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ABSTRACT 

 
We present in this paper the results of our study on the human perception of geometric distortions in images. The 
ultimate goal of this study is to devise an objective measurement scheme for geometric distortions in images, which 
should have a good correspondence to human perception of the distortions. The study is divided into two parts. The first 
part of the study is the design and implementation of a user-test to measure human perception of geometric distortions in 
images. The result of this test is then used as a basis to evaluate the performance of the second part of the study, namely 
the objective quality measurement scheme. Our experiment shows that our objective quality measurement has good 
correspondence to the result of the user test and performs much better than a PSNR measurement. 
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1. INTRODUCTION 
 
Research on human perception of image quality has been widely performed. Aspects of the image considered in such 
research are for example color, granularity or sharpness. Another example is to test specific artifacts of a compression 
algorithm (eg., the blocking artifact of JPEG compression) or watermarking system (eg., the random noise artifact of 
noise-based watermarking systems). Some examples of the image quality assessment for these distortions can be found 
for example in1. As a result, we already have good understanding of how these aspects influences human perception of 
quality and we are able to quantify these perceptual aspects in cases where the distortion is near the visibility threshold. 
We can use the result of this research to improve the performance of various applications dealing with images by 
designing the systems such that most changes or distortions to the images occur in the areas that have small perceptual 
impact for human observers. Compression algorithms and watermarking systems are two examples of applications that 
can take advantage of this knowledge. However, the research on human perception of image quality has not dealt with 
another  type of distortion that an image can undergo, namely geometric distortion (ie., distortions due to geometric 
operations). As a result, we are currently unable to quantify the perceptual impact of geometric distortions on images.  
 
This paper presents a study of the impact of geometric distortions to human perception of the quality of the distorted 
images. The goal of this study is to provide a reference point on which to evaluate the performance of our objective 
geometric distortion measure scheme2. The results we obtain from this test are also useful to other researchers 
performing similar research in this field. Therefore, we also make our test set and test results available for download on 
our website3. The rest of the paper is organized as follows. In Section 2, we present the design of our user test 
experiment and statistical analysis methods used to process the test results. In Section 3, we present the actual set up of 
our user test. In Section 4, we present and analyze the result obtained from this user test. In Section 5, we will briefly 
review our objective geometric distortion measure algorithm, present scores obtained using this method and evaluate its 
performance based on the subjective test result. Finally, in Section 6 we present our conclusions and provide a roadmap 
for further research. 

2. TEST DESIGN & ANALYSIS METHOD 

2.1. Test design 
In order to evaluate the perceptual impact of geometric distortion, we have performed a subjective test involving a panel 
of users, who are asked to evaluate a test set comprising of an original image and various distorted versions of it. The 
test subjects evaluate one pair of images at a time, comparing 2 images and choosing the one they think is more 
distorted. This type of experiment is called the paired comparison test. There are two experiment designs for paired 
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comparison test, namely the balanced and incomplete designs4,5. In a balanced design, a test subject has to evaluate all 
possible comparison pairs taken from the test set. In the incomplete design, a test subject performs comparisons on a 
subset of the complete test set. The latter design is useful when the number of objects in the test set is very large. In our 
experiment, we used the balanced paired-comparison design. Our choice for this design is based on three factors. Firstly, 
the number of objects in our test set is not very large and a test subject can finish the test within a reasonable time frame 
(as a rule of thumb, we consider a test lasting 60 minutes or less to be reasonable). Secondly, by asking every test 
subject to evaluate all objects in the test set we will be able to get a more complete picture of the perceptual quality of 
the images in the test set. Finally, in this design we make sure that each test subject evaluates an identical test set. This 
makes it easier to evaluate and compare the performance of each test subject.  
 
Let t be the number of objects in the test set. One test subject performing all possible comparison of 2 objects Ai and Aj 

from the test set, evaluating each pair once, will make 








2

t  paired comparisons in total. The result of the comparisons is 

usually presented in a t × t matrix. If ties are not allowed (ie., a test subject must cast his/her vote to one object of the 
pair), the matrix is also called a two-way preference matrix with entries containing 1’s if the object was chosen and 0’s 
otherwise. An example of such matrix for t = 4 is shown in Figure 1. Each entry Ai,j of the matrix is interpreted as object 
Ai is preferred to object Aj. The indices i and j refer to the rows and columns of the matrix, respectively. 
 

