Opdrachtgever:
Rijksinstituut voor Kust en Zee/RIKZ

Scenario berekeningen GEM Veerse Meer

Verslag
september 1999

WL | delft hydraulics
Scenario berekeningen GEM Veerse Meer

A.J. Nolte
R.R. Jansen
OPDRACHTGEVER: RIKZ

TITEL: Scenario berekeningen GEM Veerse Meer

SAMENVATTING:

Om de waterkwaliteit van het Veerse Meer te verbeteren worden plannen gemaakt voor het aanleggen van een doorlaatmiddel in de Zandkreeksluis, waardoor een grotere uitwisseling met de Oosterschelde ontstaat. Daarnaast worden aanpassingswerken overwogen die nodig zijn voor het handhaven van het peil van het Veerse Meer op een vast peil van ±0,10 m NAP. In het huidige peilbeheer is het peil in de winterperiode -0,70 m NAP en in de zomerperiode -0,10 m NAP.

WL | DELFT HYDRAULICS en RIKZ zijn door de Directie Zeeland gevraagd een drietal scenario’s door te rekenen met gebruikmaking van het GEM Veerse Meer modelinstrumentarium. De hydrodynamica is berekend met het STRESS model en is uitgevoerd door RIKZ. De scenario’s zijn:

1. huidige situatie (zomer NAP -0,10 m; winter NAP -0,70 m);
2. gebruik doorlaatmiddel zonder aanpassingswerken (zomer NAP -0,10 m; doorlaat 50 m³/s; winter NAP -0,70 m; doorlaat 30 m³/s);
3. gebruik doorlaatmiddel met aanpassingswerken (hele jaar NAP -0,10 m; doorlaat 50 m³/s);

Om de effecten van peilveranderingen nader te bestuderen is tevens een 4e scenario beschouwd, te weten:

4. uitsluitend aanpassingswerken zonder doorlaatmiddel (hele jaar NAP -0,10 m).

Het rapport beschrijft de effecten van het doorlaatmiddel evenals de invloed van het peilbeheer op de waterkwaliteit van het Veerse Meer. In de discussie wordt ingegaan op de verschillen tussen de scenario’s en worden de positieve en negatieve gevolgen van het doorlaatmiddel en het peilbeheer besproken. Daarnaast wordt kort ingegaan op de beperkingen van het huidige modelinstrumentarium. Het rapport wordt afgesloten met conclusies en aanbevelingen.

REFERENTIES:

REV. | AUTEUR | DATUM | OPMERKINGEN | REVIEW | GOEDKEURING
--- | --- | --- | --- | --- | ---

TREFWOORDEN: GEM, Veerse Meer, beheersmaatregelen, doorlaatmiddel, erzouting, eutrofisering, Ulva.

INHOUD

TEKST: 42
TABellen: 5
FIGUREN: 17
APPENDICES: 0

STATUS

□ VOORLOPIG
□ CONCEPT
× DEFINITIEF

PROJECTNUMMER: Z2690
Inhoud

1 Inleiding ............................................................................................................. 1–1
  1.1 Introductie .................................................................................................... 1–1
  1.2 Doelstelling ................................................................................................. 1–1
2 Waterbalans ...................................................................................................... 2–1
3 Modelbeschrijving ............................................................................................. 3–1
4 Resultaten ........................................................................................................... 4–1
  4.1 Stratificatie .................................................................................................. 4–1
  4.2 Nutriënten .................................................................................................... 4–8
  4.3 Chlorofyl en Ulva ......................................................................................... 4–11
  4.4 Zuurstof ........................................................................................................ 4–13
5 Discussie ............................................................................................................ 5–1
  5.1 Invloed op stratificatie .................................................................................. 5–1
  5.2 Invloed op primaire productie en nutriënten .............................................. 5–4
  5.3 Invloed op zuurstof ....................................................................................... 5–8
  5.4 Vergelijking met VEERWAQ ....................................................................... 5–10
  5.5 Beperkingen van het huidige modelinstrumentarium .............................. 5–11
6 Conclusies .......................................................................................................... 6–1
7 Aanbevelingen .................................................................................................. 7–1
 Geraadpleegde literatuur ....................................................................................... Lit-1
Scenario Berekeningen GEM Veerse Meer

Effecten van aangepast peilbeheer en verhoogde uitwisseling met de Oosterschelde

Samenvatting resultaten en advisering

1. Uitgangspunten en beschouwde modelsimulaties

In het kader van de voorbereiding voor constructie van een doorlaatmiddel in de Zandkreekdam en de mogelijkheden voor aanpassing van het peilbeheer van het Veerse Meer heeft Rijkswaterstaat, Directie Zeeland, aan RIKZ en WL gevraagd om op basis van een aantal simulaties met het GEM model advies uit te brengen omtrent de noodzaak van vroegtijdige investeringen in de aanpassingswerken die nodig zijn voor het toekomstig peilbeheer. In de onderstaande tabel zijn de beschouwde modelsimulaties nader gekarakteriseerd.

<table>
<thead>
<tr>
<th>model simulatie</th>
<th>kenmerk</th>
<th>gebruik doorlaatmiddel</th>
<th>winterpeil t.o.v. NAP</th>
<th>omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>95 REF his</td>
<td>neen</td>
<td>-0,40 / -0,70m</td>
<td>historische simulatie van 1995 voor kalibratie model</td>
</tr>
<tr>
<td>1</td>
<td>95 REF-70</td>
<td>neen</td>
<td>-0,70m</td>
<td>referentie simulatie met vast (laag) winterpeil</td>
</tr>
<tr>
<td>2</td>
<td>95 UIT -70</td>
<td>25 / 15 m3/s 1)</td>
<td>-0,70m</td>
<td>alleen doorlaatmiddel</td>
</tr>
<tr>
<td>3</td>
<td>95 UIT -10</td>
<td>25 m3/s 1)</td>
<td>-0,10m</td>
<td>doorlaatmiddel met peilaanpassing</td>
</tr>
<tr>
<td>4</td>
<td>95 REF -10</td>
<td>neen</td>
<td>-0,10m</td>
<td>alleen peilaanpassing</td>
</tr>
</tbody>
</table>

**Simulatie 0** betreft de oorspronkelijke historische simulatie van 1995 die is gebruikt voor een eerste kalibratie van het GEM model voor het Veerse Meer (ref. WL rapport ‘Toepassing GEM Veerse Meer’, Z2570, mei 1999). Het peil van -0,40m wordt in het najaar gedurende een maand gehandhaafd voor recreatieve doeleinden, alvorens het winterpeil van -0,70m te bereiken.

**Simulatie 1** betreft een aangepaste referentie berekening voor 1995 waarbij simulatie 0 (via herhaling) is verlengd tot 2 jaar en het historisch waargenomen waterpeil is vervangen door vaste peilniveaus gedurende de zomer (-0,10m) en winter (-0,70m) periode.

**Simulatie 2** beschouwt de extra uitwisseling met de Oosterschelde via het geplande doorlaatmiddel, terwijl hetzelfde peilbeheer is aangehouden als bij simulatie 1. Als gevolg van het lagere waterpeil gedurende de winter dient in deze periode rekening te worden gehouden met een kleinere uitwisselingscapaciteit (15 m³/s in plaats van 25 m³/s) van het doorlaatmiddel.

**Simulatie 3** beschouwt zowel de extra uitwisseling met de Oosterschelde als de aanpassing van het peilbeheer. Vanwege het vaste peil is de uitwisselingscapaciteit van het doorlaatmiddel in de winter gelijk aan die van de zomer (25 m³/s).

1) Voor de scenarioberekeningen is uitgegaan van een ontwerpcapaciteit van 50 m³/s bij zomerpeil en 30 m³/s bij winterpeil voor zowel de instroom tijdens hoogwater als de uitstroom tijdens laagwater. In de modelsimulaties is gerekend met een
Simulatie 4 is een toegevoegde simulatie teneinde meer inzicht te verkrijgen in de invloed van het peilbeheer op de waterkwaliteit van het Veerse Meer. In deze simulatie is uitgegaan van een vast zomer- en winterpeil op -0,10m, zonder extra uitwisseling met de Oosterschelde.

2. Beoordeling modelsimulaties

invloed op zoutgehalte
Uit figuur 4.1 kan worden afgeleid dat het zoutgehalte in de toplaag van het meer sterk toeneemt door gebruik van het doorlaatmiddel. Het chloride gehalte in de toplaag wordt daarbij verhoogd van ca. 7000 mg/l tot 15.000 mg/l. Opgemerkt moet worden dat het begin van 1995 een zeer natte periode was waardoor het zoutgehalte aan het eind van de winterperiode meer daalt dan in een gemiddeld jaar.

De mogelijke aanpassing in de toekomst van het winterpeilbeheer zorgt er voor dat in de winterperiode het chloride gehalte minder daalt. Dit is zowel het gevolg van het toegenomen volume in de winter periode als de grotere uitwisseling met de Oosterschelde die bij het aangepaste peil gelijk is aan de ontwerp-capaciteit van 25 m³/s (getij-gemiddeld).

De simulaties zonder doorlaatmiddel laten zien dat het hanteren van een vast peil op -0,10 m NAP (simulatie 4) een verder verzoeting van het meer tot gevolg heeft doordat in het voorjaar geen extra zout water voor peilopzet wordt ingelaten.

invloed op stratificatie
Een belangrijke basis voor de ontwikkeling van de waterkwaliteit in het meer betreft het ontstaan van stratificatie en de mate waarin de meteorologische condities in staat zijn de verticale gradiënten te nivelleren. In het meer is het ontstaan van stratificatie voornamelijk het gevolg van het verschillen in zoutgehalte van het instromende Oosterschelde water ten opzichte van het zoetere water in het meer. In de huidige situatie verzoet het meer vooral in de winter periode doordat via de polderafwateringen grote hoeveelheden zoet water op het meer worden geloosd. In het voorjaar bereikt het zoutgehalte de laagste waarde, terwijl juist dan voor de peilopzet grote hoeveelheden zout water uit de Oosterschelde worden ingelaten. Het gevolg is dat in deze periode het meer een sterke saliniteitsgelaagdheid krijgt die nog wordt versterkt door een geleidelijke opwarming van de bovenlaag waardoor het relatief lichte zoete en warme water drijft boven het zwaardere koude en zoute water in de diepere delen van het meer. Deze afsluiting van de onderste waterlagen heeft tot gevolg dat door afbraak van organisch materiaal in de diepere waterlagen zuurstofloosheid kan ontstaan waardoor de daar levende organismen afsterven.

In onderstaande tabel is voor een 3-tal putten samengevat hoe de stratificatie zich gedurende de zomerperiode ontwikkelt. Hierbij is zowel de duur als de sterkte van de stratificatie op circa 10 meter diepte weergegeven in het aantal dagen en het maximaal berekende dichtheidsverschil ten opzichte van de oppervlakte laag.
<table>
<thead>
<tr>
<th>put Wolphaartsdijk</th>
<th>put Soelekerke</th>
<th>put Vrouwenpolder</th>
</tr>
</thead>
<tbody>
<tr>
<td>duur (dag)</td>
<td>dichtheidsv</td>
<td>duur (dag)</td>
</tr>
<tr>
<td></td>
<td>verschil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(kg/m²)</td>
<td></td>
</tr>
<tr>
<td>1 95ref-70</td>
<td>300</td>
<td>12</td>
</tr>
<tr>
<td>2 95uit-70</td>
<td>230</td>
<td>5</td>
</tr>
<tr>
<td>3 95uit-10</td>
<td>210</td>
<td>3</td>
</tr>
<tr>
<td>4 95ref-10</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>

Uit deze tabel kan worden afgeleid dat de mate van stratificatie in de put Wolphaartsdijk (ter hoogte van de Zandkreekssluis) duidelijk afneemt bij gebruik van het doorlaatmiddel (simulatie 2 en 3). In de put Vrouwenpolder (westelijk deel van het Veerse Meer) neemt de mate van stratificatie echter toe.

invloed op waterkwaliteit

Op basis van de 4 modellsimulaties kan worden geconcludeerd dat:

*De aanleg van het doorlaatmiddel* resulteert in duidelijke toename van het zoutgehalte van het meer. Tevens heeft de grotere uitwisseling met de Oosterschelde tot gevolg dat de nutriënten concentraties (vooral PO₄ en Si) worden verlaagd.

