal:

73.032 cal/sec = 306 kW

Daar in een later stadium de gedachte opgekomen is af te zien van een normale koeler/condenser, te weten een koeler/condenser, waarbij het niet-condenseerbare gas en de ontstane vloeistof bij de eindtemperatuur (in dit geval 40°C) pas van elkaar worden gescheiden, zal verderop in dit verslag een koeler/condenser berekend worden gebaseerd op het volgende idee:

Het gehele apparaat wordt opgebouwd uit 3 secties:

I. gaskoeler 150 → 100°C
II. condenser 100 → 80°C
III. gaskoeler 80 → 40°C

Deze secties bestaan uit pijpen, waarin het gas stroomt, koelwater wordt om de pijpen geleid. Tussen elke sectie bevindt zich een "schotel", waarop het gevormde condensaat wordt afgetapt. Deze tussenstukken zijn 0,5 m hoog, de diameter zal blijken te bedragen ca 2m. De pijpen van iedere sectie steken boven de pijpenplaat uit en zijn overdekt met kegelvormige dakjes (naar analogie van "bubble caps"). Hierdoor wordt er een scheiding van de in de zich hier boven bevindende sectie gevormde vloeistof van het gas bewerkstelligd. Het gas wordt onder in het apparaat met een temperatuur van 150°C geleid. Om met eventueel toch gevormd condensaat rekening te houden, is onder sectie I eveneens een "schotel" gedacht.

Het voordeel van deze constructie ligt in het feit, dat nu bij een hogere temperatuur de grootste hoeveelheid vloeistof wordt afgetapt met als gevolg aanzienlijk minder te verwachten absorptie dan bij een normale uitvoering.
VII. B. Verwijdering van waterdamp door direct contact.

Hierbij wordt de waterdamp uit \(\varphi_{m_3} \) verwijderd door deze stroom te koelen met behulp van een sproeitoren, waarbij gebruik wordt gemaakt van een circulerende HNO\(_3\)-oplossing. De ontstane HNO\(_3\)-oplossing wordt via een warmtewisselaar eerst gekoeld van 80 °C naar 40 °C, vervolgens wordt een deel m.b.v. een centrifugaalpomp boven in de sproeitoren geleid. De aflopende warmte (voor het grootste deel condensatiewarmte en absorptiewarmte) wordt opgenomen door de versproeide oplossing, welke weer opgewarmd wordt van 40 °C naar 80 °C. Het voordeel van het gebruik van een sproeitoren is, dat de constructie veel eenvoudiger is dan van een koeler/condenser, daardoor aanzienlijk goedkoper, verder minder last van de optredende corrosie en gemakkelijker schoon te maken. Echter is men genoodzaakt een lage doorvoersnelheid van het gas te kiezen, daar anders zeer veel water door het opstijgende gas zal worden meegesleurd. Het probleem van deze meesleuring, welke ook bij lage doorvoersnelheden zal optreden, kan voor een groot deel worden opgevangen door boven de sproeiers een demister aan te brengen. Deze bestaat uit metalen vangmatten, welke op een raamwerk bevestigd zijn. Gekozen dient te worden materiaal, dat bestendig is tegen de optredende corrosie.
I. Berekening van de hoeveelheid circulerende HNO_3-stroom, indien het evenwicht bereikt zou worden.

Stel φ_{m_4} bestaat uit p mol/sec HNO_3 en q mol/sec H_2O

$\varphi_{m_6} = \varphi_{m_4} - \varphi_{m_5}$ dus $\varphi_{m_6} = (p - 7,7)$ mol/sec HNO_3

$(q - 23,5)$ mol/sec H_2O

Verder moet gelden: $p : q = 7,7 : 23,5$

(1)

Per sec wordt $7,7$ mol HNO_3 gevormd. De vrijkomende absorptiewarmte per sec bedraagt dan $\frac{7,7}{2} \cdot 30$ kcal

Oxidatiewarmte (bij volledige oxidatie): $\frac{7,7}{3} \cdot 13,5$ kcal

Er condenseert $(30,1 - 2,8) = 27,3$ mol/sec H_2O

C_p van een 50 %-ige HNO_3-oplossing = 0,68 cal/g, °C (litt.12)

Door φ_{m_6} op te nemen warmte:

$\left[(p - 7,7) \cdot 63 + (q - 23,5) \cdot 18\right] \cdot 0,68 \cdot (80 - 40)$ cal/sec

(2)

De af te voeren warmte bedraagt:

1) Condensatiewarmte H_2O: $(542-50) \cdot 540$ cal/sec = 266.000 cal/sec

2) Stoom koelen $542,0,47.(150-100)c/s = 12.740$ cal/sec

3) Water koelen $542,1.(100-40)c/s = 32.520$ cal/sec

4) Niet gecondenseerd H_2O: $50,0,47.(100-40)c/s = 1.410$ cal/sec

5) O_2 $352,0,218.(150-40)$ cal/sec = 8.520 cal/sec

6) NO_2 $2040,0,197.(150-40)$ cal/sec = 44.800 cal/sec

7) Absorptiewarmte: $7,7.15.10^3$ cal/sec = 115.600 cal/sec

8) Oxidatiewarmte: $7,7.4,5.10^3$ cal/sec = 34.700 cal/sec

Totaal:

516.290 cal/sec

(3)

(2) = (3) $63 p + 18 q = 19.889$

(4)

Uit (1) volgt $q = 3,05 p$

(5)
Uit (4) en (5) volgt:
\[p = 155,5 \text{ mol/sec } HNO_3 \]
\[q = 474,3 \text{ mol/sec } H_2O \]

Dus \(\varphi_{m4} : \)
\[155,5 \text{ mol/sec } HNO_3 = 9,7965 \text{ kg/sec } HNO_3 \]
\[474,3 \text{ mol/sec } H_2O = 8,5374 \text{ kg/sec } H_2O \]
\[= 18,3339 \text{ kg/sec (53,4 volige opl.)} \]

\[\varphi_{m6} : 147,8 \text{ mol/sec } HNO_3 = 9,3114 \text{ kg/sec } HNO_3 \]
\[450,8 \text{ mol/sec } H_2O = 8,1144 \text{ kg/sec } H_2O \]
\[= 17,4258 \text{ kg/sec} \]

II. Berekening van de hoeveelheid circulerende HNO_3 - stroom bij verblijftijd van het gas van 2 seconden in de sproeitoren.

