fastFoam

Max Becker

]
TUDelft

fast-oam

_ ~An aero-servo-elastic
wind turbine simulation method based on CFD

by

Max Becker

for obtaining the degree of Master of Science in Aerospace Engineering
at the Delft University of Technology,
to be defended publicly on Tuesday December 5, 2017 at 2:00 PM.

Student number: 4152042
Date: November 17, 2017
Master Project duration: July 1, 2016 — December 5, 2017
Supervisor: Dr.ir. C. J. Simao Ferreira, TU Delft
Ir. C. F. Baptista, TU Delft
Dr. E. Daniele, Fraunhofer IWES

Wind Energy Research Group, Faculty of Aerospace Engineering, Delft University of Technology
The Master of Science Thesis was carried out externally at the CFD department of Fraunhofer IWES.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

1(';U Delft ~ Fraunhofer

IWES

http://repository.tudelft.nl/

Summary

Aero-servo-elastic wind turbine simulation methods which are based on the highest fidelity aerody-
namic modelling of computational fluid dynamics (CFD) are currently still relatively rare. Although in
the last years some methods were developed, only within one of the most famous wind turbine tools,
namely HAWC2, this approach was utilised. In theory, the replacement of lower fidelity methods such
as the commonly used engineering blade element momentum (BEM) approach by methods with in-
creased complexity such as CFD could offer advantages. In particular, BEM introduces errors due
to inaccurate modelling of its engineering add-ons for the calculation of aerodynamic loads. This oc-
curs especially in complex situations such as the operation in extreme conditions, for instance severe
yawing, or modelling of futuristic turbines including very flexible blades probably with flaps or slats.

To investigate and possibly overcome this issues the BEM in the popular aero-servo-elastic tool
FAST from NREL was substituted in this project by a more sophisticated method based on CFD. For
the CFD method the freely available OpenFOAM package was utilized. It was coupled to FAST via
a partitioned coupling approach, where both codes are kept as an own, utilizing the code coupling
environment MpCCI developed by Fraunhofer SCAI.

Then, simulation cases were set-up in FAST and OpenFOAM for two turbines, the smaller NREL
phase VI and the more modern NREL 5MW turbine. In OpenFOAM this included the time consuming
task of the generation of meshes. The simulation cases were carefully chosen in order to support
the answering of the research question related to the possible improvement and justification of the
implemented CFD based coupled aero-servo-elastic method, hereafter called fastFoam. The main
work of this project addresses the development of this method, which includes the implementation of
a suitable CFD solver. The task of this solver is to calculate the aerodynamic loads similar to BEM in
accordance with the wind turbine state from FAST given by the positions of the blades. In addition,
also the coupling of this solver to FAST is addressed, where changes in the FAST were implemented.

After the implementation of the coupled method via MpCCl the preselected cases were simulated
based on three different methods, the standalone FAST using BEM, a CFD method with OpenFOAM
and finally the developed coupled fastFoam approach also based on CFD. Results for the smaller
NREL phase VI turbine, which could be compared to experimental data, showed excellent results for
all three methods in normal operating conditions. However, in extreme conditions such as large yawing
or pitching the CFD methods showed a better agreement to the experimental data. Especially, in yawing
the utilized Pitt/Peters skewed-wake correction model in FAST was unable to predict the load variations
over the rotor rotation accurately. However, it could also be concluded that for such a turbine with very
stiff blades and no explicit controller a pure CFD method such as OpenFOAM may be sufficient. In
addition, it was found that in the coupled method periodic fluctuations in the power, torque and thrust
were present only within FAST, these were unresolved in this early version.

Finally, results for the NREL 5MW turbine indicated that for these modern turbines the torque and
pitch control is increasingly important and may greatly influence the results. For this turbine with in-
creased blade flexibility the deviations between both CFD methods were increased thus emphasising
the importance of aero-servo-elastic modelling. Finally, in yaw a similar picture such as shown for the
phase VI was present for the load fluctuations, thus indicating that the yaw models in BEM can still
be improved. However, for this turbine no experimental data is available, therefore it cannot be stated
which results show the highest validity.

In conclusion, the developed aero-servo-elastic method based on CFD can be justified especially in
situations where other methods fail to accurately predict the wind turbine behaviour, which was found to
be the case in the extreme yawing or pitching cases. Moreover, there may be more applications which
would need to require further investigation such as the modelling of flaps or slats on 10MW+ turbines
with even more flexible blades, which was not done due to time constrains in this project. However,
it was found that in normal operating conditions methods based on BEM still show excellent results.
Concerning the extremely large computational effort of such a CFD method, BEM may still be the first
choice for these cases. However, for more special cases and in the detailed design stages a method
similar to the implemented one may be wise to conduct due to improved accuracy.

Acknowledgements

This thesis would not have been possible without the support and help of others, who | would like to
express my gratitude.

First of all, | would like to thank my daily supervisor at Fraunhofer IWES Dr. Elia Daniele for the
support through the entire project from the first generated mesh to the final page of this thesis. In
addition, | very much appreciated the support of Bastian Dose, who really pushed me forward with the
fastFoam solver in OpenFOAM. Moreover, | also would like to thank Hamid Rahimi and Cherif Mihoubi
for the help on the meshing, the solvers and schemes in OpenFOAM as well as on all kind of Ubuntu
related problems.

Also | would like to express my gratefulness for the project opportunity to Dr. Bernhard Stoevesandt
from Fraunhofer IWES and Klaus Wolf from collaborating institute Fraunhofer SCAI. A special thanks
goes out to Dr. Jan Kleinert, formerly from SCAI, for the support with the MpCCI coupling environment.
Although we were separated by distance there was a good collaboration and | was especially impressed
that really all of my hundreds of emails with multiple questions were well answered.

Furthermore, | am very thankful for the valuable feedback from my supervisors Dr. ir. Carlos Simao
Ferreira and Ir. Carlos Baptista at TU Delft. Then, | also would like to thank Dr. Scott Schreck from
NREL for providing me the measurement data for the NREL phase VI turbine.

Finally, | wanted to thank all others for the good discussions, especially all the students and em-
ployees at Fraunhofer, who | cannot name here because this would get way to long. Last but for me
very important, | would like to thank my family for the great support during the months of my thesis.

Max Becker
Oldenburg, November 2017

Contents

Summary iii
Acknowledgements '
List of Figures ix
List of Tables xiii
Nomenclature XV
xv

1 Introduction 1
2 Literature Review 3
21 Rotor Aerodynamics L L 3
21.1 Blade Element Momentum Theory 3

21.2 Computational Fluid Dynamics 5

21.3 OtherMethods e 9

2.2 Wind Turbine Elasticity. e 9
2.3 FSI Coupling Methods for Wind Turbine Simulations. 10
24 TOOIS 13
2.4.1 OpenFOAM for Wind Turbine Simulatons. 13

242 NRELFAST. e 14

243 MpCCl Code Coupling Interface. 16

25 Summary 17
2.6 Discussion L 19

3 Wind Turbine Simulation Cases 21
3.1 Turbine Specifications 21
3.1.1 NRELphase VI. e 21

3.1.2 NRELSMW e 22

3.2 Simulations L e 24

4 Available Methods 27
4.1 OpenFoam Simulation Method 27
411 MeshGeneration. e 27

4.1.2 Motionin OpenFOAM e 38

41.3 SimulationSetup e 44

4.2 NREL FAST SimulationMethod 46
4.21 Aerodynamic Model 47

422 StructuralModels. L 48

423 SimulationSetup 49

5 Developed Method 51
5.1 Coupling Approach. e 51
5.1.1 FAST Adapter. e 52

51.2 OpenFOAMAdapter e e 53

5.2 fastFoam Solver e 53
521 MeshMotion 54

522 Load Calculation 58

5.3 Simulation Setup 59

viii Contents

6 Results 63
6.1 NRELphase VI. e 63
6.1.1 OpenFOAM Mesh Convergence. v i v v i it 63

6.1.2 Normal Operating Conditions 65

6.1.3 YawSweep L 72

6.1.4 PitchSlope e 80

6.1.5 PowerCurve e e 86

6.2 NRELBSMW e 87
6.2.1 Normal Operating Conditions 87

6.2.2 Fixed Yaw Error with Activated Controller. 97

6.3 Computation Time e 101

7 Conclusions and Recommendations 105
7.1 Conclusions. e e 105
7.2 Recommendations e 107

A Meshing in OpenFOAM 109
B Solid Body Mesh Motion 13
C Turbine Coordinate Systems 117
D MpCCI Workflow 119
E The fastFoam Solver 121
F MpCCI GUI 133

Bibliography 141

List of Figures

2.1 Stream-tube for a horizontal axis wind turbine.
2.2 Overview of OpenFOAM [41]. o . o o
2.3 Overview of FAST [23]. e
2.4 Overview of the MpCCI coupling possibilities.

3.1 The NREL phase VI turbine in the NASA Ames wind tunnel [30].
3.2 The NREL 5MW turbine rotorgeometry.

4.1 Example of a block generated with blockMesh [41].
4.2 The process used within BladeBlockMesher generating a blade mesh from two dimen-

sional O-meshes [34]. L
4.3 The generated pitch mesh with the blade initscentre.
44 Theroundedtipblademesh.
4.5 Dimensions and structure of the NREL phase Vimesh.
4.6 One half of the rotor disc without the pitchmesh.
4.7 Slice view oftheblade at0.67R.
4.8 The mesh at the leading-edge at 0.67R.
4.9 The mesh atthe trailing-edge at 0.67R.
4.10 A vertical cut through the entire NREL phase Vimesh.
4.11 Dimensions and structure of the NREL 5MW mesh.
4.12 Front-view of the rotor of the NREL5MW mesh.
4.13 A vertical cut through the entire NREL 5SMW mesh.
4.14 The mesh non-orthongality criterion.
4.15 The skewness betweentwocells. L.
4.16 The NREL phase VI turbine mesh undergoing yaw, torque and pitch dynamic mesh mo-

tions (view fromabove).
4.17 Overview of the FAST modularization framework [23].

5.1 Schematic representation of the implemented coupling between FAST and OpenFOAM
using MpCCIL. e
5.2 Flow diagram of the implemented MpCCIl module within the FAST Source folder and its
tasksateachtimestep.
5.3 Flow diagram of the developed fastFoam solver and its tasks in OpenFOAM at each time
stepofthe simulation.
5.4 The mesh movement approach accounting for elastic structures based on the implemen-
tationby Dose etal. [10].
5.5 The implemented one dimensional beam for the NREL phase VI blade for two different
states. e e
5.6 The NREL 5MW beam mesh states from straight blade (blue) to initial state (red) via the
rigid state (green) to the final elastic blade state (grey).
5.7 Mesh matching of fluid mesh (blade surface faces) and structural mesh (beam nodes)
with Nearest-Neighbor method. L.
5.8 The choosen coupling scheme accordingto MpCCI.
5.9 The coupling configuration as a function of time.

6.1 General turbine parameters according to simulations and experiment for the mesh con-
vergence studyat7 m/swindspeed. Lo oL

6.2 General turbine parameters according to simulations and experiment for case 1.

6.3 Controller parameters according to simulations and experiment forcase 1.

ix

54

List of Figures

6.4 Blade 1 tip displacements according to simulations forcase 1. 67
6.5 Pressure distributions at different blade sections for case 1 (0 deg azimuth). 68
6.6 Force and moment coefficient azimuthal variations at different blade sections for case 1
(Odegazimuth). e 69
6.7 Force and moment distribution at different blade sections for case 1 (0 deg azimuth). . . 70
6.8 Force and moment variations at inner blade section (0.47 r/R, left) and outer blade
section (0.95 r/R, right)forcase 1. 72
6.9 General turbine parameters according to simulations and experiment forcase 2. 74
6.10 Controller parameters according to simulations and experiment forcase 2. 75
6.11 Blade 1 tip displacements according to simulations forcase2. 75

6.12 Force distribution at different blade sections and yaw angles for case 2 (0 deg azimuth). 76
6.13 Moment distribution at different blade sections and yaw angles for case 2 (0 deg azimuth). 77
6.14 Force azimuthal variations with approximately 10, 20 and 30 deg yaw angle at outer

blade section (0.95 r/R)forcase 2. 78
6.15 Moment azimuthal variations with approximately 10, 20 and 30 deg yaw angle at outer

blade section (0.95r/R)forcase 2.o 79
6.16 Force and moment distribution at different blade sections at approximately 30 deg yaw

and 270 deg azimuthforcase 2. e 80
6.17 General turbine parameters according to simulations and experiment forcase 3. 81
6.18 Controller parameters according to simulations and experiment forcase 3. 82
6.19 Blade 1 tip displacements according to simulations forcase 3. 82

6.20 Force distribution at different blade sections and pitch angles for case 3 (0 deg azimuth). 83
6.21 Moment distribution at different blade sections and yaw angles for case 3 (0 deg azimuth). 84
6.22 Force azimuthal variations with approximately 6.9, 8.9 and 10.7 deg pitch angle at outer

blade section (0.95r/R)forcase 3. 85
6.23 Moment azimuthal variations with approximately 6.9, 8.9 and 10.7 deg pitch angle at

outer blade section (0.95r/R)forcase 3. oL 86
6.24 General turbine parameters for different wind speeds obtained through converged sim-

ulations at steady wind conditions (case 4). 87
6.25 General turbine parameters according to simulations for case 5 with activated controller. 88
6.26 Controller parameters according to simulations for case 5 with activated controller. . . . 89

6.27 Blade 2 tip displacements according to simulations for case 5 with activated controller. . 90
6.28 Pressure distributions at different blade sections for case 5 with activated controller (0

degazimuth). L 90
6.29 Force and moment distribution at different blade sections for case 5 with activated con-

troller (0 deg azimuth). 91
6.30 General turbine parameters according to simulations for case 5 with deactivated controller. 93
6.31 Controller parameters according to simulations for case 5 with deactivated controller. . . 93

6.32 Blade 2 tip displacements according to simulations for case 5 with deactivated controller. 94
6.33 Pressure distributions at different blade sections for case 5 with deactivated controller (0

degazimuth). 95
6.34 Force distribution at different blade sections for case 5 with deactivated controller (0 deg
azimuth). e e e 96
6.35 Force azimuthal variations at outer blade section (0.892 r/R) for case 5 with deactivated
controller. L L 96
6.36 Displacements at different blade sections for case 5 with deactivated controller (0 deg
azimuth). . . . e e e 97
6.37 Azimuthal variation of displacements at blade tip for case 5 with deactivated controller. . 97
6.38 General turbine parameters according to simulations forcase 6. 98
6.39 Controller parameters according to simulations forcase 6. 99
6.40 Blade 2 tip displacements according to simulations forcase 6. 99
6.41 Force distribution at different blade sections for case 6 (0 deg azimuth). 100
6.42 Force azimuthal variations at outer blade section (0.89 r/R) forcase6. 100
6.43 Displacements at different blade sections forcase6. 101

6.44 Azimuthal variation of displacements at blade tip forcase®6. 101

List of Figures Xi

A.1 The snappyHexMesh meshing process (Figures taken from [41], Figure (a) modified) . 111

B.1 The yaw, azimuth and pitch angles corresponding to the mesh rotations in Figure 4.16. 116

C.1 The global coordinate system (black) and the blade coordinate system (red). 117
D.1 Overview of the MpCClworkflow. 119
F.1 The models stepinthe MpCCIGUI. 135
F.2 The coupling step for the mesh variables inthe MpCCIGUL. 136
F.3 The monitors step inthe MpCCIGUIL. 137

F.4 The edit step in the MpCCI GUI.
F.5 Thegostepinthe MpCCIGUI. 139

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8

5.1

6.1
6.2
6.3

List of Tables

NREL phase VI turbine specifications [30]. 22
NREL phase VI blade chord and twist distributions [30]. 22
NREL 5MW turbine specifications [22]. 23
NREL 5MW blade chord and twist distributions [22]. 24
Categories of test cases to be considered for comparison. 24
Simulation matrix for the consideredcases. 25
Different generated pitch and final meshes for the NREL phase VI turbine. 31
Mesh quality for the differentmeshes. 38
Mesh motions for the different cases to be simulated. 42
Type of boundary patches. 44
Boundary conditions on boundary patches for the k — w SST turbulence model. 44
Initial conditions for the different cases to be simulated. 45
Additional initial conditions for FAST simulations. 49
Settings for the simulations with FAST. L. 50
Different times used in the fastFoam simulations. 61
Results for the mesh convergence study. 65
Computation time of the cases simulated by different methods. 102
Breakdown of computational time for one iteration for the CFD methods at converged

state. 103

xiii

Abbreviations

AEP
ALE
AMI
API
AVATAR
BEM
BTC
CAD
CAE
CFD
CoE
CsD
cv
CVT
DDES
DES
DLL
DNS
DOF
DTU
FAST
FEM
FSI
GEBT
GGl
GUI
HAWC2
HMB2
HPC
IEC
IWES
LES
MBD
MIC
MpCCI
MPI
MRF
NREL
oBJ
OpenFOAM
P-FSI

Nomenclature

annual energy production

arbitrary Lagrangian-Eulerian

arbitrary mesh interface

application programming interface

AdVanced Aerodynamic Tools of IArge Rotors
blade element momentum

bend-twist coupling

computer-aided design

computer-aided engineering

computational fluid dynamics

cost of energy

computational structural dynamics

control volume

constant volume tetrahedron

delayed detached eddy simulation

detached eddy simulation

dynamic link library

direct numerical simulations

degree of freedom

Technical University of Denmark

Fatigue Aerodynamics Structures and Turbulence
finite element method

fluid structure interaction

geometrically exact beam theory

generalized grid interface
graphical user interface

Horizontal Axis Wind turbine simulation Code 2nd generation
Helicopter Multi-Block

high performance computers

International Electrotechnical Commission
Institute for Wind Energy and Energy System Technology
large eddy simulation

multibody dynamics

multi-iterative coupling

Mesh-based parallel Code Coupling Interface
message passing interface

multiple reference frame

National Renewable Energy Laboratory
Wavefront Object

Open Source Field Operation and Manipulation
practical fluid-structure interaction

XV

XVi

PISO
RANS
SAM
SCAI
SIMPLE
SOWFA
SST
STL

TFI
VLES

Latin Symbols

<

HNTODD AT x oA~

o
-

&

Greek symbols

a

Y
u
Urer

v
v
P
Tij
w
Q

pressure-implicit split-operator
Reynolds-averaged Navier—Stokes
spring analogy method

Scientific Computing and Algorithms Institute
semi-implicit method for pressure-linked equations

Simulator fOr Wind Farm Applications
shear stress transport
Stereolithography

transfinite interpolation

very large eddy simulation

Speed of Sound
Sutherland’s constant
Pressure coefficient
Pitching moment coefficient
Thrust force coefficient
Torque force coefficient
Time step

Azimuth step

Thrust force

Torque force

Gravitational acceleration
Turbulence intensity
Turbulence kinetic energy
Turbulent length scale
Pitching moment
Pressure

Quaternion

Rotor radius

Gas Constant

Rotation matrix

Time

Temperature

Reference temperature

Velocity in Cartesian coordinate direction
Mean part of velocity

Fluctuating part of velocity

Velocity

Cartesian coordinates

Angle of attack

Adiabatic index

Dynamic viscosity
Reference viscosity
Turbulent eddy viscosity
Spalart-Allmaras variable

Air density

Viscous surface stress tensor
Specific dissipation rate
Rotational speed

deg

Pas
Pas
m2/s
m?/s
kg/m
Pa
1/s
rpm

Introduction

The currently available state-of-the-art wind turbine simulation tools are mainly based on blade element
momentum (BEM) aerodynamic modelling, see for instance the tools Horizontal Axis Wind turbine sim-
ulation Code 2nd generation (HAWC2), BLADED or Fatigue Aerodynamics Structures and Turbulence
(FAST). This low-fidelity method is in principle only valid for steady two dimensional flow [37]. How-
ever, by using engineering correction methods it is generally applied throughout the entire wind turbine
operational conditions [37]. These engineering correction methods or engineering add-ons account for
root and tip corrections as well as for yawed, respectively sheared inflow or tower shadow [37]. Due to
the nature of these correction methods errors are inevitable introduced. While the magnitude of these
errors may still be acceptable for most cases, for extreme operational conditions they might exceed a
certain threshold.

In addition, the BEM aerodynamic modelling of wind turbines is not yet validated for the future
generation of wind turbines [36]. This is due to the reason that these turbines would have very large
blades of at least 100 meters compared to the current designs of about 65 meters [36]. These future
turbines would be operating at high tip speeds higher than 110 m/s [36]. At these conditions Reynolds
and Mach number effects act, which BEM may not account for [36]. Besides this, these modern turbines
may use flaps or slats to increase the power output while actively mitigating loads. However, modelling
of flaps and slats is not included into BEM and as such in current wind turbine simulations.

Within the last years a more sophisticated aerodynamic modelling approach for wind turbines has
emerged based on computational fluid dynamics (CFD). In CFD the Navier-Stokes equations, which
are describing the physics, are solved. Due to the high complexity required for solving these equations
it requires high performance computerss (HPCs). Within recent work by Heinz et al., see [14], CFD
was utilised within a very popular wind turbine simulation tool namely HAWC2. By replacement of BEM
through CFD the code HAWC2CFD was established in [14]. This resulted in improvements concerning
the aerodynamic modelling, for instance within root and tip region, or in extreme conditions and added
new capabilities such as resolving vortex induced vibrations [14].

Replacing BEM by CFD for wind turbine simulations is not an easy task as it requires coupling be-
tween possible high-complexity structural and fluid solvers, including different mesh mapping and com-
munication of variables. Although, such a coupling has been achieved by several researchers before,
for the most popular wind turbine design tools this has not been achieved yet, except for HAWC2. An
update within the commonly used and freely available tool FAST resulted in improved modularization.
This is assumed to simplify the coupling to a CFD code. As CFD code the open source Open Source
Field Operation and Manipulation (OpenFOAM) is a highly feasible choice, which has also been heavily
used for wind turbine simulations in the last years. In addition, access to the code coupling software
Mesh-based parallel Code Coupling Interface (MpCCl), developed by Fraunhofer Scientific Computing
and Algorithms Institute (SCAI), is provided, thus further reducing the coupling effort.

Although, it is not possible to fully replace BEM by CFD due to the large computational times, it may
be a viable choice for specific applications. Inindustry a large amount of load calculations, such as given
by International Electrotechnical Commission (IEC) requirements, has to be executed. In addition, in
the preliminary design phase a lot of iterations and thus computations are present. Therefore, such a
method may specifically be useful for the detailed design phase, where a high accuracy is desirable.

1

2 1. Introduction

Thesis Motivation and Goals The research gap, which is addressed within this project, relates to
the utility of such a coupled CFD method especially for modelling extreme operational conditions or
future turbines with highly flexible blades possibly equipped with exotic configurations such as flaps or
slats.

The motivation for implementing the high fidelity aerodynamic model based on CFD (OpenFOAM)
within a state-of-the-art wind turbine computer-aided engineering (CAE) tool such as FAST can be
justified by the following benefits:

* Increase the accuracy in aero-servo-elastic modelling of wind turbines in general with a specific
aim on the modelling of severe conditions for large futuristic wind turbines.

 Forinstance due to the higher fidelity aerodynamic model (CFD) improvements in highly unsteady
inflow such as large yaw or dynamic stall are possible.

» The modelling of futuristic turbines equipped with flaps or slats may be easier to implement and
more accurate with CFD versus BEM, which requires additional engineering add-ons.

» There are new modelling capabilities due to CFD for example allowing to resolve vortex induced
vibrations.

» Another advantage is that the current modelling with BEM requires airfoil polar data often obtained
through experiments, which with the CFD method is no longer needed.

* In general higher accuracy in the simulations may result in better and more optimized blades
thereby reducing the overall cost of energy (CoE) for wind energy.

+ Especially improved estimation of the loads and the power (annual energy production (AEP)) may
in turn lead to lighter and cheaper blades.

* Results from high fidelity aero-servo-elastic modelling may lead to improvements in low fidelity
methods (e.g. engineering add-ons) based on BEM due to new insights.

» The utilized codes such as FAST and OpenFOAM are open source and freely available, therefore
such a coupled method and its implementations may have an increased interest.

Thus, the goal of the project is to create an equivalent aerodynamic CFD module within OpenFOAM
and couple it to FAST, thereby replacing its standard BEM module. The corresponding research ob-
jective can be formulated as: Development of a new aero-servo-elastic wind turbine simulation method
by coupling FAST v8 to an OpenFOAM CFD code. The project approach is therefore more practice
oriented by dealing with the coupling of the two codes OpenFOAM and FAST. The related research
question has been formulated as: To what extend is the use of CFD within FAST for modelling the
aerodynamics in extreme conditions justified when comparing its computational complexity relative to
BEM?

Thesis Outline The first part of this thesis deals with an in-depth literature review of relevant litera-
ture, see Chapter 2. In this literature review the governing aerodynamic methods such as BEM and
CFD, as well as structural modelling and finally combined fluid structure interaction (FSI) methods were
reviewed. In addition, the different tools to be used which are OpenFOAM, FAST and MpCCI were pre-
sented. In the next Chapter (3) the wind turbine simulation cases are discussed. This short Chapter
gives a quick overview which wind turbines will be simulated and addresses which methods will be
used.

In Chapter 4, the available methods such as the CFD method based on OpenFOAM and the BEM-
based FAST approach are outlined. The Section on OpenFOAM deals with all required aspects such
as mesh generation, mesh movements and the solving approach. For the aero-servo-hdyro-elastic
tool FAST the entailed modelling approaches as well as the solver settings were discussed. Both tools
were utilized and coupled via MpCCl to result in the resulting method named fastFoam. Its methodology
including the MpCCI coupling process is presented in Chapter 5. Next, the results for the simulations
based on the three different methods namely OpenFOAM, FAST and fastFoam are elaborated on in
Chapter 6. Finally in the last Chapter, conclusions and recommendations are drawn also in view of the
research questions to be answered, see Chapter 7.

Literature Review

This chapter deals with an in depth review of literature, which will be relevant for the execution of
the project. At first, a general overview of rotor aerodynamics as well as wind turbine elasticity is
given. This is related to the modelling techniques of both aspects of which some are used within this
research. Afterwards, FSI coupling methods for simulating wind turbines are discussed, combining the
interaction of fluid and structure, thus aerodynamics and elasticity. Therefore, this review is focused
on the industrial standards for simulating wind turbine aero- and structural dynamics with a detailed
part on CFD methods. Finally, an overview of the modelling tools, which are based on the reviewed
methods and which will be used within the current project are given.

2.1. Rotor Aerodynamics

This section is about rotor aerodynamics and the currently available modelling methods ranging from
low-fidelity, low-complexity methods such as BEM to high-fidelity, high-complexity CFD.

2.1.1. Blade Element Momentum Theory

At first, the state-of-the-art method BEM is discussed, being implemented in several design codes such
as FAST, HAWC2 and Bladed for instance. Its theory is explained here based on the book of Hansen,
see [12].

2.1.1.1. Actuator Disc Momentum Theory

The blade element momentum theory is based on the one dimensional actuator disc momentum theory,
considering an ideal rotor [12]. Therefore, the rotor is modelled as a permeable disc, without exerting
friction or vertical velocity on the flow. Due to the pressure drop over the rotor related to the acting drag,
a thrust force is obtained. Using the assumptions for this 1D problem that no external force is acting on
the rotor, as well as stationary incompressible and frictionless flow, thus no change in internal energy,
several simplified equations can be applied to analyze the problem [12].

First of all, the Bernoulli equation is applicable from upstream to closely in front of the rotor (from
1 to 2 in Figure 2.1) as well as from close behind the rotor to downstream (from 3 to 4 in Figure 2.1).
Combining both expressions of the Bernoulli equation, one finds a relation for the pressure drop in terms
of the upstream and downstream velocities. Furthermore, the continuity equation yielding conservation
of mass is used, to obtain a relationship between the cross sectional areas at the rotor and downstream
for instance.

4 2. Literature Review

Figure 2.1: Stream-tube for a horizontal axis wind turbine.

Finally, the axial momentum equation can be applied in the direction perpendicular to the rotor on
a circular control volume ranging from upstream to downstream (from 2 to 3 in Figure 2.1). By doing
so one obtains an expression for the thrust using the previously found relations [12]. From the energy
equation the corresponding power can be derived. Using the definition of the axial induction factor,
one then obtains the famous expressions for the thrust and power coefficients as a function of axial
induction factors [12]. As a next step one can easily find the Betz limit at an induction factor of 1/3. For
the exact equations see the book of Hansen [12].

2.1.1.2. Momentum Theory

However, the previously described procedure is only valid for an ideal rotor, the actuator disc. There-
fore, the BEM theory considers also the actual geometry of the rotor as well as its number of blades,
the twist and chord distribution and the airfoils used [12]. The classical BEM theory originating from
Glauert in the year 1935 will be discussed. It is able to calculate the loads as well as the power of the
rotor in steady conditions at different operating conditions of wind speed and pitch angle for instance.

At first to go from actuator disc to an actual rotor, the disc is discretized into several annuli. These
are assumed to be radially independent and as an initial assumption the relative thrust force at every
annuli is assumed to be constant corresponding to an infinite number of blades. This is later corrected
by using Prandtl’s tip and root loss correction accounting for tip and root vortices, which break up the
momentum balance [12]. The momentum equation is then applied to each annuli yielding the thrust,
torque and power, due to each element as function of the axial and tangential velocity and induction
factor [12].

2.1.1.3. Blade Element Theory

In addition, the thrust, torque and power can also be obtained from the blade elements directly. This
is obtained by using the general lift and drag expressions using the known angle of attack [12]. There-
fore, the values for the lift and drag coefficient have to be known, which are given from airfoil data at
each annuli. The corresponding angle of attack is known and it is related to the inflow angle, which
is dependent on pitch and twist angle. Then the obtained lift and drag expressions can be related to
normal and tangential force through the inflow angle [12]. As these forces are in units per length, the
thrust and moment is obtained by multiplying the force by the number of blades and the radius of the
annuli, where these forces have been evaluated [12].

2.1. Rotor Aerodynamics 5

2.1.1.4. Combined BEM Theory

Equalizing the expressions for thrust and torque from both momentum and blade element calculations,
one obtains expressions for the axial and azimuthal induction factor as function of rotor solidity, lift and
drag coefficient and inflow angle [12]. Then the final BEM solving scheme can be summarized by the
following approach. At first, a value for the axial and azimuthal induction factor is assumed, commonly
a value of zero is chosen. Then the lift and drag coefficient is calculated from the look up tables of
airfoil polar data [12]. Next one can calculate the new induction factors from the previously determined
expression. This procedure is repeated until the induction factors stay constant relative to a certain
tolerance. The convergence does indicate that the obtained thrust and torque from both momentum
and blade element calculations are equal. Thus, a converged solution is obtained. Finally, as one has
only obtained the thrust and torque contributions of each annuli, a simple summation over all annuli will
result in the thrust and torque of the complete rotor [12]..

2.1.1.5. Engineering Add-ons

The BEM engineering method is due to its simplicity including assumptions, theoretically valid only for
stationary two dimensional flow and non-yawed conditions [37]. Therefore, several engineering add-
ons are commonly used to be able to analyze three dimensional unsteady flow in extreme conditions
like yaw. These add-ons are for instance based on measurements or more advanced methods. An
overview of these add-ons is given based on the doctoral thesis of Schepers, see [37], where these
models haven been thoroughly investigated.

As mentioned previously, Prandtl’s tip and root loss corrections need to be applied. This is due to
the reason that there are tip and root vortices for a finite number of blades, which is conflicting with
the assumption of an infinite number of blades. Therefore, an additional variable is introduced in the
computations of both induction factors mentioned before. This variable is dependent on the location
of the annuli on the rotor, as the influences of tip and root vortices are only corrected at inbord and
outbord locations [12].

In addition, for axial induction factors larger than approximately 0.4 Glauert’s correction is used [12].
This is due to the reason that above induction factors of 0.5 flow reversal occurs and thus momentum
theory is invalid. Therefore, the empirical Glauert correction will adjust the relation between thrust
coefficient and axial induction factor.

As in reality the presence of turbulence will violate the assumption of steady flow, an unsteady BEM
correction is applied [12]. This correction accounts for yawed inflow, thus the case when the mean wind
speed is not perpendicular to the rotor area . Due to turbulence this is often the case and therefore its
consequences of power loss and load fluctuations have to be included [37].

Besides that, corrections for sheared flow are included, which model the wind shear either logarith-
mically or according to the power law [37]. Thus, the flow velocity is changing over height.

Next to that, one also has to consider corrections due to applied cone and tilt angle of the turbine,
which effectively reduce the rotor area. Also unconventional blade shapes such as pre-swept blades
may be modelled through corrections.

Additionally, there is the effect of the tower on the flow leading to the so called effect of tower shadow.
For simplicity the tower is modelled cylindrically and the flow around it is modelled as a dipole. Then
the induced velocities due to the tower are added to the undisturbed velocities.

Finally, the effect of dynamic stall needs to be included. Due to the unsteady effects mentioned pre-
viously the angle of attack undergoes dynamic fluctuations [37]. Especially in the case of trailing edge
separation dynamic stall needs to be accounted for. This is corrected within the Beddoes—Leishman
model [12].

2.1.2. Computational Fluid Dynamics
Besides low-fidelity methods such as BEM, more sophisticated methods such as CFD exist, which will
be discussed within this section.

Computational fluid dynamics, commonly abbreviated as CFD, deals with the discretized form of the
Navier-Stokes equations on a computational grid. These discretized equations are solved numerically
for each time step on every grid point related to a cell [12]. As the solution is obtained iteratively on a
large number of cells the computational time is relatively large [1]. Therefore, HPC with hundreds of
cores are used in order to limit the computational time [13].

6 2. Literature Review

For the purpose of determining the loads at the rotor, a grid needs to be constructed, for instance in
terms of finite volumes around the turbine. Therefore, a finer mesh is required at the blades, where the
boundary layer needs to be resolved, while far from the rotor a coarser mesh is sufficient [1]. Moreover,
near to the blade tip a highly refined mesh is required in order to accurately reproduce the tip vortices
[13].

An additional difficulty appears due to the reason that the rotor is rotating and blades are pitching,
thus the mesh should rotate as well [1]. However, a certain benefit is that no airfoil data is needed as
the velocity and pressure are directly calculated around the blade surface [1].

There is a quite a difference in whether incompressible or compressible Navier-Stokes equations
are solved. Modern wind turbines operate at tip speeds of up to 100 m/s, with a speed of sound of about
340 m/s at sea level conditions. At these operational conditions one is just at the Mach barrier of about
0.3, until which the assumption of incompressible flow is still valid [13]. However, future wind turbines
with rated power above 10MW and rotor diameters larger than 200 m/s will show larger tip speeds
where compressible flow will be acting, see for instance [36]. For wind turbines both compressible and
incompressible Navier-Stokes solvers are used, depending on the actual case to be considered.

In addition, the Navier-Stokes equations are solved not only directly at the rotor, but also in the wake.
Therefore, a mesh of the entire outer domain is required. Also turbulence is modelled within methods
Reynolds-averaged Navier—Stokes (RANS)-based or large eddy simulation (LES)-based turbulence
models.

RANS describes a Reynolds-averaging procedure where flow variables, such as velocity, are di-
vided into a mean term and a fluctuating term [35]. This process is called Reynolds decomposition
[35]. This ensemble average is then substituted into the Navier-Stokes equations, which leads to the
Reynolds averaged Navier-Stokes equations [35]. However, to be able to solve the system of equa-
tions the resulting Reynolds stresses in the equations have to be related to mean flow variables [35].
Therefore, often a so called Boussinesq hypothesis is used relating both variables via the turbulent
eddy viscosity [35].

Submodels of the RANS turbulence approach are the famous two equation model k —w shear stress
transport (SST) and one equation model Spalart-Allmaras.

An alternative to RANS is the LES turbulence model. It is becoming more popular in recent years
as it has advantages over RANS in some aspects [35]. In particular, it is well suited for modelling large
eddies with turbulent mixing in unsteady and anisotropic flow [35]. However, the disadvantage is that
this requires a much larger computational time [35]. The assumption in the model is that smaller eddies
can be described universally by a subgrid-scale model, while for the large eddies time consuming
calculations have to be set up [35]. LES is especially time consuming as it requires a fine mesh gradient
in three dimensions near the wall, while RANS only requires a fine mesh in the wall normal direction
[35].

Moreover, a combined approach is also possible called detached eddy simulation (DES). It uses the
less time consuming RANS approach near the wall to obtain the boundary layer and the LES approach
for the wake [35]. Currently a combination of it with an empirically based transition model is the state
of the art in turbulence modelling of wind turbines using CFD [13].

CFD for wind turbine applications is still a relatively new method. CFD results have been compared
to data from the National Renewable Energy Laboratory (NREL) Unsteady Aerodynamics Experiment
in the year 2000 [13] . The measured data of the two bladed NREL phase VI rotor with 10 m diameter
yielded good agreement with the CFD results [13] . It came out that the Navier-Stokes based CFD
was actually the best computational method [13]. This was a major step in the development of CFD
methods as there validity for wind turbines was confirmed the first time by measurement [13].

In the next Section a simplified overview of the Navier-Stokes equations is given.

2.1.2.1. Navier-Stokes Equations

The Navier-Stokes equations entain the conservation equations. For incompressible flows such as for
wind turbines, where the Mach number is below 0.3, mainly the conservation of mass and momentum
are addressed. For compressible flow also the energy conservation equation needs to be included. The
Navier-Stokes equations accurately describe the flow of Newtonian fluids. However, only in simplified
cases such as channel flows analytical solutions exist [11]. Therefore, numerical methods are utilized
to solve the Navier-Stokes equations in there discretized form.

2.1. Rotor Aerodynamics 7

Conservation of Mass The conservation of mass is addressed in the continuity equation stating that
mass can neither be created or destroyed. The continuity equation is given on a control volume (CV),
which refers to a specific spatial region. It is given in Cartesian coordinates according to Equation 2.1
[11].

a_P + a(pui) — 6_/0 + a(pux) + a(puy) + a(puz) —
at d0x; at dx dy 0z

0 2.1)

Where x; (with i from 1 to 3) respectively (x,y, z) are Cartesian coordinates and u; or u,, u,, u, are
the corresponding velocities. For incompressible flows the change in the density p over time t can be
neglected.

Conservation of Momentum In addition to the conservation of mass, there is conservation of mo-
mentum. Following the CV approach the forces acting on the fluid are aconsidered. This includes
surfaces forces such as pressure, normal and shear stresses as well as surface tension and body
forces for instance due to gravitation, centrifugal or Coriolis effects [11]. Making the assumption of
Newtonian fluids the change in momentum according to Newton’s second law equals the sum of forces
on the CV.

In its general form the momentum equation is given according to Equation 2.2 if gravity is considered
as the only body force [11].

a(pu;) a(puiuj) dt;j dp
ot T ax, ox om T PY (2:2)

Where 1;; is the viscous surface stress tensor specified on each face of the CV in every direction (j
from 1 to 3 respectively x, v, z). The pressure is indicated by p. The gravity term g; corresponds to the
component of gravitational acceleration in the direction of the cartesian coordinate x;, normally refering
to the z-direction.

The momentum equation (Equation 2.2) needs to be written in the three cartesian directions (x, y, z)
for each CV. This is due to the different contributions of the surface forces on the CV, leading to a total
of three equations.

Together with the continuity equations and the three momentum equations a set of four equations
needs to be solved for the incompressible Navier-Stokes equations. As there are more unknowns than
equations additional assumptions and relations such as the Boussinesq approximation, ideal gas law
or Stokes equations are used for solving the Navier-Stokes equations [11]. For a more comprehensive
overview on these relations and there derivation the reader is refered to the book of Ferziger and Peric,
see [11].

2.1.2.2. Reynolds-averaged Navier—-Stokes Equations

The Navier-Stokes equations can be solved numerically by means of direct numerical simulations
(DNS). The flows investigated in engineering applications for instance for wind turbines are often not
laminar, but turbulent. Turbulent flows can be described by highly unsteady behaviour in three spatial
dimensions. In contradiction to laminar flow, turbulent flow layers interact with each other and mix.
The fluid particles form so called turbulent eddies, which break up over time into smaller eddies and
influence others. However, the fluctuation in length and time scales of these eddies is highly unpre-
dictable. This is the main reason why DNS simulations of turbulent flows are a difficult and especially
computationally time consuming task [11].

Therefore, other simulation strategies in CFD have emerged, which include simplifications but allow
for a compromise between accuracy and computational time. One of the most common approaches
relates to the so called RANS simulations, where the Reynolds-averaged Navier—Stokes Equations
are solved. Within Reynolds-averaging, based on Osborne Reynolds, the unsteadiness is averaged
by decomposing the flow properties in a mean part and a fluctuating part over an ensemble [11]. This
ensemble averaging procedure allows for the inclusion of unsteady effects compared to a time av-
eraging process. Then for the solution it is solved for the mean part, whereas the turbulent part is
modelled by engineering models, the so called turbulence models such as for instance k - w SST or
Spalart-Allmaras. For an overview of these models see the book of Ferziger and Peric [11].

8 2. Literature Review

The introduction of turbulence models is required as no closed set of equations is formed by the
RANS equations (closure problem). The Reynolds decomposition for the velocity components is shown
in Equation 2.3.

u; = ai + ui' (23)

Where the ; term addresses the mean part and the u;' term relates to the fluctuations.
Applying the Reynolds decomposition for other flow parameters as well one obtains the RANS
Equations (for incompressible flow) for continuity, see Equation 2.4 [11].

a(pu;) —0
axi

Similarly, the momentum equation can be obtained such as shown in Equation 2.5 if no body forces
are considered [11].