 A1 A2 A3 A4 
A1 × 1 1 0 
A2 0 × 1 1 
A3 0 0 × 0 
A4 1 0 1 × 

Figure 1. An example of a preference matrix 
 

Let ai be the number of votes object Ai received during the test. In other words, ∑
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, respectively. We can extend this result to the case where we have n test 

subjects performing the paired comparison test. In this case, the test result can also be presented in a preference matrix 
similar to the one presented in Figure 1. However, each entry Ai,j of this matrix now contains the number of test subjects 
who prefer object Ai to object Aj. If again we disallow ties, the values of Ai,j will be integers ranging from 0 to n. We 

also note that in this case Aj,i = n – Ai,j. Finally, in this case the total and average scores are expressed as )1(
2

1 −tnt  and 

)1(
2

1 −tn , respectively. 

2.2. Statistical analysis of the experiment 
After performing paired comparison tests, we obtain a preference matrix for each test set. Now we have to perform an 
analysis of this test result. We have two main objectives for this analysis. In the first place, we want to obtain the overall 
ranking of the test objects. The second objective is to see the relative quality differences between the test objects, that is, 
whether object Ai is perceived to be either similar or very different in quality from object Aj. The analysis we perform on 
the data to achieve these objectives are the coefficient of consistency, the coefficent of agreement, and the significance 
test on score differences. Each of these analysis is discussed in the following sections.  

2.2.1. Coefficient of consistency 
A test subject is consistent when he/she, in evaluating 3 objects Ax, Ay and Az from the test set, does not make a choice 
such that Ax  Ay  Az but Az  Ax. The arrows can be interpreted as “preferred to”. Such condition is called a circular 
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triad. While circles involving more than 3 objects are also possible, any such circles can easily be broken up into two or 
more circular triads. The matrix in Figure 1 has one such triad, namely A1 A2 A4 but A4 A1. 
 
For smaller values of t, one can easily enumerate the circular triads encountered. For larger t, this task becomes very 
tedious. However, we can compute the number of circular triads, c, from the scores ai using the following relation4, 6 

 
2
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The number of circular triads c can be used to define a measure of consistency of the test subjects. There are different 
approaches to do this4. Kendall/Babington-Smith compared the number of circular triads found in the test to the 
maximum possible number of circular triads. The coefficient of consistence ζ is defined as follows 

)1(

24
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cζ , if t odd     (3) 
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tt

cζ , if t even     (4) 

There are no inconsistencies if, and only if, ζ = 1. This number will move to zero as the number of circular triads, thus 
the inconsistencies, increases.  
 
The coefficient of consistency can be used in the following ways. In the first place, we can use this coefficient to judge 
the quality of the test subject. Secondly, we can use this coefficient as an indication of the similarity of the test objects. 
If, on average, the test subjects are inconsistent (either for the whole data set or a subset thereof), we can conclude that 
the test objects being evaluated are very similar and thus it is difficult to make consistent judgement. Otherwise, if one 
particular test subject is inconsistent while the other test subjects are – on average – consistent, we may conclude that 
this particular subject is not performing well. If the consistency of this subject is significantly lower than average, we 
may consider removing the result obtained by this subject from further analysis. 

2.2.2. Coefficient of agreement 
Coefficient of agreement shows us the diversity of preferences among n test subjects. Complete agreement is reached 
when all n test subjects make identical choices during the test. From Section 2.1, we see that if every subject had made 
the same choice during the test, then half of the entries in the preference matrix will be equal to n, while the other half 
would be zero. Alternatively, in the worst case situation all entries will be equal to n/2 (if n is even) or (n ± 1)/2 if n is 
odd.   
 
It is obvious that the minimum number of test subjects, n, that we need in order to be able to measure agreement is 2. 
Each time 2 test subjects make the same decision regarding a pair of test objects Ai and Aj, we say that we have one 
agreement regarding this pair. In other words, we measure the agreement by counting the number of pairs of test 
subjects that make the same decision over each pairs of test objects. We do this by computing τ, defined as 
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In Equation (6), 








2

ijA  gives us the number of pairs of test subjects making the same choice regarding objects Ai and Aj. 