In de situatie zonder doorlaatmiddel wordt de groei van algen en Ulva door licht gelimiteerd. Door het verhogen van het zoutgehalte verbetert het lichtklimaat als gevolg van een lager humusgehalte in zout water, waardoor in de modelberekeningen de concentratie fytoplankton en hoeveelheid Ulva toeneemt wanneer het doorlaatmiddel wordt toegepast. In de situatie met het doorlaatmiddel wordt de groei van Ulva en algen door nutriënten gelimiteerd, waarbij (ondanks uitwisseling met de Oosterschelde) nog voldoende nutriënten aanwezig zijn om een hoger niveau aan fytoplankton en Ulva te bereiken dan in de situatie zonder doorlaatmiddel. Een reductie van de nutriëntenbelasting van het Veerse Meer zal derhalve een verdere positieve bijdrage leveren aan de waterkwaliteit. Opgemerkt dient te worden dat het resultaat mogelijk wordt beïnvloed door de bijzonder hoge zoet water toevoer in het voorjaar van 1995, waardoor ook de nutriënt gehalten hoger zijn dan normaal.

Als gevolg van de grotere uitwisseling met de Oosterschelde is de mate van stratificatie in het oostelijk deel van het meer duidelijk minder sterk dan zonder de extra uitwisseling. In het westelijk deel van het meer zal de mate van stratificatie echter toenemen, waardoor in de diepere waterlagen eerder zuurstofloosheid kan ontstaan. De berekende verschillen ten opzichte van de oorspronkelijke situatie zijn echter gering.

*De aanpassing van het winterpeilbeheer in combinatie met het doorlaatmiddel* resulteert in een verdere toename van het zoutgehalte en afname van het nutriëntengehalte ten opzichte van het huidige peilbeheer met gebruik van het doorlaatmiddel. De verschillen zijn echter klein. Ook de invloed van het peilbeheer op de stratificatie lijkt gering, waardoor de kwaliteit in de diepere waterlagen vrijwel gelijk is aan de situatie met verlaagd winterpeil.
Opgemerkt dient te worden dat in de simulatie geen rekening is gehouden met veranderingen in de begrazing van het fytoplankton. Het is mogelijk dat als gevolg van het overleven van benthische organismen in de zone van -0,10 tot -0,70 m NAP in het voorjaar een grotere graascapaciteit beschikbaar is om de voorjaarsbloeï enigszins af te remmen.

*De aanpassing van het winterpeilbeheer zonder gebruik van het doorlaatmiddel* resulteert in lagere zoutgehalten hetgeen niet beantwoord aan het streefbeeld van een zoutwatersysteem. Wel is het opmerkelijk dat de mate van stratificatie duidelijk afneemt vanwege het ontbreken van de grote zout water inbreng in het voorjaar voor peilopzet. Indien deze verbetering kan worden gecombineerd met bijvoorbeeld een grotere uitwisseling met de Oosterschelde in de winterperiode (via de Zandkreeksluis) mag verwacht worden dat ook in de huidige situatie, zonder het gereed zijn van het doorlaatmiddel een verbetering van de waterkwaliteit zou kunnen worden bereikt. Op basis van de huidige modelberekeningen is helaas geen uitspraak te doen over de mate van deze verbetering.

**overige invloeden**

Hoewel dit niet door het GEM model wordt beschouwd, mag worden verwacht dat zowel de verhoogde uitwisseling met de Oosterschelde als veranderingen in het peilbeheer een positieve invloed hebben op de biodiversiteit in het meer. Met name de aanpassing van het peilbeheer zal een gunstige invloed hebben op de flora en fauna in de oeverzones die bij het huidige winterpeil jaarlijks droogvallen.

**3. Conclusies en Aanbevelingen**

**Conclusies**

Het toekomstig gebruik van het doorlaatmiddel in de Zandkreekdam waarmee een verhoogde uitwisseling met de Oosterschelde kan worden bewerkstelligd, levert een duidelijke positieve bijdrage aan het verhogen van het zoutgehalte en het verlagen van de nutriëntengehalten (dit geldt vooral voor ortho-fosfaat en silicium, en in mindere mate voor totaal stikstof);

Als bijkomend negatief effect moet worden opgemerkt dat de mate van stratificatie in het westelijk deel van het meer toeneemt, waardoor een enigszins verhoogd risico ontstaat van zuurstofuitputting in bijvoorbeeld de put Vrouwenpolder. Daar staat tegenover dat met name in de oostelijke putten de periode van zuurstofloosheid en de mate van stratificatie afnemen;

Het hogere zoutgehalte leidt tot een verdere verbetering van het doorzicht. Dit heeft tot gevolg dat onder de omstandigheden van 1995 een verhoogde algengroei wordt gesimuleerd;

De aanpassing van het winterpeilbeheer heeft een gunstige invloed op de mate van stratificatie in het westelijk deel, waardoor de negatieve effecten van het doorlaatmiddel in dit deel van het meer enigszins worden verzacht;

Over het algemeen is de door het model berekende invloed van het peilbeheer op de waterkwaliteit vrij gering. Hierbij is overigens geen rekening gehouden met het herstel van het benthisch leven in de ondiepe zones die bij het huidige winterpeil droogvallen en leiden tot afsterven van daar in de zomer ontwikkelde bodemflora en fauna;

Het huidige peilbeheer met een grote zoutwater instroming in het voorjaar heeft een duidelijk negatieve uitwerking op de mate stratificatie in het meer en daarmee op de risico's van zuurstofproblemen tijdens en na de voorjaarsbloeï;
Aanpassingswerken voor het peilbeheer die tevens bijdragen aan een reductie van de nutriëntenbelasting op het meer, door bijvoorbeeld polderwater af te leiden naar de Westerschelde, zullen zowel een positieve invloed hebben op de risico's van stratificatie als op het terugdringen van overmatige algengroei.

Aanbevelingen

Met betrekking tot de investeringen voor het doorlaatmiddel, de aanpassingswerken voor polder afwateringen en eventuele overige maatregelen wordt aanbevolen:
De aanleg van het doorlaatmiddel verder voor te bereiden en tevens nader te bestuderen welke mogelijkheden en bijbehorende investeringen er zijn om de polderafwateringen aan te passen aan een toekomstig vast waterpeil. Hierbij dient tevens aandacht te worden gegeven aan de mogelijkheden voor afleiding van nutriëntenrijk polderwater naar bijvoorbeeld de Westerschelde.

Een nadere evaluatie uit te voeren naar de risico's van stratificatie in het westelijke deel van het Veerse Meer en de mogelijkheden om dit deel van het meer gericht te verbeteren door bijvoorbeeld in aanvulling op het doorlaatmiddel in de Zandkreek vanuit het westelijke deel een extra doorspoeling te realiseren via bijvoorbeeld de aanleg van een Zoute Kreek langs de N57 (Veersedam) naar Jacoba haven.

Ten aanzien van toekomstige modeltoepassingen dient het volgende te worden opgemerkt:
Bij het eind van het project is gebleken dat er onduidelijkheid is over de definitie en grootte van het uitwisselingsdebit van het doorlaatmiddel. Mogelijk is de ontwerpcapaciteit van het doorlaatmiddel 100 m³/s in plaats van 50 m³/s. Het is van belang voor een eventuele vervolgstudie hierover duidelijkheid te krijgen;

De beschreven simulaties zijn gebaseerd op meteorologische en hydrologische condities van 1995. Aangezien dit jaar zowel in het voorjaar (vrij nat) als in de zomer (vrij warm) niet representatief is voor gemiddelde condities, verdient het aanbeveling om als voor basis voor verdere voorbereiding van het toekomstig beheer de simulaties te herhalen voor een langere historische tijdreeks (bijvoorbeeld 5 jaar);

Bij de opzet en kalibratie van het model is geconstateerd dat alvorens het model wordt toegepast voor evaluatie van alternatieve beheersmaatregelen, een aantal modelaanpassingen (o.a. de schematisatie, waterbalans, zoutbelasting) noodzakelijk zijn. Het is helaas niet mogelijk geweest om deze aanpassingen te realiseren alvorens de hier genoemde modell simulaties uit te voeren. De huidige modelbeperkingen vragen eerder om een beoordeling van de modelresultaten op grond van verschillen en trends tussen de scenario's dan om een beoordeling van de exacte gemodelleerde concentratie van stoffen. Aanbevolen wordt om deze aanpassingen op korte termijn aan te brengen zodat het model ook in de toekomst kan worden ingezet voor bestudering van de meest effectieve investeringen die het beheer van het Veerse Meer verder kunnen optimaliseren;

Bij de huidige toepassing is gebleken dat het lichtklimaat van groot belang is voor de ontwikkeling van fytoplankton en Ulva. De modelresultaten laten een aanzienlijke toename van beide zien, wanneer het meer zou verzorgen door uitwisseling met de Oosterschelde. Gezien het grote belang van het lichtklimaat wordt aanbevolen dit in een vervolgstudie nader te bekijken.
1 Inleiding

1.1 Introductie

Het Veerse Meer heeft te kampen met een verslechterde waterkwaliteit. Mede in het licht van de mogelijke overdracht van het beheer van het Veerse Meer van het Rijk naar de Provincie worden maatregelen voorbereid ter verbetering van de waterkwaliteit. Dit betreft ondermeer de aanleg van een doorlaatmidden in de Zandkreekdam en het uitvoeren van aanpassingswerken die noodzakelijk zijn om het peil in de winter te handhaven op een vast peil van -0,10 m NAP in plaats van het huidige verlaagde winterpeil van -0,70 m NAP.

Met deze aanpassingen is het mogelijk om de uitwisseling tussen het Veerse Meer en de Oosterschelde te vergroten, waardoor zowel de mate van stratificatie in het Meer als de invloed van polderafwateringen kan worden gereduceerd.

Om meer inzicht te verkrijgen in de mate waarin de waterkwaliteit van het Veerse Meer door deze maatregelen kan worden verbeterd heeft Directie Zeeland aan RIKZ en WL | Delft Hydraulics gevraagd om voor een 3-tal scenario’s de waterkwaliteit in het Meer te berekenen met het GEM Veerse Meer model. Dit model is recentelijk door WL ontwikkeld en toegepast in opdracht van RIKZ (WL | Delft Hydraulics, 1999). De waterbeweging die voor het model wordt gebruikt, is gebaseerd op berekeningen met het STRESS model. Het STRESS model berekent de gelaagdheid van het Veerse Meer onder invloed van temperatuur en zoutgradiënten, alsmede de bijbehorende menging en uitwisselingsstromen. De modelschematisatie omvat een acht tal diepe putten. Zowel de inlaat van zout water vanuit de Oosterschelde als het uitgeslagen polderwater worden in de simulatie meegenomen. Via de koppeling aan het GEM (Generiek Ecologisch Model voor estuaria) kunnen vervolgens concentraties worden berekend van o.a. nutriënten, algen en zuurstof. Tevens geeft het model inzicht in de mogelijke biomassa ontwikkeling van Ulva (Zeesla) in de ondiepe delen van het Veerse Meer.

Hoewel bij de modelontwikkeling en kalibratie voor 1995 is gebleken dat het model op een aantal onderdelen kan worden verbeterd, is voor de toepassing in onderhavige berekeningen gekozen voor een directe toepassing van het huidige model. Wel zal bij de interpretatie van de berekeningen rekening worden gehouden met de uit de kalibratie naar voren gekomen beperkingen.

1.2 Doelstelling

Om het effect van de voorgestelde maatregelen op de waterkwaliteit te evalueren is gebruik gemaakt van het ‘GEM Veerse Meer’ instrumentarium (WL | Delft Hydraulics, 1999). Het GEM (Generiek Ecologisch Model) voor estuaria, betreft een gezamenlijke model-ontwikkeling in BEON verband.
In 1998 is op initiatief van RIKZ het GEM model toegepast op het Veerse Meer als basis voor een toekomstige evaluatie van doorspoelscenario's. De waterbeweging voor de toepassing van het GEM Veerse Meer model is gebaseerd op resultaten van het STRESS model. Dit model berekent op basis van meteorologische condities en in- en uitstromingen de zout en temperatuur gelaagdheid in het meer alsmede de stroming en menging tussen de modelsegmenten. De toepassing van het STRESS model is door RIKZ gerealiseerd. Overeenkomstig de eerdere toepassingen is 1995 als basis jaar voor de modelberekeningen gebruikt.