(2.4)

a(pu;)
ot

07;; 0p
e (2.5)

d - - [
+ a—xj(puiuj +pu;'u;’) =

In addition to RANS models, other approaches exist such as LES models or even hybrid methods
forinstance DES. In LES only the largest eddies are fully resolved, whereas the small scale motions are
approximated. As mostly RANS will be used in this project for resolving the wind turbine aerodynamics,
the interested reader is referred to Ferziger and Peric for further information on other models, see [11].

2.1.2.3. Solution Algorithms
To apply CFD simulations appropriate solvers are required which contain a solution algorithm to solve
the Navier-Stokes equations in their discretized format. It can be distinguished between compressible
and incrompressible solver and the related algorithms, see for instance the implemented solvers within
OpenFOAM [41]. A main difference between the solvers for compressible and incompressible cases
is that within incompressible solvers each flow variable is solved separately. In this paragraph is is
focused on the solution of incompressible cases where such a highly iterative procedure is applied.
Two of the most common solution algorithms for incompressible flows are the so called semi-implicit
method for pressure-linked equations (SIMPLE) and the pressure-implicit split-operator (PISO) algo-
rithm. In addition, the PIMPLE algorithm exists combining both of them [41].
These algorithms can be explained by the following procedure according to Ferziger and Peric [11]:

1. Use solution for u?* and p™ as initial estimation to calculate fields u/*** and p™*! at t,,,.
2. Solve momentum equations (Eq. 2.2) for velocity components uj™*.

3. Solve the pressure-correction equation for p’ and get u;' from there relation.

4

. Apply the velocity and pressure corrections and solve the continuity equation (Eq. 2.1) yielding
the velocity field u* and the updated pressure p™.

5. Startagain at step 2 with u!" and p™ as estimates for u**! and p™*!. Repeat until the convergence
tolerances are met.

6. Move on to the next time step.

In the aforementioned procedure the superscript m indicates the iteration number for the inner it-
erations. The asterisk for the obtained velocity components u;** indicates that it is not the final value
for iteration m, which is uj*. The vertical dash (') as a superscript indicates the velocity respectively
pressure correctors, which are yielding the updated values for u* and p™ according to Equation 2.6
[11].

u™ =u™ + ;' and pMm=pm1l4yp (2.6)

While the SIMPLE and PISO algorithms essentially solve the same equations (Navier-Stokes), there
are differences in the looping (iterative) procedure. The SIMPLE algorithm commonly includes under-
relaxation terms a, and a,, for the pressure and velocity correctors in Equation 2.6 to improve the

2.2. Wind Turbine Elasticity 9

convergence behaviour [11]. Under-relaxation is not required for the PISO and PIMPLE algorithms. In
addition, for the PISO algorithm a second pressure-correction equation is solved after step 4 where the
pressure and velocity are corrected again [11].

2.1.3. Other Methods

Besides the low-complexity BEM and high-complexity CFD, there are other methods of which some of
them combine aspects of both BEM or CFD. These are for instance so called actuator disc or actuator
line models as well as (free) vortex wake models, which will be discussed in this section.

2.1.3.1. Actuator Disc and Line Models

Acuator disc and actuator line models are a combination of BEM and CFD methods [13]. The rotor is
not modelled using a mesh, instead the loads are calculated from airfoil data using the same approach
such as in BEM, see paragraph about blade element theory in Section 2.1.1. These loads are then
represented on the computational grid. The flows reaction to the forces can then be calculated to obtain
the flow variables, such as pressure and velocity, at all grid points (cells) as a result of the aerodynamic
loads and the related induced velocities at the rotor. The procedure can be summarized as follows:
Navier-Stokes equations are solved and replace the momentum theory part used in BEM, while at the
rotor loads are still calculated from airfoil data such as in blade element theory of BEM [13].

An advantage is that no engineering add-ons, for instance for dynamic wake or yaw, are needed as
their physical basis is already included within the Navier-Stokes equations [13]. Actuator disc models
are different to actuator line models, as they distribute the forces over the entire rotor. For actuator line
models this distribution is limited to the blade positions only. The actuator disc methods are commonly
used for simulating entire wind farms, while actuator lines models represent the actual physical situation
of one wind turbine in more detail [13].

2.1.3.2. Vortex Wake Models

Vortex wake models use the Biot-Savart law to calculate the velocity at every point in space induced
by the vorticity field [13]. The resulting induced velocity is added to the free stream velocity in order to
obtain the velocity of the flow at a certain point [13]. This procedure is repeated at every pointin space to
resolve the entire flow field. Generally the Biot-Savart law satisfies the Navier-Stokes equations [13].
However, in practice, to reduce computations, discretized vortex filaments with a certain circulation
being constant over a predetermined area are considered. The circulation thereby equals the average
vorticity multiplied by this area [13].

By using the Kutta-Joukowski theorem and known airfoil lift data, the bound circulation along the
wind turbine blade is calculated and shed into the wake [13]. Thereby Kelvin’s theorem, stating that
the total circulation of the flow is conserved and Helmholtz’s theorem, describing that a vortex filament
cannot start or end within the flow, have to be satisfied [13]. As mentioned before, the method still relies
on airfoil data and due to its medium complexity it has larger computational times than BEM [13].

2.2. Wind Turbine Elasticity

Similar to modelling the aerodynamics concerning the flow around the wind turbine, it is required to
model the structural deformations of the turbine. The structure is not rigid and as a result of its elasticity
it will deform. These deformations include deflections and rotations, which typically, for wind turbines,
can be quite large at the blade tips.

Therefore, the elasticity of the turbine will be modelled by using computational structural dynamics
(CSD) methods. For wind turbines the most common methods are finite element method (FEM), lumped
parameter method, modal analysis and multibody dynamics (MBD) modelling. These methods will be
shortly discussed within this section to give an overview of their approach and the differences and which
of them will be used.

A common method which is generally applicable to all kinds of structures is FEM [31]. Within FEM
the structure is divided into several small elements. The elements are represented through nodes,
which may lie on the interior or on the boundary of the structure [31]. Interaction only takes place at
the boundary as the structural properties at the interior of the element are considered constant [31].
Properties such as thickness, density, stiffness or shear modulus are allocated to the element nodes.
Furthermore, the displacements and rotations of the nodes are given.

10 2. Literature Review

FEM is a commonly used approach for studying single structures such as blades. This is often done
using simplified approaches such as beam models, for instance using Euler—Bernoulli or Timoshenko
beam theory. Notice that FAST, which will be used within this research project, uses geometrically
exact beam theory (GEBT) within its BeamDyn blade structural solver, see [42]. Thus, a FEM method
is applied to obtain the highly elastic response of the blade.

Besides FEM there is an approach called lumped parameter method. It discretizes non-uniform
moving bodies, such as the drive train, into known bodies such as the rotating rotor, shafts, gears and
generator rotor [31]. This is done by allocating their known inertia and stiffnesses. As this method is
commonly used for drive trains it will not be further discussed within this section.

Next to that, there is the modal analysis method. Within the modal analysis approach the degree
of freedom (DOF) of the system are reduced by division into smaller sections [31]. These sections are
then analyzed and natural frequencies and mode shapes are determined related to eigenmodes. This
follows a procedure using generalized coordinates in order to solve the uncoupled equations of motion
of the vibrating system [31]. The solution of the modal equations corresponding to the eigenmodes
are then added by superposition in order to resemble the entire system [31]. Typically a low order of
eigenmodes is sufficient to physically represent the system, thus reducing computational effort making
the method highly efficient.

Finally, there is the MBD approach which is used for modelling of motions of mechanical systems
with more components, here called bodies [31]. Bodies will move with respect to others, for instance
think about the nacelle moving on top of the tower. Bodies are interconnected by links and can be
modelled rigid or flexible. The characteristics of the bodies are modelled much more accurate compared
to lumped parameter method [31]. Loads and deflections of the bodies are communicated and influence
body motions. Constituting from Newton’s second law the dynamic equations of motions of the bodies
are solved, but for complex structures such as wind turbines special numerical techniques are required
[31]. Current wind turbine design tools such as FAST, HAWC2 or Bladed are based on this approach.

To conclude, there are four major approaches in wind turbine structural modelling. Current state-of-
the-art wind turbine design software, such as FAST or HAWC2, mainly use the MBD approach. This is
probably due to its decent physical representation and computational efficiency. In addition, for highly
elastic components such as blades more refined methods such as FEM have emerged accounting for
the large deformations. These are then implemented in the design codes by using beam theories for
the blades, while using multiple bodies for the rest of the turbine.

2.3. FSI Coupling Methods for Wind Turbine Simulations

As has been presented previously there are several ways to analyse rotor aerodynamics. Each of the
methods have certain advantages and drawbacks. In addition to these aerodynamic methods, there
are structural solvers accounting for the elasticity of the bodies. To account for the interaction of the fluid
and the structure, commonly referred to as FSI, coupling methods between fluid and structural solvers
exist. In wind turbine simulation software, such as for instance FAST or HAWC2, most commonly used
is the simplified coupling of BEM with MBD. However, due to some limitations of BEM and the increase
in computational power, some high-fidelity FSI methods emerged within the last years for wind turbines
as well. Although such methods have already been used for instance for helicopters, the application to
wind turbines was relatively new, due to difficulty of modelling and the large number of load cases to
be examined.

Moreover, there exist coupling methods with a medium complexity for the aerodynamic modelling
between BEM and CFD. For example Hsu and Bazilevs coupled a lower order FEM method for aero-
dynamics to a isogeometric analysis for structural mechanics to resolve wind turbine FSI [16].

Within this project it was chosen to focus on high-fidelity CFD, due to this reason the literature study
on FSI coupling methods is focused on coupling of CFD to structural solvers. Therefore, coupling
methods using high-fidelity CFD and structural modelling for wind turbine simulations will be presented
in the following section.

FSI Computations for Geometrically Resolved Rotor Simulations Using CFD [14] Heinz et al.
coupled the Technical University of Denmark (DTU) developed codes HAWC?2 and EllipSys3D to obtain
the so called HAWC2CFD code, which is used for full rotor simulations [14]. HAWC?2 is an aero-hydro-
servo-elastic simulation code for horizontal axis wind turbines. By coupling it to the finite volume CFD

2.3. FSI Coupling Methods for Wind Turbine Simulations 11

solver EllipSys3D, the BEM based HAWC2 is developed into the CFD based HAWC2CFD. The code
EllipSys3D solves the RANS equations combined with a k-w SST turbulence model.

The chosen coupling scheme is a loose coupling scheme, which is not energy conservative. Within
the loose coupling scheme the fluid and structural solver communicate their solutions once per time
step. A strong tightly coupled scheme was not necessary as it did not show a huge difference according
to investigations. The source codes of both HAWC2 and EllipSys3D were untouched, instead a generic
coupling framework was established using python and its extension OpenMDAO. By following this
procedure partitioned coupling is achieved.

The resulting framework transfers the deflections from HAWC2 to EllipSys3D and the aerodynamic
forces from EllipSys3D to HAWC2. As the structural solver within HAWC2 uses one dimensional beam
elements, whereas EllipSys3D exploits a three dimensional mesh, there needs to be a transformation.
This is achieved by the fact that only the information at the blade sections corresponding to beam
elements is exchanged. Thus, the CFD solvers output needs to be transformed onto these beam
elements by integration and interpolation. Similarly, the calculated structural deflections are projected
onto the mesh by assuming rigid blade cross sections, followed by interpolation of translations and
rotations onto the mesh vertices. The obtained deflections at the mesh vertices are thereby used to
transform the mesh, according to the determined rotational and translational movement.

Coupled CFD/MBD Method with Application to Wind Turbine Simulations [26] Within his Ph.D.
dissertation at University of lowa Li coupled the incompressible CFD code CFDShip-lowa v4.5 with
the MBD code Virtual.Lab Motion [26]. CFDShip-lowa v4.5 is calculating the aerodynamic response
either by solving unsteady RANS or DES equations. The motion of the turbine is solved by using the
MBD code Virtual.Lab Motion. Virtual.Lab Motion uses generalised coordinates and Euler parameters
to express the equations of motion in Cartesian coordinate system. For modelling turbulence a delayed
DES approach based on a k-w SST turbulence model was implemented within the CFD code.

The implemented coupling method communicates the obtained forces and moments from the CFD
code to the MBD code for all bodies via in- and output files. Similarly, the positions and rotations
as calculated by the MBD code are sent to the CFD code. These are then used by the CFD code
to move the mesh. The tower and blades are represented by one dimensional bodies. As the one
dimensional bodies and the finite volume three dimensional CFD grid do not match, a special procedure
was applied. This procedure accounts for the CFD cell area, related to each body, to calculate the forces
and moments, for instance applied on a certain body. Similarly, the motions in terms of positions and
rotations from the bodies are projected onto the CFD cells to move the CFD grid accordingly.

As the CFD and MBD time steps are not necessarily the same, interpolation will be applied to the
forces and moments from the CFD solvers actual and previous solution. This is done as the MBD time
step may be smaller and thus an updated value of forces and moments needs to be known at each of
these small time steps. It is determined by interpolation to avoid increase of computational time due
to CFD. At a certain communication time the results of CFD and MBD code are then communicated
once, thus following a loose coupling strategy.

Time-Accurate Aeroelastic Simulations of a Wind Turbine in Yaw and Shear Using a Coupled
CFD-CSD Method [44] Yu and Kwon coupled a CFD and CSD solver to obtain a method for aeroe-
lastic simulations of wind turbines within their studies at Korea Advanced Institute of Science and Tech-
nology [44]. Thereby, aerodynamic loads along the blade were determined by the CFD solver, for which
an in-house one was used based on RANS. Therefore, the incompressible Navier-Stokes equations
were solved including k-w SST turbulence modelling. In order to account for the blade motion and de-
formation a combined overset and deforming mesh technique was applied. For the mesh a background
mesh was used for the wind field, including tower and nacelle. For each blade a moving sub-mesh is
used.

Next to the CFD solver also an in-house CSD solver has been used to account for elasticity of
the blades. It was based on nonlinear Euler-Bernoulli beam theory applied by discretizing the blade in
finite elements. It solves the nonlinear equations of the blade elastic motions. This system of equations
includes the aerodynamic loads such as obtained by the CFD solver. However, for initializing of the
coupled analysis a BEM module is included.

The method of coupling between CFD and CSD follows the loose-coupling delta-airload method.
The aerodynamic loads obtained through CFD and the blade deformations, such as obtained by CSD,

12 2. Literature Review

are exchanged after each rotor revolution periodically. First the blade deformations are obtained
through CSD based on the aerodynamic loads from BEM module. If periodic blade response has
converged the deformations are communicated to the CFD solver as well as the pitch angle. Then the
CFD solver calculates the aerodynamic loads along the blade for the deformed blade. The obtained
aerodynamic loads are used by the CSD solver again. The procedure is repeated several times until
convergence is met, thus when the loads from BEM and CFD remain unchanged.

Investigating Aeroelastic Performance of Multi-MegaWatt Wind Turbine Rotors Using CFD [6]
Corson et al. used the commercial CFD solver AcuSolve coupled with a modal structural analysis to
simulate a 13.2MW rotor with 100-meter blade length, see [6]. The resulting coupled tool was compared
with FAST and WT_Perf, a BEM tool from NREL.

AcuSolve is used for several engineering problems by utilizing the Galerkin/Least-Squares FEM.
For the analysis of wind turbines the incompressible RANS equations were solved including the imple-
mentation of a Spalart-Allmaras turbulence model. For transient simulations a delayed-DES approach
has been used. For mesh motion, for instance due to rotation of the rotor, the transformations are
applied to update the position of each node at each time step. To include three dimensional motions,
for example due to elasticity, a new technique was applied.

Instead of a directly coupled FSI approach between a fluid and structural code, a practical fluid-
structure interaction (P-FSI) approach is used within AcuSolve. Within this P-FSI approach the struc-
tural deformation is modelled by superposition of vibrational modes. By limiting the analysis to a certain
number of eigenmodes, the linear finite element system of equations simplifies a lot and can be solved
for the accelerations, velocities and displacements of each node. Moreover, multi-iterative coupling
(MIC) method is used to converge the fluid and the structure iteratively at concurrent time steps, thereby
also increasing stability.

The advantage of this P-FSI approach is that it does not require mesh interpolation between different
fluid and structural meshes, as it is not based on direct coupling of fluid and structural solvers. Using
this approach a modal representation of the blade obtained from FEM will be forwarded to the fluid
solver.

To include the mesh motion of the blade the surrounding mesh nodes were projected onto the blade
surface. In addition, all nodes which are close to 30 m of the blades were forced to move with the blade,
while all other nodes in the entire domain were stationary.

For steady state simulations the flow solver was iterated until convergence was met. In case of tran-
sient simulations two iterations were done at every time step in order to ensure a certain convergence.
Then the calculations were repeated at the next time step .

Aeroelastic Analysis of Wind Turbines Using a Tightly Coupled CFD-CSD Method [2] Carrion et
al. developed a tightly coupled CFD-CSD method by using two aeroelastic approaches within the com-
pressible Helicopter Multi-Block (HMB2) solver developed by Liverpool University [2]. The validated
HMB2 code solves the RANS equations using the arbitrary Lagrangian-Eulerian (ALE) formulation in
time domain with moving boundaries. For steady simulations a source term is added and no grid
rotation is applied. Different turbulence models such as k - w, k - w SST including Scale-Adaptive
Simulation modelling are integrated into HMB2.

For structural modelling two aeroelastic methods, namely a decoupled one for steady-state and a
dynamically coupled method for unsteady problems, are implemented into HMB2. Within the decou-
pled method aerodynamic loads from CFD are forwarded to the CSD solver, which is based on FEM
using NASTRAN. For the unsteady method both aerodynamic loads and structural deformations are
calculated in parallel dynamically coupled. In this case a modal approach is used based on blade
eigenmode shapes and frequencies calculated via NASTRAN using a blade structural mode.

Within the analysis two blades were considered, which are the famous NREL phase VI turbine blade
and MEXICO project turbine blade. The blades were modelled as a beam in NASTRAN by placement
of non-linear elements with known structural properties. Additionally, rigid elements were placed to
account for interpolating beam deflections to blade surface, which is used for the dynamic movement
of the mesh.

In the steady approach the obtained aerodynamic loads from the converged CFD solution are used
within NASTRAN as static loads on the structural elements. The FEM solution then results in the blade
deformations.

2.4. Tools 13

In the unsteady case modal approach the blade shape is approximated as a sum of eigenvectors
consisting of displacements multiplied by their amplitude. A differential equation yields the solution
for the modal amplitudes at each unsteady time step similar to the NS equation CFD solver. A tightly
coupled approach is used with a dual time-step method including pseudo-time stepping yielding the
blade shape from the calculated converged modal amplitudes.

The mesh motion in the code HMB2 is achieved using a three stages approach. First, each fluid
node along the blade surface is moved linearly with the nearest structural element (constant volume
tetrahedron (CVT) method). Then dilatation of blocks and skewness is reduced via spring analogy
method (SAM). Afterwards a transfinite interpolation (TFI) is used to interpolate the faces and blocks
from boundary vertices and surfaces based on a certain weight.

A New, High-Fidelity Offshore Wind Turbines Aeroelasticity Prediction Method with Significant
CPU Time Reduction [15] Horcas et al. used the commercial CFD solver FINE/Turbo coupled with
a linear structural solver [15]. The structural solver utilises structural properties of the blade, such
as natural frequencies and mode shapes. These were obtained by FEM prior to the actual analysis.
These structural properties were then used to obtain the blade elastic deformation by the structural
solver, which is directly integrated into the flow solver.

Within FINE/Turbo the RANS equations were solved for the steady case, whereas for the unsteady
flow a non-linear harmonic approach has been used. The advantage of this approach is that the com-
putational time decreases, as it is assumed that the unsteadiness is occurring periodically. By solving
the flow equations in frequency domain a significant decrease in computational time was achieved.

Although the Non-linear Harmonic approach was utilised the first time for offshore wind turbines, it
could be concluded that it showed decent results. Especially the computational time was relatively low
with 8 hours to 4 days on 8 processors for the different set-ups (steady versus unsteady).

2.4. Tools

Within this research project an early selection of tools to be used has been made. This includes the
CFD code OpenFOAM, which will be coupled to NREL FAST via the neutral interface MpCCI. In order
to obtain a better overview of what these tools actually do, relevant literature has been reviewed in this
section.

2.4.1. OpenFOAM for Wind Turbine Simulatons

OpenFOAM is an object-oriented library written in C++ for CFD and in some aspects also structural
analysis. It is freely available, open-source and actively developed by the community. It allows for
relatively simple implementations of complex physical problems. Thereby, it supports the handling of
difficult geometries by mesh generation, an efficient solution by several implemented solvers using
discretization methods as well as implemented post-processing and data analysis tools [21]. For an
overview of OpenFOAM and its capabilities see Figure 2.2.

Open Source Fidd Operation and Manipulation (OpenFOAM) C++ Library

C s D Crospreesi

S, Meshing User Standard . Others
‘ Utilities ‘ Tools HAppIicatim‘Applicatior‘sH ParaView ‘eg.EnSight‘

Figure 2.2: Overview of OpenFOAM [41].

In OpenFOAM a discretization of space and time is achieved by creating a mesh in space, while
dividing the time dimension into several time-steps [21]. For mesh generation built-in tools such as
blockMesh or snappyHexMesh are available in order to generate finite volume meshes [21]. Also
external meshing tools can be used. OpenFOAM uses polyhedral meshes by generating cells from
lists of faces, which are composed by an ordered number of points in cartesian coordinates. Boundary

14 2. Literature Review

conditions are applied via so called patches, which are formed simply by boundary faces. Besides
that, multiple functions, such as dynamic mesh motion for instance, are available in OpenFOAM greatly
increasing its flexibility.

In OpenFOAM several physical modelling libraries are already included such as turbulence mod-
elling through RANS using k - w models or Reynolds stress transport models, Newtonian and non-
Newtonian viscosity models, material property models, combustion models and so on [21]. Moreover,
there exists a large amount of modelling libraries from researchers from different fields.

Moreover, in OpenFOAM stand-alone physical solvers are implemented. As such customized and
optimized solvers do exist for the physical application to be solved. Next to that, own solvers can
be easily implemented from available tool-kits. The parallelization of solvers is supported using the
message passing interface (MPI) approach [21].

In total, OpenFOAM capabilities include, besides others, mainly a high-performance linear algebra
package with integrated fluid flow solver for complex physics including integrated post-processing tools
[21]. OpenFOAM also allows for multi-physical problems such as FSI applications through its support
for self-contained coupled simulations including mesh mapping. Overall its object oriented approach
has certain advantages over monolithic function approaches, due to its modularity and flexibility [21].

OpenFOAM has been used for several years now in wind energy research and industry, especially
for aerodynamic simulations of wind turbines. Due to its great flexibility it has been used for different
applications in the field of wind energy.

For instance, Churchfield et. al performed aerodynamic, system-dynamic, and structural-dynamic
simulations of two wind turbines located behind each other at different turbulent inflow winds at neutral
and or unstable atmospheric conditions [5]. Therefore, they used two actuator line turbine models cou-
pled with NREL FAST system and structural dynamics models [5]. These turbine models were placed
into the atmospheric boundary layer simulated by LES using OpenFOAM [5]. Thus, their approach
combines the simulation of atmosphere and simplified wind turbine modelling [5].

Song and Perot did CFD simulations of the NREL Phase VI turbine using OpenFOAM by utilizing the
pimpleDyMFoam solver, which solves the RANS equations [39]. For turbulence modelling the Spalart-
Allmaras turbulence model has been used, solving for turbulent eddy-viscosity [39]. The mesh was
divided into an inner rotating refined cylinder including the rotor and an outer mesh representing the
wind tunnel [39]. The rotor motion is represented by the mesh motion of the cylinder mesh, which is
achieved using generalized grid interface (GGI) approach [39]. CFD simulations were performed at
zero yaw angle, but with three degree pitch angle at different uniform inflow wind speeds [39]. Results
from these simulations were matching well with experimental data [39].

Utilizing OpenFOAM for CFD simulations of wind turbines has been done by several researchers.
In addition to the aforementioned research, one could mention the research of Stovall et al. [40] con-
cerning wakes or the research of Kirrkam et al. [25], who simulated a 7.5MW wind turbine within
OpenFOAM.

In addition to the previous applications, there are also different specific applications of OpenFOAM
in the area of wind energy. These are for instance airfoil optimization, see for instance the work of
Schramm et al. [38], floating offshore turbine related research, see Liu et al. [28], vertical axis wind
turbines see Zamani et al. [45] or wind turbine noise modelling see Czajka et al. [7]. This shows
that OpenFOAM is very flexible and due to its open-source approach an active community has been
established, leading to several improvements and new functionalities.

2.4.2. NREL FAST

The National Renewable Energy Laboratory of the United States abbreviated as NREL is actively devel-
oping a wind turbine CAE tool called FAST. It is an aero-hydro-servo-elastic tool capable of simulating
entire (offshore) wind turbines in several operating conditions [23]. FAST is utilised for obtaining per-
formance parameters and doing loads and stability analysis. A major advantage of FAST is that it is
open-source and freely available. FAST has been widely accepted also by industry as it has been
verified and also has been validated by measurements. An overview of FAST is given in Figure 2.3.

2.4. Tools 15

Aerodynamics

FAST:
NREL’s

Computer-
Aided
Engineering
Tool

Hydrodynamics

Control & Electrical
System Dynamics

Structural
Dynamics

—
KT}
[
=
s}
o
o
=
©
[0}
3
h=
[}
o
£
—
£
=
°
e}
b=

Figure 2.3: Overview of FAST [23].

In the most recent version 8 of FAST, a new modularization framework has been introduced. FAST is
composed of several modules each modelling physics through environmental excitations, interactions
and dynamic response. It utilizes low-complexity engineering methods to reduce computational effort,
as such there are simplifications included.

The main modules used within FAST are AeroDyn for rotor aerodynamics, HydroDyn for hydro-
dynamics, ServoDyn for control and electrical system dynamics as well as ElastoDyn for structural
dynamics [23]. Coupling of these modules results in a tool capable of aero-hydro-servo-elastic analy-
sis of wind turbines. Moreover, there is also a module called TurbSim for generating turbulent inflow
wind. The modules interact which each other due to connection of several inputs and outputs. For
instance the generated inflow wind field from TurbSim is forwarded to AeroDyn. AeroDyn then uses
its BEM solver with engineering add-ons to solve for the aerodynamic loads. These in turn are then
communicated to ElastoDyn, whose submodule BeamDyn obtains the deformations of the blade using
beam theory.

Due to the improved modularization in FAST version 8 there is the possibility to exchange modules
by capable modules with similar inputs and outputs. One example is the replacement of the struc-
tural module by MSC.ADAMS [23]. MSC.ADAMS is a commercial software with much higher fidelity
as the structural module of FAST. For instance its DOF are relatively unlimited while the standard
module within FAST has sharp limits on DOF. Similar levels of model fidelity also exist for the other
modules. As such the idea of replacing the low-fidelity standard AeroDyn module of FAST based on
BEM by high-fidelity CFD module has been emerged. There is great value of having a tool with a
certain range of fidelity within modeling of rotor aerodynamics, hydrodynamics, servo-dynamics and
structural-dynamics. This would allow for using an appropriate set of modules with a chosen fidelity
closely related to the application the user wants to model.

The new modularization framework enables improved module sharing and implementations and
with it flexibility as well as more robust and improved performance [23]. In addition, entire wind farm
simulations are now possible by dynamically allocating the respective modules to turbines. The mod-
ules are interchanged by a code coupling interface which acts as a driver program. By communication
of module-independent inputs and outputs the variables required for the calculations of each module
are obtained.

The modules in the new FAST modularization framework are set-up in a state-space formulation.
Thus, every module has certain inputs, outputs, states and parameters. For the aerodynamic module
AeroDyn the inputs are turbine displacements and velocities, while outputs are aerodynamic loads.
In addition, there are states, which are intermediate values, such as the induction factor calculated in
BEM. Then there are parameters which include constants such as the turbine geometry or airfoil data
or nondisturbed inflow wind.

The new FAST modularization framework supports loose and tight couplings of modules [23]. Whereas
in a loose coupling each module uses its own solver for integrating its equations, in a tightly coupled
set-up there is a common solver which does this for the entire set of modules. The advantage of loose
coupling is that it is computational efficient and allows for implementing code, which is written in other
languages from external parties for instance. However, it can lead to numerical problems resulting in
errors. In order to implement loose coupling the modules must share a fixed coupling time step. Tight

16 2. Literature Review

coupling has certain numerical advantages, but requires a developed form which allows for this type of
coupling. In tight coupling modules can have different discrete-time steps, but within each module each
states must share the discrete-time step of the module. If different time steps are applied the coupling
will be achieved by interpolating and extrapolating the inputs and outputs of the module in time.

Within the new modularization framework also different spatial discretizations for aerodynamic, hy-
drodynamic and structural modules are allowed [23]. Each module can thus use its own discretization
appropriate to the pyhsics it must resolve. Different discretizations are mapped by a developed library,
which allows for mapping of one up to three dimensional meshes.

Different modules are coupled by a module interface and coupler [23]. They are directly interfaced
to the module interface and coupler. The module interface and coupler connects the different modules
inputs and outputs, including the mapping of time and spatial discretizations. It acts as a driver to solve
the coupled system and for tight couplings it also integrates the coupled system equations by an own
solver. The resulting data is stored in the module interface and coupler, being the main program.

By allocating multiple instances of several modules entire wind farm simulations are possible. By
coupling of FAST with OpenFOAM multiple turbines representing a wind farm can be modelled. This
modelling includes the aeroelastic turbine interactions as well as wake and array effects modelled
through OpenFOAM as a result of the layout of the wind farm.

A software which couples OpenFOAM to FAST for the aforementioned purpose is Simulator fOr
Wind Farm Applications (SOWFA), also developed by NREL [4]. However, SOWFA has not been re-
leased for the new modularization framework within FAST version 8 at the time of this report. Notice
that for this purpose OpenFOAM is mainly utilized for wind farm aerodynamics, while the turbine aero-
dynamics are still resolved by actuator line turbine models coupled with the turbine dynamics model of
FAST.

2.4.3. MpCCI Code Coupling Interface

In multi-physics problems such as fluid-structure interaction of wind turbine blades, simulations from
several disciplines need to be included. Therefore, either one tool can be used including a multi-
physics formulation or multiple tools can be coupled, where each code corresponds to one discipline.
For instance a coupling of a CFD code with a CSD code accounting for fluid-structure interactions is
possible. An overview of MpCCl including available codes for coupling is given in Figure 2.4.

System Models Radiation —
« Flowmaster Electromagnetics
« TAl Therm « JMAG
e e——— « Matlab Po ——
Fluid Dynamlcs « EMI for Co— - o Flux
« FINE/Turbo Simulation « ANSYS Emag
FINE/Open _
¢ Ansys Fluent
» Star-CD
* OpenFOAM
« Star—-CCM+ ,
= e
., g :)
/ Multibody Simulation
Structural Analysis + MSC Adams
« Abaqus « SIMPACK P =

« Ansys Mechanical

. Mgg Nastran Inhouse Codes
CMSCMare « APl to MpCCl

Figure 2.4: Overview of the MpCCI coupling possibilities.

To couple such different codes a code coupling interface is required acting as the driver and main
program. The MpCCI code coupling interface is acknowledged as a standard for this simulation code
coupling [43]. Itis actively developed by Fraunhofer SCAI.

MpCCl is a coupling interface which accounts for the mapping of data between different meshes

2.5. Summary 17

of several simulation codes in a coupled domain [43]. The mapping is performed through interpolation
and allows for any kind of data exchange. It is relatively independent of the exact application as it fully
supports several codes, which can be chosen by the user according to the problem. The codes to be
coupled mostly do not have to be adjusted as MpCCI code adapters directly connect to their application
programming interface (API). Thus, commercial codes such as for example ABAQUS, Ansys or Fluent
can be coupled as well as in-house developed codes.

MpCCI in version 3 uses code adapters for each code which shall be coupled [43]. These code
adapters consist of a coupling manager, a communication client and a code driver, which drives the
code forward. The coupling manager accounts for the runtime behaviour by reading the model setup
and during coupling it controls the boundary conditions of model regions obtained from other codes.
The code driver is connected to the coupling manager and the data structures of the code to be coupled.
The driver is the only component in the code adapter which is specific to each coupled code as it must be
able to access the data of the code. Furthermore, there is a communication client which communicates
the data via network to the MpCCI server, where several code adapters are interfaced.

The simulation is configured within the MpCCI GUI, where start and stop environment variables of
the simulation are set up as well as which regions to be coupled [43]. Common coupling problems which
can be set-up using MpCCI and coupled codes are for instance FSI problems, where a deformable
structure, such as for example a flap deforms due to exerted fluid forces. In addition, thermo-electrical
couplings, structural-structural couplings up to N-code couplings with several coupling codes can be
solved.

2.5. Summary

At first, BEM has been reviewed as a heavily used modelling approach in rotor aerodynamics. BEM is
a low-fidelity method in principle only valid for steady two-dimensional flow, it uses engineering add-ons
for more universal operational situations [37]. Within its methodology it combines both blade element
theory and momentum theory. By convergence of the induction factors, it is indicated that the obtained
thrust and torque from both momentum and blade element calculations are equal [12]. Thus, a solution
for thrust and torque is obtained using an iterative convergence scheme.

In contrast to this CFD is a high-fidelity, but also highly complex method to implement and to be run.
It solves the Navier-Stokes equations, thereby it is generally deemed more accurate. However, due to
its complexity it requires huge computational time and also larger set-up time, such as for instance a
finite volume mesh needs to be generated first. Its approach includes accurate turbulence modelling.
Different turbulence models exist such as RANS, LES, very large eddy simulation (VLES), DES or
delayed detached eddy simulation (DDES) for instance. In wind turbine CFD it was found that mostly
RANS is applied. CFD may still deliver accurate results for unsteady situations such as extreme yaw
or power shutdown. Furthermore, it was found that it does not require airfoil data such as lift and drag
polars, which is different compared to BEM.

Next to the previously mentioned methods, BEM and CFD, other methods exist. These were found
to be, for instance, actuator disc and line models as well as vortex wake models.

It was found that for wind turbine modelling both a structural solver as well as a fluid solver is
required. This is due to interaction between the fluid and the structure, which is a result of the flexibility
of the structure. Thus, a simple CFD calculation without structural modelling cannot be accurate for
large turbines, where huge structural deformations are interacting with the flow. As such, the fluid-
structure interactions need to be carefully modelled.

Within a short review on wind turbine elasticity it was found that similarly to rotor aerodynamics
methods with lower as well as with higher complexity and fidelity exist. The most common methods
for wind turbine structural modelling seem to be MBD, FEM as well as the lumped parameter method
and modal analysis. The MBD approach is very popular and as such also implemented in most wind
turbine simulation tools such as HAWC2, FAST or Bladed for instance. FEM is commonly used for the
blades using simplified methods, such as Euler—-Bernoulli beam theory for example. Moreover, FEM
may also be applied using specialist software such as NASTRAN. The lumped parameter method and
modal analysis were found to have more specific applications. Within wind turbine simulation tools
most commonly a MBD method is used, while the blades are modelled as beam elements through
FEM.

Besides aerodynamic and structural modelling, the existence of the controller will have great influ-

18 2. Literature Review

ence, which must be included in wind turbine modelling. Therefore, for full aero-servo-elastic compu-
tations the three ingredients of aerodynamics, servodynamics and elasticity must be coupled. It was
found that the state-of-the-art approach for this modelling is based on coupling MBD and BEM including
the controller. Due to BEM limitations in recent years new approaches based on CFD have emerged.

In the literature review part on FSI coupling methods for wind turbine simulations, see Section 2.3, it
has been shown that different coupling methods exist for coupling of high-complexity CFD to structural
solvers. Within the previously named Section 6 different approaches to couple CFD with structural
solvers were reviewed.

A relatively similar approach to a coupling of FAST with OpenFOAM is the coupling of HAWC2 with
EllipSys3D such as achieved by Heinz et al. in [14]. This is due to the reason that both, FAST and
HAWC?2, are popular wind turbine simulation tools and OpenFOAM may be compared to EllipSys3D.
Moreover, these are heavily used tools in the field of wind energy.

Within the choice of CFD codes for the six reviewed coupling methods it seems that most of them
include RANS models. Although, the code used by Li in [26] is also capable of DES and Corson et al.
used DES for transient simulations, see [6]. Coupling methods utilizing CFD codes which use DDES,
LES or VLES have not been investigated. Even though such coupling methods may exist, these seem
to be not the first choice of models. In addition, most CFD codes are including the k —w SST turbulence
model. Corson et al. showed that decent results may also be obtained by using the Spalart-Alimaras
model, see [6].

For utilizing CFD, meshes needed to be generated first. Most researchers used commercial soft-
ware or in-house software for this task. However, the generated meshes looked all quite similar being
composed of a background mesh and highly refined mesh around the blade.

Similarly, different approaches for dynamic mesh motion were implemented, for instance a three
step method used by Carrion et al. [2], or a new developed approach by Corson et al. [6]. In addition,
interpolation and integration technique has been used by most researchers for relating the forces from
three dimensional CFD mesh to one dimensional beam elements, representing the blade in structural
solvers.

For the structural solvers different approaches were used within the coupling methods. The codes of
Yu and Kwown were based on FEM using Euler-Bernoulli beam elements, see [44]. Similarly, Carrion
et al. [2] used FEM by including the commercial code NASTRAN. Moreover, Corson et al. [6] used
a modal shape functions approach for the structural computations. Structural solvers based on MBD
were used by Heinz et al. [14] and Li [26].

The methods, which have been investigated for accounting for FSI in wind turbines, mainly use
a partitioned approach. Thus, the fluid and structure are solved sequentially by different solvers and
information is communicated between them. For the communication a coupling method is implemented.

Although, all methods investigated make use of coupling, the coupling used by the researchers
for the codes is different. While most researchers explicitly couple two different codes (partitioned
coupling), see for instance the approaches of Li [26] or Heinz et al. [14], Carrion et al. [2] utilize both
a CFD and CSD solver implemented in one single code namely HMB2. Similarly Corson et al. [6]
and Horcas et al. [15] implemented a CSD method within AcuSolve, resepctively FINE/Turbo. These
approaches can be summarized as including a CSD solver into a CFD code to account for the FSI.
Then, no coupling between possible different programming languages in CSD and CFD codes must
be achieved, thus simplifying the coupling effort.

Furthermore, the coupling methods present are different in terms of loose and tight couplings. Li
[26], Yu and Kwon [44] and Heinz et al. [14] used a loose coupling method, which might also be related
to their partitioned approach with different flow and structural codes. In contrast to that Carrion et al.
used a tightly coupled method, see [2].

Finally, the tools to be coupled (FAST and OpenFOAM) and the coupling interface MpCCl have been
reviewed. OpenFOAM was found to be a relatively flexible library, which allows to solve different specific
physical problems. In wind energy it is mainly used for modelling aerodynamics using CFD. NREL
FAST was identified as aero-hydro-servo-elastic wind turbine design tool being highly modularized. Its
state-of-the-art aerodynamic model called AeroDyn is based on BEM. Moreover, the neutral interface
MpCCI has been investigated as a highly flexible tool for coupling different discipline codes to solve
multiphysical problems.

2.6. Discussion 19

2.6. Discussion

Within this literature review several studies and methods have been analyzed leading to a discussion
within this section. Within the discussion a reasoning for selecting several particular methods used in
the project is given.

The literature review section on rotor aerodynamics leads to the reasoning that there is a clear
advantage for the high-fidelity CFD over low-fidelity BEM in terms of accuracy, see 2.1. This was found
to be the case as BEM is an engineering method only valid for two dimensional steady flow in principle,
see [37]. However, within BEM engineering add-ons are applied, which are not always exact for the
different operating conditions, especially in extreme conditions such as yawed inflow or emergency
shutdown cases. It was found that BEM is heavily used within industry and research, especially due
to its low computational effort while generating relatively reliable results. As such it is the state of the
art by being implemented in most wind turbine design tools such as FAST, HAWC2 or Bladed. These
tools are also used by wind turbine manufacturers, which of course also develop their own versions,
as such Siemens for instance created the BEM-based BHawC.

The great advantage of BEM was found to be its low computational time while still being relatively
accurate. However, due to its assumptions it was found that there might be problems with the accuracy
for the new generation of turbines. For these turbines aerodynamic phenomena such as Mach number
effects may occur for which BEM is not yet verified, see [36].

In contrast, the usage of CFD has been increased in recent years especially in research, while
in industry its usage is still limited by the computational time making it unfeasible for entire IEC load
calculations for instance. As such CFD is in industry mainly used for specific detailed design, for
example think of airfoils, but not for entire wind turbine load calculations. Although the drawback of huge
computational costs is present in CFD, it is expected that a CFD method integrated into a wind turbine
design code such as FAST may lead to improvements. These improvements include the possibility of
advanced detailed design, for instance of future turbines including modelling of slats and flaps, using
CFD coupled to structural solvers. This gap was identified and reveals the motivation of this project. In
addition, findings from these advanced methods may be related back to the engineering methods such
as BEM. Thus, increasing the accuracy of engineering add-ons by using results from more advanced
methods may be a future benefit, which could be dealt with in a future research project for instance.

Finally, through systematically reviewing studies of CFD based FSI methods for analyzing wind
turbines several approaches have been identified. Therefore, it can be questioned what the added
value of a coupling method between FAST and OpenFOAM is. Moreover, how could this coupled
method be related, in terms of what will be used from the previous research that has been done?

Overall, it was found that most of the implemented coupling methods were based on codes which
are not freely available, neither are they open-source. The codes, which will be used in this project, are
mostly freely available (FAST and OpenFOAM). Although, the coupling environment (MpCCl) requires
a license. Both codes (FAST and OpenFOAM) can be accessed and modified. In addition, both of them
have gained a high reputation in recent years in wind energy research. Especially FAST is nowadays
a very popular design tool, which is also heavily used by industry. Therefore, it was chosen to base the
CFD-CSD coupling on these two codes.

