Hankel-norm approximation and model reduction of time-varying systems

Alle-Jan van der Veen and Patrick Dewilde
Delft University of Technology

We consider the Hankel-norm approximation problem for (bounded) upper triangular operators: generalized ℓ_2-operators T with matrix representations $[T_{ij}]_{-\infty}^\infty$ such that $T_{ij} = 0 (i > j)$. Here, each T_{ij} is a matrix with dimensions $M_i \times N_j$, where M_i, N_j are finite integers (possibly zero). An upper operator can be viewed as the transfer operator of a causal linear time-varying system.

Associated to T is a sequence of ‘Hankel’-operators $H_k = [T_{k+i+k+j}]_{10}^\infty (k = -\infty \cdots \infty)$, which are submatrices of T corresponding to its top-right parts. The rank of these operators plays an important role in realization theory: if $d_k = \text{rank} H_k < \infty$, then there exist minimal time-varying realizations with system order d_k at point k:

$$
\begin{align*}
 x_{k+1} &= x_kA_k + u_kB_k & A_k : d_k \times d_{k+1}, & B_k : M_k \times d_{k+1} \\
 y_k &= x_kC_k + u_kD_k & C_k : d_k \times N_k, & D_k : M_k \times N_k
\end{align*}
$$

(1)

such that $[\cdots y_0 \ y_1 \ \cdots] = [\cdots u_0 \ u_1 \ \cdots]T$.

The Hankel norm of T is defined to be $\|T\|_H = \sup \|H_k\|$. This definition is a generalization of the time-invariant Hankel norm and reduces to it if all H_k are the same. Let $\Gamma = \text{diag} (\gamma_i)$ be an acceptable approximation tolerance, with $\gamma_i > 0$. If an operator T_{Δ} is such that

$$
\|\Gamma^{-1}(T - T_{\Delta})\|_H \leq 1,
$$

(2)

then T_{Δ} is called a Hankel norm approximant of T, parameterized by Γ. We are interested in Hankel norm approximants of minimal system order. In [1], we proved that if the number of Hankel singular values of $\Gamma^{-1}T$ that are larger than 1 is equal to N_k at point k, then there exists a Hankel norm approximant T_{Δ} whose system order is equal to N_k at point k, assuming none of the singular values are equal to 1.

In the construction of such Hankel-norm approximants T_{Δ}, two additional operators play a role. The first is U: the inner (i.e. upper and unitary) factor of T in a coprime factorization $T = \Delta^* U$ (where Δ is upper). The second is Θ: a J-unitary operator $(\Theta^* J_1 \Theta = J_2, \Theta J_2 \Theta^* = J_1$, where J_1, J_2 are signature matrices) such that

$$
[U^* - \Gamma^{-1}T^*] \Theta = [A' - B']
$$

(3)

consists of two upper operators A', B'. This equation describes an interpolation problem. Θ exists under certain conditions and can be constructed explicitly, and the resulting signature matrices are determined by the singular values of the H_k. In fact, the system order of the strictly upper part of Θ^{-1}_{22} is at each point k equal to N_k.

Let S_L be an upper contractive operator. Then

$$
S = (\Theta_{11} S_L - \Theta_{12}) (\Theta_{22} - \Theta_{21} S_L)^{-1}
$$

(4)

is contractive, and the strictly upper part of $T' = T + \Gamma S^* U$ is a Hankel norm approximant. Conversely, for each T' of which the strictly upper part T_{Δ} is a Hankel norm approximant, there is an upper contractive operator S_L such that $\Gamma^{-1}(T' - T) = S^* U$, where S is given by the above expression.