De volgende scenario's zijn doorberekend en vergeleken:
1. huidige situatie zonder doorlaatmiddel (zomer NAP -0,10 m; winter NAP -0,70 m);
2. gebruik doorlaatmiddel\(^1\) zonder aanpassingswerken (zomer NAP -0,10 m | doorlaat 25 m\(^3\)/s; winter NAP -0,70 m | doorlaat 15 m\(^3\)/s);
3. gebruik doorlaatmiddel\(^1\) met aanpassingswerken (hele jaar NAP -0,10 m | doorlaat 25 m\(^3\)/s);

Om de effecten van peilveranderingen nader te bestuderen is tevens een 4\(^e\) scenario beschouwd, te weten:
4. uitsluitend aanpassingswerken zonder doorlaatmiddel (hele jaar NAP -0,10 m).

Om de veranderingen als gevolg van verhoogde uitwisseling en veranderingen in het winterpeil zo goed mogelijk te kunnen kwantificeren is het noodzakelijk een aaneengesloten periode van 2 jaar te simuleren. Hierdoor worden eventuele effecten van aangepaste begincondities ondervangen. Om te voorkomen dat aanvullende gegevens verzameling noodzakelijk is, is volstaan met het herhaald gebruik van de invoergegevens van 1995.

ad 1.

Tijdens de opzet en de kalibratie van GEM Veerse Meer is gebleken dat naar verhouding grote extra in- en uitlaatstermen gedefinieerd moesten worden om het waterpeil op het gewenste niveau te handhaven. De extra uitlaatsterren werden respectievelijk toegekend aan Oosterschelde water en bodemwater uit de meest oostelijke put (het dichtst bij de Zandkreekdam gelegen). In het rapport werd aangegeven dat het zeer wenselijk zou zijn voor de betrouwbaarheid van het model een betere waterbalans te creëren. In het kader van dit project is de waterbalans opnieuw bekeken en aangepast.

ad 2&3.

Het doorlaatmiddel is gedimensioneerd op het zomerpeil, waarbij het (getij-gemiddelde) uitwisselingsdebit 25 m\(^3\)/s bedraagt. In het scenario zonder aanpassingswerken wordt het hoge peil in de winter niet gehandhaafd en neemt het uitwisselingsdebit af tot 15 m\(^3\)/s door beperkingen om tijdens laagwater te spuiven.

\(^1\) Voor de scenarioberekeningen is uitgegaan van een ontwerpcapaciteit van 50 m\(^3\)/s bij zomerpeil en 30 m\(^3\)/s bij winterpeil voor zowel de instroom tijdens hoogwater als de uitstroom tijdens laagwater. In de modelsimulaties is gerekend met een constant, getij-gemiddeld uitwisselingsdebit, hetgeen overeenkomt met 25 m\(^3\)/s (gelijktijdige) in- en uitstroom bij zomerpeil en 15 m\(^3\)/s (gelijktijdige) in- en uitstroom bij winterpeil.
ad 4.
Uit eerdere berekeningen is gebleken dat het inlaten van Oosterschelde water voor peilopzet in de lente mogelijk een belangrijke oorzaak is voor het ontstaan van stratificatie. Dit extra gedefinieerde scenario beschouwt het Veerse Meer in zijn huidige situatie maar waarbij het zomerpeil van -0,10 m NAP in de winter wordt gehandhaafd (dus een vast (zomer)peil). In deze configuratie is geen doorlaatmiddel opgenomen, en zijn alleen aanpassingswerken nodig om piekafvoer in de winter te kunnen verwerken. Dit scenario is toegevoegd om te beoordelen wat de invloed van de peilopzet is.
2 Waterbalans

Bij de opzet en kalibratie van het GEM Veerse Meer is gebleken dat grote in- en uitstromende debieten als sluitpost zijn toegevoegd aan de waterbalans (WL | Delft Hydraulics, 1999). In het STRESS model wordt op basis van het waargenomen waterpeil en de bekende in- en uitstromende debieten berekend welke debieten moeten worden toegevoegd voor een sluitende waterbalans. Deze resulterende sluitpost is toegekend aan een extra in- of uitstroom van of naar de Oosterschelde.

In tabel 2.1 is een overzicht vermeld van de in het model beschouwde in- en uitlat debieten en de oorsprong van de daarvoor gebruikte gegevens. Zoals eerder genoemd is de sluitpost (inlaat 7) afgeleid uit het gemeten peil en de bekende in- en uitlaat debieten. Uit de eerste GEM Veerse Meer studie bleek dat de debieten van deze sluitposten in grootte van dezelfde orde waren als de som van de gedefinieerde debieten. Omdat van de sluitposten de waterkwaliteit onbekend is, is gestreefd naar een zo klein mogelijke sluitpost, met andere woorden naar een zo sluitend mogelijk gedefinieerde waterbalans. Dit hoofdstuk beschrijft de opzet van de waterbalans in de huidige berekeningen.

<table>
<thead>
<tr>
<th>naam</th>
<th>betreft</th>
<th>gebruikte gegevens waterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlaten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Inlaat nr. 1</td>
<td>Schutdebieten Zandkreeksluis</td>
<td>jan. - dec 1995 (Oosterschelde)</td>
</tr>
<tr>
<td>2 Inlaat nr. 2</td>
<td>Peilverhoging Veerse Meer</td>
<td>jan. - dec 1995 (Oosterschelde)</td>
</tr>
<tr>
<td>3 Inlaat nr. 3</td>
<td>poldergemaal Adriaan</td>
<td>jan./feb 1993 &amp; mrt - dec 1996</td>
</tr>
<tr>
<td></td>
<td>poldergemaal Wilhelmina</td>
<td>feb 1993 &amp; jan./mrt - dec 1996</td>
</tr>
<tr>
<td></td>
<td>poldergemaal Oosterland</td>
<td>jan./feb 1993 &amp; mrt - dec 1996</td>
</tr>
<tr>
<td>4 Inlaat nr. 4</td>
<td>poldergemaal Willem</td>
<td>jan./feb 1993 &amp; mrt - dec 1996</td>
</tr>
<tr>
<td></td>
<td>kleine polders</td>
<td>geen</td>
</tr>
<tr>
<td>5 Inlaat nr. 5</td>
<td>Veerse sluis</td>
<td>jan. - dec 1994 (Kanaal door Walcheren)</td>
</tr>
<tr>
<td></td>
<td>afstroming</td>
<td>geen</td>
</tr>
<tr>
<td></td>
<td>poldergemaal Kleverskerke</td>
<td>jan. - nov 1995 &amp; dec 1994</td>
</tr>
<tr>
<td></td>
<td>poldergemaal Oostwateringen</td>
<td>jan. - dec 1995</td>
</tr>
<tr>
<td></td>
<td>poldergemaal De Piet</td>
<td>jan. 1996 &amp; feb - dec 1995</td>
</tr>
<tr>
<td>6 Inlaat nr. 6</td>
<td>poldergemaal Jacoba</td>
<td>jan./feb 1993 &amp; mrt - dec 1996</td>
</tr>
<tr>
<td>7 Inlaat nr. 7</td>
<td>sluitpost</td>
<td>jan. - dec 1995 (Oosterschelde)</td>
</tr>
<tr>
<td>8 Neerslag</td>
<td>neerslag</td>
<td>maandelijks gemiddelde over 1983 - 1988</td>
</tr>
<tr>
<td>Uitlaten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Uitlaat nr. 1</td>
<td>Spuidebieten Veerse Meer</td>
<td>1)</td>
</tr>
<tr>
<td></td>
<td>Zandkreeksluis</td>
<td></td>
</tr>
<tr>
<td>2 Uitlaat nr. 2</td>
<td>sluitpost</td>
<td>1)</td>
</tr>
<tr>
<td>3 Verdamping</td>
<td>verdamping</td>
<td>1)</td>
</tr>
</tbody>
</table>

1) De kwaliteit van de uitaatdebieten wordt ontleend aan de door het model berekende concentratie ter plaatse van de uitaat.

Tabel 2.1 In- en uilaten in oorspronkelijke GEM Veerse Meer en toegekende waterkwaliteit (tabel 4.2 uit GEM Veerse Meer rapport (WL | Delft Hydraulics, 1999)
### Tabel 2.2 Vergelijking tussen in- en uitlaatdebieten

<table>
<thead>
<tr>
<th>maand</th>
<th>Linaatdebitie (m³/s)</th>
<th>Uitraatdebitie (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>afstrooming</td>
<td>peilverhoging</td>
</tr>
<tr>
<td>januari</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>februari</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>maart</td>
<td>0.3</td>
<td>5.9</td>
</tr>
<tr>
<td>april</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>mei</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>juni</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>juli</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>augustus</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>september</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>oktober</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>november</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>december</td>
<td>0.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Tabel 2.2 beschrijft de gedefinieerde debieten van de in- en uitlaten zoals gebruikt in de oorspronkelijke STRESS opzet. In het model zijn de debieten per maand gedefinieerd, behalve de debieten voor neerslag en verdamping die dagelijks zijn gedefinieerd (tabel 2.2 geeft het maandgemiiddelde weer). Het peil van het Veerse Meer zal gelijk blijven indien in- en uitgaande debieten aan elkaar gelijk zijn. Uit tabel 2.2 blijkt dat dit niet het geval is en het peil zal derhalve niet constant zijn. Een verschil tussen in- en uitlaatdebiet van 1 m³/s levert in STRESS een peilvariatie van circa 0,7 cm/dag bij een wateroppervlak van 12,5×10⁶ m². Over een maand loopt de peilverandering derhalve op tot zo’n 21 cm. Wanneer deze peilverandering niet overeenkomt met het gemeten peil, wordt in de STRESS berekening extra water ingelaten of uitgelaten op een zodanige wijze dat het gemeten peil gehandhaafd blijft. Dit extra water kan worden beschouwd als sluitpost op de waterbalans. Deze sluitpost is niet in tabel 2.2 opgenomen, maar een indicatie van de sluitpost wordt weergegeven door het verschil tussen totaal inlaat en totaal uitlaat. Figuur 2.2 geeft de grootte van de sluitpost weer zoals deze toegepast is in het GEM Veerse Meer model.

Uit figuur 2.2 en tabel 2.2 blijkt dat met name in de periode van oktober tot en met april aanzienlijke afwijkingen in de waterbalans aanwezig zijn. Uit figuur 2.2 blijkt dat van oktober tot en met februari voornamelijk extra water ingelaten moet worden om het gemeten peil te bereiken, terwijl in maart en april extra water uitgelaten moet worden. Met name dit laatste is opvallend, aangezien in maart Oosterschelde water ingelaten wordt om het peil te verhogen. De hoeveelheid water die gedefinieerd is voor peilopzet is derhalve overschat.

In de herfst- en wintermaanden wordt de hoeveelheid ingelaten water onderschat, of de hoeveelheid uitgelaten water overschat. Beide hebben als resultaat dat extra water ingelaten moet worden om het gemeten peil te handhaven. Uit de beschikbare gegevens is niet af te leiden welk van de gedefinieerde debieten onder- dan wel overschat is. Aangezien het spuidebiet via de Zandkreeksluis vrijwel volledig het uitgaande debiet bepaald, is een overschatting van dit debiet het meest waarschijnlijk. Het spuidebiet is in maart gelijk gesteld aan nul ten behoeve van de peilopzet. Gezien het grote verschil dat nu optreedt, is deze keuze vermoedelijk onjuist geweest.
Figuur 2.2 Variabel inlaatdebiet en variabel uittaldebiet in de STRESS berekening voor 1995 (WL | Delft Hydraulics, 1999)

Bij de kalibratie van het GEM Veerse Meer model is gebleken dat de peilopzet van belang voor de waterkwaliteit in het algemeen en in het bijzonder voor de ontwikkeling van een gestratiﬁeerde waterkolom in het voorjaar (WL | Delft Hydraulics, 1999). Figuur 2.1 is overgenomen uit het GEM Veerse Meer rapport en laat het gemodeleerde verloop van de chlorideconcentratie in het top segment zien. De abrupte toename in saliniteit eind maart is toe te schrijven aan de peilopzet, waardoor een grote hoeveelheid zout Oosterschelde water ingelaten wordt.

