stormvloedkering Oosterschelde

werkgroep 8

vormgeving en konstruktie sluitgaten

WL 8-44

ontgrondingen bij de putten van de
pijleroplossing

AFGEHANDELD

verslag modelonderzoek

M 1385

april 1976
stormvloedkering Oosterschelde
werkgroep 8
vormgeving en konstruktie sluitgaten

WL 8-44
ontgrondingen bij de putten van de
pijleroplossing

verslag modelonderzoek

M1385

april 1976
Voorwoord

Voor de uitvoering van de studie naar de realiseerbaarheid, de kosten en de benodigde bouwtijd ten behoeve van een stormvloedkering in de Oosterschelde werd door Rijkswaterstaat een project-organisatie in het leven geroepen met een groot aantal werkgroepen.

Het bijgaande verslag is een onderdeel van een serie verslagen, die tot stand is gekomen in het kader van de werkzaamheden van Werkgroep 8: Vormgeving en constructie sluitgaten. Om snel over verspreidbare informatie te beschikken over de vorderingen van de onderzoekingen in het Waterloopkundig Laboratorium werd besloten veelvuldig tussentijds schriftelijk te rapporteren. In verband hiermee is de uitvoering van deze verslagen enigszins afwijkend van de uitvoering onder normale omstandigheden. Na afloop van de studie werd het niet nodig geoordeeld om tot wijzigingen van de opzet over te gaan, mede doordat de resultaten van het waterloopkundig onderzoek zijn samengevat in het door Rijkswaterstaat uitgebrachte verslag: Onderzoek naar de mogelijkheid van de afsluiting van de Oosterschelde met een gedeeltelijk geprefabriceerde stormvloedkering, Deelverslag no. 2: Hydraulische aspecten.
<table>
<thead>
<tr>
<th>CODE</th>
<th>MODEL</th>
<th>TITEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL8-1</td>
<td>M1001</td>
<td>Lengteprofiel caisondrempels.</td>
</tr>
<tr>
<td>WL8-2</td>
<td>M1000</td>
<td>Damaanzet Schouwen.</td>
</tr>
<tr>
<td>WL8-3</td>
<td>M1001</td>
<td>Ontgrondingen Roompot situatie III-c.</td>
</tr>
<tr>
<td>WL8-4</td>
<td>M863B</td>
<td>Aanzethellingen.</td>
</tr>
<tr>
<td>WL8-5</td>
<td>M1000</td>
<td>Plaatsen van de caissons.</td>
</tr>
<tr>
<td>WL8-6</td>
<td>M1324</td>
<td>Stabiliteit stortbed en drempel.</td>
</tr>
<tr>
<td>WL8-7</td>
<td>M1000</td>
<td>Randvoorwaarden bij een aantal varianten van de stormvloedkerende caissondam waarvan de roosters nog niet zijn geplaatst.</td>
</tr>
<tr>
<td>WL8-8</td>
<td>M1000</td>
<td>Randvoorwaarden wintersluitgatsituatie met beperkte horizontale vernauwing.</td>
</tr>
<tr>
<td>WL8-9</td>
<td>M1000</td>
<td>Onderzoek invloed doorbaggeren Hompels op stroombeeld langs de oevers van damaanzet Noord-Beveland.</td>
</tr>
<tr>
<td>WL8-10</td>
<td>M1324</td>
<td>Stabiliteit stortbed en drempel.</td>
</tr>
<tr>
<td>WL8-11</td>
<td>M1244</td>
<td>Opbouw wintersluitgatdrempel.</td>
</tr>
<tr>
<td>WL8-12</td>
<td>M1000</td>
<td>Randvoorwaarden bij een aantal varianten van de stormvloedkerende caissondam met roosters.</td>
</tr>
<tr>
<td>WL8-13</td>
<td>M1001</td>
<td>Ontgrondingsonderzoek in de Roompot, invloed horizontale en vertikale vernauwingen.</td>
</tr>
<tr>
<td>WL8-14</td>
<td>M1001</td>
<td>Ontgrondingsonderzoek in de Schaar, invloed horizontale en vertikale vernauwingen.</td>
</tr>
<tr>
<td>WL8-16</td>
<td>M1324</td>
<td>Stabiliteit stortbed en drempel.</td>
</tr>
<tr>
<td>WL8-17</td>
<td>M1001</td>
<td>Verlenging bodembescherming.</td>
</tr>
<tr>
<td>WL8-18</td>
<td>M1000</td>
<td>Randvoorwaarden wintersluitgatsituatie waarbij het doorstroomprofiel is aangepast aan de huidige bodemconfiguratie.</td>
</tr>
<tr>
<td>WL8-19</td>
<td>M1000</td>
<td>Stroomsnelheid ter plaats van de laatst te plaatsen caisson bij caissons met bovenbak.</td>