The differences within the reviewed approaches are mainly related to the chosen coupling schemes
as well as the fluid and structural solvers. Although CFD has been used within all studies, the chosen
turbulence model was different. It was found that both RANS with either k — w SST or Spalart-Allmaras
turbulence modelling as well as DES a combination of RANS and LES have been used. The actual
tools for CFD were all different, showing that there is a good amount of CFD software available. In
addition, different tools for meshing were used and several techniques for implementing dynamic mesh
motions were employed.

The CFD tool within this research will be OpenFOAM, which is the main CFD tool at Fraunhofer
Institute for Wind Energy and Energy System Technology (IWES) and ForWind. The chosen turbulence
modelling approach will be RANS to resolve the blades (or a combined DES method) using k —w SST,
respectively Spalart-Allmaras modelling, as both were found to be a solid approach being heavily used
in recent years.

The mesh will be generated similarly to the studies consisting of a background and refined pitch
mesh around the blade. Moreover, dynamic mesh motion will be integrated by using the arbitrary mesh
interface (AMI) technique as well as specific point translations and rotations accounting for the elasticity
of the blade. Therefore, the available work of Rahimi et al. [34], Daniele [8] and Dose et al. [9] will be

20 2. Literature Review

modified for these tasks.

Concerning the structural solver, the most used modelling methods within the studies include FEM
using beam elements for blade modelling. Also MBD and lumped parameter methods have been
used. As for the CFD codes, the used CSD tools were different. The chosen structural solver is either
ElastoDyn or BeamDyn as implemented in FAST. ElastoDyn utilizes an MBD approach except for the
blades which are resolved based on Euler-Bernoulli beam theory. BeamDyn uses a combination of
MBD with a refinement at the blades, which are modelled by an FEM method called GEBT, see [42].

In terms of coupling approaches mostly partitioned methods combining two different CFD and CSD
tools were used within the reviewed studies. The actual coupling was established by preferably using
a loose coupling method, due to reduced computational and programming effort. However, there were
also methods using a tightly coupled approach. Within this research project a loose coupling partitioned
method will be used, mainly due to the reason that a loose coupling method is easier to implement.
This is especially the case if a neutral interface such as MpCCI can be utilized. The codes (FAST and
OpenFOAM) remain relatively untouched allowing for possible updates. In addition, one has to admit
that developing a tightly coupled method is not a simple task, which may not be appropriate for such a
research project with limited time available.

Finally, the review on the chosen tools such as FAST, OpenFOAM and MpCCI showed that this
choice of tools seems to be reasonable. This is due to the case that these tools function similar to tools,
which already have shown a working coupled CFD-CSD method. Think for instance of the HAWC2CFD
method which includes the coupling of HAWC2 and EllipSys3D. As such it was found that due to the
new modularization within FAST and the great community tools within OpenFOAM the coupling can be
achieved by using the well established neutral interface MpCClI.

Wind Turbine Simulation Cases

Two different turbines will be simulated. The first simulated turbine is the NREL phase VI turbine,
which was used due to the reason that for this turbine a large set of measurement data is available. As
such simulation results in yawed and pitched operational conditions could be validated against similar
measurement sets. To address the effect of a fully functional controller and highly elastic blades the
NREL 5MW turbine has been simulated at a second stage.

In this chapter first an overview of the specifications for the two different turbines to be simulated
is given, see Section 3.1. Afterwards the simulations to be performed are discussed in Section 3.2.
The simulations are based on currently existing methods such as FAST (BEM) and OpenFOAM (CFD),
explained in Chapter 4, as well as the developed FAST-OpenFOAM coupled method, called fastFoam,
see Chapter 5.

3.1. Turbine Specifications

The specifications of the two different turbines are presented within this section. First the smaller NREL
phase VI is elaborated. Afterwards the NREL 5MW is discussed, which is closer to a state-of-the-art
turbine nowadays.

3.1.1. NREL phase VI

The turbine which will be simulated first is the NREL phase VI turbine, see Figure 3.1. It was used
for a large measurement campaign in the NASA Ames wind tunnel in the year 2001, see [30]. Due to
the availability of the experimental data it has been heavily used in wind energy research for validation
purposes.

21

22 3. Wind Turbine Simulation Cases

Figure 3.1: The NREL phase VI turbine in the NASA Ames wind tunnel [30].

It is a two bladed stall regulated turbine. Its main specifications are given in table 3.1 and the
distribution of chord and twist are shown in table 3.2.

Table 3.1: NREL phase VI turbine specifications [30].

Parameter Value/Property
Number of blades 2

Rotor diameter 10.058 m
Hub diameter 1.016 m
Hub height 12.192 m
Rated power 19.8 kw
Rotor overhang 1401 m
Tilt angle 0 deg
Cone angle 0 deg
Configuration upwind
Power regulation stall
Rotor speed 71.63 rpm

Blade tip pitch angle 3 deg

Table 3.2: NREL phase VI blade chord and twist distributions [30].

Radial distance r (m) Span station (r/5.029) Chord length (m) Twist (deg) Airfoil

0.508 0.100 0.218 0.000 Cylinder

1.510 0.300 0.711 14.292 NREL S809
2.343 0.466 0.627 4.715 NREL S809
3.185 0.633 0.542 1.115 NREL S809
4.023 0.800 0.457 -0.381 NREL S809
4.780 0.950 0.381 -1.469 NREL S809
5.029 1.000 0.355 -1.815 NREL S809

3.1.2. NREL 5SMW
The second turbine to be simulated is the NREL 5MW turbine, see Figure 3.2.

3.1. Turbine Specifications

23

Figure 3.2: The NREL 5MW turbine rotor geometry.

It was defined by Jonkman et al. in [22] and since then has widely been recognised as a reference
turbine in the wind energy research community. It is a three-bladed multimegawatt upwind turbine with
variable-speed and variable-pitch control. One drawback compared to the NREL phase VI turbine is
that this turbine has only been defined conceptually, but was never manufactured, thus no experimental

data exists.

Similarly, the specifications of the NREL 5MW turbine are given in table 3.3 and the corresponding
chord and twist distributions are shown in table 3.4.

Table 3.3: NREL 5MW turbine specifications [22].

Parameter

Value/Property

Number of blades

Rotor diameter

Hub diameter

Hub height

Rated power

Rotor overhang

Tilt angle

Cone angle
Configuration

Control

Cut-in, rated, cut-out wind speed
Cut-in, rated rotor speed
Rated tip speed

3

126 m

3m

90 m

5 MW

5m

5 deg

2.5 deg

upwind

variable speed and collective pitch
3 m/s, 11.4 m/s, 25 m/s
6.9 rpm, 12.1 rpm

80 m/s

24 3. Wind Turbine Simulation Cases

Table 3.4: NREL 5MW blade chord and twist distributions [22].

Radial distance r (m) Span station (r/63) Chord length (m) Twist (deg) Airfoil

2.867 0.046 3.542 13.308 Cylinder
5.600 0.089 3.854 13.308 Cylinder
8.333 0.132 4.167 13.308 Cylinder
11.750 0.187 4.557 13.308 DU40_A17
15.850 0.252 4.652 11.480 DU35_A17
19.950 0.317 4.458 10.162 DU35_A17
24.050 0.382 4.249 9.011 DU30_A17
28.150 0.447 4.007 7.795 DU25_A17
32.250 0.512 3.748 6.544 DU25_A17
36.350 0.577 3.502 5.361 DU21_A17
40.450 0.642 3.256 4.188 DU21_A17
44.550 0.707 3.010 3.125 NACA64_A17
48.650 0.772 2.764 2.319 NACAG64_A17
52.750 0.837 2.518 1.526 NACAG4_A17
56.167 0.892 2.313 0.863 NACAG4_A17
58.900 0.935 2.086 0.370 NACAG4_A17
61.633 0.978 1.419 0.106 NACA64_A17

3.2. Simulations
Both aforementioned Turbines will be simulated with three different methods. These are namely the
CFD method based on OpenFOAM, such as described in Section 4.1 of Chapter 4 and the BEM-
based FAST simulations, see Section 4.2. Finally, simulations were executed with the developed FAST-
OpenFOAM coupled method, described in Chapter 5.

The simulations can be arranged into several categories, depending on the type of simulation if a
controller and/or structural solver is included. These defined categories are shown in Table 3.5.

Table 3.5: Categories of test cases to be considered for comparison.

Category: Aero Aero-servo Aero-elastic Aero-servo-elastic
Torque control No Yes No Yes
Pitch control No Yes No Yes
Elasticity No No Yes Yes

Next, a simulation matrix was defined based on the two turbines and the three different methods
to be investigated. The test matrix is shown in Table 3.6. The simulation cases for the NREL phase
VI turbine (case 1 to 4) are matched to the experimental cases such as described in [30]. They follow
exactly the same setup as used in the unsteady aerodynamics experiment.

The first case relates to the test sequence S0700000, which considers the rotor in normal power
production at 0 deg yaw and a constant pitch of 4.815 deg. The second test case considers the experi-
mental sequence SO07YSUO0O0, which relates to a 360 deg yaw sweep, but due to limits in computational
time only 30 seconds are simulated. This equals a yaw sweep from 0 to 30 deg at a yaw rate of about 1
deg/s. Finally, the third case corresponds to the sequence RO600RDO in the experiment. For this case
the pitch angle is increased at a rate of about 0.18 deg/s. The starting value of pitch was taken as 4.815
deg again. In addition, in case 4 a partial power curve test case is obtained by different simulations at
several wind speeds below the stall regime. This was done in order to investigate the convergence at
different wind speeds.

The second stage (case 5 to 6) deals with simulations of the NREL 5MW turbine. Case 5 considers
the normal power production. The initial yaw error for this case is zero. However, in the aero-servo-
elastic simulations yawing due to the activated controller is allowed. In case 6 the yaw error is fixed
to 30 deg and yawing motions of the rotor are not allowed. Both cases 5 and 6 are simulated with
ElastoDyn as a structural solver for the blade.

The purpose of these different test cases was to be able to compare the three methods both in
steady as well as unsteady operational conditions such as highly yawed inflow. This should then be

3.2. Simulations

25

helpful to answer the research questions to be answered. The results for the different cases are shown

in Chapter 6.
Table 3.6: Simulation matrix for the considered cases.
Case Turbine Method Category Description Experiment Structure
1(@) phaseVl OpenFOAM Aero Normal cond. S0700000 Rigid
1(b) phaseVIl FAST Aero-elastic Normal cond. S0700000 ElastoDyn
1(c) phaseVI fastFoam Aero-elastic Normal cond. S0700000 ElastoDyn
2 (a) phaseVl OpenFOAM Aero Yaw sweep S07YSUO0 Rigid
2 (b) phaseVIl FAST Aero-elastic Yaw sweep S07YSUO0 ElastoDyn
2 (c) phaseVIl fastFoam Aero-elastic Yaw sweep S07YSUO0 ElastoDyn
3(a) phaseVl OpenFOAM Aero Pitch slope RO600RDO Rigid
3(b) phaseVIl FAST Aero-elastic Pitch slope RO600RDO ElastoDyn
3(c) phaseVI fastFoam Aero-elastic Pitch slope RO600RD0O ElastoDyn
4 (a) phaseVI OpenFOAM Aero Power curve Several Rigid
4 (b) phaseVIl FAST Aero-elastic Power curve Several ElastoDyn
5(@) 5MW OpenFOAM Aero Normal cond. None Rigid
5(b) 5MW FAST Aero-servo-elastic Normal cond. None ElastoDyn
5() 5MW fastFoam Aero-servo-elastic Normal cond. None ElastoDyn
6(a) 5MW OpenFOAM Aero Fixed yaw error None None
6 (b) 5MW FAST Aero-servo-elastic Fixed yaw error None ElastoDyn
6(c) 5MW fastFoam Aero-servo-elastic Fixed yaw error None ElastoDyn

Available Methods

In this chapter two of the currently available methods for wind turbine simulations are presented. First
of all, in Section 4.1 the simulations based on OpenFOAM are described. OpenFOAM contains multiple
high fidelity CFD solvers with RANS, LES or even DES possibilities. However, for wind turbine simula-
tions purposes its standard integrated capabilities are limited as a fluid solver. In contrast, the CAE tool
FAST from NREL is capable of executing aero-hydro-servo-elastic simulations. The tool is especially
tailored for horizontal axis wind turbine simulations. lts aerodynamic simulations are based on a lower
fidelity BEM model, which allows for a computational efficient approach. The wind turbine simulations
using FAST are described in Section 4.2. Both tools are essential for the developed coupled method,
which is later presented in Chapter 5.

4.1. OpenFoam Simulation Method

In the following section the method for simulating wind turbines with OpenFOAM is described. This
includes the exact procedure which was carried out within this project concerning the simulations of
the NREL phase VI and SMW turbines. First of all the meshing strategy, see Section 4.1.1, is discussed.
Afterwards, the approaches to account for motions (Section 4.1.2) are presented. Finally, the applied
simulation setup, see Section 4.1.3, concerning the OpenFOAM simulations in Table 3.6 is presented.

4.1.1. Mesh Generation

Before solving the Navier-Stokes equations using OpenFOAM or another CFD software first a mesh
or grid of often complex geometries such as wind turbines needs to be generated. The governing
equations are then solved in discretized form on the mesh, where it is assumed that the resulting
solutions are constant over one cell. A mesh within OpenFOAM can either be generated using built-in
functions or using external software and importing the externally generated mesh. There are specific
requirements on these meshes in order to successfully implement them.

These requirements are for instance the ability of representing motions applied on a geometry by
dynamic mesh motion. Generally, it is aimed to generate a high quality mesh, which has a appropriate
level of refinement in order to ensure that flow phenomena such as stall can be accurately reproduced.
However, the mesh should not be too fine to limit the computational effort.

Therefore, the mesh for a wind turbine simulation using CFD has requirements on certain regions.
For instance the region around the blades have to be represented by a very fine mesh to account for
aerodynamic phenomena acting at the complex geometries. For instance, the effect of shed vorticity
at the trailing edge and the strong tip and root vortices must be accounted for. In contrast to this
highly refined regions, there are regions with a distance of several rotor diameter in the rotor plane,
which account only for the surroundings and do not include the wake. These regions are generally of
lower refinement as their distance to the rotor is large enough and therefore no complex aerodynamic
phenomena are acting there. In addition, the wake region must be relatively refined especially in the
near wake, whereas in the far-wake not a very high refinement is required as the inluence of the rotor
is smaller.

27

28 4. Available Methods

Different types of meshes can be distinguished such as structured and unstructured mesh types.
Whereas structured meshes consist of hexahedral cells, unstructured meshes are mainly composed
of tetrahedrons. Structured meshes often result in high quality, but they are more difficult to generate
especially around complex geometries. In contrast to that, unstructured meshes can be generated
relatively fast. However, the resulting mesh quality may be not as good compared to the resulting
quality of structured meshes.

4.1.1.1. Mesh Tools

Built-in utilities for mesh generation in OpenFOAM are blockMesh, explained in the following paragraph
and snappyHexMesh, which is described later in this Section. Following the block decomposition ap-
proach blockMesh divides the domain into several regions of blocks. However, due to the block ap-
proach there exist problems when complex geometries have to be dealt with. Such geometries include
the sharp trailing edges of airfoils for instance [34]. Therefore, a large amount of blocks is required
to account for these complex geometries, which by manual set-up is a time-consuming exercise to
achieve [34]. Also by using snappyHexMesh utility no fully automated procedure can be used [34].
Thus, generating a wind turbine mesh can be a complicated task.

BlockMesh The OpenFOAM utility blockMesh is utilized for generating meshes composed of blocks
including curved edges and mesh grading [41]. Therefore, the mesh is generated fromablockMeshDict
dictionary file located in the constant/polyMesh directory of the case by running the blockMesh
command in the case directory. This blockMeshDict may be automatically generated by using the
GNU preprocessor m4. It alows for changing the blockMesh parameters such as vertices, edges,
blocks and boundaries more practically.

BlockMesh divides the domain for which a mesh shall be created into several blocks, which mostly
have hexahedral shape. The hexahedral block shape is derived from the block definition which re-
quires 8 vertices at each corner. However, also for instance tetrahedral block shapes may be obtained
by overlapping of vertices pairs onto each other. In general hexahedral blocks are preferred over tetra-
hedral ones as they result in possibly high quality structured meshes and allow for mesh refinement via
the OpenFOAM refineMesh command. The edges of these blocks can simply be straight or curved
lines, but also splines, allowing for every possible curvature, may be used.

At a first step, vertices are defined in a three dimensional Cartesian coordinate system. The vertices
are automatically labelled starting from 0 according to C++ convention [41]. For 2D simulations the third
dimension, which always at least has the depth of one block, is ignored by setting proper boundary
conditions.

Next, the hexahedral blocks can be defined by calling 8 vertex labels per block via the hex function.
Attention needs to be taken on the way these labels are called. Within blockMesh the convention holds
that looking from the inside of the block the vertices must be traversed in a clockwise manner along
each face [41]. In addition, the number of cells in the direction of the three local coordinate axes, given
by the right-handed local block coordinate system with its origin at the first vertex, must be specified.
Also a grading for each direction can be applied if appropriate. A single block constructed from 8
vertices is shown in Figure 4.1 for clarification. The corresponding main parts of a blockMeshDict
for the single block such as shown in Figure 4.1 is given in Listing A.1 in Appendix A.

4.1. OpenFoam Simulation Method 29

0 X1 O» 1

Figure 4.1: Example of a block generated with blockMesh [41].

Moreover, special edges with curvature can be specified. Two vertex points are automatically as-
sumed to be connected by a straight edge. If this should not be the case the edges can be set as arc,
where a single interpolation point is needed or as spline, polyLine or BSpline where multiple
interpolation points are required [41].

Finally, mesh boundaries can be specified, which are given by patches composed of a number of
block faces. Later specific boundary conditions on these created boundaries can be applied for the
governing flow variables. A boundary is given a certain name for instance inlet and a certain type for
example the more general patch or wall. Also cyclic boundary types, which are substantial for certain
types of mesh motions are specified here. To specify a boundary via patches the block faces are called
in a list, where each entry consists of 4 vertices corresponding to the face of one block [41].

For nearly all problems the generation of one block is not sufficient due to the complex geometries
to be modelled. Therefore, several blocks have to be generated and need to be connected between
each other. Within blockMesh there are two distinguished approaches to connect blocks. First of all,
face matching can be applied, meaning that neighbouring blocks share the same faces by calling the
same vertices. By ignoring these faces from the patch entries, blockMesh automatically identifies them
as internal faces between the neighbouring blocks [41].

In addition, face merging might be used. In contrast to face matching within face merging different
sets of vertices are used. These are then added to the list of patches with a separate patch entry for
each block. Finally, the function mergePatchPairs is called to merge both patches. This proce-
dure follows a technique, where one patch the so called master patch remains as defined including its
vertices, whereas the faces of the slave patch are projected onto the master patch [41]. As such an
internal face is constructed. This allows for simple merging of patches, but a disadvantage is that at
the overlap some polyhedral cells may be generated.

BladeBlockMesher An example of an automated mesh generation tool for wind turbine blades uti-
lizing blockMesh is provided by Rahimi et al. in [34]. It models the mesh around a wind turbine blade
based on the geometrical shape of airfoils at several blade sections. It is claimed to have a complete
automation and fast mesh generation resulting in high quality meshes. Therefore, it uses adjustments
for the dimensionless wall distance based on the Reynolds number of each blade section.

In addition to the airfoil geometry, the spanwise position, section chord length and twist angle as
well as the alignment point of each section to the pitch axis must be delivered by the user [34].

The tool then generates a two dimensional O-mesh at each blade section based on the provided
geometrical data as well as configuration parameters related to the refinement of the mesh for instance
[34]. This generation utilizes a hyperbolic partial differential equation solver. First, the airfoil surface
is generated by a discrete number of points and by subsequently marching outwards the O-mesh is
formed.

As a next step, the generated two dimensional O-mesh at each sections are interpolated in between
each other using a special procedure, in order to generate a three dimensional mesh around the blade,
see Figure 4.2. Therefore, a finite difference approach for arbitrarily spaced meshes according to

30 4. Available Methods

Fornberg is used [34]. By generation of splines between different blade sections the blade shape is fitted
and smoothed. Afterwards, it is corrected for cell non-orthogonality by checking the perpendicularity of
the cells close to the blade surface.

rim] | c(m) | 6ldeg| | p[%] | *datfile | Re[-] | y*[-] %%%
;3

Figure 4.2: The process used within BladeBlockMesher generating a blade mesh from two dimensional O-meshes [34].

Attention needs to be taken on the blade tip, which is smaller in geometry and thus may result in
larger cell density [34]. There are two methods which can be utilized to solve this problem. Either a flat
tip closure or a rounded tip closure can be applied by the user.

Finally, the generated three dimensional mesh is obtained as a cylinder with a flat or spherical top
surface including the blade [34]. For the background mesh consisting of the domain around the wind
turbine and structure such as hub or nacelle, an external script must be used. The resulting mesh
around the blade, which is in the form of a blockMesh dictionary, can then be assembled to a rotor by
accounting for the number of blades.

Using the tool a mesh for the NREL phase VI turbine was generated [34]. Next, validation and
verification was executed by a mesh independence test and comparing CFD results based on Open-
FOAM and the generated mesh to measurements and other CFD results. The comparison showed
good agreement and as a result it is assumed to significantly reduce the time for mesh generation.

SnappyHexMesh The second built-in mesh generation utility within OpenFOAM is snappyHexMesh.
It constructs three dimensional hexahedral or split-hexahedral cells from triangulated surface geome-
tries, which must be delivered by the user in specific file formats. These file formats include Stere-
olithography (STL) or Wavefront Object (OBJ), which can for instance be exported from computer-aided
design (CAD) software [41]. In addition to the required tri-surface files a starting mesh or background
mesh needs to be given. It can be generated using blockMesh and must only consist of hexahedral
cells, thus being structured. Moreover, a snappyHexMeshDict file is required in the system folder
of the case. Within this dictionary the meshing process of snappyHexMesh is controlled.

Finally, the actual meshing process of SnappyHexMesh can be executed. It uses a cell splitting
technique on the background mesh at locations specifically near the tri-surface geometry. Next, the
corresponding cells in the background mesh are replaced by the tri-surface geometry and thus re-
moved. A certain level of refinement at required locations can be set by the user in order to ensure
that these processes are accurate. Afterwards, vertices which are close to the tri-surface geometry are
snapped onto it to ensure that the surface of the geometry is actually accurately matched.

However, as there might be some irregularities near the surface boundary an additional step may
be conducted depending on the complexity of the surface. This step includes adding of additional
mesh layers after the surface snapping, which may be appropriate if the initial number of layers is not

4.1. OpenFoam Simulation Method 31

sufficient to actually represent the surface geometry. An example of the entire procedure is given in
Figure A.1 in the Appendix A.

4.1.1.2. Mesh for NREL phase VI

First of all, a blade mesh hereafter called pitch mesh for the NREL phase VI turbine was generated.
The name pitch mesh is due to the mesh symmetry allowing it to rotate about the blade pitch axis.
Therefore, the aforementioned utility BladeBlockMesher as described in [34] has been utilized. It gen-
erates a blockMeshDict which can then be processed. For the generation of the pitch mesh different
discretizations were chosen. The chordwise amount of cells and the number of cells normal to the airfoil
were varied, while the spanwise cell number was kept constant.

Table 4.1: Different generated pitch and final meshes for the NREL phase VI turbine.

Mesh: Baseline Coarse Fine
Chordwise cells 275 250 300

Cells normal to Airfoil 40 30 50
Spanwise cells 90 90 90

Cells for pitch mesh 1,331,840 854,280 1,904,800
Total cells 9,563,440 6,719,220 13,025,796

The blade was meshed in BladeBlockMesher with a rounded tip, although in the NREL phase VI
experiments partly a flat tip for the blade was used, see Hand et al. in [30]. The choice of a rounded tip
is justified as the generated mesh by BladeBlockMesher is of much higher quality with a rounded tip.
For the flat tip problems, especially non-orthogonalities, will occur at the tip edges due to the sudden
jump in the geometry. The generated pitch mesh is shown in figure 4.3.

1T,

iy

AT
)
177111711
17777111777
I/
LT

IALEEIL

Figure 4.3: The generated pitch mesh with the blade in its centre.

The mesh around the rounded tip can be seen in Figure 4.4.

32 4. Available Methods

-
/) ////
V)

R
0N
AN
W

Y

(.
i
////
,//f’////

.
_

y

Figure 4.4: The rounded tip blade mesh.

After the pitch mesh has been generated the surrounding needs to be taken into account represent-
ing the wind tunnel used within the NREL phase VI experiment. Therefore, an outer mesh hereafter
called background mesh has been generated using blockMesh. A cyclindrical domain was meshed
with approximately the size of the NASA Ames wind tunnel for its cross-section. The domain dimen-
sions can be seen in Figure 4.5, where one diameter corresponds to 5.029 m. The actual wind tunnel
cross-section is rectangular with a size of about 24.4 times 36.6 m, see [32].

45D

Figure 4.5: Dimensions and structure of the NREL phase VI mesh.

4.1. OpenFoam Simulation Method 33

The background mesh consists of the farfield, which does not require special refinement, as well
as the rotor disk, which later incorporates the pitch meshes accounting for the two blades. While the
pitch motion is achieved through pitch rotations of the pitch meshes, the actual rotation of the rotor is
obtained through rotation of the rotor disc. During the meshing process only half of the background
mesh needs to be generated as the other half can easily be obtained by symmetry using OpenFOAM'’s
mirrorMesh utility.

Therefore, only half of the rotor disc, such as shown in Figure 4.5, was generated using blockMesh
and was merged with half of the cylindrical field mesh. The cylindrical field mesh includes a cut-out
for half the rotor disc. One half of the rotor disc such as generated for the background mesh is shown
in Figure 4.5. The cut-out which later fits the pitch mesh is clearly visible. In addition, a cut-out for a
cylindrical hub can be seen.

As a next step the pitch mesh is merged with the entire background mesh using OpenFOAM’s
mergeMeshes tool. Following this procedure the entire mesh is generated. Again for the background
mesh the refinement was varied slightly, especially in the rotor disc and wake regions, in order to obtain
the three meshes with different number of cells in Table 4.1.

It has to be noted that the tower nor the nacelle of the turbine are represented in the mesh as only
the rotor is meshed. This neglection simplifies the meshing procedure by a great amount, but also may
lead to neglections of effects such as tower shadow for instance. The significance of neglecting tower
(and nacelle) will later be adressed within the results Chapter see 6.

o
ritd RS
B KRR
o R
ﬂgﬂ;‘jﬂﬂmﬂzm' KRR i
et ‘ TR Ry
A aAn i i S ey by i
S B Do e e bty
A iy Sy S iy
‘z?",‘:'f \l!n\\\,‘s;“\“«}\\ iy
i

Vi)
an

AT
7
o

W
AR
G
i ?“%%%gurljﬁ A PR
AT o,
G R R
AN oy
AT e VERTA R
AT ! A R oy Ry
A % el i) R Wy
et n!‘c‘;:g, !A""ng?}ir:!':,‘,‘ SRSl g.:;.y.‘»"“‘.\%‘
o AT o
e
R ety
A
i

4

.

R
s

D

,.
-
e
P

i
it

L

e

hat
o

o
-
7
s

LTS
SEr
o

e
S,

2
%

3
£7

T
i

i

o
Z

,,
=
=
5
r f"

me
5
2

0000 A0,
FEERRRRTTRAL]

A

s

A

Ripaers

P A s

Far?

e

e
£

ey,
S
T

s
o

Sy
i,
S
A DEAIAKAL

A

I,
N
G.'%?g;
T ares

Ry,
=k
o

FRERL)

DR acanan,

FETLEAES

ARt

REERERITE

FE SRR

TR

L RN
EE R o, Bpoo 2,88 98, o a
EANI 003N 00000000 000 AR RNE . 8 - B!
RN R AR . 2nan
N0 B3I 008 a0 00BITABRCE - S - - GG

CAAANAINN

S

Ny,
BN)
ot

S e
ATTAANAY,
s
1

15T
LD i)
l‘.h‘.ﬂ:‘ i
z
LV VA
Bl
!

N
NSy
i
i

Figure 4.6: One half of the rotor disc without the pitch mesh.

To show the quality of the mesh a view at a blade section is of interest. Therefore, a slice view
is given in Figure 4.7 at a middle section of the blade. In addition the mesh at the leading-edge,
respectively trailing-edge, is shown in Figures 4.8 and 4.9.

34

4. Available Methods

Figure 4.7: Slice view of the blade at 0.67R.

Figure 4.8: The mesh at the leading-edge at 0.67R.

4.1. OpenFoam Simulation Method 35

=
=
=

———— = = =

—— —— —

== —— —— —————

= —— —
= ‘

S
=
LSS
SCSRSIK
R
AV Y

Figure 4.9: The mesh at the trailing-edge at 0.67R.

In addition, a side-view of a vertical cut is given in Figure 4.10 showing the different refinement zones
of the Mesh. The different levels of refinement in the far field have been obtained using OpenFOAM'’s
refineMesh utility.

Figure 4.10: A vertical cut through the entire NREL phase VI mesh.

4.1.1.3. Mesh for NREL 5MW

The mesh for the NREL 5MW turbine was provided by IWES. It was already used for previous projects
and thus could be reused within this project. Thereby no additional time needs to be spent to generate
a mesh for the NREL 5MW turbine.

The pitch mesh for this turbine was generated again by BladeBlockMesher, see [34]. The structured
mesh consists of 4.5 million cells. The number of cells in chordwise direction is 276. The three pitch
meshes, accounting for the three blades, were merged into a background mesh. The merging was done
using the snappyHexMesh utility of OpenFOAM, as described in Section 4.1.1.1. The final mesh has a
size of 27 million cells. This approach allows for an automatic procedure, which is faster compared to
the approach used for the NREL phase VI. This is due to the reason that the background mesh does not
require specific cutouts for the pitch meshes, as this is accounted for with snappyHexMesh. However,
a drawback of the automized approach by snappyHexMesh is that polyhedral cells are generated and
therefore the final mesh is partly of structured type.

Another difference is that due to this meshing approach no specific rotor disc region is generated.
The rotation of the rotor is then accounted for by a rotation of the entire mesh. Similar to the phase VI
turbine no nacelle or tower is included as this significantly simplifies the meshing procedure. The final
mesh is tilted by 5 degree to account for the tilt angle of the NREL 5MW turbine. This is not shown in

4. Available Methods

36

the Figures.

It has to be noted that for the NREL 5MW mesh no mesh convergence study has been done within
this project, as the mesh was a result of previous projects where such a study was achieved.

The mesh dimensions and its structure are shown in Figure 4.11.

A

itch x3

P

16.3 D

ield

F

A

3D

3

\

Figure 4.11: Dimensions and structure of the NREL 5MW mesh.

hown in Figure 4.12.

IS S

on

f the rotor mesh reg

-View O

A front

R

I,

FATLE

7

=
oo
X

Z
A
AT

7

A7

7

By

.
Vi

2

i
77

77
77

77

75

e
-
i
o
%/A
7

i
o
7
o
o
.
‘fhén

2
o

7

2
.
Z
,
.
.

Y
S
=

AR
L el
Sy

SR L
L R R R e
e R
S
L
- o wzmaﬁ N

.

W
,A’ﬁ/
)

v
.

o

2
7

7
r‘;&'
L
o

;fn‘
i

i
7

TSy Rl AR
= u»w/ﬁpﬁ.anﬂawﬂﬁ» R RN

TR ST AR N e
S DN S R)

Y
gl

s eﬂwuw”.!zwﬁaﬂnuwﬂﬁ»u&m« S mm* »W;

= eE e ..L%mm. .

uw&

= PR e e Gt

EaEee S N e
e s e

o
G

e

B
B e e
anmm“mmmmn“nmﬁﬁmmam.ﬁmﬂi&%aﬁmm%ﬁmwwﬁﬁ?

=
b W&m&mﬁ&ﬁ@ﬁﬁ&«%&&ﬁ A
-
-
.
i e) &m\x
.
.
o
2

i
7

o
o

=

==

17
.

-

=3
=

L
e

s
Siv

-

=
)
Sesan

=5

=
=
S
s

=

=

=
S

=

=

o vw_
.zsu?m?/

—

So

e
s

=

Figure 4.12: Front-view of the rotor of the NREL 5MW mesh.

The side-view of a vertical cut through the entire mesh is shown in Figure 4.13.

4.1. OpenFoam Simulation Method 37

Figure 4.13: A vertical cut through the entire NREL 5SMW mesh.

4.1.1.4. Mesh Quality
To distinguish a high quality mesh from a low quality one several mesh quality indicators are used within
OpenFOAM. These quality indicators refer to the quality of the generated cells and the entire mesh.

For a quick check of the mesh quality the OpenFOAM command checkMesh can be used on a
generated mesh. This command checks the validity of the mesh and reports possible errors or indicates
if attention needs to be taken on possible badly generated cells.

The boundary and maximum cell openness as reported by checkMesh should be of very low value
approaching zero, thus indicating that no open boundaries or cells are included in the mesh. Thus
a closed domain will be simulated. Moreover, the cell aspect ratio describing the ratio of longest to
shortest edge is reported, for an example see Figure 4.14 with the ratio of edge A to B. This value
should generally be limited to the order of hundreds if possible. The ideal value would be one, but this
cannot be satisfied for difficult geometries for example a sharp trailing edge. In addition, checkMesh
investigates possible errors with the face area magnitudes and volumes, for instance it reports an error
if negative volumes are detected.

An important measure of good mesh quality is the mesh non-orthogonality. It is defined by the
angle between a line connecting the cell centres (P and Q) of neighbouring cells and the normal of their
common face (here f). This angle is illustrated in Figure 4.14 for a small non-orthogonality (about 20
deg). The optimal value would be an angle of 0 deg. Critical values which are reported by checkMesh
as severely non-orthogonal lie above 70 deg.

A
éf, B
n

Figure 4.14: The mesh non-orthongality criterion.

Finally, checkMesh also reports the maximum skewness in the mesh. The skewness is derived
from the distance (e) between the intersection of a line (d) connecting two cell centres (P and Q) with
the common face and the centre (C) of their common face as shown in Figure 4.15. It is defined as the
ratio between e and d. Generally, it should be as low as possible, but checkMesh will complain about
highly skewed faces if a threshold of 4 is exceeded.

38 4. Available Methods

ey —
P—q

Figure 4.15: The skewness between two cells.

The resulting overall mesh generated for the NREL phase VI turbine passes the checkMesh com-
mand. The maximum skewness and aspect ratio are 1.7 and 61. The maximum non-orthogonality
is 71.7 deg wile 22 faces show a non-orthogonality higher than 70. However, this is still considered
acceptable as only a small amount of faces have a severe non-orthogonality, which is not extremely
high in magnitude.

Similarly, the NREL 5MW mesh is expected to be satisfactory concerning the mesh quality as docu-
mented by checkMesh. Its maximum skewness is 3.6 and the maximum aspect ratio is 94. The critical
mesh-non-orthogonality criterion of 70 deg is exceeded by about 1700 faces with a maximum of 76.1
deg. Previous projects have shown that the mesh is still acceptable.

A mesh quality comparison between both meshes is given in Table 4.2.

Table 4.2: Mesh quality for the different meshes.

Parameter NREL phase VI Mesh NREL 5MW Mesh
Type Mostly structured Mostly structured
Cells 9,563,440 27,697,518
Percentage of hexahedral cells 99.5 97.5

Max. skewness 1.7 3.6

Max. aspect ratio 61 94

Max. mesh non-orthogonality 71.7 deg 76.1 deg
Severely non-orthogonal faces 22 1697

Min. cell volume 2.73e-10 m3 1.14e-08 m3

4.1.2. Motion in OpenFOAM

There are several possibilities to account for the movement of structures in OpenFOAM. Two main
options exist within OpenFOAM to simulate rotating structures like the wind turbine rotor. First of all,
the multiple reference frame (MRF) method can be used accounting for steady rotations, see Section
4.1.2.1. As an alternative option the user may choose the dynamic mesh approach, which is suitable
for transient simulations as well. This approach is described in Section 4.1.2.2. The chosen approach
especially tailored for wind turbines is then outlined in Section 4.1.2.3.

4.1.2.1. Multiple Reference Frame Rotation

The MRF model accounts for both stationary and rotating frame of references. The mesh is kept
constant, but for the defined rotating zone a solid-body rotation velocity is directly included into the
solution of the Navier-Stokes equations [33]. The Navier-Stokes equations are thus solved differently
for the rotating and stationary zone. In particular, in the equations for the rotating zone the coriolis and
centrifugal forces are included [33].

The MRF method can only model steady rotations. For a wind turbine this modelling technique is
similar to the Frozen-Rotor concept. The resulting flow is of steady nature and does not include any
transient phenomena. This leads to certain disadvantages as for instance interactions between blade
and tower cannot be modelled as well as other unsteady effects.

To apply the MRF method the user needs to supply an MRFProperties file located inthe constant
folder. This file is shown for the case 5 (c) in Listing 4.1. The rotating cell zone can be generated us-
ing the OpenFOAM command topoSet. The cell zone can be described as being defined by certain

4.1. OpenFoam Simulation Method 39

number of cells within the mesh. The rotation is specified by the origin of the rotation, the axis around
which it is rotated and the rotational speed. For the wind turbine simulations a cylindrical region around
the rotor is selected as the rotating cell zone. The patches or boundaries, which are non-rotating are
specified as well.

For the simulations with MRF steady solvers such as simpleFoam, based on the SIMPLE algorithm
see Section 4.1.2.3, can be used. Due to the involved simplifications, these computations are often
first executed to get initial results. Then at the next stage, transient simulations with more advanced
mesh motion techniques including dynamic mesh rotations, for instance using the AMI approach, can
be executed. Therefore, the previously obtained results from the steady solvers can be used as initial
flow field, thereby improving the convergence rate of the transient solvers.

40 4. Available Methods

Listing 4.1: Example of the MRFProperties file used for case 5 (a).

/* — CH+ -—* |
s========	
W\ / F ield	OpenFOAM: The Open Source CFD Toolbox
W / O peration	Version: 3.0.1
[W\ / A nd	Web: www. OpenFOAM. org
\\/ M anipulation	
* */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "constant”;

object MRFProperties;
}

//*************************************//

MRF1

{
cellZone ROTOR;

active yes;

nonRotatingPatches (PITCH_AMI_OUT_0 PITCH_AMI_IN_O PITCH_AMI_OUT 1
PITCH_AMI_IN_1 PITCH_AMI_OUT 2 PITCH_AMI_IN_2 TOP INLET OUTLET);

origin (0 0 0);
axis (0.9961946980917457 0 —0.08715574274765818);
omega 1.2671090355; // rad/s

}

// L R R //

4.1. OpenFoam Simulation Method 41

4.1.2.2. Dynamic Mesh Rotation

Dynamic mesh rotation in OpenFOAM is achieved by moving mesh regions which shall rotate. Thus
at every time a new state of the mesh is obtained and written to the respective time folder. However,
this procedure is computationally far more expensive compared to MRF as every cell respectively point
needs to be updated.

At first, the rotating region needs to be set up specifically. Its interface must be declared as mesh
interface. To declare it as such, the two options cyclic AMI or GGI can be utilized.

The cyclic AMI can be declared easily as only the constant/polyMesh/boundary file and the
files in the O folder need to be adjusted. More specifically, the patch type needs to be setto cyclicaMI.

In contrast, for the GGI approach also facezones need to be specified at the interface. Also both
type of interfaces AMI and GGI may allow for the same motions, although there optimal applications
may be slightly different. AMI is known to be stable also if multiple regions are rotating even in an
overlapping manner. This occurs for instance for a wind turbine, where the blades are rotating about
their pitch axis, while the rotor rotates about the downstream axis. However, the GGI approach seems
to be faster than AMI, see [3].

After having specified the interface as AMI or GGI, the rotations are set-up in the dynamicMeshDict
file in the constant folder. This is done by selecting the region (cellzone), which shall rotate, as
well as the origin of the rotation and the angular velocity.

In contrast to MRF, special solvers such as pimpleDyMFoam are required, which besides solving
the fluid equations also update the mesh at runtime.

4.1.2.3. Wind Turbine Dynamic Mesh Motion

An example for an implementation of dynamic mesh motion in OpenFOAM due to pitch and torque is
given by the work of Daniele, see [8]. The author implemented a hierarchical mesh motion accounting
first for the rotor rotation and secondly for the blade pitch rate [8]. A torque and pitch controller has
been implemented for this [8]. The user therefore needs to supply the torque-speed curve or for the
pitch control a proportional integral control logic, respectively a look-up table [8].

The implementation makes use of the cell zones in OpenFOAM as well as the AMI rotation con-
cept. The pitch control zone mainly consists of the pitch mesh, thus a highly refined zone around the
blade surface [8]. In addition, the torque control zone is the zone spanning the rotor plane with some
dimension in downstream respectively upstream [8]. This zone includes the pitch zone, as the entire
rotor including blades needs to be rotated by the torque [8]. Both pitch and torque control zone are
created as cyclic AMI to account for the mesh rotations.

Following this procedure, the implementation of both pitch and torque control is achieved and result-
ing in mesh motions [8]. However, the author states that the control strategy includes approximations
which may be further mitigated by utilizing control implementations integrated in wind turbine design
codes such as FAST [8]. The motion due to elasticity was not accounted for [8].

The work of Daniele will be used as a basis for the implementation of the dynamic mesh motion
due to the rigid body motions related to yaw, torque and pitch control. Therefore, the mesh motion
implementation has been extended by the dynamic mesh motion due to yaw, which is applied first in
the hierarchy of motions now. The mesh motions are followed by a control action giving the angles or
angular rates of these motions. For simulations only based on OpenFOAM this action is specified as a
look-up table in the dynamicMeshDict file. An example of an excerpt of such a dynamicMeshbDict
file is given in Appendix B, see Listing B.1. For an overview on the utilized coordinate systems see
Figure C.1 in Appendix C. For a coupled approach with FAST these actions (angles) are directly com-
municated from FAST, for details see Chapter 5.