Hierbij is aangenomen, dat het eerder gegeven verband \(C = 8,90 + 0,4 \) ook zal gelden, indien gebruik gemaakt wordt van een sproeitoren. Dit is een dubieuze aannames, omdat de omstandigheden geheel anders zijn dan die, waarbij dit verband gevonden is, doch een zekere indicatie geeft deze formule wel. Bovendien is hantering van deze betrekking noodzakelijk bij gebrek aan andere gegevens. Ook hier zal experimenteel werk slechts uitkomst kunnen brengen. De stofstromen zijn in dit geval \((t = 2 \text{ sec}, C = 18,2 \%) \)

\[\varphi_{m3} : 44,3 \text{ mol/sec } NO_2 (2040 \text{ g/sec}) \]
\[11,0 \text{ mol/sec } O_2 (352 \text{ g/sec}) \]
\[30,1 \text{ mol/sec } H_2O (542 \text{ g/sec}) \]

\[\varphi_{m4} : p \text{ mol/sec } HNO_3 \]
\[q \text{ mol/sec } H_2O \]

\[\varphi_{m6} = \varphi_{m4} - \varphi_{m5} \]
\[\varphi_{m6} : (p - 1,7) \text{ mol/sec } HNO_3 \]
\[(q - 25,9) \text{ mol/sec } H_2O \]

\[\varphi_{m7} : 13,7 \text{ mol/sec } N_2O_4 (1260 \text{ g/sec}) \]
\[15,1 \text{ mol/sec } NO_2 (695 \text{ g/sec}) \]
\[10,6 \text{ mol/sec } O_2 (339 \text{ g/sec}) \]
\[3,3 \text{ mol/sec } H_2O (59 \text{ g/sec}) \]

Wederom moet gelden \[p : q = 1,7 : 25,9 \] (1)

Per sec wordt 1,7 mol HNO_3 gevormd.
Absorptie-warmte: \[\frac{1,7}{2} \cdot 30 \text{ kcal/sec} = 25,500 \text{ cal/sec} \]
Oxidatie-warmte: \[\frac{1,7}{2} \cdot 13,5 \text{ kcal/sec} = 7,750 \text{ cal/sec} \]
Er condensert 26,8 mol/sec H_2O
Cp HNO_3 - opl. (18,2 %) : 0,81 cal/g, °C (litt. 12)
Door φ_{m6} op te nemen warmte:

$$[(p - 1,7)\cdot 63 + (q - 25,9)\cdot 18] \cdot 0,81 \cdot (80 - 40)$$ \hspace{1cm} (2)

Af te voeren warmte: 390,314 cal/sec (Zie blz. 23) \hspace{1cm} (3)

Uit (1), (2) en (3) volgt: $p = 37,75 \text{ mol/sec HNO}_3$
$q = 573,8 \text{ mol/sec H}_2\text{O}$

$\varphi_{m4} : 37,75 \frac{\text{mol/sec HNO}_3}{2,3783 \frac{\text{kg}}{\text{sec}}}$
$573,8 \frac{\text{mol/sec H}_2\text{O}}{10,3284 \frac{\text{kg}}{\text{sec}}}$

12,7067 kg/sec HNO_3 - opl. (18,2 %)

$\varphi_{m6} : 36,05 \frac{\text{mol/sec HNO}_3}{2,2712 \frac{\text{kg}}{\text{sec}}}$
$547,9 \frac{\text{mol/sec H}_2\text{O}}{9,8622 \frac{\text{kg}}{\text{sec}}}$

12,1334 kg/sec HNO_3 - opl. (18,2 %)

VIII. Berekeningen der te gebruiken apparatuur.

A. Recirculatiecompressor.

De drukval over de reactor bedraagt 0,5 atm. (litt. 2), dus
lijke druk van φ_{m8} bij invoer van het recirculatiegas bedraagt
1,5 atm. Bij de berekeningen is aangenomen, dat de druk overal
1 atm. bedroeg.

Dit heeft de volgende consequentie voor de gemiddelde fluidi-
satiesnelheid van het gas in de reactor:

1 mol (600°C , 1,5 atm.) \equiv 47,7 \cdot 10^{-3} \text{ m}^3
55 mol/s \equiv 2,62 \text{ m}^3/\text{sec}

Gas voor verstuiving van de calciumnitratoplossing: 0,49 m3/sec
Dus de hoeveelheid fluidisatiegas bedraagt: 2,13 m3/sec
Er geldt dan, als x de snelheid onderin de reactor van het
fluidisatiegas voorstelt:

$$x \cdot \frac{1}{4} \pi D^2 = 2,13 \rightarrow x = 0,4 \text{ m/sec}$$

Berekening compressor:

$$v_f = 0,4 + \frac{0,4 + 0,7}{2} = 0,75 \text{ m/sec}$$
De drukval over de reactor bedraagt: 0,5 atm.

Bij 1 atm.: 3,94 m³/sec recirculatiegas (3,45 m³/sec fluidisatiegas + 0,49 m³/sec nozzlegas)

\[\rho = \frac{1,669}{3,94} = 0,424 \text{ kg/m}^3 \]

Een Root's blower kan gebruikt worden voor een maximale capaciteit van 8 m³/sec en een maximale drukverschil van 0,8 bar. (litt. 13, blz. 54)