</tr>
<tr>
<td>WL8-20</td>
<td>M1001</td>
<td>Ontgrondingen tijdens caissonplaatsingen in de Schaar en de Hammen.</td>
</tr>
<tr>
<td>WL8-21</td>
<td>M1000</td>
<td>Randvoorwaarden bij een aantal fasen van de caissonplaatsing.</td>
</tr>
<tr>
<td>WL8-22</td>
<td>M1001</td>
<td>Ontwerp maximale horizontale vernauwingen, ontgrondingen eindfase in de Roompot.</td>
</tr>
<tr>
<td>WL8-23</td>
<td>M1001</td>
<td>Toetsing berekeningsmethode verlenging bodembescherming.</td>
</tr>
<tr>
<td>WL8-24</td>
<td>M1000</td>
<td>Randvoorwaarden bij een aantal fasen van de roosterplaatsing.</td>
</tr>
<tr>
<td>WL8-25</td>
<td>M1001</td>
<td>Ontgrondingen tijdens roosterplaatsingen in de Schaar en de Hammen.</td>
</tr>
<tr>
<td>CODE</td>
<td>MODEL</td>
<td>TITEL</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>WL8-44</td>
<td>M1385</td>
<td>Ontgrondingen bij de putten van de pijleroplossing.</td>
</tr>
<tr>
<td>WL8-45</td>
<td>R 460</td>
<td>Invloed van een geleidelijk in hoeveelheid afnemende bestorting benedenstrooms van een bodemverdediging op de vorming van de ontgrondingskuil.</td>
</tr>
<tr>
<td>WL8-46</td>
<td>M1001</td>
<td>Invloed geleidedam Noord-Beveland en landhoofdcaissons op de ontgrondingen in de Roompot.</td>
</tr>
<tr>
<td>WL8-47</td>
<td>M1000</td>
<td>Randvoorwaarden bij de wintersluitgatsituatie van de vernauwde brievenbusoplossing.</td>
</tr>
<tr>
<td>WL8-48</td>
<td>M1000</td>
<td>Randvoorwaarden bij een plaatsingsfase van de vernauwde brievenbusoplossing.</td>
</tr>
<tr>
<td>WL8-49</td>
<td>M1000</td>
<td>Plaatsingstijd caissons.</td>
</tr>
<tr>
<td>WL8-50</td>
<td>M1001</td>
<td>Ontgrondingsonderzoek pijlerplaatsingen in de Schaar en de Hammen.</td>
</tr>
<tr>
<td>WL8-51</td>
<td>M1382</td>
<td>Bepaling afvoercoëfficiënten samengetrokken en niet-samengetrokken caissons voor de brievenbusoplossing.</td>
</tr>
<tr>
<td>WL8-52</td>
<td>M1382</td>
<td>Bepaling afvoercoëfficiënten pijleroplossing.</td>
</tr>
<tr>
<td>WL8-53</td>
<td>M1000</td>
<td>Voorspelling verandering in bodemligging ten gevolge van aanpassing damkoppen.</td>
</tr>
<tr>
<td>WL8-54</td>
<td>M1000</td>
<td>Randvoorwaarden bij een tweetal eindfasen van de vernauwde brievenbusoplossing.</td>
</tr>
<tr>
<td>WL8-55</td>
<td>M1001</td>
<td>Stroomverdeling en ontgrondingsonderzoek vernauwde brievenbusoplossing.</td>
</tr>
<tr>
<td>WL8-56</td>
<td>M1324</td>
<td>Stabiliteit zij-aanstortingen caissons tijdens superstorm-omstandigheden.</td>
</tr>
<tr>
<td>WL8-57</td>
<td>M1324/M1329</td>
<td>Stabiliteit stortebed en drempel bij het sluiten van hefschuiven in caissons (oriënterend onderzoek).</td>
</tr>
<tr>
<td>WL8-58</td>
<td>M1000</td>
<td>Randvoorwaarden bij een bouwfase van de pijlers op putten.</td>
</tr>
<tr>
<td>WL8-59</td>
<td>M1402</td>
<td>Ontgrondingen rond putten bij gedeeltelijk verdedigde bodem.</td>
</tr>
<tr>
<td>WL8-60</td>
<td>M1324</td>
<td>Stroombeeld bij enige dorpelvormen voor de toestand van weigerende schuif bij de oplossing pijlers op putten.</td>
</tr>
<tr>
<td>WL8-61</td>
<td>M1001</td>
<td>Stroombeeld- en ontgrondingsonderzoek bij een weigerende schuif in de Roompot.</td>
</tr>
<tr>
<td>WL8-62</td>
<td>M1329</td>
<td>Geconstateerde dwarsslingeringsbij onderzoek naar de bouwfase van pijlers op putten.</td>
</tr>
<tr>
<td>WL8-63</td>
<td>M1329</td>
<td>Stabiliteit drempelmateriaal tijdens bouwfase van pijlers op putten.</td>
</tr>
<tr>
<td>WL8-64</td>
<td>M1324</td>
<td>Stabiliteit stortebed en drempel van de pijleroplossing bij een weigerende schuif.</td>
</tr>
</tbody>
</table>
INHOUD