Thus τ gives us the total number of agreements among n test subjects evaluating t objects. Obviously, when Ai,j = 1 we 
do not have any agreement among the subjects and the contribution of this particular Ai,j to τ would be zero. If Ai,j = 0, it 
means that all test subjects agree not to choose Ai over Aj. Although the contribution of this Ai,j to τ is also zero, the 
number of agreements regarding this pair of test objects will be reflected by the value of Aj,i.  
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We can also express τ in a more computationally convenient way, as follows. 
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Kendall/Babington-Smith6 defines the coefficient of agreement, u, as follows  
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The value of u = 1 if and only if there is a complete agreement among the test subjects, and decrease when there is less 
agreement among the test subjects. The minimum value of u is -1/(n-1) if n even or -1/n if n odd. The lowest possible 
value of u is -1 which can only be achieved when n is 2. In this case we have the strongest form of disagreement 
between the test subjects, namely that the test subjects completely contradict each other.  
 
We can perform a hypothesis test to test the significance of the value u. The null hypothesis is that all test subjects 
casted their preference completely at random. The alternative hypothesis is that the value of u is greater than what one 
would expect if the choices would have been made completely at random. To test the significance of u we use the 
following statistic, as proposed in4 
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which has χ2 distribution with 
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As n increases the expressions in Equation (10) reduces to a simpler form7 
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It is important to note that consistency and agreement are 2 different concepts. Therefore, a high u value does not 
necessarily imply the absence of inconsistencies and vice versa.  
 
The coefficient of agreement also shows whether the test objects, on average, received equal preference from the test 
subjects. If the overall coefficient of agreement is very low we can expect that the score of each test object will be very 
close to the average scores of all test objects, i.e., there is no significant difference among the scores. As a consequence, 
assigning ranks to the objects or drawing conclusion that one object is better (or worse) than the others is pointless since 
the observed score differences (if any) cannot be used to support the conclusion. On the other hand, strong agreement 
among the test subjects indicate that there exist significant differences among the scores. 

2.2.3. Significance test of the score difference 
Significance test of the score difference is performed in order to see whether the perceptual quality of any 2 objects from 
the test set is perceived as different. In other words, the perceptual quality of object Ai is declared to be different from 
the quality of object Aj, only if ai is significantly different from aj. Otherwise, we have to conclude that the test subjects 
consider the perceptual quality of the 2 objects is similar.  
 
This problem is equivalent to the problem of dividing the set of scores S = {a1, a2, …, at} into sub-groups such that the 
variance-normalized range (the difference of the largest and lowest values) of the scores within each group,  
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is lower or equal to a certain value  cR  (in other words, the difference of any 2 scores within the group must be lower 

or equal to  cR ), which depends on the value of  the significance level α. In other words, we want to find Rc such that 

the probability P[R ≥ Rc] is lower or equal to the significance level α. We declare the objects within each group to be not 
significantly different, while those from different groups are declared to be significantly different. By adjusting the 
value of α, we can adjust the size of the groups. This in turn controls the probability of false positives (declaring 2 
objects to be significantly different when they are not) and false negatives. The larger the groups, the higher the 
probability of false negatives. On the other hand, the smaller the groups, the higher the probability of false positives.     
 
The distribution of the range R is asymptotically the same as the distribution of variance-normalized range, Wt, of a set 
of normal random variables with variance = 1 and t samples4. Therefore, we can use the following relation to 
approximate P[R ≥ Rc]  

  ]2

1
2

[ ,
nt

R
WP

c

t

−
≥α

     (11) 

In Equation (18), Wt,α is the value of the upper percentage point of Wt at significance point α. The values of Wt,α is 
tabulated in statistics books for example the one provided in8. The value of R is then set as  cR .   

 
3. TEST PROCEDURE 

3.1. Test set 
We used 2 images, Bird (see Figure 3) and Kremlin (see Figure 2(a)), as basis to build the test set for our experiment. 
These images are 8-bit grayscale bitmap images with 512 × 512 pixels resolution. The images are chosen primarily due 
to their content. The Bird image does not have much structures such as straight lines. Furthermore, not every test subject 
is very familiar with the shape of a bird (in particular the species of bird depicted in the image). So in this case, a subject 
should have little (if any) “mental picture” of how things should look like. On the other hand, the Kremlin image has a 
lot of structures and even though a test subject may not be familiar with the Kremlin, he/she should have some prior 
knowledge of how buildings should look like. 
 