Gegeven de gerezen onzekerheid omtrent het debiet voor peilopzet (en peilaanlating) en gegeven het belang van de peilopzet voor de waterkwaliteit is gezocht naar een andere opzet van de debieten. Een andere aanpak is tevens wenselijk gezien het feit dat in scenario’s 3 en 4 niet gerekend wordt met een peilopzet (vast peil van -0,10 m NAP) en het betreffende debiet uit de simulatie is gehaald. Er bestaat derhalve een ongelijkheid met scenario’s 1 en 2 als daarin wel gerekend wordt met een (verkeerd) debiet voor peilopzet.

Aangezien het huidige rapport tot doel heeft een vergelijking te maken tussen de verschillende scenario’s, dienen kunstmatige variaties tot een minimum beperkt te worden, zodat alleen de wezenlijk verschillende factoren (i.e. het doorlaatmiddel en het waterpeil) bepalend zijn voor de ontwikkeling van de waterkwaliteit in het Veerse Meer.
De volgende aanpak voor de waterbeweging is gekozen:

1. het gedefinieerde debiet voor peilopzet en peilaflaat wordt weggelaten uit alle simulaties;
2. alle overige gedefinieerde debieten worden gehandhaafd en blijven derhalve gelijk aan de oorspronkelijke GEM Veerse Meer studie;
3. het gemeten peil wordt niet meer gebruikt;
4. in plaats daarvan wordt een schematisch peilverloop opgelegd met een winterpeil van -0,70 m NAP en een zomerpeil van -0,10 m NAP (Figuur 2.3);
5. het tekort of teveel aan water wordt aangevuld door middel van de sluippost. Voor het opzetten van het peil wordt derhalve de sluippost gebruikt. Op deze manier wordt precies zoveel Oosterschelde water ingelaten als nodig is voor het opzetten van het peil;
6. inlaat 2 voor peilopzet wordt in de huidige scenario's aan het doorlaatmidden in de Zandkreeksluis toegekend. Tijdens winterpeil bedraagt het uitwisselingsdebit\(^2\) 30 m\(^3\)/s, tijdens het zomerpeil 50 m\(^3\)/s;
7. uitlaat 3 (sluippost) blijft als sluippost gehandhaafd, maar dient in geval van het doorlaatmidden als uitlaat in de Zandkreeksluis naar de Oosterschelde. In dat geval zal het debiet van de doorlaat ongeveer gelijk zijn aan de gedefinieerde inlaat (30 of 50 m\(^3\)/s). Het exacte uitgaande debiet van het doorlaatmidden wordt bepaald uit de andere gedefinieerde debieten, zodanig dat het opgelegd peil wordt gehandhaafd.

Figuur 2.3 Geschematiseerde waterstand Veerse Meer: vaste lijn: scenario's 1 en 4 (variabel peil); gestreepte lijn: scenario's 2 en 3 (vast peil).

\(^2\) Het uitwisselingsdebit van het doorlaatmidden in de Zandkreeksluis bedraagt 50 m\(^3\)/s bij een peil van -0,10 m NAP en 30 m\(^3\)/s bij een peil van -0,70 m NAP. Voor een daggemiddeld uitwisselingsdebit is rekening gehouden met de getijwerking, waardoor ruwweg 12 uur per dag netto uitstroming en 12 uur netto instroming plaatsvindt. Het daggemiddelde is derhalve gedefinieerd als 25 m\(^3\)/s bij zomerpeil en als 15 m\(^3\)/s bij winterpeil.
3 Modelbeschrijving

Voor een uitgebreide modelbeschrijving wordt verwezen naar het voorgaande GEM Veerse Meer rapport (WL | Delft Hydraulics, 1999). Voor de huidige scenarioberekeningen is de schematisatie (aantal segmenten, volume, oppervlak, diepte) integraal overgenomen. Ook de parameter setting is identiek gehouden. De enige aanpassing is de waterbalans, zoals beschreven in het voorgaande hoofdstuk.
4 Resultaten

4.1 Stratificatie

Het ontstaan van stratificatie is van groot belang voor de waterkwaliteit van het Veerse Meer, met name voor de diepere delen die door stratificatie afgesloten worden van de oppervlakte laag en de atmosfeer. Figuur 4.1 toont het verloop van de chloride concentratie in de toplaag gedurende de tweejarige simulatie. Vanuit dezelfde initiële conditie wordt in de toplaag in de situatie met doorlaat (scenario's 2 en 3) een aanzienlijk hogere chloride concentratie bereikt. Het gebruik van het doorlaatmiddel heeft derhalve een verzouting van het meer tot gevolg.

![Diagram of chloride concentration over time](image)

Figuur 4.1 Chloride concentratie in het top segment

Wanneer de scenario's onderling bekeken worden, kan het volgende opgemerkt worden:
- scenario 1 en scenario 4 bevatten geen doorlaat en zijn aanzienlijk zoeter dan scenario 2 en 3;
- de extra inlaat van (zout) Oosterschelde water voor de peilopzet in scenario 1 is zowel in het eerste als het tweede jaar te onderscheiden op het moment dat scenario 1 en 4 van elkaar gaan afwijken. De toename van chloride is echter niet zo groot als in de originele basisberekening (figuur 2.1);
- de geringere uitwisseling van scenario 2 ten opzichte van scenario 3 ten tijde van het winterpeil (respectievelijk 30 versus 50 m\(^3/s\)) vertaalt zich in een lagere chlorideconcentratie gedurende deze periode.
• Na peilopzet is het doorlaatdebiet gelijk en verschillen beide scenario's na een inspeelperiode van circa twee maanden niet in chloride concentratie.

Figuren 4.2 tot 4.5 tonen de resultaten van de STRESS berekening voor dichtheid. Voor een drietal putten is voor een aantal lagen de dichtheid gedurende de simulatieperiode uitgezet. De Wolphaartdijk put is de meest oostelijk gelegen put (ter hoogte van de Zanddreeksluis). Het Oosterschelde water stroomt als eerste deze put in. De Soelekerke put ligt halverwege het Veerse Meer en de Vrouwenpolder put ligt ten noorden van Veere in het westelijk deel van het meer.

**Scenario 1: variabel peil, geen doorlaatmiddel (Figuur 4.2).**

Figuur 4.2 laat zien dat de Wolphaartdijk put gedurende het gehele jaar gestratificeerd is, waarbij de spronglaag vrijwel voortdurend op circa 7 meter diepte ligt; het verschil in dichtheid tussen de laag met gemiddelde diepte -5,5 m NAP en de laag met gemiddelde diepte -7,5 m NAP bedraagt minimaal zo'n 3 kg/m³, terwijl het maximale dichtheidsverschil circa 12 kg/m³ bedraagt. De stratificatie is maximaal op het moment dat zout water ingelaten wordt voor peilopzet rond dag 85. De gehele put wordt gevuld met Oosterschelde water, terwijl de dichtheid van het oppervlakte water nauwelijks toeneemt.

De Soelekerke put is gedurende de gehele zomer gestratificeerd, waarbij stratificatie begint op het moment dat Oosterschede water ingelaten wordt voor de peilverhoging. Het dichtheidsverschil tussen het oppervlakte water en het water onderin de put is 2 tot 4 kg/m³. Het dichtheidsverschil met minder diep water is geringer en verdwijnt rond begin september (dag 240 en 610). Gedurende de winterperiode vindt geen stratificatie in de Soelekerke put plaats.

In de Vrouwenpolder put vindt gedurende een korte periode in de zomer stratificatie plaats. Gedurende een periode van circa 3 maanden is er een dichtheidsverschil tussen de laag met gemiddelde diepte -9,5 m NAP en de laag -14,5 m NAP. Het maximale dichtheidsverschil bedraagt 2 kg/m³. Gedurende de rest van het jaar kan de put als goed gemengd beschouwd worden.

**Scenario 2: variabel peil, met doorlaatmiddel (Figuur 4.3).**

Het doorspoelen van het Veerse Meer met Oosterschelde water heeft tot gevolg dat het dichtheidsverschil tussen oppervlakte laag en bodem laag in de Wolphaartdijk put aanzienlijk kleiner wordt ten opzichte van scenario 1. Dit is met name te danken aan een sterk verhoogde chloride concentratie in de oppervlakte laag: ten opzichte van scenario 1 neemt de dichtheid in de zomerperiode toe van circa 1008 kg/m³ naar circa 1018 kg/m³. Echter, gedurende het gehele jaar blijft een dichtheidsverschil tussen de oppervlakte laag en de bodemlaag bestaan; het verschil bedraagt in het najaar circa 2 kg/m³. De spronglaag ligt in de winterperiode op circa -7 tot -8 m NAP, waarbij de laag met gemiddelde diepte -7,5 m NAP op gezette tijden opengesteld met de oppervlakte laag. In de zomerperiode valt op dat met de extra uitwisseling in scenario 2 ook tussen de oppervlakte laag en de laag met gemiddelde diepte -5,5 m NAP een dichtheidsverschil ontstaat. In scenario 1 (zonder doorlaatmiddel) was dit niet het geval.
Figuur 4.2  Dichtheden scenario 1 (zonder doorlaatmiddel, variabel peil)
Figuur 4.3  Dichtheden scenario 2 (met doorlastmiddel, variabel peil)
Figuur 4.4 Dichtheden scenario 3 (met doorlaatmiddel, vast peil)
Figuur 4.5  Dichtheden scenario 4 (zonder doorlastmiddel, vast peil)
De dichtheid van het water in de Soelekerke put neemt toe als gevolg van het toepassen van het doorspoelingsdebit. Het dichtheidsverschil tussen het oppervlakte water en de bodemlaag bedraagt 3-4 kg/m³ en is daarmee ongeveer gelijk aan het verschil in scenario 1. Het initiële verschil bij peilopzet is groter dan in scenario 1, terwijl tevens het dichtheidsverschil met de ondiepere lagen minder snel afneemt dan in scenario 1. Gedurende het winterseizoen is de Soelekerke put ongestratificeerd.

In de Vrouwenpolder put treedt stratificatie op vanaf het moment van peilopzet tot begin september. Ten opzichte van scenario 1 is het dichtheidsverschil toegenomen. Het dichtheidsverschil tussen oppervlakte en bodem laag in scenario 2 bedraagt circa 2 kg/m³. De spronglaag is in de figuur (4.3) niet goed gedefinieerd, maar ligt minder diep dan -9 m NAP.

Scenario 3: vast peil, met doorlaatmiddel (Figuur 4.4).
Scenario 3 vertoont grotendeels hetzelfde beeld als scenario 2. Door dat de oppervlakte laag minder verzocht, is het dichtheidsverschil tussen oppervlakte en bodem laag in de Wolphaartsdijk put in de winterperiode in scenario 3 kleiner dan in scenario 2. Aangezien de laag met gemiddelde diepte -7,5 m NAP gedurende de winterperiode regelmatig opmengt, kan geconstateerd worden dat de spronglaag op circa -8-9 m NAP ligt. Gedurende de zomerperiode ligt de spronglaag minder diep. Het dichtheidsverschil tussen oppervlakte en bodem laag bedraagt 3 à 4 kg/m³ in de zomer tegenover circa 1,5 kg/m³ in de winter.

De Soelekerke put is gedurende de winterperiode ongestratificeerd. Stratificatie treedt op in dezelfde periode als in scenario 2. Een belangrijk verschil is echter dat het dichtheidsverschil tussen de oppervlakte laag en de diepere lagen bij de ontwikkeling van de stratificatie in scenario 3 beduidend kleiner is dan in scenario 2. Rond dag 440 neemt het dichtheidsverschil in scenario 2 toe tot circa 3 kg/m³ als gevolg van het inlaten van zout water ten behoeve van peilverhoging. In scenario 3 blijft het dichtheidsverschil beperkt tot circa 1-1,5 kg/m³. De tweede helft van de gestatificeerde periode is voor beide scenario's vrijwel identiek.