For the generated mesh of the NREL phase VI turbine the control zones are shown in Figure 4.5. It
has to be noticed that while the torque and pitch control zones are defined as cyclic AMI, for the farfield
zone this is not required. This is due to the reason that the farfield zone accounts for the yaw motion,
which can simply be achieved by a rotation of the entire mesh around the vertical axis. For the NREL
5MW mesh the yaw and torque control zones are similar, as the yaw and torque motions are achieved
by full mesh rotations. The remaining pitch control zones for the three blades are related to cyclic pitch
AMI rotations. The control zones for the NREL SMW are shown in Figure 4.11.

An overview of the mesh motions that are used for the simulations using OpenFOAM is given in
Table 4.3. These have all been achieved by the implemented dynamic mesh motion strategy using, a
dynamicMeshDict file similar to the one given in the Appendix B, see B.1.

42 4. Available Methods

Table 4.3: Mesh motions for the different cases to be simulated.

Case Yaw Torque Pitch

1(@) O0Odeg 431.200 deg/s 4.815 deg

2 (@) 1degls 431.137deg/s 4.815deg
(a) 0Odeg 430.383 deg/s +0.180 deg/s
(

(

a) Odeg 72.600 deg/s 0deg
a) 30deg 72.600deg/s 0deg

In Figure 4.16 it is shown how the rigid body motions due to yaw, torque and pitch rotations are
applied to the NREL phase VI turbine. Therefore, the mesh rotations are shown from above the rotor
disc. Notice that the small coordinate system in Figure 4.16 indicates the wind direction, which is to the
right and equals the X-vector. The corresponding yaw, azimuth and pitch angles at the different time
steps related to these mesh states are given in Figure B.1 in Appendix B.

4.1. OpenFoam Simulation Method

43

(a) Time=0s.

a

(c) Time =2s.

(b) Time =1s.

(d) Time =3s.

(e) Time=4s.

(f) Time =5s.

Figure 4.16: The NREL phase VI turbine mesh undergoing yaw, torque and pitch dynamic mesh motions (view from above).

44 4. Available Methods

4.1.3. Simulation Setup

In this section the setup of the OpenFOAM simulations is described. First, the initial conditions that
were used are presented in Section 4.1.3.1. Afterwards, the solution method including the used solvers
etc. is elaborated in Section 4.1.3.2.

4.1.3.1. Initial Conditions
The mesh has been generated with different patches. The type of these boundary patches has been

set in the boundary file in the constant/polyMesh folder. It can be summarized such as seen in
Table 4.4.

Table 4.4: Type of boundary patches.

Patches Type
Inlet, Outlet, Sides patch
Blades, Hub wall

Rotor zone, Pitch zones cyclicAMI

The boundary conditions applied to these patches are set in the 0 folder in the U, p, k and omega
files for a k — w SST turbulence model such as used for the NREL phase VI. For a Spalart-Allmaras
model, which will be used for the NREL 5MW, the turbulence model variables are different, which will
be further described in Section 4.1.3.2. The selected boundary conditions for the k — w SST model are
shown in Table 4.5.

Table 4.5: Boundary conditions on boundary patches for the k — w SST turbulence model.

Patches Condition

Inlet fixed value (inletOutlet) for U, k and w, zero gradient (outletinlet) for p
Outlet fixed value (outletinlet) for p, zero gradient (inletOutlet) for U, k and w
Sides slip condition for phase VI except for yaw case and 5MW (inletOutlet)
Blades, Hub no slip condition for U, wall functions for k and w, zero gradient for p

Rotor zone, Pitch zones cyclicAMI

Notice that for cases which consider yawing of the turbine (case 2 (a)) or tilting (5SMW cases 5 and
6 (a)), the boundary conditions on the (tunnel) sides as well as on the inlet and outlet are changed
to inletOutlet for U, k and w while for p outletInlet is taken. These boundary conditions are
specific conditions in OpenFOAM, which take a zeroGradient or fixedValue condition depending
on the direction vector of the quantity.

This is important for the phase VI yaw cases as yawing is applied by rotating the entire mesh around
the vertical axis, while the direction of inflow stays constant. Thus, the tunnel sides would rotate as well,
which is not the case for the experiment where only the rotor yaws. Therefore, the tunnel sides in the
simulation set-up must be permeable now. As such the tunnel wall effect can no longer be accounted
for, however the effect of yawing may then be physically considered. As the tunnel wall effect is now
neglected, the cylindrical domain has been increased by about 2.4 times in diameter to better account
for the effect of the skewed wake.

Similarly, the same boundary conditions are used for the NREL 5MW as a tilt angle is included
by tilting the entire mesh by 5 deg. However, as the direction of inlet velocity stays the same while
tilting, the velocity vector is now no longer parallel to the sides. Therefore, inletOutlet, respectively
outletInlet boundary conditions have to be applied.

The initial values for the boundary conditions as given in Table 4.5 can be calculated from the
experimental data for the NREL phase VI turbine (case 1-4). The value for the velocity was taken
as the mean value of the tunnel inlet velocity for the time to be simulated (about 30 s). Similarly, the
values for the rotational speed and air density are taken. Moreover, the turbulence kinetic energy k
was calculated from Equation 4.1.

3
k=2 (UD? @.1)

4.1. OpenFoam Simulation Method 45

Where U is the velocity, relating to the tunnel velocity for the phase VI cases, whereas for the SMW
the mean wind velocity is taken. I is the turbulence intensity. For the turbulence intensity a constant
value of 1 percent was chosen. Having obtained the value for k, the specific dissipation rate w from
kinetic to internal thermal energy can be approximated using Equation 4.2.

w = T (42)
Where [is the turbulent length scale describing the size of the largest energy-containing eddies. It
can be estimated as approximately the size of the rotor diameter. Thus, for [a value of about 10 m,
respectively 126 m, is chosen representing the diameter of the NREL phase VI and SMW turbines.
In addition, also the dynamic viscosity u needs to be computed. It has to be giveninthe transport-
Properties file within the constant folder. It was approximated for every case using Sutherland’s
law as given in Equation 4.3.

_ Teprcf T\ 453
W= lref e Tros (4.3)

Where u,. is the viscosity at the reference temperature T,..r. The viscosity u,.r was taken to be
18.27e-06 Pa s and T,..; 291.15 K. C is Sutherland’s constant which is 120 K. Then the actual dynamic
viscosity u can be calculated using the temperature data from the experiment for the phase VI cases.
For the SMW a common value was chosen for pi,.¢ .

The resulting values for all the variables were calculated for the different cases and are shown in
Table 4.6. The values for the power curve cases (case 4 (a)) are not shown here, but the calculations
were similar and matched the experimental data.

Table 4.6: Initial conditions for the different cases to be simulated.

Case: 1(a) 2 (a) 3(a) 5-6 (a)
Experiment S0700000 S07YSU00 RO0600RDO None

Wind speed U (m/s) 7.016258 6.986503 6.016105 11.400000
Rotational speed Q (rpm) 71.866689 71.856115 71.730473 12.100000
Turbulence kinetic energy k (m?/s?) 0.007384 0.007322 0.005429 0.020000
Specific dissipation rate w (1/s) 0.008544 0.008507 0.007326 0.001800
Air density p (kg/m3) 1.245786 1.247981 1.242534 1.225000
Dynamic viscosity u (kg/ms) 1.792681e-5 1.790240e-5 1.795813e-5 1.500000e-5
Time step dt (s) 0.00115955 0.00115979 0.00116176 0.00688705
Azimuth step diy (deg) 0.5 0.5 0.5 0.5

Rotor revolution time (s) 0.8348760 0.8350488 0.8364672 4.958676

4.1.3.2. Solution Method

Finally, the simulations were executed by running the transient solver pimpleDyMFoam using the up-
dated dynamic mesh approach as explained in Section 4.1.2.3. The pimpleDyMFoam solver is based
on the PIMPLE algorithm as explained in Section 2.1.2.3 with dynamic mesh motion capabilities. There-
fore, the mesh motions for each case were specified within the dynamicMeshDict according to Table
4.3 and the initial conditions of Table 4.6 were applied. The time step in the controlDict file was
obtained by taking an azimuth step diy per time step of 0.5 deg. Then, the time step dt follows from
Equation 4.4 if the average rotational speed (of the rotor is known.

60s
G s
t= Q(360deg) (:)
1rev
For faster convergence the 0 folder in the case file was based on a simpleFoam solution. There-

fore, first the steady solver simpleFoam was run using the MRF approach to account for the rotor
rotation, see Section 4.1.2.1.

46 4. Available Methods

The simpleFoam run was initialized by using potentalFoam, to improve convergence by first
solving the potential flow. Following this procedure the simulations with pimpleDyMFoam were found
to converge quite fast also showing very stable behaviour.

The convergence criteria were mainly the resulting power, which was obtained through the turbine-
Performance library, as well as the residuals and continuity. When the simpleFoam run was con-
verged, several measures were taken in order to use the results as initial conditions for pimpleDyMFoam.
First of all, the last time folder in the simpleFoam cases was renamed to 0, which is the default folder
for the initial conditions. Moreover, the no slip boundary condition for the velocity U defined in the U file
is slightly different within pimpleDyMFoam and must be adjusted. Therefore, the no slip condition es-
tablished in simpleFoam through a zero fixedvalue, was altered to azeromovingWallVelocity.

The NREL phase VI turbine was simulated with unsteady RANS based on the k —w SST turbulence
model. Therefore, the initial conditions for the parameters U, p, k and w were located in U, p, k and [I
files within the newly created 0 folder. The pimpleDyMFoam simulations could then be run based on
these calculated conditions.

For the NREL 5MW simulations a hybrid DDES model is used based on Spalart-Allmaras turbu-
lence modelling. In OpenFOAM it can be selected in the constant/turbulenceProperties file
as SpalartAllmarasDDES. The reasoning to use this model is that due to the hybrid approach, re-
gions near the wall are treated by RANS, while the outer flow is treated similar to a LES model. For the
particular mesh this model already delivered good results in previous simulations and thereby it was
justified to use it.

For the NREL 5MW nut and nuTilda files were included in the 0 folder, in order to run the
SpalartAllmarasDDES model. The file nut sets the boundary conditions for the turbulent eddy
viscosity v taken as 3e-6, whereas within nuTilda the conditions for the Spalart-Allmaras variable v
are specified (4.5e-5).

To successfully run the simulations appropriate schemes and solution behaviour must be specified
in the fvSchemes, respectively fvSolution files in the system folder. For the time schemes, which
are given in the fvschemes file, a backward Euler scheme is selected and thus applied for solving the
Navier-Stokes equations. The convergence tolerance selected within the fvSolution file was in the
order of 1e-5 for the velocity U and 1e-4 for the pressure p.

Finally, the simulations could be run. For the demanding computations the computational cluster
Eddy of University of Oldenburg was utilised, see [17]. The phase VI cases were simulated with about
160 to 200 cores each, whereas for the 5MW cases due to the higher number of cells about 250 to 360
cores were chosen. Per day of simulation time about two to three rotor simulations could then be sim-
ulated. For faster simulations more cores would be required, but of course the available computational
resources are limited.

4.2. NREL FAST Simulation Method

In this section the applied wind turbine simulation approach using NREL FAST is presented. The CAE
tool FAST is capable of executing aero-hydro-servo-elastic simulations of horizontal axis wind turbines.
Its composed of several modules, which have different functions such as modelling the aerodynamics
or structure of the wind turbine, see Figure 4.17. At first, the aerodynamic model AeroDyn is described
in Section 4.2.1. Next, both the lower fidelity ElastoDyn and higher fidelity BeamDyn structural models
are discussed in Section 4.2.2. Finally, the simulation setup for the simulation cases using FAST,
according to the matrix in Table 3.6, is presented in Section 4.2.3.

4.2. NREL FAST Simulation Method 47

External I Applied I Wind Turbine
Conditions I Loads

Control System

I Drivetrain
4 ! Dynamics i Dynamics Generation

Nacelle Dynamics

|
| —
|

TurbSim I

AN Wing-inflow

AeroDyn

| Tower Dynamics

Waves &

Hydro- I
Currents

dynamics !
A
HydroDyn I

Platform Dynamics

| Mooring Dynamics FAST or
| MSC.ADAMS

Figure 4.17: Overview of the FAST modularization framework [23].

4.2.1. Aerodynamic Model

As aerodynamic module for FAST AeroDyn version 15 is utilized for the simulations. The version 15
is a complete overhaul compared to earlier AeroDyn version, which is in accordance with the FAST
modularization framework, see [20].

It is based on the actuator line principle, thus the three dimensional flow around the blades is esti-
mated from two-dimensional cross sections via interpolation and integration technique. AeroDyn cal-
culates the aerodynamic loads as distributed loads per spanwise unit length at several blade node
locations [20].

If used with FAST AeroDyn receives the turbulent wind field from TurbSim [23]. In addition, it gets
the deflected structural positions, orientations and velocities of the nodes from the applied structural
module. Thereby, the nodes used within AeroDyn can be different compared to the nodes used within
the structural module. This is accounted for through applied mesh mappings within FAST.

The two dimensional loads are calculated via BEM within AeroDyn. The wake influence is taken
into account by calculation of the induction factors within the BEM via an iterative approach. The
implemented BEM uses engineering correction methods to correct for three dimensional unsteady flow
in extreme conditions (e.g. yaw). The effect of a skewed wake, sheared flow, influences due to the
tower and structural motions is accounted for within the BEM [20]. Glauert’s correction is applied at
high axial induction factors [20]. In addition, Prandtl tip-loss and root-loss correction is used as well as
a skewed wake correction from Pitt and Peters [20]. Therefore, three dimensional effects are captured
as well through corrections within the BEM method.

The BEM can be set to a steady or unsteady airfoil aerodynamic model. For the steady model the
static airfoil polars supplied to AeroDyn from e.g. measurements are directly utilized for the load cal-
culations. In contrast to this, the unsteady airfoil aerodynamic module takes flow hysteresis, unsteady
attached flow, flow separation at the trailing edge, dynamic stall as well as flow reattachment into ac-
count [20]. These semi-empirical corrections can be seen as dynamic corrections to the static airfoil
results. There are three unsteady aerodynamic models within FAST: the original Beddoes-Leishman
model and the Beddoes-Leishman versions from Gonzalez and Minnema/Pierce [20].

In the blade aerodynamics also the influence of the tower is included via a potential flow, respectively
tower shadow model or a superposition of both. The wind disturbance due to the tower can generally
be explained as a velocity decrease upwind and downwind of the tower and an increase left and right
of it. The calculated disturbance is applied at the blade nodes and used within the BEM calculations
[20].

In addition, the loads on the tower, which are mostly due to form drag, can be calculated by Aero-
Dyn based on tower diameter and drag coefficient. These calculations are again executed at several
preselected tower nodes.

To successfully run AeroDyn within FAST several input files are required. First of all, in the FAST

48 4. Available Methods

case folder within the AeroData folder the airfoil polar data is located. Additionally, the main file for
specifying the options for AeroDyn 15 is the file AeroDyn15.dat. Moreover, the blade aerodynamic
sectional properties are specified in the AeroDyn blade.dat file.

4.2.2. Structural Models

In this section the structural models of FAST are described. First of all, the lower fidelity model Elasto-
Dyn is discussed in Section 4.2.2.1. Afterwards, it is elaborated on the higher fidelity model of Beam-
Dyn, see Section 4.2.2.2.

4.2.2.1. ElastoDyn

The main structural-dynamic model implemented in FAST is ElastoDyn. It is capable of modelling the
rotor, the drivetrain, the nacelle, the tower and the platform in case of an offshore turbine. Its inputs are
the aerodynamic and hydrodynamic loads as well as the controller parameters and subtructure reac-
tions for offshore turbines [18]. Its approach is based on a combined multi-body and modal-dynamics
formulation. Whereas the blades and the tower are modelled through Euler-Bernoulli beam theory, the
platform, nacelle, generator and hub are simulated by multi-bodies.

Within the Euler-Bernoulli beam theory for the blades only bending is taken into account. Thereby
the effects of shear or axial and torsional DOFs are neglected [18]. The blade and tower motions which
are considered, are assumed to result in small to moderate deflections. The mode shapes representing
the motion through shape functions are constructed from polynomial coefficients via the Rayleigh-Ritz
method [18]. The blades are modelled straight and isotropic [19]. The mode shapes are then applied on
the nonlinear beam model. Inertial loads are included and added to the aerodynamic and hydrodynamic
ones.

For a three bladed turbine more than twenty DOFs can be used [18]. The degree of freedoms to be
considered can be switched on or off in the main ElastoDyn input file E1astoDyn.dat. For the blades
two flap modes can be taken into account together with one edgewise mode [18]. For the drivetrain a
torsional and azimuthal DOF can be activated. The tower is modelled with two DOFs for both fore-aft
and side-to-side bending modes.

To run ElastoDyn within FAST structural properties (such as mass and inertia) must be specified
in the main file. In addition, for the blades the stiffness in both edgewise and flapwsie directions
has to be given for several sections within the Blade.dat file. ElastoDyn then interpolates those
at a defined number of structural nodes. Similarly, the properties for the tower are defined in the
ElastoDyn Tower.dat file.

The outputs of the ElastoDyn structural model are the displacements, velocities and accelerations
at the blade and tower nodes and if applicable at the hub, nacelle, drivetrain or platform. In addition,
the reaction loads can be output.

4.2.2.2. BeamDyn

ElastoDyn has its limitations in some aspects for the modelling of large slender rotor blades. Especially,
through the neglection of torsion, which is getting more important for these modern blades, errors may
be introduced. In addition, effects such as bend-twist coupling (BTC) cannot be modelled at all due
to the missing torsional DOF. Therefore, within FAST version 8 it is possible to use a higher fidelity
structural modal for modelling the blades called BeamDyn.

BeamDyn is based on the GEBT, it therefore uses Legendre spectral finite elements [19]. It uses
the full 6x6 cross sectional mass and stiffness matrices [19]. In comparison to ElastoDyn, it is thereby
able to calculate axial, shear and torsional deflections as well due to the added DOFs. It allows for
structural couplings such as structural BTC due to possible off-diagonal terms in the stiffness matrix.
It can model curved or swept blades as well, thus it is also able to model effects as geometrical BTC.
It uses nonlinear geometrically exact large deflections. Compared to ElastoDyn typically the number
of cross-sections is larger, but the number of finite element nodes is generally quite low. This is due
to the reason that a low number is often already sufficient. A Gauss or trapezoidal spatial integration
technique is then used for interpolation.

The in- and outputs to BeamDyn are practically similar to ElastoDyn for the blades. The aerody-
namic loads are used from AeroDyn and the blade root motions are taken from ElastoDyn. The outputs
of the BeamDyn module are the blade motions as well as the calculated reaction loads.

4.2. NREL FAST Simulation Method 49

If it is decided to use BeamDyn for the Blades, this needs to be specifically chosen in the ElastoDyn
main file. The BeamDyn options can then be specified in the BeamDyn.dat input file. If BeamDyn
is chosen, also a BeamDyn Blade.dat file needs to be provided. In this file basically the full cross
sectional mass and stiffness matrices are given at several stations.

4.2.3. Simulation Setup

In this section the simulation setup for both the NREL phase VI FAST simulations (Section 4.2.3.1) and
the NREL 5MW simulations, see Section 4.2.3.2, is discussed.

4.2.3.1. NREL phase VI

Fortunately, there are already FAST input files for the NREL phase VI turbine delivered within the
CertTest folder in the FAST main folder. In the UAE_ VI folder one will find two cases for the NREL
phase VI turbine. This means that no airfoil data and structural data needs to be generated by prepro-
cessors and thus a lot of time can be saved. However, the given cases have to be modified in order
to simulate and match the experimental cases. Therefore, the time step, wind speed, rotational speed,
air density and dynamic viscosity were adjusted in the FAST certification Test10 according to table 4.6.
In addition, the speed of sound c needs to be input in the AeroDyn main input file. It was calculated
according to the Equation 4.5 derived from ideal gas law.

¢ = JVRT (4.5)

In Equation 4.5 y is the adiabatic index, which is about 1.4 for air. R is the gas constant, which is

287 J kg'1 K for dry air. Then, the temperature T from the experimental data can be used to calculate
the speed of sound for each case. It is then applied within the AeroDyn input file. The used values for
T and the calculated values for ¢ are given in Table 4.7.

Table 4.7: Additional initial conditions for FAST simulations.

Case: 1 (b) 2 (b) 3 (b) 5-6 (b)
Experiment S0700000 S07YSUOO0 RO600RD0O None
Temperature (K) 284.282 283.796 284.905 279.300

Speed of sound (m/s) 337.971 337.682 338.342 335.000

The NREL phase VI turbine is simulated using ElastoDyn also for the blades. It can be expected
that although the lower fidelity structural model is selected accurate results can be obtained. This is
due to the reason that the blade is straight and very rigid. Thus, the torsion is expected to be very close
to zero and thereby the assumption of ElastoDyn of no torsion is deemed to be valid.

Within the ElastoDyn main file the DOFs to be activated were chosen. Moreover, the pitch slope,
respectively yaw sweep, can be set in the ServoDyn main file ServoDyn.dat, similar to the motions
as mentioned in Table 4.3. Also the wind speed is changed in the InflowWind.dat file according
to the same values given in Table 4.8. In addition, within the AeroDyn main file several settings were
altered. The most important settings for the different cases simulated are given in Table 4.8.

50

4. Available Methods

Table 4.8: Settings for the simulations with FAST.

Case: 1-4 (b) 5-6 (b)
ElastoDyn Settings:

Blade flapwise DOFs On On
Blade edgewise DOF On On
Rotor teeter DOF Off Off
Drivetrain rot. flexibility DOF Off On
Generator DOF Off On
Yaw DOF Off On (off in case 6)
Tower bending DOFs Off On
Platform DOFs Off Off
Cone 0 deg 0 deg
Tilt 0 deg 5 deg

ServoDyn Settings:

Torque control mode
Yaw control mode
Pitch control mode

None (constant rpm)
None (yaw rate case 2)
None (pitch rate case 3)

Bladed-style DLL
Bladed-style DLL (fixed yaw case 6)
Bladed-style DLL

AeroDyn Settings:

Blade airfoil aerodyn. model
Beddoes-Leishman variant

Beddoes-Leishman unsteady
Minemma/Pierce

Beddoes-Leishman unsteady
Minemma/Pierce

Skewed-wake corr. model Pitt/Peters Pitt/Peters
Hub and Tip loss Yes Yes
Tower potential flow No No

Tower shadow No No
InflowWind Settings:

Wind Type Steady Steady
Wind Shear None None

4.2.3.2. NREL 5MW

For simulating the NREL 5MW with FAST one can make use of the already existing cases in the
S5MW_Baseline folder within the CertTest folder. The folder includes a fully functional controller
for yaw, torque and pitch control located in the ServoData subfolder. The controller was developed
by Jason Jonkman et al. within the famous project in which the 5MW turbine was designed, see [22].
It is in the dynamic link library (DLL) format used by Bladed.

As a basis for the simulations the FAST certification case Test18 was modified. Test18 uses Elas-
toDyn as a structural model for the blades. Similarly, in the simulation cases 5 and 6 (b) ElastoDyn
will be used. As the degree of torsion is very small for this turbine, with only a magnitude of about one
degree below 30 deg yaw, see [14], relatively accurate results seem obtainable.

The most important settings for the simulations with the NREL 5MW turbine using FAST are again
shown in Table 4.8. Notice that for cases 6 the yaw DOF was turned off compared to the cases 5 and
a fixed yaw angle of 30 deg was used as initial condition in the ElastoDyn input file.

Other settings such as the time step for instance were chosen the same as in the OpenFOAM
simulations as given in Table 4.6. In addition, the speed of sound was taken according to Table 4.7. As
no experimental data for this turbine is available, no specific tuning in the FAST input files was required
such as for the phase VI.

Developed Method

In this chapter it is explained how the coupled simulation method between FAST and OpenFOAM,
named fastFoam, based on the code coupling environment MpCCI has been achieved. First of all,
an overview of the coupling approach is given in Section 5.1. This includes detailed information on
the changes that were done within the codes of FAST and OpenFOAM. Next, within Section 5.2.1 the
mesh motion approach is outlined, which was divided into a mesh update accounting for solid body
motions and the elasticity related motions. Then the calculation of the aerodynamic loads is explained
in Section 5.2.2. Finally, the setup of the simulations using the coupled solver is presented in the last
Section 5.3.

5.1. Coupling Approach

The coupling between FAST and OpenFOAM was established with the code coupling environment
MpCCI developed by Fraunhofer SCAI. This has the advantage that an already functional and well
proven coupling environment can be utilized and only needs to be extended for the specific codes. In
particular, each code which should be coupled to MpCCI requires a code adapter. For OpenFOAM a
code adapter was already existing, but it needed to be extended. For FAST such a code adapter was
not available yet and thus needed to be implemented from scratch. The work on the implementation
and extension of these code adapters was supported by employees from Fraunhofer SCAI due to their
expertise. A detailed overview of the newly developed code adapter for FAST is given in Section 5.1.1,
while the extended OpenFOAM code adapter is described in Section 5.1.2.

The coupling was set-up as a partitioned coupling, where both codes are kept on their own and are
not merged into one. Thereby, only some changes in both codes need to be made and the codes are
coupled by a coupling environment in this case MpCCI. The changes in the codes are thus minimally
intrusive. This has other advantages for example it allows for quick updates of the different codes.
Moreover, due to used standardised functions other extensions of the coupling, for instance to other
parameters, are easily included.

In addition, the coupling was implemented based on a loose coupling strategy. Although MpCCl also
allows for iterative or strong couplings a loose coupling strategy was deemed to be easier to implement
and was found to be accurate enough for wind turbine FSI, see for instance [14]. Within the loose
coupling the exchange between structural and fluid solvers is only applied once per time step.

A schematic representation of the implemented coupling is given in Figure 5.1. The red arrows
indicate the transfer of the instantaneous positions and global turbine angles (yaw, azimuth and pitch
for all blades) from FAST to OpenFOAM. Moreover, the blue arrows show the communication of the
calculated loads (forces and moments) from OpenFOAM to FAST. This communication takes place via
the integrated code adapters into the respective codes and the MpCCl server. The server can be seen
as the brain of the coupling, which interfaces the code adapters and stores the received quantities.

51

52 5. Developed Method

MpCCI
Server (C)

2NN

OpenFOAM (C++)

FAST (Fortran)

adapter (.so/.dll)
Load Calculation

Beam Motion

adapter (.so)

MpCCI Module

ElastoDyn

Figure 5.1: Schematic representation of the implemented coupling between FAST and OpenFOAM using MpCCI.

l

Turbine Solid
Body Motion

For the coupling both a FAST case folder and an OpenFOAM case folder are required. Of course
the cases must match, thus the turbine to be simulated must be the same in both codes. Then the
coupling can be set-up using the MpCCI graphical user interface (GUI), which automatically recognises
the coupling possibilities if both case folders are given as an input. The procedure to set-up the coupling
by using the GUI is shown in detail in Section 5.3. In addition, an overview of the entire workflow of the
coupling by utilizing MpCCl is given in the Appendix D in Figure D.1.

5.1.1. FAST Adapter

The MpCCI FAST code adapter consists of two modules. In the MpCCl installation folder called MpCcCI
one finds the main adapter which interfaces the MpCCI-Server. In addition, within the FAST installation
subfolder dependencies in the Source folder the MpCCl module is located in the MpCC1 folder. This
module is now part of the FAST modularization framework and called if FAST is run in coupled mode.

The adapter is written in C and compiled as .so. Its main functionality is to get the data from the
MpCCI module of FAST and exchange it to the server. Furthermore, it receives the available coupling
quantities from the server. Basically, it gets the positions and orientations as wells as the turbine control
variables (yaw, azimuth and pitch) from the FAST MpCCI module. Moreover, it puts the loads calculated
from OpenFOAM and received from the server into the MpCCI module.

The FAST MpCCI module calls at every time step functions of the MpCCI FAST adapter to send or
receive data for the coupled quantities. It also allocates the required arrays for the coupling quantities.
In addition, it overwrites the aerodynamic forces for the selected coupled geometries used within the
structural models of ElastoDyn, respectively BeamDyn in the FAST simulation. As the meshes of the
structural input load mesh of ElastoDyn and BeamDyn and the mesh for the received loads from MpCCl
are not necessarily equal mesh mapping methods are applied. In addition, the loads do not necessarily
have the same unit as for instance in ElastoDyn point loads are used (unit of N), while in BeamDyn
distributed loads are applied (unit of N/m). This is taken care of by the applied mesh mappings.

The received loads from OpenFOAM are always distributed loads in N/m as this has several ad-
vantages as explained in Section 5.2.2. While in ElastoDyn the input load and output position and ori-
entation mesh are the same, this is not the case for BeamDyn. Thus for both structural models mesh
mappings are used within the MpCCIl module. For ElastoDyn the mesh mapping only converts the
obtained loads from N/m to N. The conversion follows the NREL mesh mapping algorithms as outlined
by Spraque et. al. in [29]. It uses a nearest-neighbor algorithm to map different mesh discretizations
and point to distributed loads and vice versa.

A complete overview for the FAST MpCCI module is given in Figure 5.2 as a flow diagram.

5.2. fastFoam Solver 53

FAST
glue code

FAST MpCCI module FAST ElastoDyn module

Call MpCCI_Init at Call MpCCT_Exchange Calculate actual rotor (" Obtain blade-
start of simulation to which syncs the sent azimuth, yaw and pitch commands,
check if coupling is and receive arrays blade pitch positions nacelle-yaw moment
enabled and which with the adapter and generator

quantities (blades
etc.) shall be coupled

A
Fill the sent arrays (e.g.

torque perturbations
L from ServoDyn
J
positions, orientations

and global angles) and Update Structure
g gles) — p
L]

account for coordi- to new time step

(. oY
nate transformations based on loads Provide nacelle-yaw
from OpenFOAM —| angle and rate and

Communication with Get the receive or AeroDyn (if two generator speed
MpCCl Server via arrays (e.g loads rotations have not _perturbations as
MpCCl FAST adapter from CFD) and apply been achieved) | input to ServoDyn |
mesh mappings g

Figure 5.2: Flow diagram of the implemented MpCCI module within the FAST Source folder and its tasks at each time step.

5.1.2. OpenFOAM Adapter

The MpCCI OpenFOAM code adapter is also located in the MpCCl installation folder. It is compiled as
C++ code using OpenFOAM wmake compilation. Basically it is a .so library which can be interfaced
by OpenFOAM. In addition it includes several Perl scripts to identify the coupling capabilities from the
OpenFOAM case folder within the MpCCI GUI.

The code adapter mainly gets the data for requested quantities from the selected OpenFOAM solver
at each time step and communicates them to the MpCCl server. In addition, it stores requested values
into allocated arrays from the MpCCI server, such that they can be accessed from the OpenFOAM
solver. In particular for the FAST-OpenFOAM coupling it communicates the loads from the OpenFOAM
solver. In this case this solver is called fastFoam, which is explained in Section 5.2. Moreover, it puts
the obtained positions and global controller variables as yaw, azimuth and pitch into arrays.

The OpenFOAM adapter was able to couple face and volumetric data at the start of the project.
However, due to the nature of the FAST-OpenFOAM coupling also coupling of lines (one dimensional
beam node data such as positions or forces) or points (for instance if the hub is respresented as a
point) needs to be established. Therefore, the OpenFOAM adapter was extended to this functionality.

Additionally, the possible quantities to be coupled were extended. Coupling positions and orienta-
tions as well as forces and moments is now possible as points or one dimensional lines. Also additional
global variable coupling was included, which accounts for the coupling of the turbine controller related
variables such as yaw, azimuth or blade pitch angles. This was also implemented into the Perl scripts,
which scan the OpenFOAM case, such that if applicable these coupling quantities can be selected in
the MpCCI GUI.

5.2. fastFoam Solver

One part required for the successful coupling of FAST and OpenFOAM is a specialized solver within
OpenFOAM. The main functions of this solver, which following the naming scheme of OpenFOAM is
called fastFoam, is to update the CFD mesh such that the blade positions correspond to the state in
FAST. Moreover, it needs to calculate the loads (forces and moments) at the node locations, thus taking
over this task from AeroDyn. The solver is fully integrated and based on OpenFOAM and written in
C++. lts main part is included in Appendix E in Listing E.3. The two main tasks of mesh motion and load
calculations will be discussed in detail in this Section. The mesh motion aspect is explained in Section
5.2.1 and the load calculations are presented in Section 5.2.2. Below in Figure 5.3 a flow diagram of
its main functions is given, starting with the communication with the MpCCl server at each time step.

54 5. Developed Method

MpCCI OpenFOAM Adapter § Turbine Solid Body Motion
) | Call the setRot
R;ea%f“;ii?rllz?ﬁ ! fgn(:ttlon t°| COTT;:' Rotate entire CFD
) nicate angles to the
and pitch angles I dynamingMesh mesh to yaw angle
implementation
Communication
with MpCCI Server
at each time step Rotate CFD mesh
Rotate CFD " —| (pitch mesh regions)
Receive positions (c;f]tﬁe mes?if to pitch angles
and orientations rotor region) to l
for each blade -
azimuth angle - ~
Send loads on beam CFD mesh describes
nodes for each blade L rigid turbine state
Load Calculation \ Beam Motion
s f d Set-up Quaternion de- h
Wi utp or::(_es ‘?_” scribing final rotation Calculate Quater-
moment contributions according to FAST nion describing
Convert calculated |-— via calculated) rigid rotation ac-
forces and moments pressure'from 4 . cording to Eq. 5.4
on each node to each assigned Calculat ;
distributed loads face by Nearest- alculate Quater- 1
Neighbor method nion describing — :
elastic rotation ac- Add Quaternion
cording to Eq. 5.5 describing the initial
1 rotations (twist etc.)
= D g Y J'
Reset the entire CFD Run PIMPLE loop Move beams and ()
mesh and the beam until convergence ¢ CFD mesh to elastic [— Move beam; on
to its inital state via requirements for the turbine state via blades to rigid
resetMesh function) timestep are achieved updateBeam and turbine state via
h moveMesh function) \updateBeam functionj

Figure 5.3: Flow diagram of the developed fastFoam solver and its tasks in OpenFOAM at each time step of the simulation.

5.2.1. Mesh Motion

In this section the mesh motion approach used within the fastFoam solver is described. Additionally
to the solid body motions due the yaw, torque and pitch DOFs, also the blade elasticity needs to be
included now. Thus, an extension of the mesh motion approach, such as used in the OpenFOAM
simulations described in Section 4.1.2.3, is required. First off all, the turbine solid body motion approach
is described in Section 5.2.1.1. Afterwards, the mesh motions applied due to the elastic nature of the
blades are discussed in Section 5.2.1.2.

5.2.1.1. Turbine Solid Body Motion

The solid body mesh motions basically follow the same implementation as already used in the Open-
FOAM simulations described in Section 4.1.2.3. However, there is one major difference as now the
turbine angles such as yaw, azimuth and pitch are no longer read from a look-up table. In contrast to
the previous implementation now these angles are accessible from the fastFoam solver as they are
communicated from FAST. The solver then uses an update function called setrot, which updates
those angles in the dynamic mesh library implementation. Then the mesh update is applied based on
these angles and the parameters read from the dynamicMeshDict file.

The mesh update is always performed from the initial mesh state such as given in the constant
subfolder in the OpenFOAM case folder. When the mesh update is applied according to the turbine
angles from FAST, it is taken care that the CFD mesh in OpenFOAM always has the same solid body
states such as in FAST. This means that the yaw, azimuth and pitch states in both codes are the same.

5.2.1.2. Beam Motion

In addition to the dynamic mesh motion due to controller related inputs, such as yaw, azimuth and
pitch, the effect of elasticity must be included within OpenFOAM. Due to the elastic structure resulting
in deformations the mesh needs to be deformed accordingly. This is especially required for the larger

5.2. fastFoam Solver 55

modern rotor blades, which show an increased flexibility. Assuming rigid blades will lead to introduced
errors which should be avoided.

An approach for such a mesh deformation accounting for flexible blades was achieved by Dose et
al., see [9]. By implementation of an entire FEM solver into OpenFOAM using non-linear finite beam
elements based on GEBT the structural displacements were obtained and the fluid mesh is updated
accordingly [9]. The procedure follows a partitioned coupling between structural and fluid solver. The
fluid mesh is updated if both flow and structure have converged [9].

As access to the code is provided the mesh updating, which follows the solution of the structural
solver, can be used for the elasticity related mesh update. Thus, the structural solver is now directly
integrated into FAST, but as FAST uses beam elements as well, the fluid mesh can be updated by the
same approach such as achieved in [9]. An example for the mesh update based on the implementation
of Dose et. al is given in Figure 5.4. In the example a beam is introduced in the white structure in the
centre, see the small green beam nodes. The red mesh region then moves exactly with the beam node
displacements, for the grey mesh this movement is smoothed out, whereas the white background mesh
does not move at all.

i
(
T
BAERRRUIARSARAAAAY
AL 0

NN AN UANR N AN

O

!
{
i

(a) Example mesh before deformation. (b) Example mesh after deformation.

Figure 5.4: The mesh movement approach accounting for elastic structures based on the implementation by Dose et al. [10].

The beam mesh is then specified within a beamMeshDict in the system folder, where it must be
taken care of that the same structural mesh as used in FAST is taken. An example of the beamMeshDict
is given in Listing E.1 in the Appendix E.

This approach uses non linear finite beam elements. However, as the blades are represented in
three dimensions, whereas the beam elements are only in 1D, a special interpolation technique is
applied. This technique interpolates the given deflections at the beam nodes to the blade surface. In
particular, this means that the points in OpenFOAM, which define the faces and cells related to the
blade mesh and with it the blade geometry itself, are translated and rotated according to the translation
and rotation of the beam nodes. In addition, a certain region around the blade mesh is moved as well
in order to have a smooth cell structure and no sudden jumps in the mesh. If the distance to the blade
surface gets larger, the movement of the cells related to the points is reduced. Until a certain distance,
which can be specified is met, the mesh stays constant and is not undergoing any elasticity related
mesh movement at all.

An overview of the implemented beam is shown in Figure 5.5 for the NREL phase VI turbine. Two
different states (rigid and elastic) of the blade are shown including the finite beam elements.

56 5. Developed Method

(a) Rigid (green) versus elastic state (grey). (b) Beam nodes along the blade span.

(c) Local node coordinate systems.

Figure 5.5: The implemented one dimensional beam for the NREL phase VI blade for two different states.

To be able to update the mesh based on the beam motions, the beam must always follow the
blade. Therefore first, the beam is initialised with the same node locations such as used in the selected
structural model for the blades within FAST, see Section 4.2.2. This initial state includes blade twist,
initial pitch and yaw, coning or tilting of the rotor. It is specified within a beamMeshDict file in the
system folder within the OpenFOAM case folder. It must be taken care of that the initial state is the
same such as in the FAST case folder. Thus, the same beam node locations and twist, pitch, yaw,
cone and tilt angles have to be specified. However, those data can easily be extracted from the FAST
case.

The initial rotation of the beam is calculated using rotation quaternions. Quaternions are an efficient
way to represent rotations in three dimensionanl spaces. They avoid problems with gimbal lock and
are quite efficient. Quaternions can be created in several ways including a set of three given Euler
angles, or a rotation about a given axis by a specified angle. In OpenFOAM they can be used via the
quaternion class.

The position and orientation of the beam can both be represented through vectors. The position
vector simply entails the beam node positions. In addition, the orientation can be represented through
a set of three vectors, representing the local coordinate system at each beam node. Let these vectors
be given as a vector u, then the initial rotation is described through the rotation matrix R;,;; obtained
from quaternion g;,;; by Equation 5.1.

Uinit = Rinitustraight (5.1)

Where ugtrqign: is the straight blade beam position vector or the global coordinate system for the
beam node orientation vectors. Then u;,;; is the initial position vector for the beam nodes, which
includes blade twist, initial pitch and yaw, coning or tilting. Or similarly u;,,;, describes one of the three

5.2. fastFoam Solver 57

initial beam node orientation vectors, also including blade twist, initial pitch and yaw, coning or tilting.
The initial R;,,;; is derived from the initial rotation quaternion g;,;; as given by Equation 5.2.

Qinit = Qyaw,qtittdconepitchy, Dtwist (5.2)

Where qyaw,, Gtiits deones Apitcn, AN Gewise represent the initial yaw, tilt, cone, initial pitch respec-
tively twist rotations about the related axis. Notice that quaternion multiplication is not commutative
and the given quaternion is described by a rotation about the twist axis first and finally a yaw rotation.

The corresponding mesh translation and rotation is shown in Figure 5.6 for the implemented NREL
5MW beam mesh. In Figure 5.6 the initial rotations and corresponding translations of the beam nodes
due to R;,;; are related to the known twist, as well as the application of a 5 deg tilt and a 30 deg yaw
angle. The corresponding local coordinate system rotations are shown as well. For a summary of the
used global coordinate system see Figure C.1 in Appendix C.

Rinit

R .
° elastice

[

(a) The beam mesh nodes.

(b) The local coordinate systems.

Figure 5.6: The NREL 5MW beam mesh states from straight blade (blue) to initial state (red) via the rigid state (green) to the
final elastic blade state (grey).

This is the first step to ensure that the beam nodes used within the OpenFOAM CFD have the
same initial state as in FAST. This only needs to be initialized once at the beginning of the simulation.
However, as a next step the CFD mesh is undergoing solid body motions related to the pitch, azimuth
and yaw rotations communicated from FAST such as described in Section 5.2.1.1. Therefore, the
beam needs to follow these motions to make sure that the implemented one dimensional beam mesh
corresponds to the updated three dimensional CFD blade mesh.

Thus, another rotation sequence is used to update the beam mesh for the yaw, torque and pitch
rotations. The updated rigid or solid body motion state u,;4;, is achieved according to Equation 5.3.