1 Inleiding... 1
2 Proefopstelling... 1
3 Randvoorwaarden.. 1
 3.1 Waterdiepte... 1
 3.2 Kritieke stroomsnelheid $\bar{u}_k\text{rit}$................. 2
 3.3 Stroomsnelheid \bar{u}... 2
 3.3.1 Permanente stroomsnelheid.................................. 2
 3.3.2 Variërende stroomsnelheid tengevolge van het getij... 2
4 Metingen... 3
5 Resultaten en interpretatie... 4
 5.1 Maximale diepte van de ontgrondingskuil als functie van de tijd...... 4
 5.2 Effectieve tijd en tijdschaal.................................. 5
 5.3 h_{max} als functie van de prototype tijd............. 6
6 Conclusies... 7
7 Opmerkingen.. 7

TABELLEN

FIGUREN

FOTO'S
TABELLEN

1. Overzicht t_1-waarden voor de situatie met en zonder bovenaanvoer van zand
2. Variatie in α, berekend uit de t_1-waarden van tabel 1 tengevolge van variatie in K
3. Variatie in de effectieve tijd (van het getij volgens figuur 2) tengevolge van variatie in α
| FIGUREN |
|---|---|
| 1 | Proefopstelling in de Pentagoot |
| 2 | Snelheidsverloop van de getijstroom |
| 3 | T1, langsprofielen op verschillende tijdstippen |
| 4 | T2, langsprofielen op verschillende tijdstippen |
| 5 | T3, langsprofielen op verschillende tijdstippen |
| 6 | T1, ontgrondingspatroon bij éénzijdige aanstroming |
| 7 | T4, ontgrondingspatroon bij tweezijdige aanstroming |
| 8 | T1, dwarsprofielen op verschillende tijdstippen |
| 9 | T1, T2, T3, tijd-ontgrondingsrelatie voor raai 2; invloed van bovenaanvoer zand |
| 10 | T1, T2, T3, tijd-ontgrondingsrelatie voor drie langsraaien |
| 11 | T1, T2, T3, verband tussen (\(\bar{\alpha} - \bar{u}_{kr}\)) en \(t_1/\Delta^{1.7}h_o^2\) |
| 12 | T4, verloop van \(h_{max}\) tengevolge van de getijstroom |
FOTO'S

1 Ontgrondingskuil in evenwichtssituatie tengevolge van éénzijdige aanstroming
2 Ontgrondingskuil in evenwichtssituatie tengevolge van éénzijdige aanstroming
3 Ontgrondingskuil tengevolge van tweezijdige aanstroming (getijstroom)
4 Ontgrondingskuil tengevolge van tweezijdige aanstroming (getijstroom)
ONTGRONDING BIJ DE PUTTEN VAN DE PIJLEROPLOSSING

1 Inleiding

In het kader van het onderzoek naar de stormvloedkering in de Oosterschelde is, in opdracht van de Deltadienst van Rijkswaterstaat, in het Waterloopkundig Laboratorium De Voorst de ontgronding bij de putten van de pijleroplossing onderzocht, voor het geval er geen bodembescherming rondom de put wordt aangebracht.