Voor de Vrouwenpolder put geldt grotendeels hetzelfde als voor de Soelekerke put. De put is gedurende de winterperiode ongestratificeerd en stratificatie treedt op vanaf april. Het dichtheidsverschil tussen oppervlakte en bodem laag bedraagt maximaal 3 kg/m³. Ook hier is het dichtheidsverschil in het begin van de gestatificeerde periode in scenario 3 kleiner dan in scenario 2.

Scenario 4: vast peil, zonder doorlaatmiddel (Figuur 4.5).
De Wolphaartsdijk put is gedurende het gehele jaar gestatificeerd. Het dichtheidsverschil tussen oppervlakte en bodem laag bedraagt in de zomerperiode circa 10 kg/m³ en is daarmee aanzienlijk groter dan in scenario’s 2 en 3. Ten opzichte van scenario 1 (Figuur 4.2) is het dichtheidsverschil wat kleiner met name voor de ondiepere lagen van april tot juni (dag 450 tot 550). In scenario 1 neemt door het inlaten van Oosterschelde water voor peilopzet de dichtheid van de hele Wolphaartsdijk put toe tot het niveau van het zoute water, om vervolgens door opmenging langzaam af te nemen (Figuur 4.2). In scenario 4 is de peilopzet afwezig en derhalve ook de abrupte toename van de dichtheid.
Stratificatie komt voor in de Soelekerke put van eind mei tot begin september. Deze periode is beduidend korter dan in scenario 1. Ook het dichtheidverschil tussen oppervlakte en bodem laag is kleiner: maximaal 2,5 kg/m$^3$ in scenario 4 tegenover maximaal 4 kg/m$^3$ in scenario 1. Zowel de langere duur als het grotere dichtheidverschil in scenario 1 worden veroorzaakt door het inlaten van zout water ten behoeve van peilverhoging. Door dit inlaten treedt een snelle toename van de dichtheid op in de diepere lagen op het moment dat zout(er) water de Soelekerke put bereikt. In scenario 4 is dit mechanisme afwezig en zal temperatuurstratificatie een belangrijker rol spelen in de zomerperiode.

De modelresultaten van scenario’s 1 en 4 zijn voor de Vrouwenpolder put vergelijkbaar. Het inlaten van zout water voor peilopzet heeft nauwelijks invloed op de dichtheid in de put en resulteert in scenario 1 niet in een gestratificeerde waterkolom. De put is gedurende een korte periode wel gestratificeerd door verschil in temperatuur tussen het oppervlakte water en het bodem water in de put.

De vergelijking tussen de twee scenario’s zonder doorlaat (1 & 4) met de twee scenario’s met doorlaat (2 & 3) geeft aan dat het toepassen van een doorlaatmiddel de mate van stratificatie in de Wolphaartsdijk put sterk vermindert. Doordat de top laag zouter wordt, neemt het dichtheidverschil tussen de oppervlakte en de bodem sterk af. De stratificatie in de Vrouwenpolder put neemt toe bij het toepassen van het doorlaatmiddel. Doordat continu zout water ingelaten wordt, kan het zoute water zich verder langs de bodem verplaatsen voordat het geheel opgemengd is. In de situatie zonder doorlaatmiddel bereikt deze zoute onderstroom de Vrouwenpolder put niet en is de put vrijwel het gehele jaar goed gemengd.

Het dichtheidverschil in de Soelekerke put is het kleinst wanneer een vast peil wordt toegepast. Daarnaast resulteert het doorlaatmiddel in een wat grotere stratificatie die korter duurt. Het geringste dichtheidverschil treedt op in scenario 4, het grootste in scenario 1.

### 4.2 Nutriënten

De ammoniumconcentratie in het top segment laat een grillig verloop zien (Figuur 4.6). Tijdens de winter neemt de concentratie toe tot een maximum van circa 0,25 mg N/L. In het voorjaar daalt de concentratie als gevolg van primaire productie (zie paragraaf 4.3). Gedurende het voorjaar en de zomerperiode fluctueert de ammoniumconcentratie van 0 tot 0,1 mg N/L. Tussen de scenario’s is relatief weinig verschil. In de periode direct na de voorjaarspiek is de concentratie in scenario’s 1 en 4 (zonder doorlaatmiddel) hoger dan in scenario’s 2 en 3 (met doorlaatmiddel).

Figuur 4.7 laat het verloop van de nitraatconcentratie in de simulatie zien. In de winterperiode wordt de hoogste concentratie gemodelleerd. Vanaf ongeveer 1 maart begint de concentratie te dalen. In scenario’s 1 en 4 (zonder doorlaatmiddel) wordt de nitraatconcentratie niet gelijk aan nul, terwijl dit voor scenario’s 2 en 3 (met doorlaatmiddel) wel regelmatig gebeurt.
Figuur 4.6  Ammonium concentratie in het top segment

Figuur 4.7  Nitraat concentratie in het top segment
Figuur 4.8 Fosfaat concentratie in het top segment

Figuur 4.9 Silicium concentratie in het top segment

De ortho-fosfaatconcentratie in het top segment wordt weergegeven in Figuur 4.8. Ook nu zijn de scenario's 1 en 4 (zonder doorlaatmiddel) te onderscheiden van scenario's 2 en 3 (met doorlaatmiddel). De eerstgenoemde scenario's laten een seizoensverloop zien met hogere concentraties in de winterperiode en lagere concentraties in de zomerperiodes.
De concentraties worden echter niet lager dan 0,1 mg P/l. In de scenario's met een doorlaatmiddel wordt fosfaat in het top segment in het voorjaar uitgeput. Ook de concentratie in de winterperiode is beduidend lager dan in de scenario's zonder doorlaatmiddel (1 en 4).

Silici um vertoont hetzelfde beeld als de andere nutriënten (Figuur 4.9): hoge concentraties in het winterhalfjaar, lage concentraties in het zomerhalfjaar. De silici umconcentratie is in het geval van de scenario's met doorlaatmiddel (2 en 3) beduidend langer laag dan bij de scenario's zonder doorlaatmiddel (1 en 4).

4.3 Chlorofyl en Ulva

Zowel voor chlorofyl (Figuur 4.10) als voor Ulva (Figuur 4.11) zijn scenario's 1 en 4 duidelijk te onderscheiden van scenario's 2 en 3. Tussen de scenario's 1 en 4 en de scenario's 2 en 3 onderling bestaat weinig tot geen verschil. Dit geeft aan dat na peilopzet de sturende parameters in het model gelijk zijn voor de onderlinge scenario's en derhalve niet resulteren in een merkbaar verschil in chlorofyl en Ulva.

De scenario's 2 en 3 waarbij het doorlaatmiddel in de berekening is opgenomen, laten over het algemeen een hogere chlorofylconcentratie zien dan de scenario's zonder doorlaatmiddel (1 en 4). Van juli tot december is de chlorofylconcentratie in scenario's 2 en 3 hoger dan in scenario's 1 en 4. De voorjaarspiek valt in alle scenario's op ongeveer hetzelfde tijdstip, terwijl tevens de maximale concentraties niet wezenlijk van elkaar verschillen. Vervolgens zijn de concentraties in het voorjaar ruwweg gelijk, waarbij de scenario's 2 en 3 in deze periode neigen naar iets hogere concentraties dan scenario's 1 en 4.

De toename van Ulva begint in scenario's 1 en 4 (zonder doorlaatmiddel) later dan in scenario's 2 en 3 (met doorlaatmiddel). In de laatstgenoemde scenario's begint de toename van Ulva in februari, maar vlak vervolgens af om begin juni sterk te stijgen. In scenario's 1 en 4 begint de toename van Ulva circa 1 mei. De maximale biomassa in scenario's 1 en 4 is ongeveer de helft van de biomassa in scenario's 2 en 3.
Figuur 4.10  Chlorofyl concentratie in het top segment

Figuur 4.11  Ulva gehalte in het ondiep segment
4.4 Zuurstof

De figuren 4.12 tot en met 4.14 tonen voor respectievelijk de Wolphaartsdijk, de Soelekerke en de Vrouwenpolder de ontwikkeling van de zuurstofconcentratie in de tweejarige simulatie zowel halverwege de waterkolom (diepte circa -10 m NAP) als in de bodemlaag.

De voortdurende doorspoeling van het Veerse Meer met zuurstoffrijk Oosterschelde water heeft in de Wolphaartsdijk put tot gevolg dat geen zuurstofloosheid optreedt halverwege de waterkolom (Figuur 4.12, scenario's 2 en 3). Ook in de bodem laag is het effect van de doorspoeling zichtbaar: de periode van zuurstofloosheid is aanmerkelijk korter in scenario's 2 en 3 dan in scenario's 1 en 4.

Ten opzichte van het huidige scenario (geen doorspoeling, variabel peil: scenario 1), treedt in de Soelekerke put (Figuur 4.13) een aanmerkelijke verbetering op in scenario's 2 en 3 (met doorlaatmiddel). Zuurstofloosheid treedt nog steeds op, maar is van kortere duur zowel in de bodem laag als halverwege de waterkolom. Scenario 4 (geen doorlaatmiddel, vast peil) geeft het gunstigste resultaat met een relatief korte periode van zuurstofloosheid.

De Vrouwenpolder put (Figuur 4.14) is slechts in geringe mate gestratificeerd in de zomerperiode en de spronglaag ligt beneden -10 m NAP. De zuurstofconcentratie halverwege de waterkolom zal dan ook in belangrijke mate overeenkomen met de concentratie in het top segment en zuurstofloosheid treedt derhalve niet op. Het introduceren van (een grotere) stratificatie in de Vrouwenpolder put als gevolg van het doorlaatmiddel (zie paragraaf 4.1) resulteert in een afname van de zuurstofconcentratie in de bodemlaag (dat wil zeggen beneden de spronglaag).
Figuur 4.12  Zuurstofconcentratie Wolphaartsdijk put; boven: halverwege de waterkolom, onder: bodem laag.
Figuur 4.13 Zuurstofconcentratie Soelekerke put; boven: halverwege de waterkolom, onder: bodem laag.
Figuur 4.14  Zuurstofconcentratie Vrouwenpolder put; boven: halverwege de waterkolom, onder: bodem laag.
5 Discussie

5.1 Invloed op stratificatie

Chloride
Het toepassen van een doorlaatmiddel in de Zandkreeksluis heeft tot gevolg dat de chlorideconcentratie in het top segment van het Veerse Meer toeneemt van circa 7000 mg/l tot circa 15000 mg/l (Figuur 4.1). Ter vergelijking, het Oosterschelde water heeft een chlorideconcentratie van circa 16500 mg/l. In de wintermaanden neemt de chlorideconcentratie af tot circa 13500 mg/l in geval van een doorlaatdebit van 50 m³/s (scenario 3) en tot circa 12500 mg/l in geval van een doorlaatdebit van 30 m³/s (scenario 2). De afname wordt veroorzaakt door meer neerslag in de wintermaanden dan in de zomermaanden en als gevolg daarvan een hogere afvoer van zoet water vanuit de omliggende polders naar het Veerse Meer. Hierbij dient de notitie gemaakt te worden dat de winterperiode van het modeljaar (met name januari en februari 1995) extreem natte maanden waren en het meer in het model meer dan gemiddeld verzoet zal zijn. Het feit dat in scenario 3 een hogere chlorideconcentratie gehandhaafd blijft dan in scenario 2 getuigt van de effectiviteit van een hoger doorlaatdebit.

Stratificatie
In tabel 5.1 wordt voor een drietal putten (Wolphaartsdijk in het oosten, Soelekerke in het midden en Vrouwenpolder in het westen van het Veerse Meer) zowel de duur van stratificatie als het maximale dichtheidsverschil weergegeven. De duur van stratificatie is gedefinieerd als de langst aaneengesloten tijd dat een laag in dichtheid verschilt van het top segment. Als representatieve laag is de laag op circa -10 m NAP (halverwege de waterkolom) gepresenteerd. De stratificatie duur en het maximale dichtheidsverschil zijn afgeleid uit Figuren 4.2 tot en met 4.5.

Tabel 5.1 Stratificatie duur en maximaal dichtheidsverschil gedurende tweejarige simulatie op circa -10 m NAP ten opzichte van de oppervlakte laag.