Urigia = Rrigialinit (5.3)

Where R,;4;q corresponds to the rotation matrix which entails the yaw, torque and pitch rotations

obtained from FAST via the coupling. It is obtained from a combined quaternion g,;4;4, whose decom-
position is shown in Equation 5.4.

58 5. Developed Method

Qrigid = Qyaw9azimuthpitch (5.4)

Where qyqw, qazimutn @Nd qpiccn describe the instantaneous yaw, azimuthal and pitch rotation from
the initial state at each time step. This is applied within the fastFoam solver at each time step via an
updateBeam function, see Listing E.1 in the Appendix E.

This updateBeam function takes the calculated displacements for the positions and the Euler angle
rotation (in roll, pitch, yaw convention) for the orientations as inputs. Both is easily obtained from the
calculated rigid state. The displacements are simply the rigid position minus the initial position. And the
Euler angle rotation is directly obtained by conversion from the rigid quaternion q,;4;4 to Euler angles.
A function for this conversion is available within the OpenFOAM quaternion class.

The rigid beam update ensures that the one dimensional beam mesh is moved to the correct posi-
tions. Also it ensures the correct blade orientations, which are similar to the blade mesh state obtained
due to the solid body CFD mesh update.

Finally, the elastic state of the blade is considered. Therefore, the positions and orientations such
as calculated from the structural model in FAST are used. To apply these, again the updateBeam
function is used to move the beam. In addition, now a moveMesh function is considered as well. This
function takes similar inputs as the updateBeam function and moves the mesh from the rigid state to
the final elastic state via a movement of the mesh points.

Therefore, for the node positions the displacements due the elastic deformation needs to be used
as an input to both functions. They are obtained by taking the difference between the communicated
instantaneous deflected positions from FAST and the previously calculated rigid body positions. In
addition, the rotation from rigid to elastic state must be specified within the functions.

This is calculated by first constructing a rotation quaternion qy;,q; from the obtained instantaneous
orientations from FAST communicated as Euler angles (roll, pitch, yaw convention). This quaternion
describes the entire rotation from the global coordinate system to the instantaneous local coordinate
system for each beam node at each time step. However, within both functions only the Euler angle
rotation from rigid state to the elastic state needs to be used. This difference is obtained from the
rotation quaternion q.;,s¢ic @s calculated in Equation 5.5.

-1
Qelastic = innaz(Qrigid qinit) (5.9)

Equation 5.5 shows one of the advantages of quaternion calculations, as the difference between
two or more rotations can easily be calculated by using the quaternion properties. After obtaining
qerastic, Which corresponds to the rotation from the rigid state to final state, the corresponding Euler
angle rotations are obtained by using the quaternion to Euler angle conversion within the OpenFOAM
quaternion class.

Then both the one dimensional beam and the corresponding three dimensional CFD blade mesh
are updated for the elastic deformations. Finally, the beam is reset to the initial state by a resetMesh
function. This has the advantage that similar to the solid body motions as described in Section 5.2.1.1 at
each time step the mesh update related to the elasticity starts from the initial state. Therefore, possible
small errors for instance due to rounding etc. do not add up.

5.2.2. Load Calculation

After the mesh in OpenFOAM has obtained the correct state, corresponding to the turbine state in
FAST at each time step, the main task of the fastFoam solver is to obtain the aerodynamic loads.
These should be obtained at the beam node locations.

Therefore, first an OpenFOAM solver is utilized in order to compute the pressure and velocity field
by solving the Navier—Stokes equations. The selected solver is pimpleDyMFoam, whose pimple loop
is simply merged into the fastFoam solver.

Then within the fastFoam solver the calculated fields are used. At each faces on the blade surface
the value for the pressure can be accessed. Multiplying those by the known face area results in the
pressure force. The pressure forces are the main contributors in magnitude to the total force. But also
the viscous forces, which can be obtained from the stress tensor, have to be included.

Thus, the forces at each face on the blade surface are known. However, the forces and also the
moments need to be known at the beam node locations. These beam nodes are normally centred within
the blade. Thus the meshes of fluid and structure are non-matching also in dimension and a matching

5.3. Simulation Setup 59

technique needs to be used. Therefore, a nearest neighbour method is applied, where the forces on
each face are assigned to one beam node. In this method for each face the spanwise distance to the
blade nodes is calculated based on the face centre coordinates. The face is then assigned to the beam
node to which the spanwise distance is the smallest. The total acting force on each node is then simply
the sum of all the forces on all assigned faces.

The procedure is shown in Figure 5.7, where the faces at the outer part of the blade are matched
to three beam nodes. The first node corresponds to the faces shown in red and thus accumulates all
the surfaces from these faces. Similarly, the second node shown corresponds to the blue faces, while
the green faces are related to the last node (furthest from the point of view).

2oL

VIR
LA
L

Figure 5.7: Mesh matching of fluid mesh (blade surface faces) and structural mesh (beam nodes) with Nearest-Neighbor
method.

In addition, for the moment the assigned faces for each node and the corresponding forces are
taken into account. Therefore, the moment arm between face centres and beam node coordinates
is considered. Multiplying both pressure and viscous forces by this arm the moment contribution due
to one face is obtained. By summing up the moment contributions from all assigned faces the total
moment at each beam node is calculated.

Finally, the forces (units of N) and moments (in Nm) are converted to distributed loads, where the
forces obtain units of N/m and the moments are in Nm/m. Therefore, the forces and moments per unit
span must be considered. Thus, the previously calculated forces and moments were divided by the
average spanwise length spanned by the assigned node faces.

The conversion to distributed loads is required as due to the nearest neighbour methods load fluc-
tuations may occur. This can be explained due to a difference in the number of spanwise faces which
may be assigned to each node. For instance, for one node a number of 3 faces in spanwise direction
may be assigned, whereas for the next node 4 or even 5 faces may be assigned, see for instance
Figure 5.7. Thus, resulting in sudden jumps in the forces, which are nonphysical and only a resultant
of the force projection method.

Therefore, it was decided to convert to distributed loads which show a much smoother load distri-
bution. In addition, the usage of distributed loads follows the AeroDyn calculations, which also result
in distributed loads. Thus, the implementation of the loads within FAST will be easier.

5.3. Simulation Setup

The fastFoam simulations are run based on the FAST and OpenFOAM cases such as set-up in Section
4.1 and 4.2. The coupling is constructed by utilizing the MpCCI GUI. In the first step, the models step,
the codes to be coupled and the corresponding cases are selected, see Figure F.1 in Appendix F. The
versions of the codes were chosen. For OpenFOAM version 3.0.1 and for FAST version 8.15.00 was
taken.

In the next step, the so called coupling step, the quantities to be coupled were assigned as can
be seen in Figure F.2. Therefore, the blades which are automatically recocgnized as line meshes and
the corresponding variables, the positions and orientations as well as the forces and moments, are
selected. In addition, the global variables yaw angle, azimuth angle and the blade pitch angles are
chosen.

Next, within the monitors step the quantities to be monitored can be selected as seen in Figure F.3.

60 5. Developed Method

The built-in MpCCI monitor can be used to display information such as the transferred and received
data. The monitor can either be run in runtime or after the simulation has been run.

As the next step, MpCClI related properties regarding the simulation are set within the edit step,
see Figure F.4. This includes for instance the time tolerance, which is the tolerance MpCClI takes into
account for matching the times of the different codes.

Finally, in the go step the coupling configuration including the scheme and starting time are chosen,
such as shown in Figure F.5. Moreover, for FAST the coordinate system for the transfer is selected
and for OpenFOAM the solver in this case fastFoam is chosen. In addition, for OpenFOAM properties
related to simulating in parallel have to be selected such as the MPI and the decomposition method as
well as the number of processors for the parallel run.

For simulating on the local computer one only needs to start the MpCCI server and both codes
FAST and OpenFOAM by clicking on the start button. However, as the simulations were carried out
on a computational cluster, where access is only provided by terminal and thus the simulations could
not be started via the GUI, a different approach is required. In particular, the coupling is setup as it
would be run locally via the GUI on the local computer. The setup can then be saved as MpCCl project
within a . csp file. Finally, the coupled simulations, which are set-up in the project file, are run on the
cluster via an mpcci batch command, whose input is the locally generated project file. To allow for
this approach the respective FAST and OpenFOAM cases and their file structure must be similar to the
one on the local computer.

For the simulations on the cluster the intelmpi is chosen and selected within the GUI. The chosen
coupling scheme is of explicit type, thus a loose coupling where exchange between both codes only
takes place once per timestep. The implementation in the code adapters is such that FAST exchanges
data after each iteration, whereas within the fastFoam solver data is exchanged before the iteration.
This has to be accounted for within the coupling scheme. Therefore, in the go step in the initial quantities
transfer tab for FAST receive is selected, whereas for OpenFOAM exchange is chosen. This means
that FAST will first receive data while OpenFOAM can both receive and send. This scheme is visualized
in Figure 5.8.

@ <) @

FAST: receive o o > o >e..
A /A
@ @‘\o
load It P
oa 5",Qo @E;’/
OpenFOAM: exchange o 5 > e O >0
e time point ———> solution in time step

---------- » exchange of variables

Figure 5.8: The choosen coupling scheme according to MpCCI.

In addition, the time for starting the coupling is chosen. It is unequal to zero for all cases. This
is due to the reason that in the first time steps it is not coupled as the CFD code is started with time
step control. This means that the time step for fastFoam in the very beginning of the simulation is
slowly increased until the final time step as specified in the controlDict is reached. This is done to
ensure good convergence of the CFD. Moreover, to improve the convergence the CFD code fastFoam
is started with an initial solution in the 0 folder obtained from simpleFoam based on a rigid blade.

As both codes are not coupled in the first iterations special care must be taken that both codes can be
run. This means that for fastFoam the mesh motions have to be applied without knowing the exact val-
ues for the yaw, torque and pitch angles. Therefore, it is assumed that these motions undergo constant
slopes in the start-up phase. These slopes can be specified within the beamElementControlDict,
see Listing E.2, in the system folder. Then when the coupling is initiated the exact values from FAST
are applied for the CFD mesh motions. However, this should be relatively close to the predicted values
to disallow sudden jumps for instance in azimuth. Note that this is normally not problematic, because in
the beginning of the simulation the influence due to the controller within FAST is rather small. Thus, for
instance a predicted azimuth due to a constant rotation will be close to the exact azimuth as obtained

5.3. Simulation Setup 61

from FAST. The blade is then still assumed to be undergoing a rigid rotation as the elastic displacements
are kept as zero, as no displaced blade positions are known.

Moreover, the forces from CFD are not transferred to FAST until the end of the start-up phase
when the coupling initialization time is reached. Therefore, the loads as calculated from AeroDyn
are taken. When the coupling is initialized the quantities are transferred between both codes. The
fastFoam solver obtains the exact yaw, azimuth and pitch angles as well as the elastic blade states
(positions and orientations). The CFD mesh is then transformed using these values. However, the
elastic displacements should not be applied in one timestep to the CFD mesh as these could result in
convergence issues. Therefore, the displacements are smoothed into the CFD mesh over a selectable
proportion of a rotation to ensure convergence of the CFD solver.

Then the CFD can converge, which usually takes a couple of rotations. Thus, although the loads
obtained from CFD are already transferred to FAST after initialisation of the coupling the loads are not
applied yet. For now the FAST MpCCI adapter applies the forces from CFD only after two rotations
have been reached. These two rotations are a general experience value, which should ensure that the
applied CFD loads have converged. Thus, until the simulation time in FAST is equivalent to two rotor
rotations the forces from AeroDyn are applied. This application also follows a smoothing procedure,
where according to a linear function the weighting of the CFD loads is increased. Between two and two
and a half rotor rotations an average between the BEM and CFD loads is taken, based on this linear
function. This is done in order to prevent a sudden change in loads from one time step to another, due
to the change in aerodnyamic modelling (CFD versus BEM). Then from two and a half rotations only
the CFD loads are considered within FAST.

The entire procedure in time can be seen in Figure 5.9 for different aspects and both of the simulation
tools. In the Figure the different times, for which some can either be set via MpCCl and dictionaries or
are hardcoded for now, have been highlighted.

Coupling initialization time Time equiv. to two rotations Time equiv. to two and a half rotations FAST
-- OREEETTEREES — EEPTEEPETIEET =
| . aerodynamic loads from AeroDyn (BEM) i aerodynamic loads : aerodynamic loads
Aero loads: i average of AeroDyn; from OpenFOAM (CFD)
i and OpenFOAM
) time step Time
Time step: increment
phase constant time step similar to FAST
--------) R e e) 2
h constant
Mesh state: mesh
rotations mesh rotations according to FAST yaw, azimuth and pitch oPenFOAM
-------- g eeEETTEEE PP PP TTOERPT PR TP TTERFPTTPETEERPEEETTTERERPPRFTERRRED =
smooth blades into
Blades: i elastic state » .
rigid blades i according to FAST | blade positions according to FAST
-----------------------)=-------------)g--——---—------------------------)

Smooth start time Smooth end time

Figure 5.9: The coupling configuration as a function of time.

The selected times for the different simulations executed with fastFoam can be depicted from Table
5.1.

Table 5.1: Different times used in the fastFoam simulations.

Case: 1(c) 2 (c) 3 (c) 5-6 (c)
Coupling initialization time (s) 0.005 0.005 0.005 0.05

Smooth start time (s) 0.2087 0.2088 0.2091 4.9587
Smooth end time (s) 0.4174 0.4175 0.4182 8.6777
Time equivalent to two rotations (s) 1.6698 1.6700 1.6729 9.9174

Time equivalent to two and a half rotations (s) 2.0873 2.0875 2.0911 12.3968

Results

To validate the FAST-OpenFOAM coupled method (fastFoam) simulations will be executed and re-
sults will be compared to experimental data. In addition, different simulations will be run based on
stand-alone OpenFOAM and NREL FAST. This is done in order to compare the different simulation
approaches and to elaborate on their validity.

The setup for the simulations in OpenFOAM is according to Section 4.1 and the simulations in FAST
follow the setup in Section 4.2. Finally, the combined approach fastFOAM is utilized as described in
Chapter 5.

The simulations were executed based on the simulation matrix given in Table 3.6. First of all, the
NREL phase VI turbine has been simulated using the three different methods namely OpenFOAM,
FAST and fastFoam. The obtained results are discussed in Section 6.1 based on the experimental
data from NREL, see Hand et al. [30]. In addition, the NREL 5MW turbine was simulated representing
a modern turbine with more elastic blades. The corresponding results are presented in Section 6.2.
Moreover, in Section 6.3 an overview on the computation time for the different methods is given.

6.1. NREL phase VI

For the NREL phase VI turbine four different cases were simulated. At first, a mesh convergence
study is done which addresses the requirement on the mesh refinement for the CFD simulations of
OpenFOAM and the fastFoam solver. Then in Section 6.1.2 case 1 from the simulation matrix (Table
3.6) is discussed regarding normal operating conditions for the phase VI turbine. Afterwards, case 2
where the turbine undergoes a yaw sweep from zero to 30 deg yaw angle is presented in Section 6.1.3.
Then case 3 is considered in Section 6.1.5, where a pitch slope is applied and the effective angle of
attack is reduced.

Finally, for the phase VI turbine a partial power curve for lower wind speeds ranging from 5 to 10 m/s
was simulated and is examined in Section 6.1.5. This was done in order to ensure that the agreement
of the different methods with the experimental results is not only limited to specific wind speeds.

6.1.1. OpenFOAM Mesh Convergence

First of all, a grid convergence study was run based on the different meshes generated such as given
in Table 4.1. The results for the low-speed shaft power, thrust and torque of the different simulated
meshes are given in Figure 6.1 with respect to the experiment. From Figure 6.1 it can be seen that
the mesh with the highest number of cells shows the best agreement with the experimental results.
However, the results for the baseline mesh with intermediate mesh refinement are quite close to the
refined mesh. The results for the coarse mesh show the largest deviations.

In addition, the power, thrust and torque fluctuations are larger for the results from the coarsest
mesh compared to the baseline and refined mesh. The fluctuations for the experimental results are
much larger compared to the simulations. Especially the low-speed shaft power shows extremely large
fluctuations. An explanation for these fluctuations is that the rotor may not be perfectly balanced. A
small deviation of blade mass and center of gravity effects the rotor inertia, thereby leading to imbal-
ances and thus fluctuations. In addition, the experiments of course include the tower, thus resulting in

63

64 6. Results

tower effects such as tower shadow and wake influences.

In the diagrams a dip in power, thrust and torque seems to occur at multiples of one rotor rotation
taking about 0.8 s. This corresponds to a 1P frequency, thus occurring once per rotor revolution.
However, the effect of the tower should correspond to the 2P blade tower passing frequency due to the
reason that at each revolution the two blade are passing the tower once. By closer investigations also
a decrease in power, thrust and torque happens at the 2P frequency. A pattern can be observed where
a large dip occurs followed by an increase and then a much smaller decrease is present. The reason
for this may be that the 2P frequency is present, but due to rotor imbalances the power dip is different
in magnitude, depending on which blade passes the rotor.

7 1.25
------ OpenFOAM baseline
------- OpenFOAM fine
—— OpenFOAM coarse
6.5 1.2 —— NREL Exp.
s <
& f rn i lh "';'s»‘ S i’:;iwlqvﬂv:;ﬂn‘if ';n ‘i‘lhﬂ i ‘);" ‘5"'(=
55 | ' |
5
0 25 5 75 10 12.5 15
Time (s) Time (s)
(a) Low-speed shaft power. (b) Thrust.
0.9
0.85
3
pd
=3
o 08
>
g
o
= ':
0.75 |{i

0.7
0 25 5 7.5 10 12.5 15

Time (s)
(c) Low-speed shaft torque.

Figure 6.1: General turbine parameters according to simulations and experiment for the mesh convergence study at 7 m/s wind
speed.

The resulting mean power, thrust and torque were calculated in Table 6.1 for the different simula-
tions and the experimental data. Moreover the Table shows the deviation to the experimental data.
As can be seen the deviation of the mean values to the experimental data decreases with the mesh
refinement. However, as the resulting differences between the baseline and the fine mesh are not very
large the baseline mesh was accepted. This is due to the reason, that with the increased number of
cells for a refined mesh the computational requirements and thus time increase as well (here by about
49 percent). To avoid too high computational times, while still ensuring relatively accurate results the
mesh with intermediate refinement (baseline) was accepted. The baseline mesh was therefore used
for the OpenFOAM and fastFoam simulations of the NREL phase VI turbine (case 1-4 of the simulation
matrix in Table 3.6).

6.1. NREL phase VI 65

Table 6.1: Results for the mesh convergence study.

Type: Baseline Coarse Fine Experiment
Mean Power (kW) 5.729 5.688 5.761 5.990

Error to Experiment (%) -4.355 -5.051 -3.830 -

Mean Thrust (kN) 1.124 1.119 1130 1.150

Error to Experiment (%) -2.205 -2.698 -1.731 -

Mean Torque (kNm) 0.761 0.756 0.765 0.796

Error to Experiment (%) -4.346 -5.042 -3.821 -
Computational Time (d) 9.251 8.025 13.790 -

Difference to Baseline (%) - -13.252 49.065 -

6.1.2. Normal Operating Conditions

The simulations under normal operating conditions (case 1) are compared to the NREL experiment
S0700000, relating to a mean wind speed of about 7 m/s. For the simulations for FAST and fastFoam
the set-up of the FAST code is given in Table 4.8. For the fastFoam and OpenFOAM simulations the
baseline mesh has been used with the set-up such as described in Section 4.1.3.

The obtained power, thrust and torque of the rotor are given in Figure 6.2 and compared to the
experimental data. The fastFoam values are output from both FAST, as it is the main simulation tool
and by the OpenFOAM postprocessor directly from the CFD simulation. In Figure 6.2 the fastFoam
FA legend entry indicates the FAST output, whereas the fastFoam OF entry relates to the OpenFOAM
output of the fastFoam simulations.

It can be seen that for the thrust and torque a better agreement to the experiment is obtained by
the OpenFOAM simulations utilizing rigid blades and the fastFoam simulations with deformed blades
compared to the FAST only simulations. For the power the agreement is similar, while FAST is over-
predicting OpenFOAM and fastFoam simulations show a slight under prediction.

It is interesting to observe that in the fastFoam simulations a sinusoidal behaviour is present in the
power and thrust, while FAST and OpenFOAM results converge towards a steady value. The power
variations must be driven by sinusoidal variations in torque as the rotational speed is kept constant,
which can be proven by investigating Figure 6.2c. For the OpenFOAM output the low-speed shaft
torque is nothing else than the aerodynamic moment composed of the aerodynamic forces in the rotor
plane. For FAST it is internally calculated in the ElastoDyn module. The ElastoDyn module includes a
detailed drivetrain model including drivetrain torsion, acceleration and inertia effects, see [18]. However,
for this simulation for the ElastoDyn settings the drivetrain and generator degree of freedoms were
disabled, see Table 4.8.

The sinusoidal variations for the fastFaom results occur with approximately a 1P frequency for both
output methods, see Figure 6.2d. This could indicate that there might be a slight fluctuation of the
aerodynamic moment and thus forces contributing to the torque as a function of the azimuthal position.
For the fastFoam FAST results, which include the drivetrain modelling, the fluctuations are amplified and
the phase has shifted slightly compared to the pure aerodynamic torque obtained from fastFoam with
OpenFOAM postprocessing. The highlighted blade 1 tower passage (B1P) shows that the fastFoam
FAST output similar to the experiment shows a strong reduction in torque if blade 1 passes.

That this occurs for fastFoam is interesting to notice as the tower effects were not enabled within
FAST and no tower was modelled within the CFD mesh. For the experiment the torque reduction is
much larger if blade 1 passes compared to the case when blade 2 passes the tower. This may be
explained due to imbalances or drivetrain torsional effects.

For the thrust both fastFoam outputs show the same converging behavior. Whereas the values
from the OpenFOAM postprocessing are slightly increased compared to the fastFoam FAST output
both show approximately 1P fluctuations with lower amplitude if related to the experiment. It interesting
to observe that in contrast to the torque for the thrust the phase of the fluctuations is relatively similar.

It would require further investigations what exactly causes the fluctuations in fastFoam, which are
already present for the power, thrust and torque in the CFD solution, but amplified and phase shifted
for the power and torque within the FAST ElastoDyn model.

66 6. Results

145 5
i FAST
§E§=§ ------ OpenFoam
T e fastFoam FA
il

135 . R R fastFoam OF
2y — NREL Exp.

Power (kW)
Thrust (kN)

20
Time (s) Time (s)

(a) Low-speed shaft power. (b) Thrust.

1.0

0.9

Torque (kNm)
Torque (kNm)

. 0.6
0 5 10 15 20 15 16 17 18 19 20
Time (s) Time (s)
(c) Low-speed shaft torque. (d) Detailed torque variations at higher simulation times.

Figure 6.2: General turbine parameters according to simulations and experiment for case 1.

Another source of fluctuations for the experiment is due to variations in rotational speed and pitch
angle for instance. As can be seen in Figure 6.3 the rotational speed varies quite a bit for the experiment,
while for the simulations a constant value equivalent to the mean of the experiment is taken. For the
pitch within all simulations for the NREL phase VI a pitch angle of 4.815 deg is taken (for case 3 this
increases). However, the experimental data given by the digital blade pitch setting values indicate
that this was slightly lower for the S0700000 experiment. Due to rounding errors and bearing in mind
that these are only digital blade pitch settings, thus not measured, the chosen 4.815 deg seem to be
appropriate. The pitch angle for the experiment also seems to undergo certain valleys, which may be
related to errors in the dataset for instance due to rounding.

6.1. NREL phase VI 67

724 5.1
FAST

5 [[S S Lt OpenFOAM
g 722 SO0 fastFoam
S — NREL Exp.
3 5
& 720 o 49
S z
=2 5
[o] =
5 71.8 T 48
IS
Z 716 47

714 46

0 5 10 15 20 0 5 10 15 20
Time (s) Time (s)
(a) Rotational speed of the rotor. (b) Blade 1 pitch angle.

Figure 6.3: Controller parameters according to simulations and experiment for case 1.

In addition, the flapwise and edgewise tip displacements (positive towards the leading edge) are
shown for the FAST and fastFoam simulation in Figure 6.4. For the experiment no data for these
parameters is available and for the OpenFOAM simulations the displacements are constant zero, due
to the assumption of rigid blades. It can be seen that both the flapwise and edgewise displacements
follow a sinusoidal pattern. The magnitude is very small, which is due to the fact that the blades of the
phase VI turbine are quite stiff. The agreement for the edgewise displacements between the different
methods is excellent. This may be due to the reason that the edgewise displacements are driven by the
gravitational forces. The agreement in amplitude for the flapwise displacements is quite good as well.
However, the fastFoam simulations show a more than 5 percent decreased mean value, which could
be related to a decrease in the aerodynamic forces as predicted by the CFD method versus BEM.

0.010
FAST
5 S R Rt fastFoam
B E 0.005
< = A
8 S 0.000|}|
= 2 i
[= i
2 8 -0.005] |
2 2
Q. [} { 1
© % O T I i i
- @ -oo0t0f §F PR LA R
-0.015
5 10 15 20 0 5 10 15 20
Time (s) Time (s)
(a) Flapwise direction. (b) Edgewise direction.

Figure 6.4: Blade 1 tip displacements according to simulations for case 1.

To investigate the aerodynamic forces along the blade span first the pressure distributions at several
sections are considered and compared to the experimental data. It has to be noted that for the FAST
simulations, where the BEM aerodynamic module is utilized no pressure distributions are obtained due
to the nature of the method. As can be seen in Figure 6.5 the agreement for the pressure coefficient (C,)
between the CFD based methods and the experiment is excellent for the different sections along the
blade. The difference between the OpenFOAM and fastFoam simulations is negligible for the pressure
distributions. Small differences may occur as a result of numerical errors, small blade displacements
and due to the reason that different post processing tools were used. Due to the small displacements
it is expected that OpenFOAM and fastFoam show the same distribution, which is proven by the data.

68 6. Results
4 4
------ OpenFoam
R fastFoam
31, 3 L, « NREL Exp.
—~ 2 —~ 2
QU QU
O O
o o
0 0
-1 -1
x/c(-) x/c(-)
(a) 0.30 /R (b) 0.47 r/R
4 4
3 3
O 2 r! O 2| .
S \“‘\\,\ S .;.\‘
I S I
. \’I‘ :
“J,»""' Ly . “"o..“~‘_ i "‘.,—" TN ‘\“__\)
0 //('/,—’ \"“D~---,~::.:;:f:' 0 ii /’//,/ _'_s-:-::;:m
¢
4 LA PR Ya
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/c(-) x/c(-)
(c) 0.63 /R (d) 0.80 /R
4
3
-~ 2
Q
S
| 1 f’q'-""- S R
'S T .
0 i /¢/y \‘\.\::\.\“‘%-
i e . \"‘~~~-:.:;_‘:4
L
1 ¥
0.0 0.2 0.4 0.6 0.8 1.0
x/c (-)
(e) 0.95 r/R

Figure 6.5: Pressure distributions at different blade sections for case 1 (0 deg azimuth).

For the load comparison, first the thrust force coefficient Cr;,, force in-plane coefficient Cr, and
pitching moment coefficient C,, are considered. They are plotted in Figure 6.6 at different sections along
the blade. For the experimental data error bars are included indicating the maximum and minimum
value for an azimuth band of about 10 deg around the selected plotting time, which is approximately
similar to the plotting time of the simulations. Each data point for the experimental results corresponds
to the data at this selected time, but due to the nature of measurements a value close to the minimum
or maximum at that specific azimuth could be selected. This is the reason why error bars have been
included in all force and moment distributions at specific times.

It can be seen that for the force coefficients the OpenFOAM and fastFoam results agree well with
the experimental data. Also FAST shows good agreement especially outbords. However, at the inner

6.1. NREL phase VI 69

sections of the blade the FAST results seem to overpredict compared to the experimental results.

It is interesting to notice that at the first postprocessed section at about 0.25 r/R FAST predicts
an increase for Cr, compared to the next more outboard section. In contrast, both OpenFOAM and
fastFoam predict a decrease at that section compared to the next more outboard section. Due to the
reason that there is no experimental data at the first section (0.25 r/R), it cannot be stated safely which
code is correct for this investigation.

For the pitching moment coefficient C,, it can be stated that FAST shows the best agreement to the
experimental data for the inner part of the blade. However, at the outer part especially at the tip the
agreement gets worse and FAST overpredicts the magnitude of the moment. It can be seen that the
OpenFOAM and fastFoam results deviate quite a bit, which is not expected when taking into account
that the pitching moment is composed of the forces. This is especially questionable as the aerodynamic
forces seem to agree well between OpenFOAM and fastFoam.

The reason for this may be related to different postprocessing tools used. For the OpenFOAM
simulations, which were done at an early stage of the project, an initial postprocessing tool was used.
This tool was later revised and the postprocessing was done differently allowing for runtime simulation
processing of elastic blades. It seems that the new postprocessing tool used for fastFoam shows
better prediction of the pitching moment coefficient. As this is the final tool the error in the OpenFOAM
simulations is accepted knowing that one needs to rerun the entire simulations. One reason for this
error could be that the moment arm and reference point are different. However, a first investigation did
not discover this.

1.2 0.6
FAST
1.0 0.5 ---- OpenFOAM
= ---e-- fastFoam
A = . .
0.8 |- T L 0.4 NREL Exp
. ’:_’,_.;— """:l_\ - ey
< 06 e < o03l A
< ks e 5] . S TR
& K ‘T & / B
s \5 0 \\\
0.4 0.2 S
’’’’’’ =
0.2 0.1
¥,
»
0.0 0.0
02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10
7/R (-) T/R (-)
(a) Thrust coefficient. (b) Torque coefficient.
0.04
0.02
0 o
O M }/‘
= 0.02| el el d
3 e

-0.04 I ‘i ————————————— i _____________ i ______

-0.06

-0.08
02 03 04 05 06 07 08 09 1.0

r/R ()

(c) Pitching moment coefficient.

Figure 6.6: Force and moment coefficient azimuthal variations at different blade sections for case 1 (0 deg azimuth).

Additionally, for the comparison the absolute aerodynamic loads are considered. In Figure 6.7 the

70 6. Results

thrust force Fry,, force contributing to the torque Fr, and pitching moment M are shown. For the forces
good agreement between the CFD methods is observed. The comparison with the experiment reveals
that the OpenFOAM and fastFoam methods underpredict the forces slightly, except near the tip where
a overprediction for the thrust force is shown. The BEM-based method FAST in contrast shows a slight
overprediction along the entire blade for the forces. However, the absolute error to the experimental
results is quite small for the three different methods. Only for the thrust force larger deviations are
visible at the tip, where also a large fluctuation of the experimental data can be seen.

The CFD methods show a bit smoother load distribution for the 9 sections included. Especially,
for the in-plane forces a sudden jump at the root is visible for the BEM results. This may be due to a
change in the airfoil data used in BEM from a circular section at about 0.18 r/R to an airfoil shaped
section (0.25 r/R).

Moreover, the pitching moments were considered. At the inboard part of the blade excellent agree-
ment to the experiment is obtained with FAST, whereas fastFoam deviates slightly and OpenFOAM
shows large deviations. At the tip fastFoam and OpenFOAM show better agreement, whereas FAST
severely overpredicts the magnitude. Again the differences between the fastFoam and OpenFOAM
simulations could be due to different postprocessing tools, where the revised tool used in fastFoam
shows better results.

250 60
FAST
--<-- OpenFOAM -~
200 {-.e-- fastFoam PN 40
« NREL Exp. + g T Fen g
_ s _ = S
£ ™0 - I‘\ £ g -
[] S
= 7 £ 20 / A\
g s S s %
= 100 Vi s, /
/ /
4 0 o 4
50 Ve e
/’/
oo
0 -20
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
/R (-) T/R ()
(a) Thrust. (b) Torque.
10
5
€
€ 0 e .
s e v
¥ L .
-5 x z
-10
0 0.2 0.4 0.6 0.8 1.0
T/R (-)

(c) Pitching moment.

Figure 6.7: Force and moment distribution at different blade sections for case 1 (0 deg azimuth).

Finally, for the comparison of aerodynamic loads also the load variations over one rotor rotation
are taken into account. Thus the loads are considered at azimuths other than zero compared to the
previous shown load distributions, which were all done at zero azimuth. Therefore, the forces and
pitching moment are shown in Figure 6.8 for an inboard (0.47 r/R) and near tip section (0.95 r/R). The

6.1. NREL phase VI 71

OpenFOAM results were not included for this case due to the reason that the initial postprocessing
tool was used, which would require manual postprocessing of each azimuthal position and thus for 720
steps for the 0.5 deg azimuth steps. However, the aforementioned load comparison showed that the
OpenFOAM results are close to the fastFoam results for the forces, whereas for the pitching moment
there is a discrepancy.

For the inner section at 0.47 r/R it can be concluded, that for the thrust force fastFoam agrees
very well over the whole range of azimuthal blade positions. FAST overpredicts the magnitude of the
force slightly. Whereas the simulations do show a steady behaviour, thus no change of the values
as a function of azimuth, the experiment shows a valley near the 180 deg blade position. This can be
expected as a result of the tower effect at blade passage, which is not modelled by FAST and fastFoam.
In FAST this could easily be activated by including the potential flow around the tower and the tower
shadow effect. However, for fastFoam the tower would need to be included in the CFD mesh, drastically
increasing the meshing effort. For a fair comparison between FAST and fastFoam it was decided to
not include the tower in both of them, thereby reducing the CFD meshing effort. That the simulation
results then show a relatively steady behaviour could be expected as there are no great sources of
unsteadiness such as a tower, yawing, rotor cone or tilt.

Moreover, for the force contributing to torque at 0.47 r/R it can be observered that FAST shows
some overprediction, whereas fastFoam underestimates the actual value from the experiment. The
difference in magnitude is approximately similar for both simulations compared to the experimental
data. Concerning the fastFoam results there are small fluctuations. For the experiment there is a huge
decrease in force at blade passage of the order of 10 percent, which again is not predicted by the
simulations due to the reason that no tower effects are included. For the moment both fastFoam and
FAST show excellent agreement at he inner section.

For the outer section near the tip both fastFoam and FAST overestimate the thrust force magnitude
by about 10 percent. The overprediction is lower for the torque contributing force. It is interesting to
notice that whereas the FAST results are quite constant, the fastFoam results show a small increase
at approximately 90 deg azimuth for the thrust forces and towards the 100 to 200 deg azimuths for the
torque forces. It could be that the CFD results would require a bit longer simulation time to reduce these
effects and achieve better convergence. Finally, for the pitching moment at the tip it can be concluded
that FAST greatly overestimates the magnitude compared to the experimental data. Itis about twice as
large with a pitching moment towards feather of about -6 Nm/m. The fastFoam results seem to agree
well for this section only showing a small deviation.

72

6. Results

250
o NREL Exp.
FAST

200 ||mime: fastFoam
E 150
£
3
= 100

50

0

0 45 90 135 180 225 270 315 360
Azimuth (deg)
(a) Thrust variation (0.47 r/R).

60

50
E
£
&
43

30

20

0 45 90 135 180 225 270 315 360

Azimuth (deg)

(c) Torque contribution variation (0.47 r/R).

10
5
E
S
Z 0
= 0.6 PRSP PUr
TSI Q% & OO =
-5
-10
0 45 90 135 180 225 270 315 360

Azimuth (deg)

(e) Pitching moment variation (0.47 r/R).

Frp (N/m)

Frq (N/m)

250

200

150

100

50

40

30

10

10

45 90 135 180 225 270 315 360

Azimuth (deg)

(b) Thrust variation (0.95 r/R).

45 90 135 180 225 270 315 360

Azimuth (deg)

(d) Torque contribution variation (0.95 r/R).

45 90 135 180 225 270 315 360

Azimuth (deg)

(f) Pitching moment variation (0.95 r/R).

Figure 6.8: Force and moment variations at inner blade section (0.47 r/R, left) and outer blade section (0.95 r /R, right) for
case 1.

6.1.3. Yaw Sweep
In order to investigate an increased unsteady condition a yaw sweep of 1 deg/s was simulated corre-
sponding to case 2 in the simulation matrix in Table 3.6. The simulation results were again compared
to experimental results now from measurement sequence S07YSUOQO0. The unsteady yaw sweep was
chosen as it allows for comparison at different yaw angles and deals as an increased difficulty valida-
tion test for the fastFoam solver, due to the changing yaw angle and thus rotational axis which needs

6.1. NREL phase VI 73

to be correctly implemented in the mesh updates.

The Low-speed shaft power, thrust and torque are given in Figure 6.9. It can be seen that with
increasing yaw angle the mean of the values reduces, while the amplitude of the fluctuations due to
the unsteady yaw conditions increases. For the power one can observe that whereas FAST and Open-
FOAM simulations show only small fluctuations, the experimental results and the fastFoam simulations
show larger ones. Again for the experimental power no clear pattern is observable, which may be due
to imbalances of the rotor in the experiment and fluctuations in rotational speed. The mean power de-
crease is well predicted by FAST, while the mean power decrease of OpenFOAM and fastFoam show
a slight underestimation.

For the thrust it can be seen that FAST cannot predict the decrease due to the yawing accurately.
It overerstimates the reduction due to the yawing effect. OpenFOAM and fastFoam can accurately
predict the reduction, however the mean thrust is slightly underestimated at all times. Finally, for the
torque a smoother behaviour can be seen with more regular fluctuations in both the experiment and
the simulations, although there are initial fluctuations for both FAST and fastFoam. By analyzing the
yawing effect on the torque at higher yaw angles, see Figure 6.9d one can identify the effect of the
nonuniform inflow angle.

From the Figure it an clearly be seen that the simulations as well as the experiment show a strong
reduction in torque for the tower passage of blade 1, indicated as blade 1 passage (B1P). However, for
the blade 2 tower passage, which occurs approximately at 26 seconds only FAST and OpenFOAM as
well as the fastFoam OpenFOAM output result in a reduction. The experiment as well as the fastFoam
simulations actually show an increase of the values. Thereby, it can be seen the torque for the FAST
and OpenFOAM simulations varies with the blade passing frequencies (2P). Whereas the experiment
and fastFoam FAST data show a 1P dependency.

Although the fastFoam FAST simulation seems to predict the experiment most accurately it is ques-
tionable what causes the 1P dependency. One reason could be due to shaft bending and rotor imbal-
ances. However, in the fastFoam simulations in principal no strong imbalances should occur as the
blades were modelled symmetrically. An influence could be the missing tower compared to the exper-
iment, however in the OpenFOAM and FAST simulations the tower is missing as well.

74 6. Results

g g .“;\;‘ 1 ll |l
S . = FAST {1 ‘
fid ‘} ------ OpenFoam T | ‘
' 0.95 1_..c.c fastFoam FA B i 4
--------- fastFoam OF LB
—— NREL Exp.
3 0.85
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
(a) Low-speed shaft power. (b) Thrust.
1.1 0.8
€ 3
z z
= =
()] ()
=) >
g g
S i S
= idl =
0.3
0 5 10 15 20 25 30
Time (s) Time (s)
(c) Low-speed shaft torque. (d) Detailed torque variations at high yaw angles.

Figure 6.9: General turbine parameters according to simulations and experiment for case 2.

In Figure 6.10 the rotational speed and yaw angle are shown. It can be seen that for the experiment
the rotational speed decreases slightly for larger yaw angles. In the simulations the rotational speed
is kept constant and approximately equal to the mean of the experiment. This could result in small
deviations in the azimuth angle for the simulations versus experiment especially increased at larger
yaw angles. The yaw angle implemented in the simulations follows exactly the experimental data. The
pitch angle although not shown here is chosen to be about the same as for the experiment with a value
of 4.815 deg for the simulations. However, there are certain pitch reductions in the experimental data
as previously shown for case 1 in Figure 6.3.

6.1. NREL phase VI 75

72.4 30
FAST
] OpenFOAM
E 7220 fastFoam
g, 20 —— NREL Exp.
8 720 D
Q. e
2 N
g 718 N
B 10
8
£ 716
71.4 (s
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
(a) Rotational speed of the rotor. (b) Yaw angle.

Figure 6.10: Controller parameters according to simulations and experiment for case 2.

Next, the blade tip displacement evolution over time is given in Figure 6.11. It can clearly be seen
that the mean of the flapwise tip displacement decreases with increasing yaw angle for both the fast-
Foam and FAST simulations. This is related to a decrease in aerodynamic loads due to the yawing.
However, the fluctuations of the deflection is increasing for flapwise displacements. At the start of the
simulation the flapwise deflections in fastFoam are equal to the calculated values from FAST. However,
at about 1.6 seconds corresponding to two rotor revolutions the CFD loads are applied and the flapwise
deflection reduces compared to FAST. At large yaw angles the results from FAST show a larger mean
and amplitude of the fluctuation.

In comparison to the flapwise tip displacement, the edgewise one shows very similar results for
both FAST and fastFoam. The mean of the edgewise tip deflection slightly increases over time, while
the amplitude stays constant. The reason for this is that edgewise displacements for this turbine are
mostly driven by the gravitational loads, which are constant and independent of the yaw angle.

0.010
FAST
[N N b fastFoam
a E 0.005
a Q 0.000 |
o o
= =
3 8 -0.005
£ 2
a o |
© o i |
i w -0.010
0.010 -0.015
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
(a) Flapwise direction. (b) Edgewise direction.

Figure 6.11: Blade 1 tip displacements according to simulations for case 2.

To investigate the effect of the increasing yaw angle, the aerodynamic forces at several sections
and different yaw angles are given in Figure 6.12 at an azimuth of 0 deg. For the forces related to
the thrust one can observe that FAST shows a better agreement with the experimental results at the
outboard sections between 60 and 80 percent of the blade span. However, near the tip (0.95 r/R) and
near the root (0.3 r/R) the CFD results are more accurate. Both CFD methods agree well which is
expected due to the low magnitude of displacements. A difference is only observable near the tip at at
0.95 r/R, where the OpenFOAM results seem to be closer to the experimental values. Overall it can

76

6. Results

be observed that the thrust forces greatly reduce from about 5 to 10 to 20 percent for the respective

yaw angles of

10, 20 and 30 deg.