Twee vragen zijn hierbij belangrijk:

a Wat is de diepte van de ontgrondingskuil in de evenwichtstoestand, met andere woorden hoe groot is de evenwichtsdiepte?
b Hoe lang duurt het voordat deze evenwichtsdiepte bereikt is?

2 Proefopstelling

Het onderzoek is uitgevoerd in de Pentagoot (figuur 1) met een lengteschaal \(n_1 = 30 \).

Dit is ook de diepteschaal, omdat het in beweging raken van het bodemmateriaal hoofdzakelijk toe te schrijven is aan de grote wervels, die voornamelijk door de geometrie van de constructie worden bepaald.

De put is symmetrisch in het midden van de goot geplaatst (figuur 1) op een 0,8 m dikke laag zand met een \(D_{50} \) van 135 \(\mu m \). Tweezijdige aanstroming is in het model mogelijk.

De aanstromlengte was voldoende lang om ter plaatse van de put een redelijk gevulde zandverticaal te verkrijgen.

3 Randvoorwaarden

3.1 Waterdiepte

Uit voorgaande onderzoeken is gebleken dat bij een situatie met doorgaand materiaaltransport, de oorspronkelijke waterdiepte \(h_o \) (de afstand van de waterspiegel tot de ongestoorde bodem) geen invloed op de evenwichtsdiepte heeft, als de verhouding tussen \(h_o \) en de diameter van de put \(D \) groter is dan ca. 2.

De waterdiepte in de sluitgaten van de Oosterschelde variëert ongeveer van
15 tot 30 m, zodat bij een diameter van de put van 18 m de waterdiepte wel een rol zal spelen.
In verband met de beschikbare tijd zijn echter alleen proeven uitgevoerd bij een waterdiepte $h_0 = 15$ m.

3.2 Kritieke stroomsnelheid \bar{u}_{krit}

Voor een situatie met doorgaand materiaal transport is de evenwichtsdiepte van de ontgrondingskuil volgens diverse onderzoeken onafhankelijk van de gemiddelde stroomsnelheid \bar{u}, als de gemiddelde stroomsnelheid \bar{u} 1,5 à 2,0 keer groter is dan de kritieke stroomsnelheid \bar{u}_{kr} waarbij het bodem materiaal juist in beweging komt.

De waarde van de kritieke stroomsnelheid \bar{u}_{kr}, kan worden afgeleid uit de empirische relaties tussen korrel diamter en de kritieke schuifspanningsn snelheid aan de bodem u_{krit}.
Voor het gebruikte modelzand ($D_{50} = 135$ μm) is \bar{u}_{krit} onder modelomstandigheden 0,3 m/s.
Voor het prototype is een \bar{u}_{kr} van 0,45 m/s aangehouden.

3.3 Stroomsnelheid \bar{u}

3.3.1 permanente stroomsnelheid
De gemiddelde stroomsnelheid \bar{u}, waarmee de proeven uitgevoerd worden, is wel belangrijk voor de tijdschaal n_t, waarop het ontgrondingsproces plaatsvindt.
Op grond van de resultaten van het systematisch ontgrondingsonderzoek (M 847/ M 863) kan voor de tijdschaal worden geschreven

$$n_t = \frac{n^2}{h} \frac{n (\bar{u} - \bar{u}_{kr})^{4.5}}{\bar{u}_{krit}}$$ \hspace{1cm} (1)

waarin α een numerieke coëfficiënt is, die bepaald kan worden uit de resultaten van enkele proeven, met verschillende stroomsnelheden en gelijke geometrie.