Het gasmengsel kan als een 2-atomig gas beschouwd worden

\[\alpha = 1,40 \text{ (litt. 13, blz. 41)} \]

\[P_e = \phi_m \int_{p}^{P_e} \frac{dp}{\rho} \]

\[\frac{P}{\rho_{1,40}} = \frac{10^5}{(0,42)^{0,40}} \rightarrow \rho = \frac{p^{0,71}0,42}{10^3,57} \]

\[\int_{P_1}^{P_2} \frac{dp}{\rho} = \int_{P_1}^{P_2} \frac{10^3,57}{p^{0,71},0,42} dp = \frac{10^3,57}{0,42} \cdot \frac{1}{0,29} \left[p^{0,29} \right]_{P_1}^{P_2} \]

\[P_1 = 10^5 \text{ N/m}^2 \]

\[P_2 = 1,5 \cdot 10^5 \text{ N/m}^2 \]

\[\int \frac{dP}{\rho} = \frac{10^3,57}{0,29,0,42} \left[(1,5 \cdot 10^5)^{0,29} - (10^5)^{0,29} \right] = 91,5 \cdot 10^3 \]

\[P_e = \phi_m \int \frac{dp}{\rho} = 1,669 \cdot 91,5 \cdot 10^3 \text{ W} = 153 \text{ kW} \]

\[P_{as} = \frac{P_e}{\eta_{tot.}} = \frac{P_e}{\eta_{hydr.} \cdot \eta_{mech.} \cdot \eta_{vol.}} = \frac{153}{0,7 \cdot 0,9 \cdot 0,7} = 306 \text{ kW} \]

De compressor dient van corrosiebestendig materiaal vervaardigd te zijn.
B. Hoeveelheid af te voeren warmte via stoomketel.

Het uit de reactor komende gasmengsel wordt gekoeld via een stoomketel (afgasketel) van 600°C naar 150°C.

\[\begin{align*}
\varphi_{\text{m}3} & : 1,330 \text{ kg/sec NO} \\
& 1,061 \text{ kg/sec } O_2 \\
& 0,542 \text{ kg/sec } H_2O
\end{align*} \]

De af te voeren warmte bedraagt:

\[\begin{align*}
1,330 \cdot 233 \cdot (600 - 150) & = 13,9 \cdot 10^4 \text{ cal/sec} = 582 \cdot 10^3 \text{ W} \\
1,061 \cdot 218 \cdot (600 - 150) & = 10,4 \cdot 10^4 \text{ cal/sec} = 436 \cdot 10^3 \text{ W} \\
0,542 \cdot 500 \cdot (600 - 150) & = 12,2 \cdot 10^4 \text{ cal/sec} = 511 \cdot 10^3 \text{ W}
\end{align*} \]

Totaal af te voeren warmte: 1529 kW

C. Indirect contact.

I. Koeler/condenser. (zie ook blz. 25)

Deze wordt opgebouwd uit 3 secties:

a) Gaskoeler 150 → 100°C
b) Condenser 100 → 80°C
c) Gaskoeler 80 → 40°C

De totale warmte-overdrachtscoëfficiënten worden voor de 3 secties gesteld op resp. 30, 200, en 30 W/m²°C. (Zie tabel III-1, litt. 11)

Af te voeren warmte (zie blz. 24 en 25)

a) 155 kW
b) 1175 kW (verondersteld is volledige condensatie van de aanwezige waterdamp)
c) Daar het gecondenseerde water tussen b) en c) wordt afgevoerd, wordt de totaal af te voeren warmte in deze sectie:

\[\begin{align*}
\text{niet gecondenseerd } H_2O & : 1,096 \text{ cal/sec} \\
NO_2 & : 16,308 \text{ cal/sec} \\
O_2 & : 3,102 \text{ cal/sec} \\
\text{Totaal} & : 20,506 \text{ cal/sec} = 85,920 \text{ W}
\end{align*} \]

Het koelwater wordt in sectie I en sectie II ingevoerd met een temperatuur van 20°C en verlaat deze secties met een temperatuur van 45°C. Voor het koelwater voor sectie III bedragen de temperaturen...
20, resp. 30°C.

Sectie I

\[
\begin{align*}
 & \text{(\(\Delta T\))}_\text{log.} = \frac{105 - 80}{\ln 105} = 92.0°C \\
 & \varphi_w = U \cdot A \cdot (\Delta T)_\text{log.} \\
 & \text{dus } A = \frac{\varphi_w}{U \cdot (\Delta T)_\text{log.}} = \frac{155.000}{30.92.0} = 56.2 \text{ m}^2
\end{align*}
\]

We nemen pijpen met een inw., resp. uitw. diameter van 20, resp. 26 mm. De pijpen zijn vervaardigd van Inconel. Het inwendige oppervlak bedraagt per m lengte: 0,0628 m\(^2\). De totaal benodigde lengte wordt dan:

\[
\frac{56.2 \text{ m}}{0.0628} = 896 \text{ m}
\]

Voor de lengte van de pijpen wordt L = 6 m gekozen. Het aantal benodigde pijpen wordt dan:

\[
\frac{896}{6} = 150
\]

Sectie II

\[
\begin{align*}
 & \text{(\(\Delta T\))}_\text{log.} = \frac{60 - 55}{\ln 60} = 57.0°C \\
\end{align*}
\]

Als eis wordt gesteld, dat de verblijftijd van het gas in deze sectie 1 sec bedraagt. Dit in verband met de optredende condensatie. Er wordt dus een lage doorvoersnelheid gekozen.

\[
\varphi_m(150°C) : 44.3 \text{ mol/sec NO}_2 \\
11.0 \text{ mol/sec O}_2 \\
30.1 \text{ mol/sec H}_2\text{O}
\]

\[
85.4 \text{ mol/sec totaal}
\]

\[
150°C : 85.4 \text{ mol/sec} = 2.97 \text{ m}^3/\text{sec} \quad \text{en wel 1.95 m}^3/\text{sec gas} \quad \text{en 1.02 m}^3/\text{sec H}_2\text{O}
\]

Onder "gas" wordt verstaan NO\(_2\) en O\(_2\). Dit ter onderscheid van de aanwezige waterdamp.

\[
100°C : 1.69 \text{ m}^3/\text{sec gas} \\
0.92 \text{ m}^3/\text{sec H}_2\text{O}
\]

\[
2.61 \text{ m}^3/\text{sec totaal}
\]
80°C : 55,3 mol/sec gas = 1,60 m³/sec
3,3 mol/sec H₂O = 0,09 m³/sec

l mol = 29,10⁻³ m³

1,69 m³/sec totaal

100° → 80°C : \(\vartheta \) gemiddeld = 2,15 m³/sec
\[A = \frac{\vartheta_w}{U.(\Delta T)_{log.}} \]
\[= \frac{1175.000}{200.57.0} = 101 \text{ m}^2 \]