<p>| scena- | put Wolphaartsdijk | put Soelekerke | put Vrouwenpolder |</p>
<table>
<thead>
<tr>
<th>nario</th>
<th>stratificatie duur (dag)</th>
<th>dichtheidsverschil (kg/m²)</th>
<th>dichtheidsverschil (kg/m²)</th>
<th>dichtheidsverschil (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95ref-70 300</td>
<td>12</td>
<td>160</td>
<td>2,0</td>
</tr>
<tr>
<td>2</td>
<td>95uit-70 230</td>
<td>5</td>
<td>160</td>
<td>3,0</td>
</tr>
<tr>
<td>3</td>
<td>95uit-10 210</td>
<td>3</td>
<td>150</td>
<td>2,5</td>
</tr>
<tr>
<td>4</td>
<td>95ref-10 300</td>
<td>10</td>
<td>100</td>
<td>2,0</td>
</tr>
</tbody>
</table>
Het doorlaatmiddel en stratificatie

Uit tabel 5.1 blijkt dat door het toepassen van het doorlaatmiddel de mate van stratificatie in de Wolphaartsdijk put ter hoogte van de Zandkreeksluis afneemt (vergelijk scenario’s 2 en 3 met scenario’s 1 en 4). In de Soelekerke put neemt het maximale dichtheidsverschil licht toe, terwijl in de Vrouwenpolder put een grotere toename berekend wordt.

In het oostelijk deel van het Veerse Meer neemt de mate van stratificatie af met name doordat het zoutgehalte van de oppervlakte laag aanzienlijk stijgt. Aangezien water uit de Oosterschelde na inlaten als eerste de Wolphaartsdijk put instroomt, zal het water in deze put in zoutgehalte nauwelijks afwijken van het Oosterschelde water. Deze situatie zal niet veranderen door de toepassing van het doorlaatmiddel. Doordat echter de oppervlakte laag sterk zal verzouten, neemt de mate van stratificatie toch af.

In het westelijk deel van het Veerse Meer (Vrouwenpolder put) neemt de mate van stratificatie aanzienlijk toe bij toepassing van het doorlaatmiddel. De instroming van zout water is dusdanig toegenomen dat het zoute water ook de westelijke putten van het Veerse Meer bereikt, terwijl dit in de scenario’s zonder doorlaatmiddel niet het geval is. Zonder doorlaatmiddel wordt het instromende zoute water wanneer het langs de bodem wordt getransporteerd, opgemengd voordat het de westelijke putten bereikt. In de Vrouwenpolder put speelt stratificatie door temperatuurverschillen (ook in de huidige situatie) een belangrijke rol.

In het middengedeelte van het Veerse Meer (Soelekerke put) wordt ook een lichte stijging van het dichtheidsverschil berekend. Aangezien het middengedeelte dichter bij de inlaat van Oosterschelde water ligt, wordt het wel beïnvloed door zoutstratificatie in de scenario’s zonder doorlaatmiddel (vooral scenario 1) en is de toename van het dichtheidsverschil in de scenario’s met doorlaatmiddel relatief geringer dan bij de Vrouwenpolder put (: Soelekerke 2,0 \rightarrow 2,5/3,0; Vrouwenpolder 0,5 \rightarrow 3,0/2,0).

Peilbeheer en stratificatie

Het toepassen van een vast peilbeheer (op -0,10 m NAP) heeft een gunstige uitwerking op zowel de mate van stratificatie als op de stratificatie duur (vergelijk scenario 1 met 4 en scenario 2 met 3). Door het inlaten van zout Oosterschelde water ten behoeve van peilverhoging in het voorjaar wordt stratificatie in de hand gewerkt. Aan het eind van de winter wordt de laagste chlorideconcentratie (in het topsegment) bereikt, terwijl juist op dat moment zout water ingelaten wordt. Het zoute water verplaatst zich langs de bodem en vult de putten met zout(er) water. Wanneer het dichtheidsverschil groot genoeg is, hetgeen bevorderd wordt door het relatief minder zoute oppervlakte water, kan een gestratificeerde waterkolom ontstaan.

In het oostelijk deel van het Veerse Meer heeft beheer van een vast peil relatief weinig effect voor stratificatie. De nabijheid van de inlaat van zout water is van groter belang voor de stratificatie dan handhaven van een vast peil.
Het toepassen van een vast peilbeheer heeft met name een gunstige effect op het middengedeelte van het meer. Uit Figuur 4.2 blijkt dat stratificatie geïnduceerd wordt door het verhogen van het peil.
Het inlaten van een grote hoeveelheid zout water dat zich langs de bodem in westelijke richting verplaatst, heeft tot gevolg dat in een korte periode een dichtheidsverschil tussen oppervlakte en bodem laag gecreëerd wordt. Vervolgens blijft de waterkolom gedurende de gehele zomerperiode gestratificeerd.

In het westelijk deel van het Veerse Meer is peilopzet niet van invloed op de ontwikkeling van stratificatie als geen doorlaatmiddel aanwezig is (scenario 1 en 4). Indien er wel een doorlaatmiddel aanwezig is, is peilopzet wel van belang voor stratificatie (vergelijk scenario 2 en 3 in tabel 5.1). De extra hoeveelheid zout water die ingelaten wordt ten behoeve van peilverhoging alsmede het verhoogde uitwisselingsdebiet, hebben tot gevolg dat het zoute water langs de bodem het westelijk deel van het Veerse Meer kan bereiken met als resultaat een toename van het dichtheidsverschil tussen oppervlakte en bodem water.

*Peilbeheer, het doorlaatmiddel en stratificatie*

Het gecombineerde effect van het doorlaatmiddel aan de ene kant en peilbeheer aan de andere kant is ambivalent. Het handhaven van een vast peil op -0,10 m NAP heeft zonder meer een gunstig effect op de (ontwikkeling van) stratificatie. Door de extra inlaat van een groot volume zout Oosterschelde water te voorkomen wordt tevens het omnatuurlijk induceren van een gestratificeerde waterkolom voorkomen. Het toepassen van het doorlaatmiddel heeft tot gevolg dat in het oostelijk deel de stratificatie afneemt, maar dat in het middengedeelte en het westelijk gedeelte de stratificatie toeneemt. Ook in deze situatie heeft een vast peilbeheer een positief effect op de mate van en duur van de stratificatie. Het scenario zonder doorlaatmiddel en met vast peilbeheer levert wellicht het beste resultaat voor het middengedeelte en het oostelijk gedeelte van het meer, maar komt niet overeen met het streven naar een zoutwater-systeem, aangezien het meer in deze situatie sterk verzoet doordat te weinig zout water ingelaten wordt.

### 5.2 Invloed op primaire productie en nutriënten

*Nutriënten*

Oosterschelde water bevat minder nutriënten dan zoet water dat vanuit de polders naar het Veerse Meer uitgeslagen wordt. Dit is met name het geval voor fosfaat en silicium (zie Figuur 4.8 en 4.9). Het effect is minder duidelijk voor nitraat en afwezig voor ammonium (respectievelijk Figuur 4.7 en 4.6).

*Primaire productie en limitatie*

Primaire productie wordt ruwweg bepaald door twee aspecten:

- de beschikbaarheid van licht; en
- de beschikbaarheid van nutriënten.

De beschikbaarheid van licht wordt bepaald door de instraling aan de ene kant en extincie van licht aan de andere kant. Instraling als onderscheidende factor in de modellsimulaties kan buiten beschouwing gelaten worden, aangezien in alle scenario's dezelfde instraling gehanteerd is. De beschikbaarheid van licht wordt derhalve uitsluitend bepaald door extincie. Aan de extincie van licht dragen bij zowel opgeloste stoffen (met name humus)
als particuliere stoffen (anorganisch zwevend stof, levend en dood organisch materiaal).
De hoeveelheid anorganisch zwevend stof is in het model constant gesteld op 4 mg/l en kan derhalve eveneens buiten beschouwing gelaten worden.

Het lichtklimaat verbetert door het toepassen van het doorlaatmiddel. Figuur 5.1 waarin de totale extinctie is uitgezet, illustreert dit. Humus blijkt (in het model) voor een belangrijk deel verantwoordelijk voor de uitdoving van licht en aangezien zoet water meer humus bevat dan zout water, zal de extinctie van licht afnemen naarmate het water zouter wordt. De saliniteitsafhankelijke extinctie is overgenomen uit de GEM Noordzee modellering. Het is de vraag of de saliniteitsafhankelijke extinctie in werkelijkheid zo belangrijk is als nu uit de modelresultaten naar voren komt.

De toename van de extinctie in het voorjaar wordt veroorzaakt door algenbloeï, waardoor dood en levend organisch materiaal een grote(re) bijdrage gaan leveren aan de totale extinctie. Uit Figuur 5.1 is af te leiden dat de groeisnelheid (uitgedrukt in gC/m²/d) van fyttoplankton en Ulva in de ‘zoetere’ scenario’s 1 en 4 meer door licht beperkt wordt, dan in de ‘zouter’ scenario’s 2 en 3.

![Figuur 5.1 Totale extinctie in het top segment](image)

Wanneer de concentratie van een van de nutriënten (ammonium, nitraat, fosfaat en silicium) beneden een bepaalde waarde komt, wordt de groei van algen en Ulva gelimiteerd door een tekort aan nutriënten. Hoewel het Oosterschelde water minder nutriënten bevat en verzouting van het meer derhalve inhoudt dat minder nutriënten beschikbaar zijn, hoeft dit niet gelijk een reductie in biomassa in te houden. Immers indien de nutriëntconcentraties boven de limiterende waarde blijven, zal geen limitatie optreden.

Het toepassen van het doorlaatmiddel en met name de resulterende verzouting van het Veerse Meer heeft een tweeledige invloed op de primaire productie. Aan de ene kant kan
primaire productie bevorderd worden doordat het lichtklimaat verbetert. Aan de andere kant kan primaire productie afgeremd worden doordat minder nutriënten beschikbaar zijn. Tabel 5.2 geeft samenvattend weer wanneer nutriënt limitatie optreedt. De tabel is afgeleid uit Figuur 4.6 tot en met 4.9.

**Tabel 5.2 Globale periode van nutriënt limitatie in het 2e simulatiejaar**

<table>
<thead>
<tr>
<th>scenario 1</th>
<th>stikstof</th>
<th>fosfaat</th>
<th>silicium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>niet</td>
<td>niet</td>
<td>• eind maart</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• juli, augustus</td>
</tr>
<tr>
<td>scenario 2</td>
<td>• april, mei</td>
<td>• eind maart - mei</td>
<td>• halverwege maart</td>
</tr>
<tr>
<td></td>
<td>• augustus</td>
<td></td>
<td>• eind juni - oktober</td>
</tr>
<tr>
<td>scenario 3</td>
<td>• mei</td>
<td>• eind maart - mei</td>
<td>• halverwege maart</td>
</tr>
<tr>
<td></td>
<td>• augustus</td>
<td></td>
<td>• eind juni - oktober</td>
</tr>
<tr>
<td>scenario 4</td>
<td>niet</td>
<td>niet</td>
<td>• begin april</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• juli, augustus</td>
</tr>
</tbody>
</table>

Uit tabel 5.2 blijkt dat in de scenario’s zonder doorlaatmiddel (1 en 4) nauwelijks nutriënt limitatie optreedt. Alleen silicium limitatie treedt op rond de voorjaarspiek eind maart en begin april en van tijd tot tijd gedurende de maanden juli en augustus. Noch stikstof limitatie noch fosfaat limitatie wordt berekend. De mindere beschikbaarheid aan nutriënten resulteert in scenario’s 2 en 3 (met doorlaatmidden) wel in limiterende omstandigheden. Zo wordt de voorjaarspiek eind maart door fosfaat gelimiteerd, terwijl in de periode daarna van april tot juni zowel fosfaat als stikstof limiterend zijn. In de zomeraanden (juli tot en met september) is silicium limiterend. Peilbeheer heeft weinig effect voor de limitatie, aangezien de verschillen tussen scenario 1 en 4 en tussen scenario 2 en 3 (respectievelijk met en zonder peilvariatie) beperkt zijn.