For the forces which contribute to the torque a similar reduction can be observed. These forces are
overpredicted slightly by FAST at lower yaw angles, whereas the CFD methods underestimate them.
However, at the largest yaw angle of 30 deg the FAST simulations show really good agreement for this
selected azimuth angle which was unexpected.

250
FAST
--+-- OpenFOAM
200 ||-.--- fastFoam x
e NREL Exp. P S
_ ol 3
E 150 L I"
Z L b
= F
= 100
i/
d
50 e
l’/
)4
0 p=d
0 0.2 0.4 0.6 0.8 1.0
T/R (-)
(a) Thrust at 10 deg yaw.
250
200
. ,_;;‘:;:--.‘,_
E 150 =TTy
z ¥ I\
= 2 §
£ 100 i
o
7
50 »
/
Vil
0 a1
0 0.2 0.4 0.6 0.8 1.0
7/R ()
(c) Thrust at 20 deg yaw.
250
200
=
E 150 ST Yo
= oy 3;!
i Tz e \‘
= 100 o
»"()V/
50 > i
:”"’
0 ot
0 0.2 0.4 0.6 0.8 1.0
T/R (-)

(e) Thrust at 30 deg yaw.

60
40 =
E "),;"‘"‘-‘-=~‘—§:.‘::,-_7_-_i>\
B o N
— / ~,
< 2 4 g
S i 3
I,
e _i:"
0 .\.\;J/
.
-20
0.2 0.4 0.6 0.8 1.0
T/R (-)
(b) Torque contribution at 10 deg yaw.
60
40
——X =
= - R N
E 'f "’\,
£ 2 / =
g \
K
i
0 ¢f:f“’.
-20
0.2 0.4 0.6 0.8 1.0
T/R (-)
(d) Torque contribution at 20 deg yaw.
60
40
_ s e =
- .,:—"‘r“ ----- """—*--—v.—_-_
g & *\m_
~ 20 & ‘\i
E /’ ™\
E 3
0 c‘—""
-20
0.2 0.4 0.6 0.8
T/R (-)

(f) Torque contribution at 30 deg yaw.

Figure 6.12: Force distribution at different blade sections and yaw angles for case 2 (0 deg azimuth).

1.0

6.1. NREL phase VI 77

Additionally in Figure 6.13 the pitching moment distribution along the blade at zero azimuth is given
for the different yaw angles analyzed. Again the aforementioned difference between both fastFoam
and OpenFOAM results is present. The CFD results show better agreement with the experiment at the
tip compared to the FAST results. However, the FAST results do agree well near the outboard section
between 60 to 80 percent of blade span. The fastFoam results show the most accurate results for the
0.48 r/R section over the whole sets of yaw angles.

10 10
FAST
--+-- OpenFOAM
---e-- fastFoam
5 5 « NREL Exp.
E E
1S » 1S Py
é 0 : \..’.,4::_\\ I. é 0 » -l*"—f?\ "
= Aot A S U S S b s . S R— PR b
\"i e AR . T —— PR &
-5 x ry -5 +
-10 -10
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
/R () T/R ()
(a) Pitching moment at 10 deg yaw. (b) Pitching moment at 20 deg yaw.
10
5
E
£ -
E 0 :’ pe '=.'_-_i -l ;‘
= -‘:;::.-:,:.-:.1'.:.':.:?:_'_:.'_'.:_':_:_‘_f
=
5 T
-10
0 0.2 0.4 0.6 0.8 1.0
T/R (-)

(c) Pitching moment at 30 deg yaw.

Figure 6.13: Moment distribution at different blade sections and yaw angles for case 2 (0 deg azimuth).

Finally, it is investigated how the loads change over one revolution at unsteady yaw conditions.
Therefore, the forces are shown near the tip at the 0.95 r/R section, where most of the power is
generated, for varying yaw angles in Figure 6.14. For the thrust forces shown on the left it can be
observed that the CFD method is slightly overpredicting at the entire range of azimuths. However, the
shape of the fluctuations is accurately predicted with peaks at about 225 deg. In contrast, the FAST
simulations, using BEM, fail to predict the shape of the azimuthal variations. Especially at large yaw
angles near the 90 and 270 deg azimuths large deviations from the experimental data are present.

For the torque contributing forces the fastFaom method shows excellent agreement near the tip at all
yaw angles. Only at 180 deg azimuth the force reduction due to the tower is not predicted. In contrast,
FAST also shows a sinusoidal variation, but is again overestimating its magnitude especially near 90
and 270 deg azimuth. At the largest yaw angle of 30 deg its maximum deviation to the experimental
data gets really large with up to 40 percent.

78 6. Results
250 40
o NREL Exp.
200 FAST
300 fastFoam
E 150 3
£ £
g <
w100)
10
50
0 0
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Azimuth (deg) Azimuth (deg)
(a) Thrust variation at about 10 deg yaw. (b) Torque contribution variation at about 10 deg yaw.
250 40
200
30
E 150 £
=3 £
g S
100 5
10
50
0 0
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Azimuth (deg) Azimuth (deg)
(c) Thrust variation at about 20 deg yaw. (d) Torque contribution variation at about 20 deg yaw.
250 40
200
30
E €
£ £
<= o
= &
K)
50
0 0

0 45 90 135 180 225 270 315 360
Azimuth (deg)

(e) Thrust variation at about 30 deg yaw.

45 90 135 180 225 270 315 360
Azimuth (deg)

(f) Torque contribution variation at about 30 deg yaw.

Figure 6.14: Force azimuthal variations with approximately 10, 20 and 30 deg yaw angle at outer blade section (0.95 r/R) for
case 2.

In addition to the forces, also the moment variations near the tip due to the unsteady yaw conditions
are shown in Figure 6.15. It can be sen that the fastFoam results show good agreement to the the
experimental data with a slight overprediction of the mean. For FAST there is a much larger overesti-
mation and for large yaw angles the shape of the moment variations is not accurately predicted. The
minimum value for the moment in the FAST simulations is located at an azimuth of about 225 deg,
whereas in the fastFoam and experimental results it is located around the 180 deg azimuth.

6.1. NREL phase VI 79

10 10
o NREL Exp.
FAST
5 3 A S SO S S Lt fastFoam

-10 -10
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Azimuth (deg) Azimuth (deg)
(a) Pitching moment variation at about 10 deg yaw. (b) Pitching moment variation at about 20 deg yaw.
10
5
E
£
z 0
=
-5
-10

45 90 135 180 225 270 315 360
Azimuth (deg)

(c) Pitching moment variation at about 30 deg yaw.

Figure 6.15: Moment azimuthal variations with approximately 10, 20 and 30 deg yaw angle at outer blade section (0.95 r/R) for
case 2.

Finally, it was decided to plot the force and moment distribution again for an azimuth of 270 deg
shown in Figure 6.16. This was done as at this specific azimuth the deviation to the experimental data
was the largest for FAST near the tip, see Figure 6.14 and 6.15. As can be seen in Figure 6.16 FAST
shows good agreement for the forces up to 80 percent of the blade span. The CFD method results
also agree well, but from about 60 percent blade span their deviation to the experimental results gets
larger. However, near the tip FAST clearly overestimates the forces up to 40 percent at the 0.95 r/R
section. The CFD methods show a better agreement at the tip for the forces.

For the pitching moment at 270 deg azimuth the same deviation between both CFD methods is
present. The fastFoam method shows the best agreement at the inner blade part, where FAST clearly
overestimates the magnitude of the pitching moment. At the middle section from 60 to 80 percent
FAST shows a better agreement, whereas at the tip the same behaviour, such as already shown for
the forces, is present in FAST resulting in a clear overprediction.

80 6. Results

250 60
FAST
--+-- OpenFOAM
200 ||-.-o-- fastFoam z 40
e NREL Exp. g
—_ ®= \~\.:'~"'Q —_ = - . -
E 150 s f £ P e N,
= W2 e e
s x e = <
w100 pd S /d H
/" *u /
50 5 0 R4
2
ol S=e -20
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
7/R (-) T/R (-)
(a) Thrust. (b) Torque contribution.
10
5
E
S .
A S)
= ": ~~~~~~ P L e
O —— T
-5 iy T
-10
0.2 0.4 0.6 0.8 1.0
T/R (-)

(c) Pitching moment.

Figure 6.16: Force and moment distribution at different blade sections at approximately 30 deg yaw and 270 deg azimuth for
case 2.

6.1.4. Pitch Slope

In addition to the normal operation and yaw cases, a last 30 s case for the phase VI turbine was
examined based on a pitching motion, where the pitch angle is linearly increased. The wind speed for
this case was approximately 6 m/s, thus lower compared to the previous cases. This was done as no
experimental data for an increasing pitch case is available for the 7 m/s wind speed. It also allows to
investigate the agreement of the simulations to the experiment at a different wind speed.

The general parameters such as thrust, torque and power are given in Figure 6.17 for the simulations
and the experiment. It can be observed that for the thrust a strong linear reduction is present for
the different methods. Whereas the CFD methods are able to predict the linear slope of the thrust
reduction, FAST clearly underestimates the thrust at higher pitch angles. For the power and torque
the CFD methods show an approximately constant underestimation of the mean power values from
the experiment. FAST shows good agreement at low pitch angles, but also underestimates these
parameters at higher pitch angles. Again the slope of the reduction is not met by FAST and it seems
that at even larger pitch angles than the maximum simulated one of 11, the difference to the experiment
gets worse.

Again sinusoidal fluctuations in power and torque can be observed for the fastFoam FAST output.
The reason for this cannot be immediately explained and would require further investigations, but the
mean value agrees well with the fastFoam OpenFOAM postprocessing outputs.

6.1. NREL phase VI 81

1.0 r
i FAST
------ OpenFoam
o8 iy, fastFoam FA
' —— fastFoam OF

= = —— NREL Exp.
i g P
@ ® 06
S £
o [

0.4

0.2

0 5 10 15 20 25 30
Time (s) Time (s)
(b) Thrust.

0.5

0.4
£ €
z z
= =
()] ()
=) >
g g
(o] o
= [

0 0
0 5 10 15 20 25 30 25 26 27 28 29 30
Time (s) Time (s)
(c) Low-speed shaft torque. (d) Detailed torque variations at large pitch angles.

Figure 6.17: General turbine parameters according to simulations and experiment for case 3.

Next, the control parameters such as the rotational speed and the pitch angle are taken into account
in Figure 6.19. For the rotational speed the mean experimental value is approximately matched by the
simulations, where the error increases for large pitch angles. The pitch angle increase also seems
to agree well with the experimental slope, but for the experiment some fluctuations can be observed
which are not included in the simulations.

82 6. Results

72.2 12
FAST
] OpenFOAM
E 5nl] fastFoam
g 720 101 NREL Exp.
Q. e
» 718 ‘“ ‘ - 8
p LT T e I LATNTY 5
5 1T [(TR U 0 l I Hl”\l o
©
o 716 6
1
71.4 4
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
(a) Rotational speed of the rotor. (b) Pitch angle.

Figure 6.18: Controller parameters according to simulations and experiment for case 3.

Moreover, the tip deflection evolution over time is given in Figure 6.19 for both flap- and edgewise
directions. While for the edgewise deflections no difference is observable between FAST and fast-
Foam, for flapwise deflections the different methods can be clearly distinguished. Compared to FAST,
fastFoam results show a small increase in the deflections at higher pitch angles, which may be related
to increased loads for fastFoam compared to FAST.

0.015 ¢ 0.015
FAST
R S S R fastFoam
T 0012 g 0010
& 0.009 A 0005|
o o
= =
3 0.006 2 0.000
g 3
© g
L 0.003 @ -0.005
! AR EERERRRERRRRE!
0 -0.010

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
(a) Flapwise direction. (b) Edgewise direction.

Figure 6.19: Blade 1 tip displacements according to simulations for case 3.

To investigate the loads, the thrust and torque contributing forces are shown in Figure 6.20. It can
be seen that for the thrust forces the loads seem to be better predicted by the CFD methods. FAST
shows a clear underestimation near the outer part of the blade, which may be attributed to a deficiency
of the BEM unsteady model. All methods show relatively good agreement at the inner blade part for
the thrust forces. In the outer region, especially at high pitch angles, the agreement gets worse, but the
CFD methods are clearly superior in this aspect. Both CFD results agree well with slightly increased
results for the fastFoam predicted thrust forces.

For the forces contributing to the torque forces all methods agree relatively well with a tendency
to underestimate the measured forces at higher pitch angles. At the inboard part FAST shows again
increased forces compared to the CFD results. At the root the result varies quite a bit, which may
be attributed to the unsteady flow situation at the cylindrical sections, where aerodynamic phenomena
such as vortex shedding are occuring. It is interesting to observe that the disagreement between
OpenFOAM and fastFoam results seem to increase at the outboard part of the blade. This could be
again a reason of the different postprocessing tools used within OpenFOAM to obtain these results.

6.1. NREL phase VI

83

Whereas in OpenFOAM simulations for this turbine an early postprocesing tool was used based on
rigid blades, for the fastFoam simulations a runtime processing was utilized taking into account the
deflected blades.

Frp (N/m)

Frp (N/m)

Frp (N/m)

150
FAST
--+-- OpenFOAM)
--e-- fastFoam o et
100 e NREL Exp_ } /;:;;'»—-—
50 y 7
#
0 L wered
-50
0 0.2 0.4 0.6
/R (-)
(a) Thrust at 6.9 deg pitch.
150
100
>
I “:.’,.:-_—_»_-;-_-——--—0.“\
50 S
Pt
&
/3"
0 g
-50
0.2 0.4 0.6
T/R (-)
(c) Thrust at 8.9 deg pitch.
150
100
=
50 KNG,
A N
P
e
0 S
-50
0.2 0.4 0.6
/R (-)

(e) Thrust at 10.7 deg pitch.

Frq (N/m)

Frq (N/m)

Frq (N/m)

375
25
= =
’J’.—.:.—_—.:.-_—.:1'_:1.:7:'\;
<27 “T:} .
12.5 2 '*~~t:ig
e _Ift- \“:
0 ;\\-cl"
¥
-12.5
0 0.2 0.4 0.6 0.8 1.0
T/R (-)
(b) Torque contribution at 6.9 deg pitch.
375
25
KX =
AT~
12,5 ST <E L
F el
b
0 &/
-8
-12.5
0 0.2 0.4 0.6 0.8 1.0
/R (-)
(d) Torque contribution at 8.9 deg pitch.
375
25
=
125 _,—.:'—*-‘—‘-:-':-:7::~
P e
0 e /‘ \:
P
25—
0 0.2 0.4 0.6 0.8 1.0
T/R (-)

(f) Torque contribution at 10.7 deg pitch.

Figure 6.20: Force distribution at different blade sections and pitch angles for case 3 (0 deg azimuth).

In addition, also the aerodynamic pitching moment was considered in Figure 6.21. It can be seen

that CFD results and especially fastFoam agrees well in the outer and inner blade regions. Whereas in
the central blade region, from 50 to 65 percent blade span, FAST shows an improved result compared

84

6. Results

to experimental data at large pitch angles. The magnitude of the pitching moment predicted by FAST
is increased compared to CFD methods except at the blade root.

M (Nm/m)

10 10
FAST
--+-- OpenFOAM
5 5 --e-- fastFoam
¢ NREL Exp.
E
.~ 1S rS
0 pe -""\‘I-\,¢ z 0 e o) T
E::T::T:E:ZT:.‘::- -,’_’.:T_'-:-'I". = ‘.h%i:'.:'::':?&:‘.:.—:.:.—.—.::F"’_':'_:'i‘
5 ¥ -5 - k3
-10 -10
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
r/R () T/R ()
(a) Pitching moment at 6.9 deg pitch. (b) Pitching moment at 8.9 deg pitch.
10
5
E
S Y
0 A N
E e I‘\,i
= iy - A
S ~---?-..‘____;____.I
5 =
-10
0 0.2 0.4 0.6 0.8 1.0
/R (-)

(c) Pitching moment at 10.7 deg pitch.

Figure 6.21: Moment distribution at different blade sections and yaw angles for case 3 (0 deg azimuth).

Moreover, the variations in the forces over one rotation while undergoing an increase in pitch angle

are investigated in Figure 6.22. It can be sen that for the thrust forces a clear reduction from 0 deg to
360 deg azimuth over one rotation is present, related to a small increase in pitch angle (corresponding
to about 0.16 deg difference in pitch angle). The variation is also present in the experiment, but due
to the measurement fluctuations not as clear. The tower effect is observable for the experiment, but
again not included in the simulations. Near the tip, the deficiency of FAST and thus BEM to predict the

thrust force accurately at large pitch angles is obvious.

For the forces related to the torque also a small decrease is present over azimuth, but much smaller

in magnitude. Both FAST and fastFoam seem to agree well with the experimental data near the tip.

6.1. NREL phase VI

85

160

120
E
£
=
=
3

40

0

0 45 90 135 180 225 270 315 360
Azimuth (deg)
(a) Thrust variation at about 6.9 deg pitch.

160

120
E
=3
=
~
)

0

0 45 90 135 180 225 270 315 360

Azimuth (deg)

(c) Thrust variation at about 8.9 deg pitch.

160

120

80

Frp, (N/m)

0 45 90 135

Azimuth (deg)

(e) Thrust variation at about 10.7 deg pitch.

180 225 270 315 360

30
o NREL Exp.
FAST
0l fastFoam
E
£
S
=
5
0
-10
0 45 90 135 180 225 270 315 360

Azimuth (deg)

(b) Torque contribution variation at about 6.9 deg pitch.

30
20
E
£ 10
S o o ARaTRRA0 0. R Rne .- - sl
= RS S T paiiBedsm
0
-10

45 90 135 180 225 270 315 360

Azimuth (deg)

(d) Torque contribution variation at about 8.9 deg pitch.

30

20

10

Frq (N/m)

0 45 90 135 180 225 270 315 360

Azimuth (deg)

(f) Torque contribution variation at about 10.7 deg pitch.

Figure 6.22: Force azimuthal variations with approximately 6.9, 8.9 and 10.7 deg pitch angle at outer blade section (0.95 r/R)
for case 3.

Finally, also the pitching moment azimuth variations near the tip are shown in Figure 6.23c. An
overestimation of FAST is clearly present, whereas fastFoam results show excellent agreement at all
different pitch angles analyzed. It can be investigated that compared to the forces the pitching moment
is not that greatly influenced by the increase in pitch angle.

86 6. Results

10 10
o NREL Exp.
FAST
5 3 S SO S S Lt fastFoam

-10 -10
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Azimuth (deg) Azimuth (deg)
(a) Pitching moment variation at about 6.9 deg pitch. (b) Pitching moment variation at about 8.9 deg pitch.
10
5

45 90 135 180 225 270 315 360
Azimuth (deg)

(c) Pitching moment variation at about 10.7 deg pitch.

Figure 6.23: Moment azimuthal variations with approximately 6.9, 8.9 and 10.7 deg pitch angle at outer blade section (0.95
r/R) for case 3.

6.1.5. Power Curve

In addition to the aforementioned cases, a partial power curve was simulated. This was done in order
to see the agreement at different wind speeds. For the power curve simulations case 4 in the simulation
matrix in Table 3.6 is considered. The simulated wind speeds were ranging from 5 to 10 m/s in steps
of 1 m/s. Thus, the wind regime below stall for this specific turbine was simulated. The simulations
are executed at steady wind conditions as such a total of 6 simulations have been conducted for both
the OpenFOAM and FAST simulations. Simulations with fastFoam were not included due to the larger
effort in the setup, but the results can be expected to be close to the OpenFOAM simulations as seen
in the previous sections.

The mean values for the low-speed shaft power, thrust and torque at the different wind speeds are
shown in Figure 6.24. For the experiment, error bars are included now corresponding to the standard
deviation from the mean value, which is shown by the data point. For the power it can be seen that the
CFD method OpenFOAM shows better agreement with the experiment at 8 and 10 m/s wind speed. At
9 m/s the mean power predicted by FAST is closer to the experimental data. For the lower wind speeds
the deviations are about the same. For the thrust OpenFOAM clearly shows a better agreement for
nearly all wind speeds only at 10 m/s the deviations are larger compared to FAST. Finally, for the torque
FAST seems to agree better at 5 and 6 m/s, whereas OpenFOAM results are closer to the experimental
results at 7, 8 and 10 m/s.

From these simulations it can be stated regarding the selected wind speeds of 6 and 7 m/s for case
1 to 3, that neither is biased towards clear better agreements of one simulation method. However,
one could observe that OpenFOAM simulations show slightly better agreements compared to FAST at

6.2. NREL 5SMW

87

higher wind speeds ranging from 8 to 10 m/s.

15 2.0
--+-- OpenFoam
FAST i
e NREL Exp. k)
~ 10 Ft ~ 15 =
2 et Z
g 7 = T
[] e 7]
2 — . =) e
9] g <
£ 5 e 10
¥ =
0 0.5
5 6 7 8 9 10 5 6 7 8 9 10
Wind speed (m/s) Wind speed (m/s)
(a) Low-speed shaft power. (b) Thrust.
1.5
= 2
£ 10 e
z
© F
=] .
g
L 05 P
o %
0
5 6 7 8 9 10

Wind speed (m/s)
(c) Low-speed shaft torque.

Figure 6.24: General turbine parameters for different wind speeds obtained through converged simulations at steady wind
conditions (case 4).

6.2. NREL 5MW

In addition to the phase VI turbine, a more modern turbine with more flexible blades is included with
the NREL 5MW turbine. Results for the NREL 5MW turbine in normal operating conditions are inves-
tigated in Section 6.2.1. The effect of a state-of-the-art elastic blade is addressed. Due to the larger
blade deflections these cases result in an increased difficulty for the mesh deformation procedure to
be demonstrated. Moreover, the NREL 5MW turbine was simulated in yawed conditions at a fixed
yaw angle of 30 deg, see Section 6.2.2. The FAST and fastFoam simulations were carried out as
fully aero-servo-elastic simulations. Thus the effect of the controller is included for these operational
conditions.

6.2.1. Normal Operating Conditions

The first case simulated addresses the normal operating conditions at the rated wind speed of 11.4
m/s. At first both the fastFoam and FAST simulations were carried out with the activated controller in
FAST. Due to reasons explained in Section 6.2.1.1, later the yaw, torque and pitch control and thus
the entire controller was deactivated. The results for the deactivated controller where shown with more
details in Section 6.2.1.2.

6.2.1.1. Activated Controller

First of all, results for the low-speed shaft power, thrust and torque are shown in Figure 6.25. It could
be observed that the low-speed shaft power for the OpenFOAM CFD method is quite large with a
converged value of about 5.65 MW. Compared to this FAST converges to a much lower value of about

88 6. Results

5.1 MW. The fastFoam FAST output also shows an increased value of about 5.3 MW, where again
fluctuations of the power are present. The fastFoam OpenFOAM output shows a converged value of
only 4.8 MW with strong fluctuations.

Notice that the values shown for FAST include the drivetrain modelling within the ElastoDyn model
in FAST, whereas OpenFOAM outputs show the pure aerodynamic torque.

For the thrust one can observe that FAST now predicts the largest value with about 0.8 MN. The CFD
methods converge towards a lower value of around 0.75 for OpenFOAM and 0.73 for fastFoam FAST
output. The fastFoam OpenFOAM output shows a strong reduction compared to the other methods
similar to the power. For fastFoam there are clear fluctuations visible compared to the other methods.
The torque shows a similar picture such as for the power. OpenFOAM shows an increased value and
fastFoam, especially the OpenFOAM output, as well as FAST show a strong reduction.

In all plots it can be observed that the fastFoam solution first follows the FAST solution until about 10
seconds corresponding to two rotor rotations. At this time the CFD is said to be reasonably converged
and the loads from CFD are applied within FAST instead of BEM. From this point in time the values for
fastFoam FAST output get closer to the standalone OpenFOAM simulation values for the power, thrust
and torque.

From Figure 6.25d it can be observed that the torque for fastFoam varies with the 1P frequency,
with the largest values at azimuths of 180 deg, where in principle the tower passage occurs. However,
the tower was not included in the fastFoam simulations. Thus, the reason for these specific fluctuations
is a bit questionable.

0.95 =
i FAST
| I A N S CEC s OpenFOAM
T A bt fastFOAM FA
o flMR s 0.85 ARE T R A S EE fastFOAM OF
z
= s |
g % 075
g g
8 £ :
o = &
0.65 [
0.55 L
30 45 60 75 90 0 15 30 45 60 75 90
Time (s) Time (s)
(a) Low-speed shaft power. (b) Thrust.
5.0
4.5 boia L
3 3
z pd S o e = ISP s S
s s e T T T
P o 40|
= > *,
g =)
S o |
[[
3.5 !
B1P
3.0
30 45 60 75 90 70 75 80 85 90
Time (s) Time (s)
(c) Low-speed shaft torque. (d) Detailed torque variations at higher simulation times.

Figure 6.25: General turbine parameters according to simulations for case 5 with activated controller.

Next, the rotational speed and the pitch angle are shown in Figure 6.26. It can be seen that the

6.2. NREL 5SMW 89

torque controller increases the rotational speed for the fastFoam simulations towards the real rated
wind speed of 12.1 rpm. However, the speed shows clear fluctuations of about 1.5 rpm in amplitude.
For FAST the controller sets the rotational speed lower to about 11.95 rpm.

Observing the pitch angle, it can be seen that when the loads from CFD are applied at about 10
seconds the pitch is increased for fastFoam by the pitch control in FAST. The pitch is converging but with
fluctuations to about 3.5 deg. This can be explained due to the reason that the resulting aerodynamic
power from CFD, see the OpenFOAM results in Figure 6.25a, would be too high and thus the pitch
controller enables pitching of the blades.

The rated mechanical power of the turbine equals about 5.297 MW, see [22]. With the enabled pitch
control this is approximately achieved by the fastFoam simulations. FAST actually underestimates this
value slightly and thus may not be able to achieve the 5 MW of rated generator power taking into
account the 94.4 percent efficiency according to [22].

That the NREL 5MW turbine results in an increased value for the aerodynamic power, respectively
the related torque, is a known issue for some CFD simulations if compared to BEM, see for instance the
results of [27]. The results show that the controller can handle this by the activated pitching. However,
the resultant fluctuations of the pitch and also the rotational speed show that there could be improve-
ments in terms of the control actions. Finally, it can be statet that the controller is more tuned for FAST
and BEM (AeroDyn), see [22]. By retuning of the controller for the CFD for instance by increasing of
the required aerodynamic power better results may be achievable. However, such a retuning would
require expertise in control theory and of course time. Thus, at the current state of the project the
current control behaviour is accepted, as it is still showing that the controller responds to the difference
in loads for CFD compared to BEM.

Finally, the resulting 1P fluctuations for fastFoam in the power, thrust and torque could be related to
similar fluctuations in the rotational speed and pitch. If the peaks and valleys are counted for a certain
time period, for instance from 75 to 90 s, it can be seen that there number is equivalent for the different
outputs. However, the exact cause why this occurs has not been found yet and would probably require
more simulations with different settings, which due to time limitations cannot be achieved.

12.4 6
FAST
_ _;" A N N S A N (N S S SR CRE OpenFOAM
g_ 12.2 ! E : : 4l fastFOAM
Q y i i ° v
g Y 2
S . a
o I
§ 118 % 0
i
E
11.6 - 2
0 15 30 45 60 75 90 0 15 30 45 60 75 90
Time (s) Time (s)
(a) Rotational speed of the rotor. (b) Blade 2 pitch angle.

Figure 6.26: Controller parameters according to simulations for case 5 with activated controller.

Moreover, also the the displacements at the tip are compared both in edgewise and flapwise di-
rections for the methods, which include a structural solver, see Figure 6.27. For OpenFOAM the rigid
blade assumption is used and thus the displacement is zero. It can be seen that due to the pitching the
flapwise tip deflection is lower for fastFoam compared to FAST . However, due to the fluctuations the
deflections show also variations with larger amplitudes compared to FAST. The mean value is about
5.2 m for FAST while only 4.5 m of deflection for fastFoam are obtained.

For the edgewise displacements the effect of the pitching is reduced and thus the tip deflections are
about the same with slightly decreased values for fastFoam. This can be explained as the edgewise
deflections are mainly driven by the gravitational loads which, remain unchanged by the pitching motion.

a0 6. Results

7 1.5
FAST
R R S fastFoam

£ E
3 a
o o
= . =
: i
®© (2]
T &

3 -0.5

0 15 30 45 60 75 90 0 15 30 45 60 75 90
Time (s) Time (s)
(a) Flapwise direction. (b) Edgewise direction.

Figure 6.27: Blade 2 tip displacements according to simulations for case 5 with activated controller.

The resulting pressure distributions are shown in Figure 6.28 for both the rigid and elastic blade CFD
methods. As can be seen the pressure reduces in magnitude for fastFoam, which can be attributed to
the pitching of the blades thereby directly decreasing the angle of attack.

3 3
2 A [S S oot OpenFoam
‘ ------- fastFoam
2 i'! "Q}\\ 2
&1
I
0
A
gL
0.0
(a) 0.252 r/R (b) 0.512 /R
3 3
2 2
G S
I I
0 0
-1 -1
x/c (-) x/c (-)
(c)0.772 /R (d) 0.978 r/R

Figure 6.28: Pressure distributions at different blade sections for case 5 with activated controller (0 deg azimuth).

The effect of the pitching according to the controller can be investigated from the loads such as

6.2. NREL 5SMW 91

shown in Figure 6.29. As can be seen, the thrust and torque contributing forces reduce drastically for
fastFoam compared to OpenFOAM. The forces related to the torque are kept approximately equivalent
to the forces from FAST in magnitude at the outer part of the blade. OpenFOAM results clearly show
a strong increase in loads compared to FAST, which may further explain the reason of the pitching
motion applied.

For the pitching moment the CFD results have a similar order of magnitude, whereas FAST esti-
mates the magnitude only about half as large. This is contradicting to the NREL phase VI results where
the magnitude was approximately similar. The reason for this is currently unknown and would require
more investigations. One explanation, which would be need to be proven, could be due the reason
that FAST only considers the lift and drag forces acting at one point in one section with one moment
arm. In contrast to this for CFD, the moment is composed of the forces from every cell and their related
moment arms assigned to the section. Thus the difference could be resultant from the mesh matching
of a three dimensional surface mesh to one beam node.

This is a point of attention as the deviation compared to other comparisons between FAST and the
CFD methods is quite large and thus should be investigated further. However, due to lack of time and
possibly required simulations this difference is only noted for now. One additional simulation was run
were only the forces were communicated and the moments were set to zero in FAST. This was done
to investigate the influence of the aerodynamic moments compared to the forces. It was found that the
influence is very small and nearly negligible. This should be especially true if no torsion is applied such
as for ElastoDyn.

8000 1000
T 750 g -
6000 //,, \“ /; ________ PN PO PSS o\ ‘o\‘
,’ --e ‘\ /," -
E ST N E 500 ; AN
£ 4000 A Z S N\
g o . e " .
Iz, /., : Iz, 250 1,5‘
2000 A ol ¢ FAST
L --=+-- OpenFOAM
o7 --e-- fastFoam
oL® -250
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
7/R (-) T/R (-)
(a) Thrust. (b) Torque contribution.
2000
0 ""':;:':.
E . f
£ - i
3 -2000 X
= \{_:; !_/;/
-4000 ‘~\‘;:: ------- e 4
-6000
0 0.2 0.4 0.6 0.8 1.0
T/R (-)

(c) Pitching moment.

Figure 6.29: Force and moment distribution at different blade sections for case 5 with activated controller (O deg azimuth).

To conclude it can be stated that the pitching of the blades in fastFoam reduces the overall loads

92 6. Results

and thus deflections. Thereby, the comparison between FAST and fastFoam as well as OpenFOAM
is influenced. Therefore, it was decided to run another simulation where the pitch and also torque
controller is deactivated to allow for a better comparison at similar pitch angles and rotational speeds.

6.2.1.2. Deactivated Controller

As a next step, the entire controller describing the torque, pitch and yaw control was disabled within
FAST and thus also for fastFoam. In addition, the generator degree of freedom was disabled. The
result for the low-speed shaft power, thrust and torque is shown in Figure 6.30. It can be observed
that due to the lack of the controller clearly more initial fluctuations are present and both FAST and
fastFoam take much longer time to converge. Whereas FAST clearly converges towards a constant
solution for the power, thrust and torque, fastFoam only seems to converge to a relatively constant
value for the thrust considering the FAST output. For the power and torque the fastFoam FAST output
shows more pronounced fluctuations, compared to the case where the controller was disabled, see
Figure 6.25 for comparison. This could be a hint that the drivetrain modelling in FAST will amplify the
fluctuations, especially if no controller is present to damp these.

Considering the fastFoam OpenFOAM output, one can see good agreement with OpenFOAM as
now the rotational speed is equal due to the deactivated control. However, at the start of the fastFoam
simulation a sudden valley in power, torque and thrust can be seen for the fastFoam OpenFOAM out-
puts. These can be attributed to the phase where the blades in the CFD mesh are smoothed from rigid
to elastic state, which exactly takes place in this period. Thus an effect of blade deflections on power,
thrust and torque is proven. Such an effect may also explain why these parameters also show periodic
fluctuations for the fastFoam OpenFOAM output in converged state, where also periodic fluctuations
of deflections occur which will be investigated later.

For the converged torque state, such as shown in Figure 6.32 it can be seen that only the methods
which include the blade deflections show fluctuations. Whereas the pure aerodynamic torque repre-
sented by the fastFoam OpenFOAM output does show an obvious sinusoidal behaviour (with a 1P
frequency) a clear sinusoidal wave is not present for fastFoam FAST output. For this output there
seems to be periodic behavior, but of more disturbing nature (not strictly related to any 1P, 2P or 3P
frequency). An explanation, which again would require more investigations, could be that due to the
drivetrain modelling combined with the periodically varying pure aerodynamic torque these more ran-
domly driven fluctuations are obtained. Comparing this to FAST one also observes more randomly
slowly decaying fluctuations which could be related to the 2P frequency.

6.2.

NREL 5MW

93

Power (MW)

Rotational Speed (rpm)

Torque (MNm)

0 15 30 45 60 75 90
Time (s)

(a) Low-speed shaft power.

0 15 30 45 60 75 90
Time (s)

(c) Low-speed shaft torque.

Thrust (MN)

Torque (MNm)

1.1

1.0

FAST
------ OpenFOAM
------- fastFOAM FA
--------- fastFOAM OF

0.7

0 15 30 45 60 75 90

Time (s)
(b) Thrust.
55
4.0
2P
—>
B1P

35

70 75 80 85 90

Time (s)

(d) Detailed torque variations at higher simulation times.

Figure 6.30: General turbine parameters according to simulations for case 5 with deactivated controller.

The control variables rotational speed and pitch angles are reported in Figure 6.31 for this simula-
tion. As can be seen, for the FAST and fastFoam simulations some initial fluctuations are present in
the rotational speed, but later it is converging to the constant value such as used in the OpenFOAM
simulations. For the pitch angle now the zero pitch setting is applied throughout all simulations.

124

122

12.0

0 15 30 45 60 75
Time (s)

(a) Rotational speed of the rotor.

90

Pitch (deg)

FAST
------ OpenFOAM
------- fastFOAM

15 30 45 60 75 90
Time (s)

(b) Blade 2 pitch angle.

Figure 6.31: Controller parameters according to simulations for case 5 with deactivated controller.

94 6. Results

Moreover, the flapwise and edgewise tip deflection evolutions are shown in Figure 6.32. It can
be noticed, that the flapwise displacements for both fastFoam and FAST show a similar sinusoidal
behavior with a 1P frequency. However, the peak values occur at slightly different times, thus an offset
of the phase has occurred. The amplitude and mean of the flapwise tip deflections for fastFoam are
increased compared to FAST. For the edgewise results good agreement is obtained, which can be
expected as these deflections are driven by gravity.

7 2.0
FAST
5 fastFoam

E E 15
a a
o o
= i =
E . 5
o i

3

0 15 30 45 60 75 90
Time (s) Time (s)
(a) Flapwise direction. (b) Edgewise direction.

Figure 6.32: Blade 2 tip displacements according to simulations for case 5 with deactivated controller.

Next, also the effect of the elastic blades on the pressure distributions is investigated in Figure
6.33. Comparing the OpenFOAM rigid blade pressure coefficients with fastFoam it can be observed
that the pressure coefficient agrees relatively well over the entire span. Only at the mid section at
about half span more pronounced deviations are visible. The stagnation point shifts slightly backward
to the trailing edge for this section. Whereas at the inner part the upper surface pressure coefficient
is increased for the elastic blade, at the outer sections there is a slight reduction. As no torsion is
included and thus no direct change of angle of attack, these differences could be attributed to the
different positions of the blade if modelled elastic or rigid. In the three dimensional space this could
then result for instance in a slight change in the incoming velocity seen by the section, which would
influence the pressure distribution.

6.2. NREL 5SMW 95

3 0= 3
7 R I T N e OpenFoam
{ R e S C fastFoam
2 2
O N =
L)ﬂ- 1 _\ L)n' 1
| — N |
s N <
I/ \\\\ \’\' ST \'Q’I’“-\.‘_
0 / ST 0 ~
i ’/ R Yo
(I
R -1
0.0 0.2 0.4 0.6 0.8 1.0 . 0.6 0.8 1.0
x/c(-) x/c(-)
(a)0.252 /R (b) 0.512 /R
3 3
2 2
3 ! o T 3 i:;,t.’:.:—.:.—.—. __________
& 1 | & 1 i
| | Sa. | i S .
ol ! e Ty 0l i e e i
g 7 —— : /‘f —
i V/
-1 i LY
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/c () x/c ()
() 0.772 r/R (d)0.978 7/R

Figure 6.33: Pressure distributions at different blade sections for case 5 with deactivated controller (0 deg azimuth).

Next, the aerodynamic forces have been investigated in Figure 6.34. The pitching moment was
not included now as the previously investigated strong deviations between the CFD and BEM meth-
ods were existent again, disallowing a reasonable comparison, see Figure 6.29c. Therefore, further
investigations would be required, which due to time reasons could not be achieved for now.

Considering the aerodynamic thrust forces, good agreement can now be observed between the
CFD methods with slightly increased values for fastFoam in the middle sections. Only near the tip the
deviation gets larger, where fastFoam predicts reduced loads. The CFD methods show an increase in
loads of about 20 percent at the outboard sections from 50 to 90 percent span. At the tip all methods
show relatively good agreement again.

For the forces which contribute to the torque, fastFoam shows a constant increase compared to
OpenFOAM of approximately 10 percent from 25 to 50 r/R. At the tip fastFoam indicates a decrease
in loads compared to OpenFOAM. In the central blade part FAST shows a strong reduction compared
to the CFD methods. The load distribution obtained from FAST is not very smooth compared to the
one obtained from CFD. For instance near the root the forces show a decrease first at about 0.15 /R
and then a sudden increase. This could again be attributed to the BEM method utilizing different airfoil
data and thereby resulting in sudden jumps.

96 6. Results

8000 1000
e : e
TN 750 F N
6000 L W g R
A b : 2
£ L % E 500 7
p & 2 / \
< 4000 < / >
i /:. E /‘ *
<3 ’.:,,3'/) 250 .,,';i
2000 e ol & FAST
/, ¢ --+-- OpenFOAM
o --e-- fastFoam
0 -250
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
T/R (-) T/R (-)
(a) Thrust. (b) Torque contribution.

Figure 6.34: Force distribution at different blade sections for case 5 with deactivated controller (0 deg azimuth).

Next, the variations of the aerodynamic forces over one rotation are considered in Figure 6.35 at an
outer blade section. For the thrust force it can be observed that both fastFoam and FAST, which include
blade elasticity, show a peak at about 180 deg azimuth. For FAST this peak is slightly shifted to higher
azimuths. This shift also explains the phase difference for the flapwise deflections, see Figure 6.32a.
In contrast to this, OpenFOAM, predicts largest forces at azimuth angels of about 135 deg. Due to the
rotor tilt of 5 deg, the development of the wake and the possible blade deformations such variations
occur. The deformed blades seem to shift the occurrence of maximum thrust forces to higher azimuths
shown by FAST and fastFoam.

For the forces contributing to the torque a different picture is observed. Whereas OpenFOAM shows
a peak at about 180 deg, fastFoam and FAST both deviate by about 45 deg. As such FAST predicts
maximum forces at 225 degree, whereas fastFoam results show a peak at 135 deg. Thus there is a
significant difference between FAST and fastFoam in the prediction when the maximum torque occurs.

8000 1250
FAST
------ OpenFOAM
7500 | . ek 1000 fastFoam
E E
Z 7000 |- - T € 750 LT ey S -
< S PRd S
= = -
K K e e T e
6500 500
6000 250
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Azimuth (deg) Azimuth (deg)
(a) Thrust variation. (b) Torque contribution variation.

Figure 6.35: Force azimuthal variations at outer blade section (0.892 r/R) for case 5 with deactivated controller.

In addition, the deflections over the blade span are shown in Figure 6.36. It can be concluded that
due to the increased loads, fastFoam also shows increased deflections in both flap- and edgewise
direction compared to FAST.

6.2. NREL 5SMW 97

8 0.8
FAST

_ —_ ---e-- fastFoam
S S
< 6 z 0.6 ks
S P S
3 4 o 3 04)
3 3 .
§ /',- % /_»
g 2 . S 02 i
[T x2 w _‘/

0 S - : 0 gt il

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
/R (-) T/R ()
(a) Flapwise tip deflection variation. (b) Edgewise tip deflection variation.

Figure 6.36: Displacements at different blade sections for case 5 with deactivated controller (0 deg azimuth).