We used 17 different versions of the images. Each version is geometrically distorted in a different way. Thus in our test 
we have t = 17. The geometric distortions used in the experiment are shown in Table 1. In this table we use the notation 
Ai, with i = 1, 2, … 17, to identify each image. 
 
The distortions chosen for the test set range from distortions that are perceptually not disturbing to the distortions that 
are easily visible. The global bending distortions (A6, A7, A8, A9) are chosen because these kind of distortions are, up to 
some extent, visually not very disturbing in natural images. However, this distortion severely affects the PSNR value of 
the distorted images. The sinusoid (stretch-shrink) distortions (A10, A11, A12, A13) distort the image by locally stretching 
and shrinking the image. Depending on the image content, this kind of distortion may not be perceptually disturbing. 
The rest of the distortions distorts the image by shifting the pixels to the left/right or upwards/downwards. These 
distortions are easily visible, even when the severity is low. The distortions (A2, A3, A4, A5) applies the same distortion 
severity over the whole image, while the severity of distortions (A14, A15, A16, A17) are varied within the image. Some 
examples of the geometric distortions used in the experiment are shown in Figures 2(b) and 2(c). 
 
We then proceed to make all possible comparison pairs out of the 17 images, including the comparison of an image with 
itself. In each pair, we designate the first image as the left image and the other as the right image. This refers to how the 
images are to be presented to the subjects (see Figure 3). We then repeat each pair once, with the left-right ordering of 
the images reversed. Thus we have 306 pairs of images for each of the two images for a total of 612 pairs of images in 
the test set.  
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(a)    (b)    (c) 
Figure 2. (a) The Kremlin image, (b) Distortion A13 and (c) Distortion A16 

 
Table 1. Geometric distortions used in the experiment 

Image Description 
A1 No distortion (original image) 
A2 Sinusoid, amplitude factor = 0.2, 5 periods 
A3 Sinusoid, amplitude factor = 0.2, 10 periods 
A4 Sinusoid, amplitude factor = 0.5, 5 periods 
A5 Sinusoid, amplitude factor = 0.5, 10 periods 
A6 Global bending, bending factor = 0.8 
A7 Global bending, bending factor = - 0.8  
A8 Global bending, bending factor = 3 
A9 Global bending, bending factor = -3  
A10 Sinusoid (stretch-shrink), scaling factor 1, 0.5 period 
A11 Sinusoid (stretch-shrink), scaling factor 1, 1 period 
A12 Sinusoid (stretch-shrink), scaling factor 3, 0.5 period 
A13 Sinusoid (stretch-shrink), scaling factor 3, 1 period 
A14 Sinusoid (increasing freq), amplitude factor = 0.2, starting period = 1, freq increase factor = 4 
A15 Sinusoid (increasing freq), amplitude factor = 0.2, starting period = 1, freq increase factor = 9 
A16 Sinusoid (increasing amplitude), start amplitude factor = 0.1, 5 periods, amplitude increase factor = 4 
A17 Sinusoid (increasing amplitude), start amplitude factor = 0.1, 5 periods, amplitude increase factor = 9 

3.2. Test subjects  
The user test experiment involved 16 subjects, consisting of 12 male (IL, ON, PD, AH, ES, DS, IS, JO, JK, JJ, KK and 
RH) and 4 female (KC, CL, CE and ID) subjects. The subjects have different backgrounds and levels of familiarity with 
the field of digital image processing. As discussed in Section 3.1., each user will examine each pair of the test images 
twice in one test session. Furthermore, subjects IL, DS and IS each performs 3 test sessions. Therefore, in the tables 
found in Section 4, a number will be added to the subject names to show different test sessions (eg., IL1 shows the result 
of subject IL from the 1st test, etc.). These repetitions are done to see the difference of test results for one person when 
the test is repeated. We assume that each repetition of the test (both within a single test session and between test 
sessions) are independent, thus we have n = 44.  