Als noch licht noch nutriënten limiterend zijn, wordt de concentratie van fytoplankton en Ulva bepaald door de (balans van) groeisnelheid en mortaliteit. Voor fytoplankton speelt ook het uitzakken naar diepere waterlagen en graas door mosselen en zoöplankton een rol. De hierboven beschreven discussie richt zich op het top segment, omdat daar in ieder geval voldoende licht aanwezig kan zijn voor groei. Als in het top segment geen licht limitatie optreedt, kan ook in de onderliggende waterlagen nog groei optreden afhankelijk van de doordringsdiepte van het licht.

Het verloop van de chlorofyl concentratie (Figuur 4.10) en het verloop van de Ulva biomass (Figuur 4.11) is goed te verklaren aan de hand van de limiterende factoren. In de winter zijn onder andere door mineralisatie en door aanvoer vanuit het polderwater voldoende nutriënten aanwezig (zie Figuren 4.6 tot en met 4.9). Door het toenemen van de instraling (langere dagen, krachtigere zon) wordt licht steeds minder limiterend en kan voorjaarsbloei optreden. Het toegenomen zoutgehalte in scenario 2 en 3 leidt ertoe dat voor Ulva licht limitatie eerder opgeheven wordt en Ulva reeds begin februari begint te groeien, tegenover begin mei in scenario’s 1 en 4. De toename van Ulva (en fytoplankton) resulteert in een afname van nutriënten en ongeveer eind maart wordt de toename van Ulva beperkt door fosfaat limitatie en even later eveneens door stikstof limitatie.
De fosfaat en stikstof limitatie wordt veroorzaakt door de algenbloeï eind maart (alle scenario's). Wanneer na de algenbloeï weer meer nutriënten beschikbaar komen, begint Ulva opnieuw te groeien. De grotere beschikbaarheid aan nutriënten in de zoete scenario's 1 en 4 (zonder doorlaatmiddel) vertaalt zich in een eerdere toename van de Ulva biomassa na de voorjaarspiek dan in de zoute scenario's (2 en 3).

Het betere lichtklimaat in scenario 2 en 3 (met doorlaatmiddel) vertaalt zich in een hogere chlorofylconcentratie en een hogere biomassa van Ulva dan in scenario 1 en 4 (zonder doorlaatmiddel). In scenario 2 en 3 wordt de groei van algen uiteindelijk nutriënt gelimiteerd (silicium), terwijl scenario 1 en 4 uitsluitend licht gelimiteerd blijven. In de scenario's 2 en 3 zijn (ondanks uitwisseling met de Oosterschelde) nog voldoende nutriënten aanwezig, zodat nutriëntlimitatie pas bereikt wordt bij een hoger fytoplankton en Ulva niveau dan bij de licht gelimiteerde situatie in scenario's 1 en 4 zonder doorlaatmiddel.

Uit Figuur 4.10 en 4.11 is geen effect van het peilbeheer op de chlorofylconcentratie of de Ulva biomassa af te leiden. Indirect is de grotere toename van Ulva in scenario 3 in maart ten opzichte van scenario 2 wel toe te schrijven aan het peilbeheer. Scenario 2 heeft een verlaagd winterpeil van -0,70 m NAP en daardoor een verlaagd uitwisselingsdebit. Scenario 2 is aan het eind van de winter meer verzet dan scenario 3 en heeft daardoor een hoger extinctie, waardoor de groei van Ulva meer geremd wordt. Aangezien de wintermaanden van het modeljaar 1995 bovengemiddeld nat waren en verzoeting in de winter derhalve ook bovengemiddeld doorwerkt, mag verwacht worden dat het verschil in de modelberekeningen tussen scenario 2 en 3 in maart eveneens bovengemiddeld is versterkt.

5.3 Invloed op zuurstof

De zuurstofconcentratie in de diepere waterlagen hangt sterk samen met de aanwezigheid van een gestratificeerde waterkolom. Beneden de spronglaag in een gestratificeerde waterkolom kan zuurstofloosheid ontstaan wanneer de aanvoer van zuurstof beperkt wordt en wanneer door afbraak van organisch materiaal zuurstof verbruikt wordt. Door de bloei van algen in het voorjaar en de sterke groei van Ulva in de zomer wordt bovendien organisch materiaal gevormd dat bij afsterven door de spronglaag kan zakken en kan zorgen voor een verdere afname van de zuurstofconcentratie.

Tabel 5.3 geeft de periode van zuurstofloosheid aan in de modelberekeningen voor de laag halverwege de waterkolom en voor de bodem laag. De getallen in de tabel zijn gebaseerd op Figuur 4.12 tot en met 4.14.
<table>
<thead>
<tr>
<th>Halverwege waterkolom</th>
<th>Periode van zuurstofloosheid (dagen)</th>
<th>Vrouwenpolder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wolphaartsdijk</td>
<td>Soelekerke</td>
</tr>
<tr>
<td>scenario 1</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>scenario 2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>scenario 3</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>scenario 4</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>Bodem laag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scenario 1</td>
<td>190</td>
<td>180</td>
</tr>
<tr>
<td>scenario 2</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>scenario 3</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>scenario 4</td>
<td>220</td>
<td>35</td>
</tr>
</tbody>
</table>

Tabel 5.3 Periode van zuurstofloosheid in een drietal putten voor het simulatiejaar 1996

Het doorlaatmiddel en zuurstof

Het toepassen van het doorlaatmiddel heeft tot gevolg dat behalve een toevoer van zout water, ook zuurstofrijk water van de Oosterschelde wordt ingelaten. Dit resulteert in een sterke afname van de zuurstofloze periode zowel halverwege de waterkolom en in de bodem laag (vergelijk scenario’s 1 en 4 met scenario’s 2 en 3).

Figuur 4.14 toont dat halverwege de Vrouwenpolder put geen zuurstofloosheid optreedt. Het doorlaatmiddel heeft echter wel tot effect dat de stratificatie in de bodem laag van de Vrouwenpolder put toeneemt (zie tabel 5.1) en dat de zuurstofconcentratie daar lager wordt dan in de scenario’s zonder doorlaatmiddel (Figuur 4.14). Hoewel in de berekeningen dus geen zuurstofloosheid wordt gemoduleerd, geeft de figuur wel aan dat de kans op zuurstofloze condities toeneemt.

Het is belangrijk om op te merken dat de aanwezigheid van stratificatie niet direct zuurstofloze condities tot gevolg heeft. De aanvoer van extra zuurstof met het Oosterschelde water werkt uitputting van zuurstof beneden de spronglaag tegen. De putten die het meest beïnvloed worden door de uitwisseling met de Oosterschelde water, hebben uiteraard het meest baat bij de toevoer van zuurstof. Een zo gering mogelijke stratificatie (dichtheidsverschil) is overigens positief, aangezien de waterkolom bij bepaalde meteorologische condities (met name windsnelheid) eerder opmengt en stratificatie derhalve eerder opgeheven kan worden.

Peilbeheer en zuurstof

Het handhelden van het winterpeil op -0,10 m NAP heeft een gunstig effect op de lengte van de zuurstofloze periode. Met name in het middengedeelte van het Veerse Meer (Soelekerke put) is het effect waarneembaar. De vergelijking tussen scenario 1 en 4 voor de bodem laag van de Soelekerke put toont het duidelijkst het effect van peilopzet.
In scenario 1 wordt in het voorjaar Oosterschelde water ingelaten voor peilverhoging waardoor vrijwel direct een gestratiﬁceerde waterkolom ontstaat hetgeen binnen korte tijd resulteert in zuurstofloosheid. In scenario 4 vindt geen peiloppzet plaats en wordt de waterkolom later in het jaar gestratiﬁceerd. De periode van zuurstofloosheid is dan ook aanzienlijk korter.

5.4 Vergelijking met VEERWAQ

Al in 1990 is een vergelijkbare studie uitgevoerd naar het effect van diverse beheersvarianten op de waterkwaliteit van het Veerse Meer (VEERWAQ, WL | DELFT HYDRAULICS, 1990). De toenmalige modellering was beperkt tot een negental segmenten verdeeld over drie punten met ieder drie lagen.

In VEERWAQ is onder andere geconcludeerd dat het risico bestaat van een toename van de chlorofylconcentratie bij een gewijzigd beheer (zowel peilbeheer als diverse uitwisselingsvarianten). Daarnaast wordt geconcludeerd dat uitwisseling positief is voor zuurstof, maar dat uitwisseling voor eutrofiëring alleen positief is in combinatie met een (aanzienlijke) reductie van de zoetwaterlast en de nutriëntenbelasting.

Deze conclusies sluiten grotendeels aan bij de resultaten van de huidige GEM Veerse Meer berekeningen. Binnen VEERWAQ is een breder scale aan maatregelen vergeleken, zodat een volledige vergelijking niet mogelijk is.

Ten opzichte van het basisscenario wordt in VEERWAQ een maximale toename in chlorofyl berekend van circa 25% in een scenario waarbij sprake is van een beperkte uitwisseling met de Oosterschelde (5-8 m³/s). Hierbij moet opgemerkt worden dat in VEERWAQ geken is naar de maximum chlorofylconcentratie en niet wordt ingegaan op het verloop van de concentratie door het jaar. Uit ﬁguur 4.10 blijkt dat in de huidige modelberekeningen met het doorlaatmiddel de maximum chlorofylconcentratie daalt ten opzichte van de basisberekening zonder doorlaatmiddel. Echter na de voorjaarspeik wordt een verhoging van de chlorofylconcentratie en de Ulva biomassa berekend, hetgeen in VEERWAQ niet onderzocht is.

In VEERWAQ is niet gegeken naar de productie van Ulva, waardoor geen vergelijk met GEM mogelijk is. In het GEM Veerse Meer model wordt de groei van Ulva positief beïnvloed door het verbeteren van het lichtklimaat als gevolg van een verzouting van het meer. Aangezien Ulva alleen ondiep voorkomt waar het lichtklimaat het meest zal verbeteren, wordt in het model een verdubbeling van de biomassa Ulva gevonden. Omdat in VEERWAQ geen saliniteitsafhankelijke extinctie is meegenomen, wordt de groei van Ulva en fytoplankton alleen door nutriënten gestuurd. Het gemodelleerde zoutefect in de huidige modellering mag derhalve beschouwd worden als een nuttige uitbreiding gezien het belangrijke effect.

In VEERWAQ wordt de grootste verbetering van de waterkwaliteit verkregen, wanneer uitwisseling gecombineerd wordt met een reductie van de nutriëntenbelasting van 75%. Hoewel dit in GEM Veerse Meer niet bekeken is, mag wel dezelfde conclusie getrokken
worden. Immers in de situatie met het doorlaatmiddel is de groei van algen en Ulva nutriënt gelimiteerd. Een verlaging van de nutriëntenbelasting zal derhalve resulteren in een lagere primaire productie van zowel algen als Ulva.

Opvallend is de conclusie in VEERWAQ dat het handhaven van een vast peil een negatieve invloed heeft op de waterkwaliteit. In de huidige modellering is naar voren gekomen dat door het opzetten van het peil in het voorjaar stratificatie versterkt wordt met als gevolg dat zuurstofloosheid op grotere schaal voorkomt. In VEERWAQ wordt het inlaten van Oosterschelde water voor peilopzet als gunstig omschreven, aangezien het zou resulteren in een verdunning van het nutriëntrijke water in het Veerse Meer en daardoor minder nutriënten voor primaire productie beschikbaar zouden zijn (per volume-eenheid).

Aangezien het zoute Oosterschelde water eerder het diepe water vervangt (het stroomt immers in de putten in) en derhalve nauwelijks zorgt voor een verversing van het ondiepe water, wordt dit in de huidige modelopzet niet gevonden. Bovendien is de instroming van nutriënten met het polderwater in de winter in combinatie met de mineralisatie van organisch materiaal ruim voldoende om het water in het Veerse Meer van nutriënten te voorzien. Hierbij moet opgemerkt worden dat 1995 een natte winter had en daardoor mogelijk een hogere nutriëntenbelasting vanuit het polderwater heeft gehad dan in een gemiddeld jaar. Het opzetten van het peil zorgt echter niet voor een beperking van de algengroei en zorgt dan ook niet voor lagere chlorofylconcentraties.