Stel de lengte der pijpen is 6 m, \(v_{gas} = 6 \text{ m/sec} \) (dan is de verblijftijd 1 sec)
\[\vartheta_v \text{ gem.} = 2,15 \text{ m}^3/\text{sec} \]
\[\frac{2,15}{6} \text{ m}^3 = 0,358 \text{ m}^2 \]

Het aantal pijpen bepaald door de verblijftijd van 1 sec wordt dan :
\[\frac{0,358}{\frac{1}{4} \pi D^2} \]

Het aantal pijpen bepaald door het benodigde warmte-uitwisselend oppervlak wordt dan :
\[\frac{101}{\pi D L} = 101 \]
\[\frac{\pi D L}{\pi D.6} \]

(1) = (2) \[\rightarrow \frac{4,0 \times 358}{\pi \pi D^2} = \frac{101}{\pi D.6} \rightarrow \]
\[D = 0,085 \text{ m} \]

Gekozen wordt een inv. diameter van 0,090 m.
Het aantal pijpen (nu bepaald door de verblijftijds-eis) wordt dan :
\[\frac{4,0 \times 358}{\pi \cdot (9.10^{-2})^2} = 56 \]
\[D_1 = 90 \text{ mm} \]
\[D_u = 96 \text{ mm} \]

De pijpen worden eveneens vervaardigd van Inconel.

Sectie III

\((\Delta T)_{log.} = \frac{50 - 20}{\ln 50} = 32,8°C \)
\[A = \frac{\vartheta_w}{U.(\Delta T)_{log.}} \]
\[= \frac{85920}{30 \cdot 32,8} = 87,4 \text{ m}^2 \]
Voor deze sectie worden weer pijpen van 20-26 mm (Ingonel) gekozen. Inwendige oppervlak per m lengte : 0,0628 m². De totaal benodigde lengte wordt:

\[\frac{87,4}{0,0628} = 1390 \text{ m} \]
\[L = 6 \text{ m} \]

Het aantal pijpen wordt dan :
\[\frac{1390}{6} = 252 \]

Tussen de secties (elke sectie 6 m lang) bevinden zich tussenstukken van 0,5 m lengte, waardoor de pijpen van de hieronder bevindende sectie uitsteken. Over de pijpen worden kegelvormige "klokjes" geplaatst, waardoor scheiding tussen damp en vloeistof optreedt. Op deze "schotels" bevindt zich een afvoerpijp voor het gevormde condensaat. Daar met eventueel optredend condensaat in elke sectie rekening moet worden gehouden, zijn er dus in totaal 4 van deze schotels. De diameter van het apparaat wordt nu niet bepaald door de diameter van de pijpen en het aantal hiervan, doch door de klokjes (diameter hiervan en aantal). Als diameter van de klokjes wordt voor sectie I en III 78 mm gekozen. Bij "bubble caps" is de kleinste leverbare afmeting nl. 78 mm, (inw. diameter van de pijp dan 50 mm). Voor sectie II is de inwendige diameter van de pijpen 90 mm. De diameter van de klokjes zou dan worden:

\[90 \cdot 78 \text{ mm} = 140,5 \text{ mm} \]

50

Uit tabellen (litt. 14) volgt m = 7,35 voor 56 pijpen (56 klokjes)

De steek wordt dan voor sectie II :
\[t = 1,4 \cdot \frac{1}{2} \text{ klokje} = 1,4 \cdot 140,5 \text{ mm} = 196,5 \text{ mm} \]

Als opstelling van de pijpen wordt een gelijkzijdige driehoek gekozen.

\[D_1 = 7,35 \cdot 196,5 \text{ mm} = 1448 \text{ mm} \]
\[2 \cdot \frac{1}{2} D \text{ klokje} = 140,5 \text{ mm} \]
\[2 \cdot y = 1,5 \text{ steek} = 295 \text{ mm} \]

\[D = \frac{1983,5 \text{ mm}}{1983,5 \text{ mm}} \]

(voor sectie II)

Sectie I
150 klokjes \[m = 12,47 \]
\[t = 1,4 \cdot 78 \text{ mm} = 109 \text{ mm} \]
\[D_1 = 12,47 \cdot 109 \text{ mm} = 1360 \text{ mm} \]
\[2 \cdot \frac{1}{2} D \text{ klokje} = 78 \text{ mm} \]
\[2 \cdot y = 1,5 \text{ steek} = 164 \text{ mm} \]

\[D = 1602 \text{ mm} \]
Sectie III

252 klokjes ($D_{klokje} = 78$ mm)

$m = 16,34$

De steek $t = 1,4 \cdot 78$ mm = 109 mm

$$D_1 = 16,34 \cdot 109$ mm = 1780 mm

$$2 \cdot \frac{1}{2} D_{klokje} = 78$$

$$2y = 1,5$ steek = 164 mm

$$D = 2022$ mm

De diameter van de koeler/condenser wordt dus bepaald door sectie III. Gekozen wordt een diameter van 2040 mm.

De totale lengte van het apparaat wordt 21,4 m.

Als diameter van de klokjes van sectie II kan nu 174 mm gekozen worden. De klokjes rusten op 4 pootjes, welke aan een metalen ring gelast zijn, die om de pijpen is bevestigd.

Voor de overige afmetingen wordt naar de bijbehorende tekening verwezen.