3.3. Test procedure 
The test is performed on a PC with a 19-inch flatscreen CRT monitor. The resolution is set at 1152 × 864 pixels. The 
vertical refresh rate of the monitor is set at 75 Hz. To perform the test, we use a graphical user interface as shown in 
Figure 3. The test subject is then asked to choose which image from the pair is according to them more distorted.  
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Figure 3. The user interface used in  the experiment, showing the Bird image 

 
 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 ai 

A1 × 7 3 0 0 11 21 19 8 8 24 2 10 9 1 0 0 123 

A2 37 × 4 0 0 33 28 29 24 30 36 10 11 12 5 1 1 261 

A3 41 40  × 3 1 42 43 39 39 41 42 25 18 37 9 5 0 425 

A4 44 44 41 × 3 44 44 42 43 43 43 37 39 43 31 15 1 557 

A5 44 44 43 41 × 44 44 44 43 43 44 42 43 44 43 42 24 672 

A6 33 11 2 0 0 × 25 15 17 15 33 4 11 8 1 0 0 175 

A7 23 16 1 0 0 19 × 15 13 21 28 3 11 5 2 0 0 157 

A8 25 15 5 2 0 29 29 × 12 17 27 6 10 9 1 1 0 188 

A9 36 20 5 1 1 27 31 32 × 30 40 8 15 15 2 2 0 265 

A10 36 14 3 1 1 29 23 27 14 × 34 6 9 9 0 0 0 206 

A11 20 8 2 1 0 11 16 17 4 10 × 4 5 6 1 0 0 105 

A12 42 34 19 7 2 40 41 38 36 38 40 × 20 31 9 5 1 403 

A13 34 33 26 5 1 33 33 34 29 35 39 24 × 25 17 5 0 373 

A14 35 32 7 1 0 36 39 35 29 35 38 13 19 × 6 1 0 326 

A15 43 39 35 13 1 43 42 43 42 44 43 35 27 38 × 7 2 497 

A16 44 43 39 29 2 44 44 43 42 44 44 39 39 43 37 × 1 577 

A17 44 43 44 43 20 44 44 44 44 44 44 43 44 44 42 43 × 674 

Figure 4. Preference matrix for the Bird image 
 

4. TEST RESULTS AND ANALYSIS 

4.1. User preference matrix 
After performing the user test, we obtain the preference matrices for the Bird and Kremlin images. In Figure 4, we show 
the preference matrix obtained for the Bird image. The preference matrix of the Kremlin image is available for 
download at our website3. The images codes refer to Table 1. The column ai shows the sum of each row, ie., the score of 
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each image Ai. Since in our experiment the test subject is asked to choose the image with the most distortion, a smaller 
score ai means that the image is perceptually better. 

4.2. Statistical analysis of the preference matrices 

4.2.1. Coefficient of consistency (ζ) 
We measured the coefficient of consistency for individual test subjects using Equation (3) since we have t = 17. Since 
each test subject performs the user test twice per session, we use the average value of ζ as an indication of each subject’s 
consistency. The average coefficient of consistency is presented in Table 2. 
 
From Table 2 we can conclude that in general the test subjects are consistent in their decision. We can also see that in 
general the values of ζ for the Bird image is lower than that of the Kremlin image. This is due to the fact that the 
Kremlin image contains more structure compared to the Bird image, which helps the test subjects to make consistent 
decisions. Furthermore, the unfamiliarity of the test subjects to the particular species of bird depicted in the image also 
makes it more difficult to make consistent decisions. 
 

Table 2. Coefficient of consistency (ζ) 
Subject Bird Kremlin Subject Bird Kremlin 

IL1 0.83 0.93 DS1 0.67 0.87 
IL2 0.83 0.91 DS2 0.73 0.92 
IL3 0.85 0.95 DS3 0.82 0.93 
KC 0.85 0.86 IS1 0.92 0.95 
ON 0.94 0.98 IS2 0.94 0.93 
PD 0.70 0.87 IS3 0.94 0.97 
AH 0.87 0.96 JO 0.93 0.97 
CL 0.82 0.90 JK 0.90 0.96 
CE 0.83 0.94 JJ 0.85 0.88 
ES 0.89 0.94 KK 0.70 0.79 
ID 0.66 0.90 RH 0.90 0.95 

4.2.2. Coefficient of agreement (u) 
We measured two types of coefficient of agreements from the preference matrix. The first is the overall coefficient of 
agreement that measures the agreement among all test subjects in the experiment. The second is the individual 
coefficient of agreement, that measures the agreement of a test subject with him-/herself during the 2 repetitions in a test 
session. A low u value in this case would indicate that the subject is confused and does not have a clear preference of 
the images being shown. 
 