3.3.2 variërende stroomsnelheid tengevolge van het getij
In de Pentagoot kunnen alleen proeven worden uitgevoerd met een permanente stroomsnelheid.
Hoewel de stroomsnelheden in prototype variëren met het getij (figuur 2) kan in
het model toch met een permanente stroomsnelheid gewerkt worden door voor een bepaalde eb- of vloedperiode een effectieve tijd te berekenen voor permanente omstandigheden.

De effectieve tijd kan bepaald worden met:

\[
t_{\text{eff}} = \frac{1}{(\alpha \bar{u} - \bar{u}_{kr})^{3/2}} \int_{0}^{T/2} (\alpha u(t) - \bar{u}_{kr})^{3/2} \, dt
\]

waarin:

- \(t \) alleen geïntegreerd wordt voor positieve waarden van \(\alpha \bar{u} - \bar{u}_{kr} \)
- \(\alpha \) een numerieke coëfficiënt is
- \(\bar{u} \) de maximale stroomsnelheid voor een eb- of vloedperiode
- \(\bar{u}(t) \) de gemiddelde stroomsnelheid op tijdstip \(t \) (figuur 2)
- \(T \) de getijperiode

Er wordt dan aangenomen dat de ontgronding na \(t_{\text{eff}} \) uur met een permanente stroomsnelheid \(\bar{u} \) m/s gelijk zal zijn aan de totale ontgronding na een eb- of vloedperiode.

4 Metingen

In T1, T2 en T3 zijn de ontgrondingen tengevolge van verschillende permanente stroomsnelheden (\(\bar{u}_{\text{model}} \) is respectievelijk 0,45, 0,7 en 0,6 m/s) bij gelijkblijvende geometrische omstandigheden onderzocht.

Bij T1 en T2 zijn de proeven voortgezet tot een evenwichtssituatie werd bereikt. Bij T3 is de proef niet voortgezet tot de evenwichtssituatie.

De invloed van het getij op de ontgronding is in T4 onderzocht. Het hierbij gebruikte schema van eb- en vloedduur is afgeleid van de resultaten van T1 tot en met T3 (zie 5.2).

Tijdens de ontgrondingsproeven zijn peilingen uitgevoerd op een aantal tijdstippen na het aanzetten van het model. Deze peilingen zijn uitgewerkt tot langsprofielen van de ontgrondingskuil in de betreffende raai (figuren 3, 4 en 5).

Ter illustratie zijn voor T1 de dieptelijnen op een aantal tijdstippen gegeven (figuren 6 en 7). Ook zijn de dwarsprofielen op verschillende tijdstippen ge-
tekend (figuur 8). De foto's 1 t/m 4 geven een beeld van de ontgrondingskuil in de evenwichtstoestand.

5 Resultaten en interpretatie

5.1 Maximale diepte van de ontgrondingskuil als functie van de tijd

Uit de langsprofielen van de ontgrondingskuil kan de maximale diepte van de kuil h_{max} op verschillende tijdstippen bepaald worden. Door h_{max} uit te zetten tegen de tijd ontstaat de tijdontgrondingslijn voor de situatie met doorgaand materiaaltransport. Het verloop van de tijdontgrondingslijn zou anders zijn, wanneer er geen bovenaanvoer van zand was, dus wanneer de volle transportcapaciteit van de stroom ter beschikking van de ontgroning zou hebben gestaan, zoals bij de opstellingen bij het systematisch ontgrondingsonderzoek bij (M 863) het geval was.

Om een vergelijking tussen beide onderzoeken mogelijk te maken is voor raai 2 (zie figuur 3) uit de tijdontgrondingslijn $h_{\text{max}}(t)$ voor de situatie met bovenaanvoer, de tijdontgrondingslijn $h_{\text{max}}(t)$ ongereduceerd bepaald voor de situatie zonder bovenaanvoer, met behulp van de relatie (zie M 863):

$$h_{\text{max}}(t)_{\text{onger.}} = \sqrt{h_{\text{max}}^2(t) + \frac{T.t}{a}}$$

waarin:

t = modeltijd na het begin van de proef
a = vormfactor afhankelijk van de vorm van de ontgrondingskuil
T = bovenstrooms transport van zand per m breedte berekend met Engelund Hansen

$$T = \frac{0.025}{\sqrt{g}} \frac{u}{D_{50} C^3} \frac{1}{\Delta^2}$$

met

C = coëfficiënt van De Chézy
$\Delta = (\rho_{\text{korrel}} - \rho_{\text{water}})/ \rho_{\text{water}}$ (\rho = dichtheid)

Voor raai 2 zijn beide lijnen dimensieloos uitgezet in figuur 9.
Voor raai 1 en raai 3 is alleen de in tijdontgrondingslijn uitgezet voor de situatie met bovenaanvoer (figuur 10) dus zoals in model is gemeten.