Als wandmateriaal van de secties van 6 mm wordt constructie-staal gekozen. (hier alleen contact met koelwater)

Benodigde hoeveelheid koelwater.

$$\varphi_w = \varphi_{m_{koelwater}} \cdot C_{PH_2O} \cdot (T_2 - T_1)$$

Sectie I : $\varphi_m = \frac{155.000}{4,19.10^3 \cdot (45-20)} = 1,479$ kg/sec

Sectie II : $\varphi_m = \frac{1.175.000}{4,19.10^3 \cdot (45-20)} = 11,22$ kg/sec

Sectie III : $\varphi_m = \frac{85.220}{4,19.10^3 \cdot (30-20)} = 2,05$ kg/sec

De diameters van de toe- en afvoerpijpen worden als $v = 3$m/sec gekozen worden:

Sectie I : $F = \frac{\varphi_m}{\rho v}$

$$D = 2,50.10^{-2}$ m

Sectie II : $D = 6,92.10^{-2}$ m

Sectie III : $D = 2,95.10^{-2}$ m

Gekozen worden resp. 2,5 cm, 7 cm en 3 cm.

Er condenseert 26,8 mol/sec $H_2O = 482,4$ g/sec

Afvoerpijp van schotel sectie II voor $v = 3$m/sec : $D = 14,3$ mm

Gekozen wordt een inwendige diameter van 2 cm.

De diameters van de andere afvoerpijpen van de schotels kunnen op 1 cm gekozen worden.
Samenstelling van de uitgaande gasstroom bij 40°C

(Indien geen noemenswaardige absorptie optreedt en het gecondenseerde water bij sectie II afgetapt wordt.)

\[
\begin{align*}
\varnothing_m & \quad (150°C) : \quad 44,3 \text{ mol/sec NO}_2 \\
& \quad 11,0 \text{ mol/sec O}_2 \\
& \quad 30,1 \text{ mol/sec H}_2\text{O} \\
\varnothing_m & \quad (40°C) : \quad x \text{ mol/sec NO}_2 \\
& \quad (44,3 - 2x) \text{ mol/sec N}_2\text{O}_4 \\
& \quad 11,0 \text{ mol/sec O}_2 \\
& \quad 3,3 \text{ mol/sec H}_2\text{O} \\
\text{totaal} & \quad (58,6 - x) \text{ mol/sec}
\end{align*}
\]

Er moet gelden:

\[
K = \frac{P_{N_2O_4}}{P_{NO_2}} = 2,5
\]

\[
\frac{58,6 - x}{(44,3 - 2x)} = 2,5
\]

Tevens moet gelden:

\[
P_{H_2O} = \frac{3,3}{58,6 - x} = 0,073 \quad (bij 40°C)
\]

Dus \(x = 13,4 \text{ mol/sec N}_2\text{O}_4 \)

Samenstelling uitgaande gasstroom bij 40°C:

- 13,4 mol/sec \(N_2O_4 \)
- 17,5 mol/sec \(NO_2 \)
- 11,0 mol/sec \(O_2 \)
- 3,3 mol/sec \(H_2O \)

45,2 mol/sec totaal

\[
\varnothing_v \quad (150°C) : \quad 2,97 \text{ m}^3/\text{sec}
\]

Stel \(v_{gas} = 10 \text{ m/sec} \), dan wordt de diameter 61,5 cm

Gekozen wordt \(D = 60 \text{ cm} \).

\[
\varnothing_v \quad (40°C) : \quad 45,2 \text{ mol/sec} \quad 1 \text{ mol (}40°C\text{)} = 25,7 \cdot 10^{-3} \text{m}^3
\]

\[
\varnothing_v = 45,2 \cdot 25,7 \cdot 10^{-3} \text{m}^3/\text{sec} = 1,16 \text{ m}^3/\text{sec}
\]

De diameter wordt voor \(v_g = 10 \text{ m/sec} \) : 38,5 cm.

Gekozen wordt \(D = 40 \text{ cm} \).
D. Direct contact.

1. Berekening diameter van de sproeitoren en hoogte van de sproeizone.

\[
\Phi_m^3 = 85,4 \text{ mol/sec bij } 150^\circ C (2,934 \text{ kg/sec})
\]

1 mol (423 K) :
\[
\frac{423}{273} \cdot 22,4 \cdot 10^{-3} \text{ m}^3 = 34,8 \cdot 10^{-3} \text{ m}^3
\]

85,4 mol/sec (150°C) = 85,4 \cdot 34,8 \cdot 10^{-3} \text{ m}^3/sec = 2,97 \text{ m}^3/sec(IN)

\[
\Phi_m^7 = 42,7 \text{ mol/sec bij } 40^\circ C (2,353 \text{ kg/sec})
\]

1 mol (313 K) :
\[
\frac{313}{273} \cdot 22,4 \cdot 10^{-3} \text{ m}^3 = 25,7 \cdot 10^{-3} \text{ m}^3
\]

42,7 mol/sec = 42,7 \cdot 25,7 \cdot 10^{-3} \text{ m}^3/sec = 1,10 \text{ m}^3/sec (UIT)

\[
\Phi_v \text{ gemiddeld bedraagt dus } \frac{2,97 + 1,10}{2} = 2,04 \text{ m}^3/sec
\]

\[
\Phi_v = v \cdot F = v \cdot \frac{1}{4} \pi D^2 \quad \Rightarrow \quad v = \frac{4 \Phi_v}{\pi D^2}
\]

De verblijftijd van het gas in de sproeizone was op 2 sec gesteld, dus :
\[
t = 2 = \frac{V}{\Phi_v} \quad \Rightarrow \quad V = 2 \Phi_v = 2 \cdot 2,04 \text{ m}^3 = 4,08 \text{ m}^3
\]

\[
V \text{ is hierin het volume van de sproeizone.}
\]