For the calculation of the overall coefficient of agreement, we have n = 44 and t = 17. For these values, the maximum 
and minimum values of u are 1 and -0.0227, respectively. From the preference matrices, we can calculate that the 
overall coefficient of agreements are ubird = 0.574 and ukremlin = 0.731. Performing the significance test on both u values 
using the method described in Section 2.2.2 shows that in both cases, the probability of having a larger u values had the 
votes been casted at random is smaller than 0.001 (in other words, u is significant at α = 0.001). Therefore, we can 
conclude that in both cases there are strong agreements among the test subjects. However, we can also see that the 
agreement in the case of the Bird image is much weaker than the Kremlin image, due to the image content.  
 
For the individual coefficient of agreement, we have n = 2 and t = 17. In this case we have -1 ≤ u ≤ 1. The individual 
coefficient of agreements are presented in Table 3. As expected we see that all subjects have larger u values for the 
Kremlin image. The exceptions to this are subject ES, who has the same u values for both images and subjects IS2 and 
JK who have larger u for the Bird image. After performing the significance test on the values of u, we conclude that all 
subjects have u values that are significant at α = 0.05 for both the Bird and Kremlin images. Therefore we can conclude 
that the users have clear preferences of the images in the test set. 
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Table 3. Individual Coefficient of Agreements(u) 
Subject Bird Kremlin Subject Bird Kremlin 

IL1 0.559 0.750 DS1 0.265 0.647 
IL2 0.574 0.721 DS2 0.471 0.794 
IL3 0.677 0.779 DS3 0.559 0.750 
KC 0.662 0.691 IS1 0.721 0.882 
ON 0.779 0.868 IS2 0.809 0.721 
PD 0.485 0.677 IS3 0.735 0.838 
AH 0.559 0.794 JO 0.721 0.853 
CL 0.456 0.750 JK 0.824 0.735 
CE 0.618 0.691 JJ 0.529 0.691 
ES 0.765 0.765 KK 0.368 0.515 
ID 0.279 0.691 RH 0.691 0.765 

4.2.3. Significance test of score differences 
The strong agreements among the test subjects for both images, as shown in the previous section, show that there exist 
significant differences among the scores of the test objects. We use the procedure described in Section 2.2.4 to find the 
critical value for the score difference for the images, at significance level α = 0.05. From8 we have Wt, α= 4.89. 
Substituting this value into Equation (11), we have Rc

 = 67.12 and thus we set R = 68. Therefore, only objects having a 
score difference of more than 68 are to be declared significantly different. 
 
In Figure 5, we present the grouping of the images in the test set based on the significance of the score differences. The 
images have been sorted from left to right based on their scores, starting from the image with the smallest score (ie., 
perceived to have the highest quality) to the one with the largest score. The score for each image is shown directly under 
the image code. Images having score difference smaller than 68 are grouped together. This is represented the shaded 
boxes under the image code. For example, in Figure 5(a) images A14 and A13 belong to one group. 
 

A11 A1 A7 A6 A8 A10 A2 A9 A14 A13 A12 A3 A15 A4 A16 A5 A17 
105 123 157 175 188 206 261 265 326 373 403 425 497 557 577 672 674 

                 
                 
                 
                 
                 

(a) 
 

A1 A10 A12 A6 A11 A7 A13 A8 A2 A14 A9 A3 A15 A4 A16 A17 A5 
85 94 108 113 154 202 274 315 348 381 399 489 495 579 592 675 681 

                 
                 
                 
                 

(b) 
Figure 5. Score grouping for: (a) Bird image and (b) Kremlin image 

   
From Figure 5, we can see that the images occupying the last 6 positions of the ranking for both the Bird and Kremlin 
images are distorted using the same distortion. Furthermore, they are sorted in the same order (except for images A5 and 
A17, but the difference between their scores is not significant). Thus we can conclude that these distortions are perceived 
similarly by the test subjects, regardless of the image content. These distortions occupy the “lower quality” segment of 
the ranking so we can also conclude that the distortions are so severe that the image content no longer plays a significant 
role. For the other images, the influence of image contents on the perceived quality of the distorted images are larger.  
 