De h_{max} is langs de verticale as gedeeld door de oorspronkelijke waterdiepte h_o, en langs de horizontale as wordt de tijd gedeeld door de t_{1}-waarde, dat
is het tijdstip waarop de maximale diepte van de ontgrondingskuil gelijk is aan de oorspronkelijke waterdiepte.

De t_1-waarde is voor de situatie met bovenaanvoer natuurlijk verschillend aan de t_1-waarde voor het geval er geen bovenaanvoer zou zijn (zie tabel 1). Deling door de t_1-waarde, die als een belangrijke parameter van het ontgrondingsproces wordt beschouwd, heeft als voordeel dat een bepaalde geometrie één tijdondergrondingslijn kan worden samengesteld.

Wanneer t_1 voor het prototype berekend kan worden is met figuur 9 of 10 de te verwachten ontgroning als functie van de tijd te voorspellen.

5.2 Effectieve tijd en tijdschaal

Om de ontgroning tengevolge van een met het getij variërende stroomsnelheid na te gaan moet achtereenvolgens bepaald worden:
- de effectieve tijd in prototype met behulp van vergelijking (2) voor een eb- of vloedperiode volgens het getij van figuur 2
- de tijdschaal voor een permanente stroomsnelheid in model met behulp van vergelijking (1)
- de effectieve tijd in het model door deling van de vergelijkingen (2) en (1).

In feite is alleen de effectieve modeltijd van belang, omdat deze aangeeft hoe lang er in het model met een bepaalde stroomsnelheid gestroomd moet worden om de ontgroning na een eb- of vloedperiode te verkrijgen.

In de vergelijkingen voor de effectieve tijd van een getijstroom (2) en de tijdschaal van het ontgrondingsproces (1) zit nog de onbekende geometrie coëfficiënt α, die uit de proeven met een permanente stroomsnelheid bepaald kan worden (T1 t/m T3).

Volgens het systematisch ontgrondingsonderzoek kan voor t_1 worden geschreven:

\[t_1 = K \Delta_{17} (\bar{u} - \bar{u}_{kr})^{-4.3} h_0^2 \]

waarin:
\[\Delta = (\rho_s - \rho_w) / \rho_w = 1,65 \]

α en K numerieke coëfficiënten

Dat dit verband ook voor de onderhavige geometrie geldt volgt uit figuur 11. Voor α is hier 6,1 genomen. Andere waarden voor α geven lijnen die evenwijdig
lopen aan de lijnen uit figuur 11. Bij het systematisch onderzoek bleek een K-waarde van 250 goed te voldoen. Met deze K-waarde, de ingestelde stroom-
snelheid \(\bar{u} \), en de uit de proeven afgeleide \(t_1 \) volgt \(\alpha \) uit vergelijking (4). Daar de onderhavige geometrie nogal afwijkt van de geometriëen in het systematische onderzoek is nagegaan welke invloed een variatie in de waarde van K op \(\alpha \) heeft.

Het blijkt dat \(\alpha \) bij deze geometrie evenredig is met \(K^{1/5} \) (zie tabel 2). In Volgens 5.1 en tabel 1 is de \(t_1 \)-waarde voor de situatie met bovenaanvoer van zand niet gelijk aan de \(t_1 \)-waarde voor de situatie zonder bovenaanvoer.

Uit vergelijking (4) volgt dat bij gelijkblijvende K, de waarde van \(\alpha \) voor beide gevallen ook verschillend zal zijn (zie tabel 2). Vanwege deze onzekerheden in de \(\alpha \), is de invloed van de variaties in \(\alpha \) op de effectieve modeltijd nagegaan (zie tabel 3).

Uit tabel 3 blijkt dat deze variatie in \(\alpha \) op het uiteindelijke resultaat, de effectieve modeltijd, weinig invloed heeft.