Finally, the variation of the blade tip deflections is reported in Figure 6.37 in both directions. For the
flapwise direction the phase shift of about 110 deg can be seen again. This is an interesting observation,
but for an explanation further investigations would be required. In contrast to the flapwise tip deflections,
the edgewise ones agree well in phase and magnitude with a slight increase for fastFoam compared
to FAST.

FAST
------- fastFoam

0.5

Flapwise Tip Defl. (m)
(6]
Edgewise Tip Defl. (m)

0 45 90 135 180 225 270 315 360 "0 45 90 135 180 225 270 315 360
Azimuth (deg) Azimuth (deg)

(a) Flapwise tip deflection variation. (b) Edgewise tip deflection variation.

Figure 6.37: Azimuthal variation of displacements at blade tip for case 5 with deactivated controller.

6.2.2. Fixed Yaw Error with Activated Controller
For the unsteady yaw case with an activated torque and pitch controller the results for the Low-speed
shaft power, thrust and torque are given in Figure 6.38 for the different simulation methods. It can be
observed that the fastFoam method first follows FAST for approximately the first 10 seconds. After
this time the loads from CFD are again applied instead of the BEM loads. Therefore, mainly the power
and torque get closer to the OpenFOAM results. The CFD methods take about 75 seconds until they
converge, whereas FAST shows much faster convergence from about 30 seconds. For fastFoam FAST
output significant periodic fluctuations are present in the power and torque, whereas for the thrust more
random variations can be observed. If the OpenFOAM processing is run on the fastFoam simulations
the results agree well with OpenFOAM with rigid blades, only the fluctuations increase. Both CFD
methods show an increase in power and torque, while only for fastFoam FAST output a significant
increase in thrust can be observed compared to FAST and OpenFOAM.

Whereas FAST shows a relatively converged solution towards one value for the torque, the CFD
methods show periodic fluctuations, see Figure 6.38d. It is interesting to observe that the fastFoam

98

6. Results

simulation describes a periodic behaviour withi1 P frequency (about 5 s period), while the OpenFOAM
simulations result in a 3P periodic variation (1.66 s period), driven by the blade passing frequency (3P).
This reason for this different behaviour needs to be investigated further to be fully understood.

s NPT LY AN AR MV TN AT
ARSI

Power (MW)

L
0 15 30 45 60 75 90
Time (s)

(a) Low-speed shaft power.

Torque (MNm)

|

|

0 15 30 45 60 75 90
Time (s)

(c) Low-speed shaft torque.

Thrust (MN)

Torque (MNm)

0.95
FAST
------ OpenFOAM
o851 | fastFOAM
0.75 [}
0.65
0.55
0 15 30 45 60 75 90
Time (s)
(b) Thrust.
4.5
4.0
3. [: o R . P .
| S g ‘~——(;;’ ~= R Tl Tl
3P
3.0
—
B1P
25
70 75 80 85 90
Time (s)

(d) Detailed torque variations at higher simulation times.

Figure 6.38: General turbine parameters according to simulations for case 6.

To see how the torque and pitch control perform, the rotational speed and the pitch angle are given
in Figure 6.39. It can be seen that for the FAST simulations the torque controller immediately reduces
the rotational speed of the rotor. For the fastFoam simulations up to 10 seconds the controller follows
the FAST simulation, but when the CFD loads are applied it increases the rotational speed closer to
the rated rotational speed of 12.1 RPM. However, the torque controller fails to settle a constant speed.
It converges to 1P periodic fluctations of the rotational speed. These periodic fluctations may be the
driver of the power, thrust and torque periodic fluctations as seen in Figure 6.38.

The reason why the controller acts like this would require further investigations and probably simu-
lations. However, a main reason could be again that the torque controller is tuned for FAST and thus
BEM and a retuning could most likely reduce these fluctutations. In contrast to the torque controller the
pitch control is passive and does not initiate any pitching motion.

6.2. NREL 5SMW 99

125 6
FAST

5 OpenFOAM
g_ 12.0 al fastFOAM
O l'/ EERVAS '/.‘, i ARV “\ L \,f' R —~
- 2
% b, i °
» 115w = 2
T W, S
S o
3 110 0
14

10.5 -2

0 15 30 45 60 75 90 0 15 30 45 60 75 90
Time (s) Time (s)
(a) Rotational speed of the rotor. (b) Blade 2 pitch angle.

Figure 6.39: Controller parameters according to simulations for case 6.

Moreover, also the flapwise and edgewise displacements at the tip are reported in Figure 6.40. For
OpenFOAM no value is shown as it is zero again, due to the assumption of rigid blades. It can be
seen that fastFoam predicts an increase in the mean value of the flapwise tip deflection. However,
the amplitude of the flapwise variations ins greatly reduced. The periodic fluctations are not in phase,
which can be explained due to the different rotational speeds such as previously reported in Figure
6.39.

For the edewise tip deflections one can observe that now fastFoam shows a larger amplitude and
mean value compared to the FAST simulations. However, the diference is much smaller compared to
the flapwise tip deflections.

7 1.5
FAST
R R S fastFoam

E E
3 a
o 2
= =
3 8
2 5
© 3
[i}

3

0 15 30 45 60 75 90
Time (s) Time (s)
(a) Flapwise direction. (b) Edgewise direction.

Figure 6.40: Blade 2 tip displacements according to simulations for case 6.

In addition, the load distributions at several sections are shown in Figure 6.41. It can be seen that
the thrust forces for both CFD methods agree well and show a smooth increase towards the outer blade
sections. In contrast, FAST shows a not so smooth behaviour with a sudden increase near the 0.3 /R
section. One reason for this could be due to the sudden jumps in airfoil polar data used within the
BEM method. Near the outer blade regions the CFD methods show an increase of about 15 percent
in forces compared to FAST. Near the tip at 0.98 /R all three methods show a good agreement at an
azimuth angle of 0 deg.

For the forces contributing to the torque a similar picture can be observed. The FAST results seem
not as smooth and show a decrease towards the middle blade section. At the root a sharp decrease
occurs again near the 0.15 r/R section, which may be due to the sudden jump from circular to airfoil

100 6. Results

shaped sections. Different to the thrust, the fastFoam results show a significant increase also compared
to the OpenFOAM results.

8000 1000
750 eI ol
6000 L e s S
~ g\ N It
£ e iy E 500 i \\
£ 4000 ¥ £ ;o \
£ e g Py '
5 - w250 Pd
/’.f l-l I/
A 4
2000 L 0 ‘/, FAST
el ¢ --+-- OpenFOAM
‘“‘_4,»:» --e-- fastFoam
oLt -250
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
T/R (-) T/R (-)
(a) Thrust. (b) Torque contribution.

Figure 6.41: Force distribution at different blade sections for case 6 (0 deg azimuth).

Finally, for the loads also the azimuthal variations are given in Figure 6.42. It can be seen that
at the outer blade section a relatively good agreement is obtained for the forces. For the thrust the
peak shifts to higher azimuths (about 270 deg) for the FAST and fastFoam method compared to the
OpenFOAM approach. This might be due the modelling of elastic blades compare to the rigid blade
approach. Whereas OpenFOAM and fastFoam agree well in the mean values and the amplitude, FAST
shows a reduction in mean values but an increased amplitude of the fluctuations. Such an increase in
amplitude was already present for the higher yaw angles for case 2 of the NREL phase VI results, see
Figure 6.14. It can be attributed to the deficiency of the skewed-wake correction model in FAST and
generally in BEM.

The same effect is observable in the torque contributing forces. It can be seen that the amplitude
greatly reduces for FAST compared to the CFD methods. However, for fastFoam also an increase is
observed but with much lower magnitude.

10000 1000
FAST
------ OpenFOAM
8000 750 |7 fastFoam A S A\
E | T | E
£ 6000 T £ 500 [\
= O e Ol N
= = -
e o | N T
4000 250
2000 0
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Azimuth (deg) Azimuth (deg)
(a) Thrust variation. (b) Torque contribution variation.

Figure 6.42: Force azimuthal variations at outer blade section (0.89 r/R) for case 6.

Additionally, the distribution of displacements over the span is given in Figure 6.43. It can be seen,
that both the flapwise and edgewise blade deflections increase if the loads from CFD are applied. This
is reasonable as the previous load comparison showed an increase in the loads such as reported in
Figure 6.41.

6.3. Computation Time 101
8 0.8
FAST
—_ —_ --e-- fastFoam
[€
< 6 = 06
S 9 y
2 4 g 04 Ed
o) 3 ’
g 2 ~ 2 02
o e il .
0 e 0 aczemne”
0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
T/R () T/R ()

(a) Flapwise tip deflection variation. (b) Edgewise tip deflection variation.

Figure 6.43: Displacements at different blade sections for case 6.

Similarly to the load azimuthal fluctions also the fluctions for the flapwise and edgewise tip deflec-
tions are given, see Figure 6.44. It can be stated that the flapwise deflections follow the azimuthal
variation of the thrust forces such as shown in Figure 6.42a. In contrast, the edgewise deflections are
not mainly related to the torque contributing force variations, see Figure 6.42b. This is due to the reason
that for the edgewise deflections the main contributor is the gravitational force. Noting that a positive
edgewise deflection is towards the leading edge, the largest occurs for an azimuth of about 90 degree
for a clockwise rotating rotor.

FAST
------- fastFoam

05

Flapwise Tip Defl. (m)
[6)]
Edgewise Tip Defl. (m)

0 45 90 135 180 225 270 315 360

Azimuth (deg)

45 90 135 180 225 270

Azimuth (deg)

315 360

(a) Flapwise tip deflection variation. (b) Edgewise tip deflection variation.

Figure 6.44: Azimuthal variation of displacements at blade tip for case 6.

6.3. Computation Time

Finally, a comparison of the computation time is given in Table 6.2 for the different methods. It can be
seen that a FAST BEM-based simulation requires a neglectable amount of computation time compared
to the CFD methods. This is a result of the simplified engineering approach of BEM versus the highly
iteratively CFD methods, where the Navier-Stokes equations are solved on a large computational mesh.
This is the biggest disadvantage of the CFD, which limits it despite its good accuracy to only specific
tasks such as detailed design simulations for instance.

For the computations the cluster Eddy of the University of Oldenburg was mainly used, see [24].
Before it was available the cluster Carl, here referred as old cluster, was utilized. Eddy is composed
of 241 Intel Xeon CPU E5-2650 with 2.2 GHz and 24 cores each. With the CFD methods using about
144 to 384 cores only about two to three rotor revolutions could be achieved per day.

102 6. Results

Next, comparing the CFD methods OpenFOAM and fastFoam it can be seen that the OpenFOAM
method is generally faster. This is mainly due to the reason that whereas the OpenFOAM simulations
only require rigid mesh movements and the PIMPLE loop in pimpleDyMFoam, fastFoam uses in addi-
tion the elastic mesh movement, the load calculation at the beam nodes as well as the coupling itself.
Overall, the computation time is thereby significantly increased.

Table 6.2: Computation time of the cases simulated by different methods.

Case Iterations FAST OpenFOAM fastFoam

Case 1 17,248 1min 17.99 d (168 cores, old cluster) 9.67 d (144 cores)

Case 2 25,866 1min 14.74 d (288 cores, old cluster) 11.83 d (144 cores)

Case 3 25,822 1min 13.21 d (144 cores) 15.75 d (144 cores)

Case5 13,068 1 min 9.48 d (360 cores) 14.53 d (360 cores, control)
14.31 d (384 cores, no control)

Case 6 13,068 1min 9.55d (360 cores) 12.81 d (192 cores)

To have a better understanding of what is causing this huge computational effort, a breakdown for
one time step is given in Table 6.3 for both NREL phase VI and 5MW cases. As shown previously
in Table 4.2 the number of cells for the 5SMW turbine is about three times as large compared to the
phase VI, resulting in clear differences for the computational time. It can be seen that the PIMPLE loop
clearly dominates for the phase VI simulation in case 3 with about 40 s of time spent. However, also
the rigid mesh motion is computationally expensive due to the AMI interpolation, which is required at
the AMI patches used for the pitch and azimuth motions. The share of the elasticity related motion via
the beams is nearly neglectable with about 1 s. The coupling itself has the same order of magnitude
in computation time compared with the AMI interpolation. However, this also includes other processes
such as the runtime processing, which may also take its share. For a better overview of how long only
the coupling takes this should be distinguished in an updated version.

The computation time for the OpenFOAM computations is only composed of the rigid mesh motion
as well as the main contributor the PIMPLE loop. For the phase VI then an increase of about 15
percent is obtained for fastFoam compared to OpenFOAM, due to the additional components such
as the coupling and the mesh motions accounting for the elastic blades. Conducting Table 6.2 an
overall increase of about 20 percent can be seen for case 3 for the fastFoam simulations compared to
OpenFOAM. The difference can be attributed to the increased convergence difficulty in the beginning of
the simulations as a result of the unsteady rigid motions and the blade deformations used in fastFoam.

Considering the NREL 5MW simulations it was first decided for case 5 to increase the number of
cores significantly, due to the increase by a factor of three in the number of cells compared to the phase
VI. However, it can be seen that the AMI interpolation for the rigid mesh motion and also the coupling
process do not scale very well with an enormous amount of cores. This may be due to the reason that
the communication time between the processors gets really large, which should be avoided. However,
the computational time for the PIMPLE loop can then be lowered drastically.

Therefore, for the last executed simulation of case 6 the number of cores was lowered again. Then,
the required time for the AMI interpolation and the coupling is reduced, but the time share for the
PIMPLE loop is significantly increased (51 s). The overall time of one time step for case 5 and case 6
with 360 vs 192 cores for the converged state is quite large for fastFoam with both 83 s. An increase of
32 percent compared to OpenFOAM seems huge. It could be that there is an optimal amount of cores
in between the used 192 and 360, which reduces the computational time and results in an increase
more similar in magnitude such as for the phase VI. It would thus be advisable for further simulations
to test for instance 288 cores to see if the computation time of one time step reduces.

Considering again Table 6.2 it can be seen that although the time share for case 5 and case 6 is
equal in converged state, the overall time is nearly 2 days lower for the same number of iterations
in case 6. This could indicate that in the non-converged state in the beginning of the simulation, the
higher number of cores seem to have a negative effect due to larger communication times between
processors.

6.3. Computation Time 103

Table 6.3: Breakdown of computational time for one iteration for the CFD methods at converged state.

Parameter Case3 Case5 Case6
Rigid mesh motion via AMI 5s 25s 14 s
Elasticity related mesh motion 1s 1s 1s
Coupling process and others 6s 27 s 17 s
PIMPLE loop 40s 30s 51s
Total time of one iteration for fastFoam 52s 83s 83s

Total time of one iteration for OpenFOAM 45 s 63s 63 s
Increase fastFoam versus OpenFOAM 15 % 32 % 32 %

Also it needs to be noted that there are certain disturbances of random nature, which may lead
to a slowdown of the simulations such as an increased RAM usage on the cluster for instance. The
Eddy cluster uses computing nodes both with 64 and 128 GB of RAM, these were selected depend-
ing on availability, see [24]. Therefore, for some simulations slower nodes were used whereas other
simulations were performed using the fastest computing nodes.

Conclusions and Recommendations

In this Chapter conclusions and recommendations are given based on the previously obtained results in
view of the research objective. Therefore, first a detailed overview of the conclusions is given followed
by the recommendations which the project resulted in.

7.1. Conclusions

Finally, key conclusions from the implemented method and the calculated results are obtained and
related to the research questions to be answered.

First of all, it can be stated that the project objective is achieved by implementing the fastFoam
solver in OpenFOAM, which is coupled to FAST via the MpCCI coupling environment. The newly
obtained fastFoam method allows for aero-servo-elastic wind turbine simulations using FAST, but now
fully based on CFD. The selected coupling follows a loose coupling procedure, where the data between
OpenFOAM and FAST is only exchanged once per time step. The exchanged data are the blade
positions and orientations together with the global angles (yaw, azimuth and pitch) from FAST as well
as the loads from CFD. The coupling is intended to be minimally intrusive, thus no radical changes
were done in the FAST source code. In addition, for OpenFOAM the existing pimpleDyMFoam solver
was mainly extended by mesh movements based on beams (similar to FAST) and load mappings from
blade surface to beam nodes, see Chapter 5.

Simulations based on the three different methods FAST, OpenFOAM and fastFoam were executed
for two turbines the NREL phase VI and 5SMW in order to validate the developed method and answer
the main research questions.

NREL phase VI simulations:

+ From the NREL phase VI results in normal operating conditions, see Section 6.1.2, it can be
concluded that all simulation methods show relatively good agreement. For such a rotor, which
is equipped with very stiff blades, no significant differences between the developed aero-servo-
elastic fastFoam method and the OpenFOAM CFD methods are observable due to the low magni-
tude of blade deflections. However, more pronounced differences are shown between the BEM-
based FAST method and the CFD methods due to the different aerodynamic modelling approach.

* In extreme operational conditions such as large yaw angles of 20 to 30 degree or increased
pitch angles, see Sections 6.1.3 and 6.1.4, it is shown that the BEM method results in large
deviations from the experimental data, whereas the CFD methods still agree relatively well. The
reason for this can be found in the engineering approach within BEM, where yaw models and
unsteady aerodynamic models are implemented. For the yawing it was clearly observable in
Figure 6.14 that the implemented Pitt/Peters skewed-wake correction model does not predict the
load variations due to the unsteady inflow as accurately as the CFD. In addition, the unsteady
aerodynamics modelling fails to resolve the aerodynamic loads precisely if the angle of attack
is reduced due to pitching, see Figure 6.20. The disagreement for the BEM method with the

105

106 7. Conclusions and Recommendations

experiment was found to be especially existent near the tip, where large loads act and most of
the energy is generated.

» The comparison with the experimental data from the phase VI experiment leads to the conclusion
that the implemented fastFoam method has been validated. However, one point of attention was
found to be fluctuations in the power, torque and thrust of the FAST output for the fastFoam sim-
ulations, which cannot be explained from theory and thus could be the resultant of an introduced
error within FAST only present for the coupled approach.

NREL 5MW simulations:

» For the NREL 5MW it was found that the torque and pitch controller within FAST has a signifi-
cant influence on the fastFoam simulations in the normal operating conditions case, see Section
6.2.1.1. The underlying reason could be attributed to the fact that the controller is tuned for BEM
and the CFD simulations predict a larger magnitude of power (torque) to which the controller re-
acts. This reaction resulted in an unwanted pitching of the blades, which disturbed the comparison
and thus it was decided to run the simulations again with the controller deactivated.

* In contrast to the phase VI, the 5SMW represents a relatively modern turbine with more flexible
blades. This is also represented in the simulations as the influence of the blade elasticity leads
to increased deviations between the rigid blade assumption method OpenFOAM and the fast-
Foam method. This shows that for more flexible blades a rigid modelling approach may result in
increased errors.

» With deactivated control good agreement between the different methods was observed in normal
operating conditions, see Section 6.2.1.2. As only the aerodynamic modelling is replaced for fast-
Foam compared to FAST while the structural modelling is the same, this leads to relatively similar
deflections along the blade span. For the aerodynamic loads it was found that the CFD methods
resulted in a much smoother load distribution compared to FAST, which especially shows some
irregularities of non-physical nature near the root for edgewise loading, see Figure 6.34b. Such
an irregularity was also present in Heinz et al. [14] and could be attributed to a sudden change
in airfoil data.

» Two points of attention were found. First of all, the pitching moment magnitude was about twice
as large for the CFD methods. This could be an error or a difference in the load mappings from
blade surface in CFD to beam nodes compared to FAST. In addition, power, torque and thrust
fluctuations of unresolved origin were again present for the fastFoam approach.

* Finally, the 5SMW simulations in extreme operational conditions such as heavy yaw (Section 6.2.2)
showed that reasonable aero-servo-elastic simulations with activated controller can be achieved
for the coupled method if the overall loads due to yawing are reduced. This confirmed the initial
reasoning that the controller reacts due to an overprediction of the CFD loads compared to BEM
loads in FAST in the normal operating case. A trend that the BEM in FAST underestimates the
aerodynamic loads compared to the higher fidelity CFD is existent. The CFD methods show
relatively good agreement if only one azimuth is observed, but if a full rotor rotation is considered
clear differences are present attributed to the different blade representations (rigid versus elastic).
In addition, an overall reduction in loads is present similar to the phase VI such as given by theory.

Finally, regarding the main research questions it can be stated that it was found that for improved
accuracy a CFD method may deliver better results compared to BEM especially in extreme operational
conditions such as the simulated heavy yaw or unsteady pitching motions. Moreover, for more modern
turbines, such as the NREL 5MW, the modelling of flexible blades is inevitable and must be included.
This holds especially true if an unsteady inflow is regarded. Addressing futuristic turbines with highly
flexible blades, which may include exotic configurations such as flaps and slats, this may get even
more important if a high accuracy is desirable. For BEM such a modelling would possibly require the
addition of new engineering add-ons to include such configurations and thereby an additional factor of
uncertainty.

However, for normal operating conditions it was found that the BEM based FAST method showed
a relatively good result in comparison to the CFD and especially also the experimental data for the

7.2. Recommendations 107

phase VI. In addition, the greatest advantage of BEM is its low computational time compared to the
CFD methods, see Section 6.3. The large computational effort for the CFD methods really prohibit its
usage for a large number of simulations such as given by the IEC requirements. Therefore, the CFD
methods are restricted for specific applications such as the detailed design phase or research activities.
It can also be stated that BEM can benefit from these high fidelity simulations and especially also
measurement campaigns, such as the phase VI, in order to improve its accuracy within the underlying
engineering add-ons.

The implemented aero-servo-elastic wind turbine simulation method fastFoam, which is based on
CFD, is a first step towards a method combining all the three aspects including highest fidelity aerody-
namic modelling. The influence of the controller, which is often neglected together with the elasticity in
CFD only simulations, was found to be significant for the 5MW turbine. Therefore, it can be underlined
that for an approach where accuracy is most desired and computational effort is not valued highly an
aero-servo-elastic method with the highest fidelity models may deliver best results.

7.2. Recommendations

Next, a few recommendations are formulated based on the implemented method and the resulting
simulations. First of all, it can be stated that all simulations were based on the ElastoDyn structural
model in FAST. However, the existent higher fidelity BeamDyn structural model, which includes the
torsional DOF, may further improve the results. For the NREL SMW BeamDyn input files exist including
full 6x6 stiffness and mass matrices. In the coupling the possibiliy to include BeamDyn, which has
different beam node positions compared to ElastoDyn, was added including load mappings tailored for
BeamDyn.

However, due to the reason that the time step of BeamDyn is approximately one fifth of the Elas-
toDyn and CFD time step it was not possible to run simulations based on BeamDyn. This can be
explained as the CFD time step would need to be decreased as well and the simulations would take
about five times as long, thus an enormous amount of computational time would be required. Due to
this it was impractical and discarded within this first version. However, there may be solutions to this
problem which would allow to use the higher fidelity BeamDyn structural model. A solution would be
subcycling, which is both supported by MpCCIl and FAST.

A subcycling within MpCCl indicates that the codes to be coupled run with different time steps.
Thus, the CFD time step would be five times larger compared to the FAST (BeamDyn) time step. The
loads from CFD would then be applied as a constant over five time steps in FAST. In addition, also
subcycling in FAST itself could be a possibility, where the time step of FAST equals the initial time step,
but only the BeamDyn time step is reduced by a factor of five. This is also in principle supported by
FAST, but with an initial test no convergence was obtained following this approach. Thus further work
would be required to use BeamDyn within the coupled fastFoam simulations.

In addition, some unexplained discrepancies were found for the pitching moment especially for the
NREL 5MW simulations. Thus it is advised to further investigate why the pitching moment between
the BEM and CFD methods deviates that much. An initial explanation was given by the reasoning
that FAST uses only one moment arm where the resultant aerodynamic loads are acting compared to
the CFD, which includes several moment contributions from each faces on the blade surface related
to one beam node. Thus, there could be a discrepancy in the load mappings from two dimensional
surfaces to one dimensional beam nodes. By running an additional simulation, where only the forces
are exchanged within the coupling and the moments are set to zero it was found that the moment
contributions have nearly no effect on the result. However, why the pitching moments deviate needs
to be addressed in more detail.

Moreover, for all simulations with fastFoam fluctuations were found in the torque, pitch and thrust
outputs given by FAST. The origin of these fluctuations could not be fully explained. Including the output
from OpenFOAM for the coupled fastFoam simulations these fluctuations were either not present or
much smaller in magnitude. Therefore, it is advised that for an improved version of the coupling the
origin of these fluctuations is researched. An influence could be the complex drivetrain modelling within
ElastoDyn, but it is questionable why only the coupled version with the loads from CFD shows this
behaviour, whereas the BEM based FAST does not. However, the mean values still show reasonable
results, which indicate that the exchanged load magnitudes from the CFD to FAST are acceptable.
A comparison between the mapped loads in ElastoDyn both from AeroDyn and CFD also confirms

108 7. Conclusions and Recommendations

this. This could still be a programmatic fault, which only occurs for the coupled version. Due to the
reason that it is very difficult to find the exact origin of these fluctuations, as a converged solution of the
coupled simulation would have to be much further investigated, this is accepted at the current state of
the coupled method.

Besides the previously mentioned fluctuations, there were problems with the controller for the 5MW
turbine in normal operating conditions due to an increased value in the power (torque) for the CFD
methods compared to BEM. Such an increase was not present for the phase VI, where an unsteady
RANS model with k — w SST modelling was applied compared to the DES approach with Spalart-
Allmaras for the 5SMW. Thus it would be advisable to also test a RANS only model for the 5SMW turbine
to see if the torque and power reduce and obtain a magnitude similar to the BEM results and if this
has an effect on the control reaction. However, this difference could also be a result of the different
aerodynamic modelling approaches and thus a mitigation may be difficult to achieve. A retuning of
certain controller variables such as the required aerodynamic power may also be possible.

Further improvements may also be achievable through optimisation of the convergence methods,
by selecting different times for the specific methods which were applied to improve the convergence
such as shown in Figure 5.9 and Table 5.1. Thereby a better overall convergence may be obtainable.
Also the computational time may be further reduced for fastFoam, especially in comparison to an Open-
FOAM simulation by better scaling of some components with updated number of cores, see Section
6.3. For the 5MW simulations it could be argued that the optimal number of cores was probably not
found for the three simulations done, thus some computational time may be saved.

In addition to the simulated NREL phase VI and SMW turbine, it would be interesting to simulate a
futuristic turbine such as the 10MW AdVanced Aerodynamic Tools of IArge Rotors (AVATAR) turbine
for instance, see [36]. This could then show some additional major improvements of the fastFoam
approach or possible new limitations. Due to the limited project time this could not be achieved, but
would be an interesting task for the future.

Finally, the modelling of flaps and slats could be included into the fastFoam method. This was
already achieved by Fraunhofer IWES in a different project, where the motion of the flaps or slats is
represented in the CFD mesh. For a BEM method an entire new engineering model would be required
for such a modelling, thus for this specific approach a CFD method seems to be more feasible. Then
the modelling accuracy for these exotic configurations could be addressed.

Meshing in OpenFOAM

This Appendix contains an example for a blockMeshDict (Figure A.1) and an overview of the snappy-
HexMesh meshing procedure, see Figure A.1.

109

110

A. Meshing in OpenFOAM

Listing A.1: Example of a blockMeshDict for generating a single block with blockMesh [41].

vertices

(
(0 0 0)
(1 0 0.1)
(1.1 1 0.1)
(0 1 0.1)
(-0.1 =0.1 1)
(1.3 0 1.2)
(1.4 1.1 1.3)
(0 1 1.1)

);

blocks

(

//
//
//
//
//
//
//
//

hex (0 123456 7)

(10 10 10)

simpleGrading (1 2 3)

);

edges
(
arc 1 5 (1.1 0.0
);
boundary
(
inlet
{
type patch;
faces
(0 47 3)
);
}
outlet
{
type patch;
faces
(
(1 2 6 5)
);
}
walls
{
type wall;
faces
(
(015 4)
(0 321)
(376 2)
(4 56 7)

)s

0.5)

//
//

//

//

//
//

//

vertex
vertex
vertex
vertex
vertex
vertex
vertex
vertex

number
number
number
number
number
number
number
number

NO ORNWN=2O

// vertex numbers
// numbers of cells in each direction
// cell expansion ratios

keyword

patch name

patch type for patch 0

block face in this patch

end of Oth patch definition
patch name

patch type for patch 1

111

< h—l [

STL|surface iy N
] — A A
(a) The starting mesh and the surface geometry. (b) Cell splitting near the surface.
E=EE e
\ \;1‘7 N I N
g TJ__| = N_I
“T?‘\T«HH‘}T#:“— “T".\i«iiii‘niji
(c) Removal of cells. (d) Additional Cell splitting by region.
I I
_& J/+—k\[% ;& I/+—k\[%
B @3} <~ ig:?
A : £ :
TWTHHrTzi Txlﬂuwlwéi
(e) Snapping of near surface cells to surface. (f) Adding of mesh layers

Figure A.1: The snappyHexMesh meshing process (Figures taken from [41], Figure (a) modified)

Solid Body Mesh Motion

This Appendix includes an example for the dynamicMeshDict (Figure B.1) as well as the turbine angles
shown in Figure B.1, which correspond to the mesh rotations in Figure 4.16.

113

114 B. Solid Body Mesh Motion

Listing B.1: Example of a dynamicMeshDict used for yaw, torque and pitch motions.

/* — C++ =% k!
s========	
W\ / F ield	OpenFOAM: The Open Source CFD Toolbox
W / O peration	Version: 3.0.1
[W\ / A nd	Web: www. OpenFOAM. org
\\/ M anipulation	
* */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "constant”;

object dynamicMeshDict;
}

//*************************************//

dynamicFvMesh turbineSolidBodyMotionFvMesh;
motionSolverLibs (”"libfvMotionSolvers.so”);
turbineSolidBodyMotionFvMeshCoeffs
{
// hierarchy of the motion to be applied. The first one is the master
// other are considered as slave motion applied afterwards.
hierarchy (012 3);
startTime 0.0;
FIELD

turbineSolidBodyMotionFunction turbineControlMotion;
turbineControlMotionCoeffs

{
origin (0 0 0);
axis (0 0 1);
mode yaw;
modeCoeffs
{
alignmentZero 0.0;
actionCurve table ((0 0)(30 20));
// Entries have format: (time yaw_angle)
}
}
}
ROTOR
{

turbineSolidBodyMotionFunction turbineControlMotion;
turbineControlMotionCoeffs

{
origin (0 0 0);
axis (1 0 0);
mode torque;

modeCoeffs

115

{
azimuthZero 0.0;
actionCurve table ((0 7.54)(30 7.54);
// Entries have format: (time rotational_speed)
}
}
}
BLADEO
{
turbineSolidBodyMotionFunction turbineControlMotion;
turbineControlMotionCoeffs
{
origin (0 0 0);
axis (00 —-1);
mode pitch;
modeCoeffs
{
pitchZero 0.0;
actionCurve table ((0 0)(30 0));
// Entries have format: (time pitch_angle)
lastPitchAction O0;
}
}
}
BLADE1
{
turbineSolidBodyMotionFunction turbineControlMotion;
turbineControlMotionCoeffs
{
origin (0 0 0);
axis (0 0 1);
mode pitch;
modeCoeffs
{
pitchZero 0.0;
actionCurve table ((0 0)(30 0));
lastPitchAction O;
}
}

B. Solid Body Mesh Motion

116
30 360
b
270
20 §
g T
; '§ 180
S £
10 <
90
0 4
0 1 2 3 4 5 0 1 2 3 4 5
Time (s) Time (s)
(a) Yaw angle. (b) Azimuth angle.
30
—~ 20 >
()]
(0]
=)
<
£
& 10
¢
0
0 1 2 3 4 5
Time (s)

(c) Pitch angle.

Figure B.1: The yaw, azimuth and pitch angles corresponding to the mesh rotations in Figure 4.16.

Turbine Coordinate Systems

This Appendix includes the coordinate systems used throughout the simulations shown in Figure C.1.

-

Figure C.1: The global coordinate system (black) and the blade coordinate system (red).

117

MpCCIl Workflow

This Appendix contains an overview of the MpCCI workflow, see Figure D.1.

Preparation of
model files

Definition of the ~ * Code selection
) « Coupling regions
coupling process . Quantities
» Coupling options

read

Running the
co-simulation

Post—Processing

Figure D.1: Overview of the MpCCI workflow.

119

The fastFoam Solver

This Appendix contains the beamMeshDict (Listing E.1) and the beamElementControlDict (E.2) used
for the mesh movements and the main part of the fastFoam solver, see Listing E.3.

121

122 E. The fastFoam Solver

Listing E.1: Example of the beamMeshDict used for case 6 (c).

/* — CH+ -—* |
s========	
W\ / F ield	OpenFOAM: The Open Source CFD Toolbox
W / O peration	Version: 3.0.1
[W\ / A nd	Web: www. OpenFOAM. org
\\/ M anipulation	
* */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system”;

object beamMeshDict;
}

//*************************************//

//— General mesh settings

AnalysisType NonLinear; // Linear NonLinear
ElementType GEBT; // GEBT
NumberOfNodes 2; // per element: Isoparametric/GEBT element: 2,3,4
ReferenceOrientation // reference orientation of the beam elements
(
100
010
001

//— Mesh element settings

RotorCenter (0 0 0);
RotationAxis (1 0 0);

ApplyTwist true;
ApplyPitch false;
ApplyTilt true;
ApplyCone false;
ApplyYaw true;
TiltDict
{
//— Tilt Angle [°]
TiltAngle 5;
//— Tilt Center for Rotation
TiltCenter (0 0 0);
}
ConeDict
{

//— Cone Angle [°]
ConeAngle -2.5;

123

}

YawDict
{

//— Yaw Angle [°]
YawAngle 30;

//— MeshPoints

Points

(

(0 0 1.5)

(0 0 3.3088)
(0 0 6.9265)
(0 0 10.544)
(0 0 14.162)
(0 0 17.779)
(0 0 21.397)
(0 0 25.015)
(0 0 28.632)
(0 0 32.25)
(0 0 35.868)
(0 0 39.485)
(0 0 43.103)
(0 0 46.721)
(0 0 50.338)
(0 0 53.956)
(0 0 57.574)
(0 0 61.191)
(0 0 63)

);

//— TwistAngles
TwistAngles

(
—-13.3080907075
—-13.3080907075
—-13.3080907075
—-13.3080907075
—12.5454838822
—-10.7698876751
—-9.7568982933
—-8.73130384
—7.6472676916
—-6.5489075983
—5.4978451711
—4.462378655
—-3.4818817097
—2.692523485
—1.9929821242
—1.2923521435
—0.5975147662
—-0.1406634305
0

)s

124 E. The fastFoam Solver

Listing E.2: Example of the beamElementControlDict used for case 6 (c).

/* — CH+ -—* |
s========	
W\ / F ield	OpenFOAM: The Open Source CFD Toolbox
W / O peration	Version: 3.0.1
[W\ / A nd	Web: www. OpenFOAM. org
\\/ M anipulation	
* */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system”;

object beamElementControlDict;
}

//*************************************//

// Basic settings
NumberOfBlades 3;
// Patch settings

BladeSettings

{
Blade 0
{
Name BladeO;
SurfacePatches (BLADEO); // Can also be more than one
AMIPatches (PITCH_AMI_OUT_0 PITCH_AMI_IN_0);
RotationalOffset 0; // Rotational offset to given beam mesh
CorrectAMI false;
}
Blade_1
{
Name Blade1;
SurfacePatches (BLADE1); // Can also be more than one
AMIPatches (PITCH_AMI_OUT_1 PITCH_AMI_IN_1);
RotationalOffset 120; // Rotational offset to given beam mesh
CorrectAMI false;
}
Blade_2
{
Name Blade2;
SurfacePatches (BLADE2); // Can also be more than one
AMIPatches (PITCH_AMI_OUT 2 PITCH_AMI_IN_2);
RotationalOffset 240; // Rotational offset to given beam mesh
CorrectAMI false;
}
1
WriteSets false;

// Mesh motion settings

MeshMotionMethod MasterSlaveCubic;

125

RestrictMotionToZone false;

MasterSlaveCoeffs

{

InnerCellDistance 0.2;
OuterCellDistance 15;
MinimalCellDistance 1;

}

//— Output settings

writeMeshVTK true;
writeBeamOutput true;
writeEndDisplacementList true;
writeNodeForces true;

writeRootBendingMoments true;
writeRuntimeBeamVTKs true;
EmergencyMeshWrite true;
IncludeGravity false;
GravitySettings

{
GravityConstant 9.81;

GravityDirection (00 —1);

// Rotation settings

IncludeRotation false;
RotationAxis (0.8627299156628210 0.4980973490458728
Omega 1.2671090355; // rad/s

// Solver settings

BeamAnalysisType Dynamic; // Static, Dynamic
Solver Alpha; // NewtonRaphson, Alpha
NewtonRaphsonSettings

{ NoLS 8; // number of load steps

}

InitializationTime 0.05;

LinearSmoothing true;

—0.08715574274765818);

126 E. The fastFoam Solver

AzimuthalCorrection false;
DisplacementTolerance 1e-8;
DampingSettings // Rayleigh Damping
{ alpha 0.001;

beta 0.001;
}

// Coupling settings

CouplingType FixedCoupling; // ResidualCoupling
FixedCouplingCoeffs

{ Couplinglnterval 1;

}

ForceProjectionMethod NearestNeighbor; // InterpolatedProjection

// Relaxation Settings
RelaxationType FixedRelaxation; // LinearRelaxation

FixedRelaxationCoeffs

{
}

RelaxationFactor 1;

// Force calculation settings

ForceFactor 1;
RhoFluid 1.225;
ForceTolerance 1e—-12;

HubAttachmentPoint (0 0 1.656); // Hub (patch) attachment point on beam axis

©oONOGOPAWN =

127

Listing E.3: The main part of the implemented solver fastFoam.C.