5.5 **Beperkingen van het huidige modelinstrumentarium**

Bij de opzet en kalibratie van het model is een aantal beperkingen geïdentificeerd, onder andere:
- de waterbalans;
- de modelschematisatie met het ontbreken van horizontale gradiënten;
- de modelschematisatie met het ontbreken van voldoende verticale schematisatie met name in het ondiepe gedeelte;
- de bodem in de modelschematisatie (sedimentatie vindt alleen plaats in het onderste segment en in het ondiepe Ulva segment).

In de huidige toepassing van het model is de waterbalans opnieuw bekeken en aangepast. Daarnaast is in de huidige toepassing het gemeten peil zoals deze werd gebruikt bij de opzet en kalibratie fase, losgelaten. Door gebruik te maken van een geschematiseerde waterstand (uitsluitend -0,10 m NAP of -0,70 m NAP) is de vergelijkbaarheid tussen de verschillende scenario’s bevorderd.

Het ontbreken van een horizontale modelschematisatie leidt vermoedelijk tot het overschatten van de stratificatie. Zoet water dat door de poldergemalen uitgeslagen wordt, wordt in het model instantaan verdeeld over het gehele oppervlak van het Veerse Meer. Het is denkbaar dat het oppervlaktewater ter hoogte van de Zandkreeksluis een hogere chlorideconcentratie heeft dan het oppervlaktewater ter hoogte van de Veersedam. In de huidige situatie geven metingen overigens geen (groot) verschil in chlorideconcentratie weer, maar in de situatie met doorlaatmidden zou het verschil groter kunnen zijn. Voor de
Wolphaartsdijk put zou dit resulteren in een afname van de stratificatie, voor de Vrouwenpolder put zou dit resulteren in een toename van de stratificatie. Door het ontbreken van een voldoende gedetailleerde verticale schematisatie in de ondiepe delen van het meer, is het model niet in staat het effect van het peilbeheer adequaat te beschrijven. De verticale schematisatie is geschikt om het ontstaan van stratificatie in de putten te beschrijven. Aangezien het top segment een dikte van 4 meter heeft, ontbreekt ieder detail in diepteverdeling van 0 tot 4 meter. Met name voor de groei van Ulva is deze diepteverdeling (en het daaraan gebonden bodemoppervlak) van groot belang. Daarnaast ontheemt het ontbreken van een gedetailleerde ondiepe verticale schematisatie de mogelijkheid om het droogvallen en inunderen van platen te simuleren. Het effect van droogvallen en inunderen op de waterkwaliteit van het Veerse Meer aan de ene kant en op het ontstaan en afsterven van benthisch leven op de platen aan de andere kant, is in de huidige modelopzet niet duidelijk en mogelijk van groot belang.

In het GEM Veerse Meer model bevindt de bodem zich alleen onder het onderste segment van een put en in het ondiepe Ulva segment (deze wordt in deze discussie verder buiten beschouwing gelaten). Dit heeft tot gevolg dat organisch materiaal door sedimentatie naar het onderste segment getransporteerd wordt en aldaar accumuleert. Hoewel de hoeveelheid organisch materiaal per put in principe goed is, is de verdeling van het organisch materiaal over de diepte verkeerd, aangezien al het materiaal op het diepste punt verzameld wordt. Dit heeft als gevolg dat de zuurstofconcentratie in het onderste segment (in geval van een gestratificeerde waterkolom) onderschat wordt. Het organisch materiaal wordt namelijk in de huidige modelopzet altijd onder een eventuele spronglaag afgebroken, terwijl in werkelijkheid een deel van het organisch materiaal zal sedimenteren boven de spronglaag en derhalve niet bijdraagt aan het uitputten van zuurstof in de putten. Daarnaast zal organisch materiaal dat sedimenteert boven de spronglaag, door mineralisatie nutriënten kunnen leveren aan de oppervlakte laag, waardoor nutriënt limitatie minder snel zal optreden.

De genoemde beperkingen geven aan dat de modelresultaten niet zozeer op hun exacte parameterwaarden of exacte concentraties van stoffen beoordeeld dienen te worden. Veeleer dienen de verschillen en trends tussen de scenario’s beoordeeld te worden.
6 Conclusies

Stratificatie
1. Het gebruik van het doorlaatmiddel in de Zandkreekdam waarmee een verhoogde uitwisseling met de Oosterschelde kan worden bewerkstelligd, levert een duidelijke positieve bijdrage het bereiken van een hoog zoutgehalte;
2. De mate van stratificatie (gedefinieerd als het dichtheidsverschil tussen oppervlakte laag en een diepere laag) neemt in het oostelijk deel van het Veerse Meer aanzienlijk af door toepassing van het doorlaatmiddel. In het midden gedeelte en het westelijk deel van het Veerse Meer neemt de mate van stratificatie licht toe door toepassing van het doorlaatmiddel;
3. Het handhaven van het winterpeil op -0,10 m NAP heeft een gunstige invloed op de mate van stratificatie en op de stratificatie duur. De negatieve effecten van het doorlaatmiddel in het westelijk deel van het meer worden door een vast peilbeheer enigszins verzacht;
4. Het peilbeheer in de huidige situatie heeft een negatief effect op de waterkwaliteit, doordat door het inlaten van een grote hoeveelheid zout water in een groot deel van het meer in het voorjaar wordt gestratificeerd;

Nutriënten en primaire productie
5. Het toepassen van het doorlaatmiddel heeft een positief effect op het verlagen van de nutriënten gehalten in het Veerse Meer (dit geldt vooral voor ortho-fosfaat en silicium, en in mindere mate voor totaal stikstof);
6. Door verhoging van het zoutgehalte verbeter het lichtklimaat voor primaire productie in het model, doordat zeewater minder humus bevat dan zoet water. Hoewel deze verbetering ook in werkelijkheid verwacht mag worden, betreft dit een verandering waarvan de gemodelleerde doorwerking op fytoplankton en Ulva als indicatief moet worden beschouwd;
7. In de situatie zonder doorlaatmiddel is primaire productie van zowel fytoplankton als Ulva vrijwel uitsluitend licht gelimiteerd;
8. In de situatie met doorlaatmiddel is primaire productie van fytoplankton en Ulva in de zomerperiode vrijwel uitsluitend nutriënt gelimiteerd;
9. In de modelberekeningen heeft de verbetering van het lichtklimaat meer invloed dan het optreden van nutriënt limitatie, aangezien de concentratie fytoplankton en de hoeveelheid Ulva toeneemt in de scenario's met doorlaatmiddel ten opzichte van de scenario's zonder doorlaatmiddel;
10. Omdat in de situatie met het doorlaatmiddel primaire productie van fytoplankton en Ulva voornamelijk door nutriënten gelimiteerd is, zal reductie van de nutriëntenbelasting een positieve bijdrage leveren aan de waterkwaliteit van het Veerse Meer;
11. Het effect van het droogvallen van een deel van het Veerse Meer als gevolg van peilverlaging op de groei van Ulva is niet in het model meegenomen. Evenmin is de invloed van peilverhoging en de samenhangende ontwikkeling van benthisch leven op
de geïnundeerde gronden meegenomen. Verwacht mag worden dat de ontwikkeling van permanent bentisch leven een positieve invloed heeft op de waterkwaliteit.
12. Uit de modelresultaten kunnen echter geen conclusies getrokken worden omtrent de invloed van het droogvallen en inunderen van platen op de waterkwaliteit;

_Zuurstof_
12. Het toepassen van het doorlaatmiddel heeft een gunstige invloed op de zuurstofconcentratie, aangezien zuurstofrijk water vanuit de Oosterschelde ingelaten wordt;
13. Door de toegenomen stratificatie in het westelijk deel van het meer bij toepassing van het doorlaatmiddel, neemt de kans op het ontstaan van zuurstofloze condities in dit gedeelte toe;
14. Het handhaven van het peil op -0,10 m NAP heeft een gunstige (zij het relatief beperkte) invloed op de zuurstofconcentratie in de diepe waterlagen van het Veerse Meer;

_Algemeen_
15. Toepassing van het GEM Veerse Meer model heeft geleid tot inzicht in het effect van aanpassingen van het hydrologisch beheer van het Veerse Meer op de waterkwaliteit;
16. De toepasbaarheid van het model wordt nadelig beïnvloed door de in de eerdere opzet en kalibratie fase geïdentificeerde beperkingen. In de huidige toepassing is een van beperkingen opnieuw bekeken (de waterbalans) en aangepast. De overige beperkingen zijn niet aangepast;
17. Gezien de modelbeperkingen (schematisatie, modellering van de bodemlaag) dient nadruk gelegd te worden op de verschillen tussen en trends in de scenario’s en niet zozeer op de exacte concentratie van een stof.
7 Aanbevelingen

Met betrekking tot de investeringen voor het doorlaatmiddel, de aanpassingswerken voor polderafwateringen en eventuele overige maatregelen wordt aanbevolen:

- De aanleg van het doorlaatmiddel verder voor te bereiden en tevens nader te bestuderen welke mogelijkheden en bijbehorende investeringen nodig zijn om de polderafwateringen aan te passen aan een toekomstig vast waterpeil. Hierbij dient tevens aandacht te worden gegeven aan de mogelijkheden voor afleiding van nutriëntrijk polderwater naar bijvoorbeeld de Westerschelde;
- Een nadere evaluatie uit te voeren naar de risico’s van stratificatie in het westelijk deel van het Veerse Meer en de mogelijkheden om dit deel van het meer gericht te verbeteren door bijvoorbeeld in aanvulling op het doorlaatmiddel in de Zandkreek vanuit het westelijke deel een extra doorspoeling te realiseren via bijvoorbeeld de aanleg van een Zoute Kreek langs de N57 (Veersedam) naar Jacoba haven.

Ten aanzien van toekomstige modeltoepassingen dient het volgende worden te worden opgemerkt:

- Bij het eind van het project is gebleken dat er onduidelijkheid is over de definitie en grootte van het uitwisselingsdebiet van het doorlaatmiddel. Mogelijk is de ontwerpcapaciteit van het doorlaatmidden 100 m³/s in plaats van het veronderstelde debiet van 50 m³/s. Het is van belang voor een eventuele vervolgstudie hierover duidelijkheid te krijgen;
- De beschreven simulaties zijn gebaseerd op meteorologische en hydrologische condities van 1995. Aangezien dit jaar zowel in het voorjaar (vrij nat) als in de zomer (vrij warm) niet representatief is voor gemiddelde condities, verdient het aanbeveling om als voor basis voor verdere voorbereiding van het toekomstig beheer de simulaties te herhalen voor een langere historische tijdreeks (bijvoorbeeld 5 jaar);
- Bij de opzet en kalibratie van het model is geconstateerd dat alvorens het model wordt toegepast voor evaluatie van alternatieve beheersmaatregelen, een aantal modelaanpassingen (onder andere de schematisatie, waterbalans, zoutbelasting) noodzakelijk is. Het is helaas niet mogelijk geweest om deze aanpassingen te realiseren alvorens de hier genoemde modelsimulaties uit te voeren. Aanbevolen wordt om deze aanpassingen op korte termijn aan te brengen zodat het model ook in de toekomst kan worden ingezet voor bestudering van de meest effectieve investeringen die het beheer van het Veerse Meer verder kunnen optimaliseren;
- Bij de huidige toepassing is gebleken dat het lichtklimaat van groot belang is voor de ontwikkeling van fytoplankton en Ulva. De modelresultaten laten een aanzienlijke toename van beide zien, wanneer het meer zou verzouten door uitwisseling met de Oosterschelde. Gezien het grote belang van het lichtklimaat wordt aanbevolen dit in een vervolgstudie nader te bekijken.
Geraadpleegde literatuur

WL | Delft Hydraulics, Ontwikkeling en toepassing VEERWAQ ten behoeve van beleidsanalyse Veerse Meer, T430, maart 1990.


WL | delft hydraulics

Rotterdamseweg 185
postbus 177
2600 MH Delft
telefoon 015 285 85 85
telefax 015 285 85 82
e-mail info@wldeift.nl
internet www.wldeift.nl

Rotterdamseweg 185
p.o. box 177
2600 MH Delft
The Netherlands
telephone +31 15 285 85 85
telefax +31 15 285 85 82
e-mail info@wldeift.nl
internet www.wldeift.nl