Het volume van een cilinder bedraagt:
\[
\frac{1}{4} \pi D^2 \cdot H = 4,08 \text{ m}^3 \quad \Rightarrow \quad H = \frac{16,32}{\pi D^2} \quad \text{(in m)}
\]

a) Stel de diameter van de sproeitoren = 1 m

Dan is
\[
v \text{ onderin } = \frac{4 \Phi_v}{\pi D^2} = \frac{4 \cdot 2,97}{\pi \cdot 1^2} = 3,8 \text{ m/sec}
\]

\[
v \text{ bovenin } = \frac{4 \cdot 1,10}{\pi \cdot 1^2} = 1,4 \text{ m/sec}
\]

\[
\Phi_m^m \text{ beneden } = \frac{2,934}{\frac{1}{4} \pi \cdot 1^2} = 2,934 = 3,74 \text{ kg/m}^2 \text{, sec}
\]

\[
\Phi_m^m \text{ bovenin } = \frac{2,353}{\frac{1}{4} \pi \cdot 1^2} = 2,99 \text{ kg/m}^2 \text{, sec}
\]

\[
\Phi_m^m \text{ gemiddeld over de sproeizone : } \frac{3,74 + 2,99}{2} = 3,37 \text{ kg/m}^2 \text{, sec}
\]
De gassnelheid in de sproeitoren is bepalend voor de diameter van de sproeitoren. Is deze nl. te hoog, dan zal veel meesleuring van de gecondenseerde vloeistofdruppeltjes optreden, hetgeen voorkomen dient te worden. Als richtgetal geldt voor een goede werking van de sproeitoren: \(\varphi_m = 1,06 \text{ kg/m}^2 \cdot \text{sec} \) (zie litt. 10)

Een diameter van 1 m garandeert dus niet een goede werking.

\[\text{b) Stel } D = 2 \text{ m} \]

\[
\begin{align*}
\nu_{\text{onderin}} &= \frac{4 \cdot 2,27}{\pi \cdot 2^2} = 0,95 \text{ m/sec} \\
\nu_{\text{bovenin}} &= \frac{4 \cdot 1,10}{\pi \cdot 2^2} = 0,35 \text{ m/sec} \\
H &= \frac{16,32}{\pi \cdot 2^2} = 1,3 \text{ m} \\
\frac{1}{4} \pi D^2 &= \frac{1}{4} \pi \cdot 2^2 = 3,14 \text{ m}^2
\end{align*}
\]

Dan is:

\[
\begin{align*}
\varphi_m \text{ beneden} &= \frac{2,934}{3,14} = 0,93 \text{ kg/m}^2 \cdot \text{sec} \\
\varphi_m \text{ boven} &= \frac{2,353}{3,14} = 0,75 \text{ kg/m}^2 \cdot \text{sec} \\
\varphi_m \text{ gemiddeld} &= \frac{0,93 + 0,75}{2} = 0,84 \text{ kg/m}^2 \cdot \text{sec}
\end{align*}
\]

Dit is dus een acceptabele waarde. De hoogte van de sproeizone wordt dus 1,3 m. Boven deze zone worden 2 demisters aangebracht. De totale hoogte van de sproeitoren wordt nu 4,3 m. De hoogte na de sproeizone is niet van belang voor de gestelde verblijftijdseis van 2 sec.

2. Aantal benodigde sproeiwers.

In de sproeitoren moet ingevoerd worden: 12,1334 kg/sec \(\text{HNO}_3 \) - op. (18,2%) = 10,54 l/sec.

\[
\begin{align*}
1 \text{ gallon/min} &= 63,1 \cdot 10^{-6} \text{ m}^3 / \text{sec} \\
10,54 \text{ l/sec} &= \frac{10,54 \cdot 10^{-3}}{63,1 \cdot 10^{-6}} \text{ gal/min} = 167,3 \text{ gal/min}
\end{align*}
\]

Gekozen wordt een volle kegelsproeier van de firma Delavan, type WSWM 150. Deze sproeier heeft bij een druk van 30 p.s.i. (\(\approx 30,0,069 \text{ atm} = 2,07 \text{ atm} \)) een capaciteit van 12,8 gal/min. Het aantal benodigde sproeiwers wordt dan:

\[
\frac{167,3}{12,8} = 13
\]

De sproeihoek bedraagt 70°.

3. Plaatsing der sproeiwers.

De te versproeien oplossing wordt naar de sproeitoren geleid door een aanvoerleiding, welke d.m.v. een T-stuk in 2
toevoerleidingen gesplitst wordt, welke door de wand in de sproeitoren ingevoerd worden. Tussen deze toevoerleidingen bevinden zich afsluiters om de juiste hoeveelheid in te stellen. Deze 2 toevoerleidingen gaan naar een ringleiding en worden in het middelpunt hiervan geplaatst. De ringleiding dient tevens als buffer vat. Vanuit dit middelpunt gaat de oplossing via toevoerleidingen naar de ringleiding en vanuit hier vindt voeding van de sproeiers plaats. De sproeiers zijn tussen deze toevoerleidingen geplaatst en staan via toevoerpijpen van \(\frac{1}{2} \)" in verbinding met de ringleiding. Deze manier van plaatsing is gekozen in verband met het opvangen van schokken en stoten. De bovenste ring bevat 7 sproeiers. De hoek tussen de sproeiers in het horizontale vlak bedraagt dan 51°7'. Deze sproeiers worden geplaatst onder een hoek van 10° met de verticaal door het middelpunt van de sproeitoren en wel buitenwaarts gericht. De onderste ring bevat 6 sproeiers (hoek met elkaar in het horizontale vlak dus 60°) en worden geplaatst onder een hoek van 10° met de verticaal, doch nu binnenwaarts gericht. Hierdoor wordt een goede verdeling van de sproeiëne bereikt. Door 1 sproeier gaat 12,8 gal/min = 807.10^-6 m³/sec. De toevoerpijp naar de sproeier heeft een diameter van \(\frac{1}{2} \)". Doornsne: 0,0314.10^-2 m². De snelheid van de oplossing in deze toevoerpijp bedraagt dan:

\[
\frac{807.10^{-6}}{0,0314.10^{-2}} = 2,57 \text{ m/sec}
\]

De snelheid in de toevoerpijp naar de ringleiding wordt gesteld op 2,75 m/sec (in verband met drukverlies). Snelheid in de hoofdtoevoerpijp: 3 m/sec. Doornsne toevoerpijp naar de ringleiding: \(F = \frac{\varphi}{v} \)

\[
\frac{807.10^{-6}}{2,75} = 2,94.10^{-4} \text{ m}^2 \rightarrow D = 1,94 \text{ cm}
\]

Door hoofdtoevoerpijp (totale toevoer): 10,54.10^-3 m³/sec Stel \(v = 3 \text{ m/sec} \) \(F = \frac{1}{4} \pi D^2 = \frac{\varphi}{v} \rightarrow D = 6,39 \text{ cm} \).