#include ”argList.H”
#include "Time.H”

#include "fvCFD.H”

#include “turbineSolidBodyMotionFvMesh .H”
#include ”singlePhaseTransportModel .H”
#include “turbulentTransportModel .H”

#include ”fvMesh.H”

#include “pimpleControl.H”

#include "CorrectPhi.H”

#include ”"fvliOoptionList.H”

#include “fixedFluxPressureFvPatchScalarField .H”

#include "FASTBeamAnalysis.H”
#include ”"TurbinePost.H”
#include <fstream>

#include "mpcciFunctionObject.H”

using namespace Foam;

//

Fok ok k% ok ok kK Kk ok kX kK kK Kk kX K Kk kK K kX K K X Kk Xk kK x //

int main(int argc, char *argv([])

{

#include "setRootCase.H”

#include “createTime.H”

#include ”createNamedDynamicFvMesh.H”
#include ”“initContinuityErrs .H”

pimpleControl pimple (mesh);

#include “createFields.H”
#include “createUf.H”
#include ”createMRF.H”
#include ”createFvOptions.H”
#include “createControls.H”
#include ”"CourantNo.H”
#include ”setlnitialDeltaT .H”

double lastTimeStep=0;

int currentStartUpStep=0;
int startlterationCounter=0;
bool startUpActive=false;

//turbulence —>validate (); only OF4

#include “createBeam.H”
#include “createlnputs.H”

J/ KR R R xR ok ok k% Kk x K Ak kX K kX K Kk Kk X K K X K Kk Kk x x //

Info<< ”Starting FAST Beam coupling” << endl;
turbineSolidBodyMotionFvMesh* meshp=static_cast <turbineSolidBodyMotionFvMesh*>(&mesh);

initRot=meshp—>getlnitRotations ();
Info<<”initial mesh Yaw, Azimuth, Pitch are (”<<initRot[0]<<”, "<<initRot[1]<<”, ”"<<initRot[2]<<",
"<<initRot[3]<<") ”"<< endl;

oldAzimuth=initRot [1];

// get pointer to the mpcci function object

runTime . functionObjects (). start ();

int i = runTime.functionObjects (). findObjectID (”MpCCI_functionObject_adapter_for_OpenFOAM”);
mpcciFunctionObject* mpcci = static_cast<mpcciFunctionObject*>(&(runTime. functionObjects ()[i]));
mpcci—>setBladePosPtr (&blade_position[0]);

mpcci—>setBladeOriPtr (&blade_orientation [0]);

mpcci—>setBladeVelPtr (&blade_velocity [0]);

mpcci—>setBladeAvelPtr (&blade_angular_velocity [0]);

mpcci—>setBladeForcePtr (&blade_forces [0]);

mpcci—>setBladeMomentPtr (&blade_moments[0]);

mpcci—>setBladeRootPosPtr (&bladeRoot_position [0]);

mpcci—>setBladeRootOriPtr (&bladeRoot_orientation[0]);

mpcci—>setBladeRootVelPtr (&bladeRoot_velocity [0]);
mpcci—>setBladeRootAvelPtr(&bladeRoot_angular_velocity [0]);

mpcci—>setRotorPosPtr (
mpcci—>setRotorOriPtr (
mpcci—>setRotorVelPtr (
mpcci—>setRotorAvelPtr (

&rotor_position);
&rotor_orientation);
&rotor_velocity);
&rotor_angular_velocity);

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

128

E. The fastFoam Solver

mpcci—>setAzimuthPtr
mpcci—>setYawPtr
mpcci—>setPitchPtr

while (runTime.run())

{

(&azimuth);
(&yaw);
(&pitch [0]);

#include "readControls.H”
#include ”CourantNo.H”
#include "setDeltaT.H”

#include "startUpTimeStepControl.H”

runTime ++;

Info<< "Time

" << runTime.timeName () <<

sec!”’<< nl << endl;

#include "modifylnputs.H”

// Set Yaw, Azimuth and Pitch angles

meshp—>setrot(&angles);

scalar TO=runTime.elapsedCpuTime ();

sec; Time step size:

// Update mesh to given Yaw, Azimuth and Pitch angles
mesh . update ();

scalar T1=runTime.elapsedCpuTime ();
Info<<”Mesh update to yaw azimuth and pitch finished within:

//runTime . writeNow ();

// Get current mesh points
pointField updatedMeshPoints=mesh. points ();

// Quaternion describing yaw rotation

vector yawRotation;

yawRotation.x () =
yawRotation.y ()
yawRotation.z ()
Quaternion yawQuat(Quaternion :: rotationSequence (Quaternion:

0;
0;
angles[0];

yawQuat. normalize ();

rotationAxis=Beam[0]->getRotationAxis ();

Info<<”Original RotationAxis is =("<<rotationAxis<<”) ”"<< endl;

// uncomment to write the rigid body motion mesh

rotationAxisUpdated = yawQuat.R()& rotationAxis;
//— Normalize rotation axis

rotationAxisUpdated=rotationAxisUpdated/(1.0*mag(rotationAxisUpdated));
Info<<”Updated RotationAxis is =("<<rotationAxisUpdated<<”) ”"<< endl;

scalar tTO=runTime.elapsedCpuTime ();

total_disp.zeros();

// Start Elasticity related mesh motion by looping over blades
i< numberOfBlades ;

for (int i=0;

{

List <point> initPoints=Beam[i]->getMeshPointslInitial ();
double bladeRot=Beam[i]->getRotationalOffset ();
Info <<”Blade

"<<i<<” bladeRot

=("<<bladeRot<<”) ”<< endl;

// Rotation of mesh points due to yaw, torque, pitch
fix this for different reference systems

// TODO:

// Quaternion describing azimuthal rotation (from blade 0 position)
Quaternion azimuthQuat(rotationAxis ,

azimuthQuat. normalize ();

FASTAngles[1]+bladeRot);

// Quaternion describing pitch rotation
vector pitchAxis (frenetFrameslnitial [0].xx(),frenetFrameslnitial [0].yx(),
frenetFrameslinitial [0].zx());

Quaternion pitchQuat(pitchAxis , —FASTAngles[2+i]);
pitchQuat.normalize ();

// Quaternion describing rigid rotation
Quaternion rigidQuat = yawQuat*azimuthQuat*pitchQuat;
rigidQuat.normalize ();

Field <point> rigidPoints=rigidQuat.R() & initPointsBladeO;

"<< runTime.deltaTValue()<<”

” << T1-TO << ”"sec” << nl << endl;

:XYZ), yawRotation);

vector rigidRotation=rigidQuat.eulerAngles(Quaternion :: rotationSequence (Quaternion::XYZ));

Quaternion bladeRotQuat(rotationAxis ,

bladeRotQuat.normalize ();

bladeRot);

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

129

Quaternion bladeRotQuatNeg=inv (bladeRotQuat);

bladeRotQuatNeg.normalize ();

vector bladeRotationNeg=bladeRotQuatNeg. eulerAngles (Quaternion :: rotationSequence (
Quaternion ::XYZ));

Info<<”Blade "<<i<<” rotations to zero (x,y,z) of node =("<<bladeRotationNeg.x()<<",
"<<bladeRotationNeg.y()<<”, ”"<<bladeRotationNeg.z()<<”) "<< endl;

for (int j=0; j< sizel/6; j++)
int k=6*j;
// Rigid body motion part

// Calculate displacements to move initial blade i position to initial blade 0 position
disp_bladeRot(k)=positions_init(k)—initPoints[j].x();
disp_bladeRot(k+1)=positions_init (k+1)—initPoints[j].y();
disp_bladeRot(k+2)=positions_init (k+2)—initPoints[j].z();
disp_bladeRot (k+3)=bladeRotationNeg.x();
disp_bladeRot (k+4)=bladeRotationNeg.y();
disp_bladeRot (k+5)=bladeRotationNeg.z();

// Calculate displacements to move initial blade i to its rigid body position from
// initial blade 0 position

disp_rigid (k)=rigidPoints[j].x()—positions_init(k);

disp_rigid (k+1)=rigidPoints[j].y()—positions_init(k+1);

disp_rigid (k+2)=rigidPoints[j].z()—positions_init (k+2);

disp_rigid (k+3)=rigidRotation .x();

disp_rigid (k+4)=rigidRotation.y();

disp_rigid (k+5)=rigidRotation.z();

// Elasticity related motion part

if ((runTime.timeOutputValue() > InitializationTime && linSmoothing==false)
|| (runTime.timeOutputValue () > startSmooth && linSmoothing==true))

// Quaternion describing the rotation due to twist prebend etc.

vector twistRotation;

twistRotation.x() = positions_init(k+3);

twistRotation .y () positions_init(k+4);

twistRotation .z () positions_init(k+5);

Quaternion twistQuat(Quaternion :: rotationSequence (Quaternion::XYZ), twistRotation);
twistQuat.normalize ();

// Quaternion describing the total rotation to rigid body position
Quaternion totQuat = rigidQuat*twistQuat;
totQuat.normalize ();

// Quaternion describing the total rotation in actual position according to FAST
vector actualRotation;

actualRotation.x() = positions (k+3,i);

actualRotation.y() positions (k+4,i);

actualRotation.z() positions (k+5,i);

Quaternion actualQuat(Quaternion ::rotationSequence (Quaternion::XYZ), actualRotation);
// actual rotation from FAST

actualQuat.normalize ();

// Quaternion describing the rotation from rigid body position to actual position
Quaternion elasticQuat=actualQuat*inv (totQuat);

elasticQuat.normalize ();

vector elasticRotation=elasticQuat.eulerAngles(Quaternion :: rotationSequence (
Quaternion ::XYZ));

// Calculate displacements to move blade i from its rigid body position
// to its actual position

disp_elastic (k)=positions (k,i)—rigidPoints[j].x()
disp_elastic (k+1)=positions (k+1,i)-rigidPoints[]]
disp_elastic (k+2)=positions (k+2,i)-rigidPoints[]]
disp_elastic(k+3)=elasticRotation.x();
disp_elastic (k+4)=elasticRotation.y();
disp_elastic (k+5)=elasticRotation.z();

’y();
z();

}

// Update total displacements
total_disp.col(i) += disp_bladeRot+disp_rigid;

#include ”printPositions .H”

// Move initial blade i beam mesh to initial blade 0 position

Beam[i]->updateBeam(disp_bladeRot);

// Move blade i beam mesh to its rigid body position from initial blade 0 position
Beam[i]->updateBeam(disp_rigid);

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

130

E. The fastFoam Solver

// Write rigid body beam mesh vtk
if (runTime.write()==true)

Beam[i]->writeRigidOutput (runTime);

if (runTime.timeOutputValue() > InitializationTime)

if (linSmoothing==true)
{
if (runTime.timeOutputValue()>=startSmooth && runTime.timeOutputValue()<=endSmooth)
{
smoothVal = smoothSlope *(runTime.timeOutputValue()—startSmooth);
disp_elastic = smoothVal*disp_elastic;
Info << ”"Smoothing elastic deformations is activated with a smoothing factor
of "<<smoothVal<<nl<<endl;

if (runTime.timeOutputValue()>=startSmooth)
{
// Move the fluid mesh from its rigid body position to its actual position
// (elasticity)
Beam[i]—>moveMesh(runTime, mesh, disp_elastic, updatedMeshPoints);
// Move blade i beam mesh to its actual position from its rigid body position
Beam[i]—>updateBeam(disp_elastic);
// Update total displacements
total_disp.col(i) += disp_elastic;

if (runTime.write()==true)
{

for (int i=0; i< numberOfBlades ; i++)

Beam[i]->writeOutput (runTime);

else
{
Info << ”"Fluid—-structure coupling activated! It was started at
"<<lInitializationTime <<” sec”<<nl<<endl;
// Move the fluid mesh from its rigid body position to its actual position (elasticity)
Beam[i]->moveMesh(runTime, mesh, disp_elastic, updatedMeshPoints);
// Move blade i beam mesh to its actual position from its rigid body position
Beam[i]->updateBeam(disp_elastic);
// Update total displacements
total_disp.col(i) += disp_elastic;

if (runTime.write()==true)
{

for (int i=0; i< numberOfBlades ; i++)

Beam[i]->writeOutput (runTime);

}

scalar tT1=runTime.elapsedCpuTime ();
Info<<”Mesh update to elastic state finished within: 7 << tT1-tTO << ”"sec” << nl << endl;

if ((runTime.timeOutputValue () > InitializationTime && linSmoothing==false)
|| (runTime.timeOutputValue () > startSmooth && linSmoothing==true))

// Update devRhoReff

devRhoReff = turbulenceModel.devReff ();

// Here the actual moving of the points obtained through moveMesh takes place
mesh. movePoints (updatedMeshPoints);

}

scalar tO=runTime.elapsedCpuTime ();
Info<<”FSI| and coupling finished within: 7 << t0-t1 << ”"sec” << nl << endl;

runTime . write ();

// Calculate absolute flux from the mapped surface velocity
phi = mesh.Sf() & Uf;

if (mesh.changing() && correctPhi)
{

}

#include ”"correctPhi.H”

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

131

// Make the flux relative to the mesh motion

fvc :: makeRelative (phi, U);

if (mesh.changing () && checkMeshCourantNo)

#include “meshCourantNo.H”
}
// ——— Pressure—velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEgn.H”
// ——— Pressure corrector loop
while (pimple.correct())
{
#include "pEgn.H”
}
if (pimple.turbCorr())
{
laminarTransport.correct ();
turbulence —>correct ();
}
}

t1=runTime.elapsedCpuTime ();

Info<<”Pimple loop finished within:

<< t1-t0 <<

normDistances=Beam[0] —>getNormDistances ();

// Write forces into matrix
for (int i=0;
{

Beam[i]->calcForces (mesh, p, devRhoReff);

i< numberOfBlades

forces=Beam[i]->getForces ();

for (int j=0; j< size/6;

if (Pstream::myProcNo()==0 && runTime.timeOutputValue () > InitializationTime)

{

int k=6*j;

normForces[k] =
normForces[k+1]
normForces [k+2]
normForces [k+3]
normForces [k+4]
normForces [k+5]
normForces [k+6]

blade_forces[i]
blade_forces[i]
blade_forces[i]
blade_moments|[i
blade_moments|[i
blade_moments[i]
Info <<”Wrote for

[
[
[
]
]

else

blade_forces[i]
blade_forces[i]
blade_forces[i]
blade_moments|[i
blade_moments|[i
blade_moments[i
/7}
}

#include ”printForces.H”

forces [k]/normDistances[j];

forces[k+1]/normDistances|
forces[k+2]/normDistances|[
forces[k+3]/normDistances|[
forces[k+4]/normDistances|
forces[k+5]/normDistances|
forces[k+6]/normDistances|

j*+)

il
il
il
[
[
[
ce

|
|
1
s

i++)

»

normForces[k];
normForces[k+1];
normForces[k+2];
normForces [k+3];
normForces [k+4];
normForces[k+5];
moments to the mpcci buffer”’<< endl;

sec

<<

il
il
il
il
il
il

’
s
)

nl << endl;

// Reset beam mesh for next timestep (fluid mesh automatically resets)

Beam[i]->resetMesh ();

}

Info<<”Force calculation finished”<< endl;

if (runtimeProcessing)

{

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

132 E. The fastFoam Solver
for (int i=0; i< numberOfBlades ; i++)
{
PostProcess .updateBeamMesh(i, total_disp.col(i));
PostProcess .updateOmegaRot(i, omega, rotationAxisUpdated, FASTAngles[i+2]);
#include ’"printPostDisps.H”
}
devRhoReff = turbulenceModel.devReff ();
PostProcess.update(mesh, p, U, devRhoReff, runTime);
for (int i=0; i< numberOfBlades ; i++)
PostProcess .updateBeamMesh(i, —total_disp.col(i));
}
}
Info<< "ExecutionTime = ” << runTime.elapsedCpuTime() << ” s”
<< ” ClockTime = " << runTime.elapsedClockTime() << ” s”
<< 7 LastStepTime = ” << runTime.elapsedClockTime()—lastTimeStep<< " s”
<< nl << endl;
lastTimeStep=runTime.elapsedClockTime ();
}
Info<< "End\n” << endl;
return 0;
}

[] KRR KRk Kk Kk Kk K K Kk K K KR K K KKK K KR KK K KKK K KKK K KKK K KA K KKK K KA K KR X KKk X)

MpCCI GUI

This Appendix includes several screenshots, which describe how to setup the coupling for fastFoam
within the MpCCI GUI.

133

134 F. MpCCI GUI

135

‘1N 100dIN 8yy ul days sjapow 8y |4 81nbi4

< dajs bundno) dajs sjapow _
auued e
ues>sal 82104] J3uUueds yels uedsal 22104] bl S Uels

* asmoig : HH>|>>u|h|m,aE,al,muEtmk_w_I:_:Edm_Zdtsmi
(+) Kiopauip ased> wyod4uado pajes

H.G.M_
aseajal Wvod4uado ayl Pajas asea|d i
354'00000£0S;
nn__ _ asmoig :
d 9]9s asea
uoispaid Wyod4uado 2yl pajes asea|d (+) buluueds 10y 3|1y Indul 1584 BY] P3|, _n_i
00°ST8
T_ o _L a5ea|al1 1564 2] Pa|as aseald
uonndo wyo4uado ayy Pajes aseald pormeee
siajawesed apod Pajes siajpweled apod pajes
_ auoag M _ _z<0u_:wno_ _ auog M _L ._.m<u7
1svd
wvoduado a]dnod 03 apod Paas
ajdnod 03 apod Pajes S
Z @pod & >
8 sapoj s|00l 9suadll yY1ed apg
disH

09 31p3 siouopy bundnos >sjepo< :deas - TTA-Mo~ 2 -ajdund-lesydessiHmInW-gE W YaMmey 33foid - S

F. MpCCI GUI

1N 122dIN 241 Ul sajqeliea ysaw ay) oy dajs Buidnoo 8y :z'4 ainbi4

< da3js siojuow

dajs buidnon

_ dais s|apon >

Pex3 O Jepuis O SUON @

4 ESEIEN |

Bunypiew swen)

Bujjjoins paziuosypuhs]
uondo |

 1opels s
aui0apelg s

aulzapelq s
auy"Tepelq /

MaN

@je1auan

s o[

(@) pajdnod (@) pajdnod ey IR
2T E5d
1amo] »
‘ ‘ ESREI
0 219135 ‘ON | :papajes -on s
poes _ i n_ paes _ _ *7 | :papajas "on MIAIBAO |
TTIA MO 7 ajdund [ediypiessiHNW aeinvimey 00000£0S _ pajes 4 i L juajuo Yueas[] || sjas Ayjuend ubissy
Wyoduado ASvd 7 PPV _ 5395 Ajuend auyaq
P21dno> 2q 03 sjuauodwod 3sooyd Isea|d

suoibay suoibay pying

saipadoid uoibay L dnias

sjuauodwod 1p3

136

disH

09 31p3 si031uoy >b

S19pojy 235 - TTA-Mo—7-=1d

ysaw [1eqo|o

Sapo) s|oo] asuadl] yoleg 93

137

N9 1D

Dd 8y} ul dejs siojuow 8y ¢4 ainbi4

< dajs up3 dajs siojuow _ dajs bundno) >

apod

uoile’0]
na |

poylaw puss

dwayjem []
#480D1HIIEM []
xni41eaH|iem [
fpojan [
ainssaidieiol []
ainjesadway [
adJ0djiemIay []
9INssaidiano [

dwajwypy
Wvoduado 4 0
uoneinbyuod ainssaidsqv [
103133A 33104 njosqe Aiepunog Knuend

Jojuow o3 sannuenb ainbyuod aseald

sannuend

aul Tapelg /

(D) paJojuon

aul oapelg

paps | |
M2 a1dund [ediydIeIaIHIINW GEIWVIMEY
Wvod4uado
wvoduado 1Sv4 O

1 SJUaU0dWO0d IS00YD UIY] PO € }II[IS Ised|d

s o i

T USoW &

S10JUOW

S8po) s|00] asuadl] yoleg 9

ysaw [jeqop |

09 31p3 >s103uoy< Bundnor sjapoyy :dais - TTA-MdO~z-ajdwid-jesydiessiHIINW—g g W YIMey 33foid - S

F. MpCCI GUI

138

IND 1D0dIN 8y} Ul days Jipe 8y L 4o ainbi4

opun

I

< dajs on

dais up3

da3s siojuop >

'siaynqg 3|diNW Yum S3sed JUaISUE.] Joj JUBAS|3J AJUO S| SNjeA SIYL (310N

"JNeJsp S)l 01 3N[EA 3Y] $1858J §'0 =< SN[EA Y "0 0] [E21IUSPI 5 ISNW SIUSISYIP SWI|

341 puE 23Y2 33UBJ3|0] BY] SBA0WSI 0 UeY] ss3| anjeA Auy ‘Jz/T 0l sBues ay) ul aJe sanjea pijeA
(T00°0 :YNeySq) ‘|E21IUSPI 30 0 PSWNSSE SJE SSWI] JUSISYIP

0M] 3] Y2Iym Mo|3q P02 E Jo 5z1s da]s swiyadusiayip swiy Aue Jo 3ouels|o] (3NIEJa)) BY] BULsd

uonnduasaqg

JslBweled

23uesz|oawi) qof-saadolg

»]

A
s/eqojo m
asn

ASIED &
Jdlpousd
waou|
syead
sulewoq
sane|s
s|eqoj9
Splws|3

XAD B &
SIBIM D
dajgawil
daisuoniessy
{—Ha3gbuidnon
3|qeu3
EIENITY wilc)
SWOHJBILM
anes
ETCRLITN =
[ELCh] G
ndino i =
ouejsIglEWIONIaSN
spopuadxg
Kyoydiynig
Youeasuone|sy ko &
aNIsends|enpisay
0IMBNISENDIBINEW
Bz15/03SIH
Usa|ewlojuod
ysayes
jpaydulewoqg
PEERLCITENY)
Han[euiEsn
323140049
uonoWyYsan
onejodiziupenbuy
uonejodiaiul

qol 2 &

821A3Q18N
Hod

IsO0H
younetoiny
fowsp

ojnpon
Jlpouad
xejey
wuou|

s|eqo|

spiwaj3
SpIZpoN

JONUOW T &
[+ saipadold [=

sapod
09 >31p3< siojuoly Hundnor sjapoyy :dais - T TAMO~ £ —aidwid—esyosesaiHm

s|joo]l asuad1l yYyeg 93
asiWyimey pasfoid - 5y

139

INS 100d 2y} Ul dajs 0B 8y G4 bl

i deisoo || deisupa>

Iy ISIISUY [euouo

150y 150y, jeuondo

o || dois [

[»

pasn aq 01

; 2582 PNIISU0IaY _

_ ases asodwodaq _

[|

sjybiam Jossadoud jeuondo

P :uueum_
() Poylaw uonisodwodap P3as

sujewop [a|jesed Jo ‘oN

Japune| padpdaxjweoy [eusaIxa asn [;

_ P_ ynejap

J0pU3A |dW

IdW Aped pag jeusaixe asn

1211esed uny

_ Saweu pjay aalewalyy [_

suondo auj| pUBWIWOD [EUOINPPY

Di By/f] 389y oypads aduaiajal e auyaa

|
[E-w/Bx] Kusuap aduaiajel e auyada _L _mao_u_

D uoneUaLo
=|"see‘T01

[2-w/N] ainssaid @duUalayel e auyaq _P4 J93juad qnH

uolles’o]

(+) 19A]05 WvV04uado PaJ3s ejep pabueydxa 10) swalsks a1euIpIood 195

Buidnos ayy buipus 10y sl

Bundnod ayj buiuels 1oy swiy

s1apj|oj ajyadesl pjo dn uea|d []

] Foo |

Buidnos sy buipus Joy sl SPU02aS Ul JN0BWIL

uoneuiwial uo dois 0] SaPOd 32104
Buidno> ayy buiuels Joy awng

1013U0> uoyzeINp 35N

1043U02 uoneINp 3sn

_ WI91X BPISUl 19AISS UNY [] _

7 buipfogns asn] 7 7 buipfoqns asn [] 7 T_ (ysJ 2155€P) _._E_
b __m_ _L = adfy j|ays a10wal pauiajald

apow

- apow aAlday [|

P kome _L e pasn aq 03 150y, 210wy

Spow puas

Uels 19AIas aj0wal 10y buinles a

apow puas
D _L wzwuwh_ [
19j5UB11 S Jojsuea] sanuenb el selje 150y [e20] [euonndo
b 1 11-3 “ juaisuel)-pidxy | 0T10°‘LY _
awayds buydnod sy auyaq awayds buydnod ayy suyaq ssaippe uod Jamss ulew
[uonesnbyuod buydnod a uoneinbyuod buydnod 7 S0 I ETEY OFHM_.U._u“M_
evasx-ajurrdbe@wvodusdo Evasx-uedbed®1sv4 - 1anias |
disH

S8po) s|00] asuadl] yoleg 9

>095< 31p3 siojiuoly Bundnor sjapoyy :daas - T TA-Md~z—ajdwid-jesnydiessiHRINW—g £ YIMeY 3

Bibliography

[1] T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi. Wind Energy Handbook. John Wiley & Sons,

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

Chichester, West Sussex, 2nd edition, 2011. ISBN 978-0-470-69975-1.

M. Carrion, R. Steij, M. Woodgate, G. N. Barakos, X. Munduate, and S. Gomez-Iradi.
Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method. Journal
of Fluids and Structures, 50:392—415, October 2014. ISSN 0889-9746. doi: 10.1016/j.
jfluidstructs.2014.06.029. URL http://www.sciencedirect.com/science/article/
pii/5S0889974614001546. [Accessed on: 2016-07-15].

D. Chandar and H. Gopalan. Comparative analysis of the arbitrary mesh interface(AMI), general-
ized grid interface (GGI) and overset methods for dynamic body motions in openFOAM. In 46th
AIAA Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, June 2016.
ISBN 978-1-62410-436-7. doi: 10.2514/6.2016-3324. URL http://arc.aiaa.org/doi/
10.2514/6.2016-3324. [Accessed on: 2016-09-10].

M. Churchfield and S. Lee. SOWFA | NWTC Information Portal, March 2015. URL https:
//nwtc.nrel.gov/SOWFA. [Accessed on: 2016-09-01].

M. Churchfield, S. Lee, J. Michalakes, and P. J. Moriarty. A numerical study of the effects of
atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, 13:N14,
January 2012. ISSN 1468-5248. doi: 10.1080/14685248.2012.668191. URL http://www.
tandfonline.com/doi/abs/10.1080/14685248.2012.668191. [Accessed on: 2016-09-
02].

D. Corson, D. Griffith, T. Ashwill, and F. Shakib. Investigating Aeroelastic Performance of Multi-
Mega Watt Wind Turbine Rotors Using CFD. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference. American Institute of Aeronautics and Astronau-
tics, Honolulu, April 2012. ISBN 978-1-60086-937-2. URL http://arc.aiaa.org/doi/abs/
10.2514/6.2012-1827. [Accessed on: 2016-09-01].

I. Czajka, K. Suder-Debska, and K. Jarosz. Modelling of an aerodynamic noise of a horizontal axis
wind turbine using ansys/fluent and OpenFOAM packages. In Proceedings of Forum Acusticum,
volume 2014-January, Krakow, 2014. ISBN 978-83-61402-28-2.

E. Daniele. Wind turbine control in computational fluid dynamics with OpenFOAM.
Wind Engineering, 41(4):213-225, July 2017. ISSN 0309-524X, 2048-402X. doi:
10.1177/0309524X17709724. URL http://journals.sagepub.com/doi/10.1177/
0309524xX17709724. [Accessed on: 2017-08-01].

B. Dose, B. Stoevesandt, and J. Peinke. Studying the effect of blade deflections on the aerody-
namic performance of wind turbine blades using OpenFOAM. In Proceedings of DEWEK 2015,
Bremen, May 2015. DEWI. [Accessed on: 2016-09-28].

B. Dose, H. Rahimi, |. Herraez, B. Stoevesandt, and J. Peinke. Fluid-structure coupled compu-
tations of the NREL 5mw wind turbine blade during standstill. Journal of Physics: Conference
Series, 753(2):022034, 2016. ISSN 1742-6596. doi: 10.1088/1742-6596/753/2/022034.
URL http://stacks.iop.org/1742-6596/753/1=2/a=022034. [Accessed on: 2017-11-
14].

J. H. Ferziger and M. Peri¢. Computational Methods for Fluid Dynamics. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-540-42074-3 978-3-642-56026-
2. doi: 10.1007/978-3-642-56026-2. URL http://link.springer.com/10.1007/
978-3-642-56026-2. [Accessed on: 2017-08-02].

141

http://www.sciencedirect.com/science/article/pii/S0889974614001546
http://www.sciencedirect.com/science/article/pii/S0889974614001546
http://arc.aiaa.org/doi/10.2514/6.2016-3324
http://arc.aiaa.org/doi/10.2514/6.2016-3324
https://nwtc.nrel.gov/SOWFA
https://nwtc.nrel.gov/SOWFA
http://www.tandfonline.com/doi/abs/10.1080/14685248.2012.668191
http://www.tandfonline.com/doi/abs/10.1080/14685248.2012.668191
http://arc.aiaa.org/doi/abs/10.2514/6.2012-1827
http://arc.aiaa.org/doi/abs/10.2514/6.2012-1827
http://journals.sagepub.com/doi/10.1177/0309524X17709724
http://journals.sagepub.com/doi/10.1177/0309524X17709724
http://stacks.iop.org/1742-6596/753/i=2/a=022034
http://link.springer.com/10.1007/978-3-642-56026-2
http://link.springer.com/10.1007/978-3-642-56026-2

142 Bibliography

[12] M. O. L. Hansen. Aerodynamics of Wind Turbines. Earthscan Ltd, London, 2nd edition, February
2008. ISBN 978-1-84407-438-9.

[13] M. O. L. Hansen and H. Aagaard Madsen. Review Paper on Wind Turbine Aerodynamics. Journal
of Fluids Engineering, 133(11):114001-114001, October 2011. ISSN 0098-2202. doi: 10.1115/
1.4005031. URL http://dx.doi.org/10.1115/1.4005031. [Accessed on: 2016-07-04].

[14] J. C. Heinz, N. N. Sgrensen, and F. Zahle. Fluid—structure interaction computations for geomet-
rically resolved rotor simulations using CFD. Wind Energy, April 2016. ISSN 1099-1824. doi:
10.1002/we.1976. URL http://onlinelibrary.wiley.com/doi/10.1002/we.1976/
abstract. [Accessed on: 2016-07-15].

[15] S. G. Horcas, F. Debrandere, B. Tartinville, C. Hirsch, and G. Coussement. A new, high fidelity
offshore wind turbines aeroelasticity prediction method with significant CPU time reduction. In
Proceedings of EWEA Offshore 2015. European Wind Energy Association (EWEA), Copenhagen,
March 2015.

[16] M. C. Hsu and Y. Bazilevs. Fluid—structure interaction modeling of wind turbines: simulating the
full machine. Computational Mechanics, 50(6):821-833, August 2012. ISSN 0178-7675, 1432-
0924. doi: 10.1007/s00466-012-0772-0. URL http://link.springer.com/article/
10.1007/s00466-012-0772-0. [Accessed on: 2016-08-25].

[17] L. Ibing. Postgraduate programme renewable energy: Launch of the High Performance Com-
puting Cluster Eddy, August 2017. URL https://www.uni-oldenburg.de/en/physics/
studies/courseofstudies/ppres/ppre/news/newsletter/2017/volume-36/

launch-of-the-high-performance-computing-cluster-eddy/. [Accessed on:
2017-8-10].

[18] J. M. Jonkman. Overview of the ElastoDyn Structural-Dynamics Module, November 2013.

[19] J. M. Jonkman. Development, Verification, & Validation of New Aero-elastic Capability Within
FAST v8, February 2016.

[20] J. M. Jonkman, G.J. Hayman, B.J. Jonkman, and R.R. Damiani. Aero Dyn v15 User’s Guide and
Theory Manual. Technical Report, NREL, 2015.

[21] H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ Library for Complex Physics Simula-
tions. In Proceedings of International Workshop on Coupled Methods in Numerical Dynamics -
CMND 2007, Dubrovnik, Croatia, September 2007. URL https://www.researchgate.net/
profile/Zeljko Tukovic/publication/228879492 OpenFOAM A c library for

complex physics simulations/links/00463528c618e93598000000.pdf. [Accessed
on: 2016-09-02].

[22] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition of a 5-MW Reference Wind Tur-
bine for Offshore System Development. Technical Report NREL/TP-500-38060, NREL, Golden,
Colorado, February 2009. URL http://www.nrel.gov/docs/fy090osti/38060.pdf. [Ac-
cessed on: 2016-09-05].

[23] J. M. Jonkman. The New Modularization Framework for the FAST Wind Turbine CAE Tool. In 57st
AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.
American Institute of Aeronautics and Astronautics, January 2013. URL http://arc.aiaa.
org/doi/abs/10.2514/6.2013-202. [Accessed on: 2016-07-21].

[24] Jurado Garcia, X. EDDY - Fakultat V - Carl von Ossietzky Universitat Oldenburg, Au-
gust 2017. URL https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/
hpc-facilities/eddy/. [Accessed on: 2017-09-26].

[25] N. Kirrkamm, B. Stoevesandt, B. Gollnick, and J. Peinke. Simulation of a multi mega watt wind
turbine with opensouce code openfoam. In European Wind Energy Conference and Exhibition
2010, EWEC 2010, volume 6, page 4620. EWEA, Warsaw, April 2010. ISBN 978-1-61782-310-7.

http://dx.doi.org/10.1115/1.4005031
http://onlinelibrary.wiley.com/doi/10.1002/we.1976/abstract
http://onlinelibrary.wiley.com/doi/10.1002/we.1976/abstract
http://link.springer.com/article/10.1007/s00466-012-0772-0
http://link.springer.com/article/10.1007/s00466-012-0772-0
https://www.uni-oldenburg.de/en/physics/studies/courseofstudies/ppres/ppre/news/newsletter/2017/volume-36/launch-of-the-high-performance-computing-cluster-eddy/
https://www.uni-oldenburg.de/en/physics/studies/courseofstudies/ppres/ppre/news/newsletter/2017/volume-36/launch-of-the-high-performance-computing-cluster-eddy/
https://www.uni-oldenburg.de/en/physics/studies/courseofstudies/ppres/ppre/news/newsletter/2017/volume-36/launch-of-the-high-performance-computing-cluster-eddy/
https://www.researchgate.net/profile/Zeljko_Tukovic/publication/228879492_OpenFOAM_A_c_library_for_complex_physics_simulations/links/00463528c618e93598000000.pdf
https://www.researchgate.net/profile/Zeljko_Tukovic/publication/228879492_OpenFOAM_A_c_library_for_complex_physics_simulations/links/00463528c618e93598000000.pdf
https://www.researchgate.net/profile/Zeljko_Tukovic/publication/228879492_OpenFOAM_A_c_library_for_complex_physics_simulations/links/00463528c618e93598000000.pdf
http://www.nrel.gov/docs/fy09osti/38060.pdf
http://arc.aiaa.org/doi/abs/10.2514/6.2013-202
http://arc.aiaa.org/doi/abs/10.2514/6.2013-202
https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/
https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/

Bibliography 143

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Y. Li. Coupled computational fluid dynamics/multibody dynamics method with application to wind
turbine simulations. Ph.D. thesis, University of lowa, lowa City, lowa, May 2014. URL http:
//ir.uiowa.edu/etd/4681.

Y. Li, A. M. Castro, T. Sinokrot, W. Prescott, and P. M. Carrica. Coupled multi-body dynamics
and CFD for wind turbine simulation including explicit wind turbulence. Renewable Energy, 76:
338-361, April 2015. ISSN 0960-1481. doi: 10.1016/j.renene.2014.11.014. URL http://
www.sciencedirect.com/science/article/pii/S0960148114007290. [Accessed on:
2016-07-15].

Y. Liu, Q. Xiao, A. Incecik, and D.-C. Wan. Investigation of the effects of platform motion on
the aerodynamics of a floating offshore wind turbine. Journal of Hydrodynamics, 28(1):95-101,
February 2016. ISSN 1001-6058. doi: 10.1016/S1001-6058(16)60611-X.

M. A. Sprague, J. M. Jonkman, and B. J. Jonkman. FAST Modular Framework for Wind Tur-
bine Simulation: New Algorithms and Numerical Examples. In 33rd Wind Energy Symposium,
NREL/CP-2C00-63203, Kissimmee, December 2015. NREL. URL https://arc-aiaa-org.
tudelft.idm.oclc.org/doi/abs/10.2514/6.2015-1461. [Accessed on: 2017-02-19].

M. M. Hand, D. A. Simms, L. J. Fingersh, D. W. Jager,, J. R. Cotrell, S. Schreck, and S. M.
Larwood. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and
Available Data Campaigns. Technical Report NREL/TP-500-29955, NREL, Golden, Colorado,
December 2001. URL http://www.nrel.gov/docs/fy020sti/29955.pdf. [Accessed on:
2016-08-01].

J. F. Manwell, J. G. McGowan, and A. L. Rogers. Wind Energy Explained: Theory, Design and
Application. John Wiley & Sons, Chichester, U.K, 2 edition, 2009. ISBN 978-0-470-01500-1.

J. 0. Mo and Y. H. Lee. CFD Investigation on the aerodynamic characteristics of a small-sized
wind turbine of NREL PHASE VI operating with a stall-regulated method. Journal of Mechan-
ical Science and Technology, 26(1):81-92, January 2012. ISSN 1738-494X, 1976-3824. doi:
10.1007/s12206-011-1014-7. URL http://link.springer.com/article/10.1007/
s12206-011-1014-7. [Accessed on: 2017-02-20].

H. Nilsson. Rotating machinery training at ofw10 (openfoam workshop 10) using foam-extend-
3.1, June 2015. URL http://www.tfd.chalmers.se/~hani/kurser/0S CFD 2015/
HakanNilssonRotatingMachineryTrainingOFW10.pdf. [Accessed on: 2017-08-01].

H. Rahimi, E. Daniele, B. Stoevesandt, and J. Peinke. Development and application of a grid
generation tool for aerodynamic simulations of wind turbines. Wind Engineering, 40(2):148-172,
April 2016. ISSN 0309-524X, 2048-402X. doi: 10.1177/0309524X16636318. URL http://
wie.sagepub.com/lookup/doi/10.1177/0309524X16636318. [Accessed on: 2016-08-
03].

B. Sanderse, S. P. van der Pijl, and B. Koren. Review of computational fluid dynamics for wind
turbine wake aerodynamics. Wind Energy, 14(7):799-819, October 2011. ISSN 1099-1824. doi:
10.1002/we.458. URL http://onlinelibrary.wiley.com.tudelft.idm.oclc.org/
doi/10.1002/we.458/abstract. [Accessed on: 2016-07-04].

G. Schepers. AVATAR: AdVanced Aerodynamic Tools of IArge Rotors. In 33rd Wind Energy
Symposium. American Institute of Aeronautics and Astronautics, January 2015. ISBN 978-1-
62410-344-5. doi: 10.2514/6.2015-0497. URL http://arc.aiaa.org/doi/10.2514/6.
2015-0497. [Accessed on: 2017-08-21].

J. G. Schepers. Engineering models in wind energy aerodynamics: Development, implementation
and analysis using dedicated aerodynamic measurements. Ph. D. thesis, TU Delft, 2012. URL
http://dx.doi.org/10.4233/uuid:92123c07-ccl12-4945-973f-103bd744ec87.
[Accessed on: 2016-07-20].

http://ir.uiowa.edu/etd/4681
http://ir.uiowa.edu/etd/4681
http://www.sciencedirect.com/science/article/pii/S0960148114007290
http://www.sciencedirect.com/science/article/pii/S0960148114007290
https://arc-aiaa-org.tudelft.idm.oclc.org/doi/abs/10.2514/6.2015-1461
https://arc-aiaa-org.tudelft.idm.oclc.org/doi/abs/10.2514/6.2015-1461
http://www.nrel.gov/docs/fy02osti/29955.pdf
http://link.springer.com/article/10.1007/s12206-011-1014-7
http://link.springer.com/article/10.1007/s12206-011-1014-7
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/HakanNilssonRotatingMachineryTrainingOFW10.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/HakanNilssonRotatingMachineryTrainingOFW10.pdf
http://wie.sagepub.com/lookup/doi/10.1177/0309524X16636318
http://wie.sagepub.com/lookup/doi/10.1177/0309524X16636318
http://onlinelibrary.wiley.com.tudelft.idm.oclc.org/doi/10.1002/we.458/abstract
http://onlinelibrary.wiley.com.tudelft.idm.oclc.org/doi/10.1002/we.458/abstract
http://arc.aiaa.org/doi/10.2514/6.2015-0497
http://arc.aiaa.org/doi/10.2514/6.2015-0497
http://dx.doi.org/10.4233/uuid:92123c07-cc12-4945-973f-103bd744ec87

144

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Schramm, B. Stoevesandt, and J. Peinke. Adjoint optimization of 2d-airfoils in incompressible
flows. In Proceedings of the 11th World Congress on Computational Mechanics, pages 6200—
6211, 2014. ISBN 978-84-942844-7-2.

Y. Song and J. Perot. CFD Simulation of the NREL Phase VI Rotor. Wind Engineering, 39(3):
299-310, June 2015. ISSN 0309-524X. doi: 10.1260/0309-524X.39.3.299. URL http:
//wie.sagepub.com/lookup/doi/10.1260/0309-524X.39.3.299. [Accessedon: 2016-
09-02].

T. Stovall, G. Pawlas, and P. Moriarty. Wind Farm Wake Simulations in OpenFOAM. In 48th
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
American Institute of Aeronautics and Astronautics, Orlando, Florida, January 2010. URL http:
//arc.aiaa.org/doi/abs/10.2514/6.2010-825. [Accessed on: 2016-09-02].

The OpenFOAM Foundation. OpenFOAM User Guide Ver 4.0, June 2016. URL http://foam.
sourceforge.net/docs/Guides—ad4/OpenFOAMUserGuide—-A4.pdf.

Q. Wang, N. Johnson, M. A. Sprague, and J. M. Jonkman. BeamDyn: A High-Fidelity Wind
Turbine Blade Solver in the FAST Modular Framework. In 33rd Wind Energy Symposium. Amer-
ican Institute of Aeronautics and Astronautics, January 2015. ISBN 978-1-62410-344-5. doi:
10.2514/6.2015-1465. URL http://arc.aiaa.org/doi/10.2514/6.2015-1465. [Ac-
cessed on: 2017-08-21].

K. Wolf. MPCCI — The General Code Coupling Interface. In Proceedings of Ger-
man LS-DYNA Forum 2007, Frankenthal, October 2007. DYNAmore GmbH. URL
https://www.dynamore.de/de/download/papers/forum07/it-cae-processes/
mpcci-the-general-code-coupling-interface/view. [Accessed on: 2016-01-09].

D. O. Yu and O. J. Kwon. Time-accurate aeroelastic simulations of a wind turbine in yaw and
shear using a coupled CFD-CSD method. Journal of Physics: Conference Series, 524(1):012046,
2014. ISSN 1742-6596. doi: 10.1088/1742-6596/524/1/012046. URL http://stacks.
iop.org/1742-6596/524/1=1/a=012046. [Accessed on: 2016-07-15].

M. Zamani, M. Maghrebi, and S. Varedi. Starting torque improvement using J-shaped straight-
bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy,
95:109-126, September 2016. ISSN 0960-1481. doi: 10.1016/j.renene.2016.03.069. URL
http://www.sciencedirect.com/science/article/pii/S0960148116302531. [Ac-
cessed on: 2016-09-05].

http://wie.sagepub.com/lookup/doi/10.1260/0309-524X.39.3.299
http://wie.sagepub.com/lookup/doi/10.1260/0309-524X.39.3.299
http://arc.aiaa.org/doi/abs/10.2514/6.2010-825
http://arc.aiaa.org/doi/abs/10.2514/6.2010-825
http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf
http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf
http://arc.aiaa.org/doi/10.2514/6.2015-1465
https://www.dynamore.de/de/download/papers/forum07/it-cae-processes/mpcci-the-general-code-coupling-interface/view
https://www.dynamore.de/de/download/papers/forum07/it-cae-processes/mpcci-the-general-code-coupling-interface/view
http://stacks.iop.org/1742-6596/524/i=1/a=012046
http://stacks.iop.org/1742-6596/524/i=1/a=012046
http://www.sciencedirect.com/science/article/pii/S0960148116302531

	Summary
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	
	Introduction
	Literature Review
	Rotor Aerodynamics
	Blade Element Momentum Theory
	Computational Fluid Dynamics
	Other Methods

	Wind Turbine Elasticity
	FSI Coupling Methods for Wind Turbine Simulations
	Tools
	OpenFOAM for Wind Turbine Simulatons
	NREL FAST
	MpCCI Code Coupling Interface

	Summary
	Discussion

	Wind Turbine Simulation Cases
	Turbine Specifications
	NREL phase VI
	NREL 5MW

	Simulations

	Available Methods
	OpenFoam Simulation Method
	Mesh Generation
	Motion in OpenFOAM
	Simulation Setup

	NREL FAST Simulation Method
	Aerodynamic Model
	Structural Models
	Simulation Setup

	Developed Method
	Coupling Approach
	FAST Adapter
	OpenFOAM Adapter

	fastFoam Solver
	Mesh Motion
	Load Calculation

	Simulation Setup

	Results
	NREL phase VI
	OpenFOAM Mesh Convergence
	Normal Operating Conditions
	Yaw Sweep
	Pitch Slope
	Power Curve

	NREL 5MW
	Normal Operating Conditions
	Fixed Yaw Error with Activated Controller

	Computation Time

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Meshing in OpenFOAM
	Solid Body Mesh Motion
	Turbine Coordinate Systems
	MpCCI Workflow
	The fastFoam Solver
	MpCCI GUI
	Bibliography