Table 4 shows the overall u values for each score group. We expect that when the images in a group do not have 
significantly different scores, there will not be any clear preference for any of them among the test subjects and 
therefore the u values should be low. The groups are presented in the 1st and 4th columns using their members as group 
names. The 3rd and 6th columns of the table show the result of the significance test for u, at significance level α = 0.05. 
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Table 4. Group u values  
Bird Kremlin 

Group u  Significant? Group u  Significant? 
A11A1A7 0.006 No  A1 A10 A12 A6 0.008 No  

A1A7A6A8 0.061 Yes A10 A12 A6 A11 0.03 Yes 
A7A6A8A10 0.041 Yes A11 A7 0.011 No  
A10A2A9 0.07 Yes A13 A8 0.08 Yes 
A2A9A14 0.085 Yes A8 A2 A14 0.175 Yes 
A14A13 -0.004 No A2 A14 A9 0.054 Yes 

A13A12A3 -0.003 No A3 A15 -0.021 No 
A15A4 0.148 Yes A4A16 0.112 Yes 
A4A16 0.08 Yes A17 A5 0.011 No 
A5A17 -0.015 No - - - 

  
We can conclude from Table 4 that the u values for each group is very low. Some groups even have u values that are not 
significantly larger than the u values that would have been achieved had the votes within that group had been casted at 
random. This results show that indeed the grouping of the images performed based on the significance of score 
differences has produced groups within which the perceived quality are difficult to distinguish. 

4.3. Conclusions 
From the analysis of the user test results, we can draw the following conclusions: 

1. The test objects are generally perceptually distinguishable by the test subjects. This is supported by the fact that 
the consistency of the test subjects are relatively high as shown in Table 2. Furthermore, we also see that the 
individual u values (shown Table 3) are also high.   

2. There is a general agreement as to the relative perceptual quality of the test images among the test subjects. 
This is supported by the high overall u values for both images. Therefore, we can make a ranking of the images 
based on their perceived quality. 

3. For some images, the relative perceptual quality among them is not clearly distinguishable. We can see this 
from the grouping of the scores based on the significance test of score differences. This is further supported by 
the lack of agreement among test subjects regarding the relative quality of images within such groups. 

 
5. OBJECTIVE GEOMETRIC DISTORTION MEASURE 

5.1. Overview of the algorithm 
The objective geometric distortion measurement is based on the ideas in our previously published work9 and further 
developed and described in2. The algorithm is based on the hypothesis that the perceptual quality of a geometrically 
distorted image depends on the homogeneity of the geometric distortion. The less homogenous the geometric distortion, 
the lower the perceptual quality of the image will be. We proposed a method to measure this homogeneity by 
approximating the underlying geometric distortion using simple RST/affine approximation. We increase the locality of 
our approximation until the level of approximation error is lower than a predetermined threshold or until the locality of 
the approximation reaches a predetermined maximum. The locality is increased using quadtree partitioning of the 
image. We then determine the score (ie., the quality) of the image based on the resulting quadtree structure.  
 
We have implemented some modifications to the algorithm to improve its performance. We briefly discuss the 
modifications as follows. The first modification is applied to the procedure used in the RST/affine parameter estimation. 
In the new scheme, we no longer use brute-force search to estimate the local RST/affine transformation parameters. 
Instead, we now base our scheme on the Optical Flow Estimation algorithm to estimate the RST/affine parameters, as 
presented in10, 11. Using this algorithm significantly improves the speed of the system and also increase the precision of 
the parameter estimation process, since previously we have to limit the precision with which we sample the range of the 
RST parameter in order to get a reasonable execution time. The second modification is applied to the scheme used in 
computing the final score of the distorted image. Previously, we only used the average block size of the quadtree 
partitioning and to some extent the residual error of the blocks to compute the final score. In the new scheme, we also 
take into account the estimated RST/affine parameters associated with each block to see how far it differs from the 
RST/affine parameters when there is no RST/affine distortion. The difference is expressed as the l-2 norm distance 
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between the 2 parameter sets. In the difference calculation, the parameters for Rotation and Scaling are given larger 
weights compared to the parameters for Translation. The the larger the difference, the lower the score for the block will 
be. This modification is performed to better fine-tune the performance of the measurement algorithm to better match the 
result of the subjective test results. This is because even when the RST/affine transformation of a block can be perfectly 
estimated (ie., zero residual error), such block can still heavily influence the overall perceptual quality of the image if 
the local RST/affine transformation is severe. In the objective test, the maximum score that can be achieved by an image 
is 100. 