Uitgaande van de bij het systematisch ontgrondingsonderzoek als optimaal geldende K-waarde van 250 volgt dus voor de situatie met bovenaanvoer een \(\alpha \) van 6,3 en een effectieve modeltijd voor een eb- en vloedperiode van respectievelijk 0,53 en 0,32 uur. Opmerkelijk is dat de effectieve modeltijden voor de situatie zonder bovenaanvoer ongeveer gelijk zijn. De hogere \(\alpha \)-waarde van 6,7 geeft echter aan dat het ontgrondingsproces in vergelijking met de situatie met bovenaanvoer nu sneller zal verlopen.

5.3 \(h_{\text{max}} \) als functie van de prototype tijd

Door nu in model om beurten met een permanente stroomsnelheid van 0,45 m/s geëvalueerde 0,32 uur in de ene richting (eb) en daarna 0,53 uur in de tegenge-
estelde richting (vloed) te stromen, ontstaat het verloop van de maximale ont-
grondingsdiepte tengevolge van de getijstroom, voor de situatie met bovenaan-
voer van zand (zie figuur 12). De ontwikkeling van de ontgrondingskuil volgt uit figuur 7 en de foto's 3 en 4.

Uit figuur 12 volgt dat de \(t_1 \)-prototype circa 3 dagen is. Bovendien blijkt dat de getijstroom geen reducerende invloed heeft op de evenwichtsdiepte (verge-
lijk de figuren 10 en 12). De evenwichtsdiepte van de ontgrondingskuil die uit de modelproeven met bovenaanvoer van zand volgt, is voor zowel een permanente, als een met het getij variërende stroomsnelheid ongeveer 22,5 m.
6 Conclusies

- Bij een oorspronkelijke waterdiepte van 15 m zal de diepte van de ontgrondingskuil rondom de put ten opzichte van de oorspronkelijke bodem in de evenwichtssituatie ongeveer 22,5 m worden.
- Het te verwachten tijdstip waarop de diepte van deze kuil gelijk is aan de oorspronkelijke waterdiepte is ongeveer 3 dagen.

7 Opmerkingen

- In de diepere delen van de sluitgaten zal de te verwachten evenwichtsdiepte waarschijnlijk groter zijn dan 22,5 m. Dit is niet in het model onderzocht, maar voorgaande onderzoeken hebben aangetoond dat bij een verhouding h_o/D die groter is dan 2 de te verwachten evenwichtsdiepte $1,4D = 25$ m zal zijn.
- De invloed van scheve aanzstroming is niet in het model onderzocht.

Het onderzoek vond plaats in het Laboratorium De Voorst en stond onder leiding van ir. J.L.M. Konter, die ook dit verslag samenstelde.
<table>
<thead>
<tr>
<th>proefnummer</th>
<th>stroomsnelheid \bar{u} (m/s)</th>
<th>met bovenaanvoer t_1 (uur)</th>
<th>zonder bovenaanvoer t_1 (uur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0,45</td>
<td>3,0</td>
<td>2,1</td>
</tr>
<tr>
<td>T2</td>
<td>0,70</td>
<td>0,32</td>
<td>0,25</td>
</tr>
<tr>
<td>T3</td>
<td>0,60</td>
<td>0,7</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Tabel 1 Overzicht t_1-waarden raai 2 voor de situaties met en zonder bovenaanvoer van zand

<table>
<thead>
<tr>
<th>K</th>
<th>met bovenaanvoer M 1385 α</th>
<th>zonder bovenaanvoer α</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5,2</td>
<td>5,5</td>
</tr>
<tr>
<td>250</td>
<td>6,3</td>
<td>6,7</td>
</tr>
<tr>
<td>500</td>
<td>7,3</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Tabel 2 Variatie in α, berekend uit de t_1-waarden van tabel 1 tengevolge van variatie in K