Door de hoofdtoevoerpijp (bovenste ring) moet gaan:

\[
\frac{7}{13} 10,54.10^{-3} \text{ m}^3/\text{sec} = 5,68.10^{-3} \text{ m}^3/\text{sec}.
\]

Dus door de hoofdtoevoerpijp (onderste ring) : 4,86.10^-3 m³/sec

Hieruit volgt voor de diameters van deze leidingen (bij een snelheid van 3 m/sec): 4,91 cm, resp. 4,54 cm. Als diameters worden nu gekozen:

Hoofdtoevoerleiding : 7,5 cm

Toevoerleidingen naar de 2 ringen : 5 cm

Leidingen naar de 2 ringen : 2 cm

De sproeiers zijn vervaardigd van polypropyleen. Dit is bestendig tegen verdunnd salpeterzuur (zie tabel 23-3 litt. 10)

De wand van de sproeitoren wordt vervaardigd van R.V. staal 316
Diameter in - en uitlaat gas:
Deze worden 30, resp. 20 cm.

Diameter afvoer vloeistof:

Uit de sproeitoren gaat 12,7067 kg/sec HNO₃ (18,2 %) = 11,03 l/sec.
Stel \(v = 2 \text{ m/sec} \), dan is: \(12,7067 = 1150 \cdot 2 \cdot \frac{1}{4} \pi D^2 \)

\[D = 8,4 \text{ cm} \]
D wordt 9 cm gekozen.

4. Demisters

In de sproeitoren worden 2 demisters geplaatst om de meegesleurde vloeistofdruppeltjes te scheiden van het uitgaande gas. Een demister bestaat uit lagen metaalgaas, de scheiding wordt veroorzaakt door de grotere traagheid van de vloeistofdruppeltjes t.o.v. de damp. De gevangen druppeltjes groeien aan en vallen tenslotte naar beneden. De toelaatbare dampsnelsheid door een demister wordt bepaald door een aantal factoren, zoals de viscositeit van de vloeistof, de oppervlaktespanning van de vloeistof, de deeltjesgrootte, de hoeveelheid meegesleurde vloeistof, de druk en de dichtheden van vloeistof en damp.

De optimale dampsnelsheid kan berekend worden m.b.v. de volgende formule:

\[v = K \sqrt{\frac{\rho_d - \rho_v}{\rho_v}} \]

waarin

\(v = \text{snelheid damp in ft/sec} \)
\(K = \text{constante} = 0,35 \)
\(\rho_d = \text{dichtheid van vloeistof in lbs/ft}^3 \)
\(\rho_d = \text{dichtheid van de damp in lbs/ft}^3 \)

Goede resultaten worden bereikt voor snelheden van 30 % tot 110 % van de berekende "design velocity", uitgezonderd bij systemen onder hoge druk. Dan is het interval nauwer. De drukval over een demister is praktisch te verwaarlozen. In dit geval ligt de dampsnelsheid vast door de gestelde verblijftijdseis van 2 seconden.

In de sproeitoren worden 2 demisters geplaatst, hoogte 20 cm elk.

De demisters zijn vervaardigd van R.V. staal 316 en van het fabricaat York.

Voor de onderlinge afstand, etc., wordt verwezen naar de bijbehorende tekening.
5. Warmtewisselaar.

Het uit de sproeitoren komende salpeterzuur dient van 80°C naar 40°C gekoeld te worden. De koeling geschiedt met koelwater, dat opgewarmd wordt van 20° naar 40°C. Het koelwater stroomt door de pijpen.

De waarde van de totale warmte-overdrachtscoëfficiënt volgt uit:

\[
\frac{1}{U} = \frac{1}{\alpha_{18\% \text{HNO}_3}} + \frac{d}{\lambda} + \frac{1}{\alpha_{\text{koelwater}}} \tag{1}
\]

Als pijpen worden pijpen met een inwendige diameter van 25 mm, uitwendige diameter van 32 mm gekozen. De warmtewisselaar wordt uitgevoerd als tegenstroomwarmtewisselaar.

Globale waarden in (1) ingevuld geeft:

\[
\frac{1}{U} = \frac{1}{4500} + \frac{7 \times 10^{-3}}{11} + \frac{1}{4500} \tag{litt.11}
\]

\[U = 2100 \text{ W/m}^2 \text{ °C}\]

De \(C_p\) van 18,2 % HNO\(_3\) bedraagt 0,81 cal/g °C = 3,4 \(10^3\) J/kg °C

\[\dot{\phi}_{\text{HNO}_3} = 12,7067 \text{ kg/sec.}\]

De af te voeren warmte bedraagt dan: \(12,7067 \times 3,4 \times 10^3 \times (80-40) W = 1728 \text{ kW}\)

\[(\Delta T)_{\log.} = \frac{(80-40)-(40-20)}{\ln 40} = 28,9 \text{ °C}\]

\[A = \frac{1728 \times 10^3}{2100 \times 28,9} = 28,4 \text{ m}^2\]

Het inwendig oppervlak van de te gebruiken pijpen bedraagt 0,0785 m\(^2\)/m pijp.

De totale lengte der pijpen wordt dan: \(28,4 = 362 \text{ m}\)

Stel \(L = 3 \text{ m}\), dan \(\frac{362}{3} = 121\) pijpen

Indien een opstelling der pijpen in de vorm van een gelijkzijdige driehoek wordt gekozen, dan is de steek \(t\):

\[t = 1,3 \cdot D_u = 1,3 \cdot 32 \text{ mm} = 41,6 \text{ mm}\]

\[D_1 = m \cdot t \text{ Het aantal pijpen is 121 m} = 11,13\]
\[D_1 = 11,13 \cdot 41,6 \text{ mm} = 463 \text{ mm} \]
\[2 \cdot \frac{1}{2} D_{\text{pijp}} = 32 \text{ mm} \]
\[2 y = 1,5 \text{ steek} = 62 \text{ mm} \]
\[2 \text{ passes} : 2 \cdot 10 \text{ mm} = 20 \text{ mm} \]
(zie verderop)

\[D \text{ warmtewisselaar} = 577 \text{ mm} \]
Voor een goede warmte-overdracht moet \(Re > 10^4 \) zijn.
Voor pijpen van 25 mm inwendige diameter is een praktijkwaarde 800 l/hr.
De benodigde hoeveelheid koelwater volgt uit:
\[1728 \cdot 10^3 = \varphi_m \text{koelwater} \cdot C_{p H_2O} \cdot (40-20) \]
\[\varphi_m = 20,6 \text{ kg/sec} = 74200 \text{ l/hr} \]
\[\text{Aantal pijpen per pass} : \frac{74200}{800} = 93 \text{ pijpen} \]