5.2. Performance evaluation of the algorithm 
The performance of the objective quality measurement algorithm is evaluated by comparing it to the results of the 
subjective test and the results of a PSNR measurement. We evaluate whether the ranking produced by our algorithm 
corresponds well to the ranking produced by the subjective test or whether the ranking is actually more similar to the 
ranking produced by the PSNR measurement. We also take into account the grouping within the data set when 
performing this evaluation, thus we consider deviations in the ranking of the objective test (compared to the ranking 
obtained from the subjective test) to be acceptable as long as this occurs within groups of images whose perceptual 
quality can not be clearly distinguished. In the evaluation, we look at the intra- and inter-distortion comparisons. Intra-
distortion comparison compares the scores within one type of distortion, but with different parameter sets. The inter-
distortion comparison compares the scores of all distortions in the test set. 
 
Our algorithm performs well in performing intra-distortion comparison. That is, images distorted with a more severe 
parameter set are given lower scores. This is also true for PSNR measurement. To evaluate the inter-distortion 
comparison performance, we plot the objective test score and PSNR values against the user test scores. The comparison 
plots for the Bird image are shown in Figure 6. The results for the Kremlin image show similar behaviour.  
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(a)                    (b) 

Figure  6. Result comparisons for the Bird image: 
 (a) User test vs. Objective test and (b) user test vs. PSNR measurement 

 
From Figure 6 we can conclude that the result of the objective test has a much better correspondence to the user test  
result compared to the PSNR measurement. In the latter case, the regression line is virtually horizontal. This is also 
reflected by the correlation coefficient ρ between each pair of data sets. For the Bird image, the value of the correlation 
coefficient ρ for the {user test, objective test} pair is ρuo = -0.6 while for the {user test, psnr} pair the value is ρup = 0.14. 
The negative value of ρuo correctly reflects the fact that larger user test score represents a lower perceptual quality. For 
the Kremlin image, the values are ρuo = -0.61 and ρup = 0.28, respectively. 
 
We also see from Figure 6(a) that image A13 does not properly fit to the behaviour of the rest of the data and can be 
considered an outlier. Removing this image from the set, we get ρuo = -0.87. In general, we observe that our algorithm 
cannot handle images distorted by the sinusoid (stretch-shrink) distortion (see Table 1), except for image A10. At 
present, we do not yet have a satisfactory explanation regarding this phenomenon. However, some explanation can be 
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provided for images A10 and A11. The geometric transformation applied to image A10 is similar to the one implemented in 
television broadcasting when it is necessary to convert video frames from one aspect ratio to another. This 
transformation is perceptually not disturbing unless there is a lot of movement for example camera panning. Therefore, 
our test subjects give this image a high ranking. In this distortion, the middle part of the image is stretched slightly in the 
horizontal and vertical direction. The slight increase in image width and height is compensated by shrinking the outer 
parts of the image. This distortion can be approximated by slightly scaling the whole image. Therefore, our 
measurement system gives this image a high score. Image A11 is given a high ranking by the test subjects due to the 
unfamiliarity of the subjects to the bird species shown in the picture. Apparently, the test subjects thought that the size 
of the original bird’s head is too large. Therefore, they prefer this image in which the head of the bird is shrinked. 
However, since this picture actually contains large distortion, our measurement system gives it a low score. 
  

6. CONCLUSION AND FUTURE WORKS 
 
In this paper, we have described the method we use to perform a perceptual user test for geometrically distorted images. 
We also described the statistical tools we use to analyze the results of the user test. The result of the user test is then 
used as a basis to validate our objective perceptual quality measurement scheme, which is based on the hypothesis that 
the perceptual quality of a distorted image depends on the homogeneity of the geometric transformation causing the 
distortion.  
 
For intra-distortion comparisons, both the PSNR measurement and our measurement scheme work well. For inter-
distortion comparisons, our measurement scheme outperforms PSNR measurement. Overall, our measurement scheme 
has very good correspondence to the subjective test for inter-distortion comparisons. However, detailed comparison 
between our measurement scheme and the subjective test still show some discrepancies of the ranking and score 
differences between some images.  
 
In the future, more measurements and user test experiments similar to the one described and analyzed in this chapter 
should be performed. The data collected from such experiments can than be used to further validate or refine the 
hypothesis, and to further fine-tune the performance of the objective perceptual quality measurement system. 
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