<table>
<thead>
<tr>
<th>α</th>
<th>effectieve tijd in prototype uren t</th>
<th>tijdschaal n_t bij $\bar{u}_{model} = 0,45$ m/s</th>
<th>effectieve tijd in model uren t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eb</td>
<td>$vloed$</td>
<td>eb</td>
</tr>
<tr>
<td>3</td>
<td>1,96</td>
<td>1,17</td>
<td>2,7</td>
</tr>
<tr>
<td>6</td>
<td>2,03</td>
<td>1,21</td>
<td>3,8</td>
</tr>
<tr>
<td>8</td>
<td>2,04</td>
<td>1,25</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Tabel 3 Variatie in de effectieve tijd (van het getij volgens figuur 2) tengevolge van variatie in α
PROEFOPSTELLING IN DE PENTAGOOT

SCHAAL 1:200 t.o.v. MODEL

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 1
SNELHEIDSVERLOOP VAN DE GETIJSTROOM

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 2
LANGSPROFIELEN OP VERSCHILLENDE TIJDSTIPPEN

T 1

\[\bar{u} \text{ model} = 0.45 \text{ m/s} \]

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 3
LANGSPROFIELEN OP VERSCHILLENDE TIJDSTIPPEN

T 3

U model 0,6 m/s

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 5
ontgronding na 0,5 uur stromen

ontgronding na 4 uur stromen

ontgronding na 32 uur stromen

diepten in m in prototype

ONTGRONDINGSPATROON BIJ EENZUIGE AANSTROMING OP VERSCHILLENDE TIJDSTIPPEN IN MODEL

T 1 $u=0,45\text{ m/s}$
SCHAAL 1:100

WATERLOOPKUNDIG LABORATORIUM
M 1385 FIG. 6
ontgronding na 1 eb- en vloedstroming

ontgronding na 7 eb- en vloedstromingen

ontgronding na 25 eb- en vloedstromingen

diepten in m in prototype

ONTGRONDINGSPATROON BIJ TWEEZIJDIGE AANSTROMING OP VERSCHILLENDE TIJDSTIPPEN

SCHAAL 1:100

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 7
DWARSPROFIELEN OP VERSCHILLENDE TIJDSTIPPEN

T 1

U model = 0,45 m/s

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 8
Tijd-ontgrondingsrelatie voor raai 2

Invloed van bovenaanvoer zand

Met bovenaanvoer (in model gemeten)
Zonder bovenaanvoer (berekend met modelgegevens)

<table>
<thead>
<tr>
<th>Proef</th>
<th>M 1385</th>
<th>Zonder bovenaanvoer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>t1 = 3,0 uur</td>
<td>t1 = 2,1 uur</td>
</tr>
<tr>
<td>T2</td>
<td>t1 = 0,32 uur</td>
<td>t1 = 0,25 uur</td>
</tr>
<tr>
<td>T3</td>
<td>t1 = 0,07 uur</td>
<td>t1 = 0,5 uur</td>
</tr>
</tbody>
</table>

\[h_{\text{max}/h_0} \] \[t/t_1 \]
TIJD - ONGRONDINGSRELATIE VOOR DRIE LANGSRAAIEN

WATERLOOPKUNDIG LABORATORIUM
VERBAND TUSSEN \((\alpha \bar{u} - \bar{u}_K\) EN \(t_1/\Delta_1,7 \ h_0^2\)

T1, T2, T3

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 11
VERLOOP VAN h_{max} TENGEVOLGE VAN GETUJSTROOM

WATERLOOPKUNDIG LABORATORIUM

M 1385 FIG. 12
$T_l \bar{u}_{\text{model}} = 0,45 \text{ m/s}$

$h_0 \text{ (prototype)} = 15 \text{ m}$

Foto 1 Ontgrondingskuil in evenwichtssituatie tengevolge van éénzijdige aanstroming
\[T_1 \bar{u}_{\text{model}} = 0.45 \, \text{m/s} \]

\[h_0 \, (\text{prototype}) = 15 \, \text{m} \]

Foto 2 Ontgrondingskuil in evenwichtssituatie tengevolge van éénzijdige aanstroming
T4 getij-invloed

h_0 (prototype) = 15 m

Foto 3 Ontgrondingskuil in evenwichtssituatie tengevolge van tweezijdige aanstroming (getijstroom)
T4 getij-invloed

h_0 (prototype) = 15 m

Foto 4 Ontgrondingskuil in evenwichtssituatie tengevolge van tweezijdige aanstroming (getijstroom)