Daar dit ongunstig uitkomt wordt i.p.v. 800 l/hr, 1238 l/hr = 0,344 l/sec gekozen.
De snelheid van het water door de pijpen wordt dan:
\[v = \frac{\varphi_v}{P} = \frac{0,344.10^{-3}}{0,0494.10^2} = 0,7 \text{ m/sec} \]
Dan is het aantal pijpen per pass : \(\frac{74,200}{12,38} = 60 \)
\[\text{Aantal passes} : 121 = 2 \]

\[\text{Correctie op het log. temp. verschil.} \]

\[80^\circ C \]
\[40^\circ C \]
\[20^\circ C \]
\[x = \frac{100 - 20}{80 - 20} = 0,33 \]
\[z = \frac{80 - 40}{40 - 20} = 2 \]

\[\Delta T_{\text{log.}} \text{ wordt dus in werkelijkheid} : 0,85 \cdot 28,9^\circ C \]
\[A = \frac{28,4}{0,85} = 33,2 \text{ m}^2 \]

\[\text{De totale lengte wordt nu} : \frac{33,2}{0,0735} = 422 \text{ m} \]
\[L = 3 \text{ m} \quad \text{Aantal pijpen} : \frac{422}{3} = 141 \]
\[m = 12,23 \]
t = 1,3 \cdot D_u = 41,6 \text{ mm}

D_1 = m \cdot t = 12,23 \cdot 41,6 \text{ mm} = 508 \text{ mm}

2 \cdot \frac{1}{2} D_{\text{pijp}} = 32 \text{ mm}

2 \cdot y = 1,5 \text{ steek} = 62 \text{ mm}

2 \cdot 10 \text{ mm (passes)} = 20 \text{ mm}

D = 622 \text{ mm}

De afmetingen van de warmtewisselaar worden dus:

L = 3 \text{ m} \quad \text{D = 0,63 m}

6. **Centrifugaalpomp.**

Zuigdruk: 1 atm. = 10^5 N/m^2

Persdruk: 2,07 atm. = 2,07 \cdot 10^5 N/m^2

Opvoerhoogte: 3 m

Leiding: 4 m \quad \text{Dleiding: } 7,5 \cdot 10^{-2} \text{ m}

\[P_e = \varnothing_m \cdot \frac{\Delta P}{\rho} \]

\[\frac{\Delta P}{\rho} = \frac{P_2 - P_1}{\rho} + g(h_2 - h_1) + \frac{w_{\text{wr. leiding}}}{v^2} \]

\[w_{\text{wr. leiding}} = (4f \cdot \frac{L}{D} + \sum \alpha) \cdot \frac{1}{2} \cdot v^2 \]

\[\varnothing_m = 12,13 \text{ kg/sec} = \rho \cdot v \cdot F = 1150 \cdot v \cdot \frac{1}{4} \pi (7,5 \cdot 10^{-2})^2 \]

\[v = \frac{12,13}{1150 \cdot \pi (7,5 \cdot 10^{-2})^2} = 2,4 \text{ m/sec} \]

\[\text{Re} = \frac{vDP}{\varnothing} = 20,7 \cdot 10^4 \quad \text{, dus turbulente stroming.} \]

\[4f = 0,028 \quad (\text{Grafiek II-3, litt. 11}) \]

Er zijn 2 bochten in de toevoerleiding: \[\sum \alpha = 2,0,7 = 1,4 \]

\[h_2 - h_1 = 3 \text{ m} \]

\[\frac{\Delta P}{\rho} = \frac{2,07 \cdot 10^5 - 10^5}{1150} + 9,81 \cdot 3 + \left(0,028 \cdot 4\pi \cdot 1,4 \cdot 12,13 \cdot 1,24^2 \right) \]

\[= 130,77 \text{ Nm/kg} \]

\[P_e = 12,13 \cdot 130,77 W = 1588 W \]

\[\text{Pas} = \frac{P_e}{\eta_{\text{tot.}}} \quad \text{Stel } \eta_{\text{tot.}} = 0,5 \]

\[\text{dan } \text{Pas} = \frac{1588}{0,5} = 3176 W \]

De centrifugaalpomp dient van corrosiebestendig materiaal vervaardigd te zijn.
De gemiddelde diameter van de druppel:

\[d_m = \frac{\sum d_i \cdot n_i}{\sum n_i} \]

De karakteristieke diameter van de druppel:

\[d_c = \frac{\sum d_i^3 \cdot n_i}{\sum d_i^2 \cdot n_i} \]

Het aantal druppels van een bepaalde grootte:

\[n_i \]

Vloeistofverdeling voor een volle kegelsproeier:

Verstrooiingsdiameter:

\[R_w = \frac{D_w}{2} \]
IX. Litteratuurlijst.

2) M.Oversluizen : Processschema T.H. Delft, jan. 1967

3) A.Th. van Eyl : Afstudeerverslag T.H. Delft, 1967

4) P.J.Hoftyzer : Chem. Weekblad 52, 71 (1956)

5) K.Asperger : Chem. Technik 14 (10), 582 (1962)

7) H.G.Zelders : Chem. Weekblad 52, 66 (1956)

8) W.Haenen : Afstudeerverslag T.H. Delft, 1966

13) F.C.A.A. van Berkel: Collegedictaat Chemische Werktuigen T H.Delft (1965)

14) V.D.I. - Wärmeatlas Deutscher Ingenieur-Verlag GmbH Düsseldorf (1954)